\qquad

CS 461, Lecture 17

Jared Saia
University of New Mexico

- In Prim's algorithm, the set A maintained by the algorithm forms a single tree.
- The tree starts from an arbitrary root vertex and grows until it spans all the vertices in V
- At each step, a light edge is added to the tree A which connects A to an isolated vertex of $G_{A}=(V, A)$
- By our Corollary, this rule adds only safe edges to A, so when the algorithm terminates, it will return a MST
\qquad
- Prim's Algorithm
- Breadth First Search
- Depth First Search

Example Run

\qquad

Prim's algorithm run on the example graph, starting with the
bottom vertex.

At each stage, thick edges are in A, an arrow points along A 's safe edge, and dashed edges are useless.
\qquad
\qquad

- To implement Prim's algorithm, we keep all edges adjacent to A in a heap
- When we pull the minimum-weight edge off the heap, we first check to see if both its endpoints are in A
- If not, we add the edge to A and then add the neighboring edges to the heap
- If we implement Prim's algorithm this way, its running time is $O(|E| \log |E|)=O(|E| \log |V|)$
- However, we can do better

We will break up the algorithm into two parts, Prim-Init and Prim-Loop

```
Prim(V,E,s){
    Prim-Init(V,E,s);
    Prim-Loop(V,E,s);
}
```


Prim's Algorithm

\qquad

- We can speed things up by noticing that the algorithm visits each vertex only once
- Rather than keeping the edges in the heap, we will keep a heap of vertices, where the key of each vertex v is the weight of the minimum-weight edge between v and A (or infinity if there is no such edge)
- Each time we add a new edge to A, we may need to decrease the key of some neighboring vertices

```
Prim-Init(V,E,s){
    for each vertex v in V - {s}{
        if ((v,s) is in E){
            edge(v) = (v,s);
            key(v) = w((v,s));
        }else{
            edge(v) = NULL;
            key(v) = infinity;
        }
    }
    Heap-Insert(v);
}
```

\qquad

```
Prim-Loop(V,E,s){
```

Prim-Loop(V,E,s){
A = {};
A = {};
for (i = 1 to |V| - 1){
for (i = 1 to |V| - 1){
v = Heap-ExtractMin();
v = Heap-ExtractMin();
add edge(v) to A;
add edge(v) to A;
for (each edge (u,v) in E){
for (each edge (u,v) in E){
if (u is not in A AND key(u) > w(u,v)){
if (u is not in A AND key(u) > w(u,v)){
edge(u) = (u,v);
edge(u) = (u,v);
Heap-DecreaseKey(u,w(u,v));
Heap-DecreaseKey(u,w(u,v));
}
}
}
}
}
}
return A;
return A;
}

```
}
```

—Note
\qquad

- The runtime of Prim's is dominated by the cost of the heap operations Insert, ExtractMin and DecreaseKey
- Insert and ExtractMin are each called $O(|V|)$ times
- DecreaseKey is called $O(|E|)$ times, at most twice for each edge
- If we use a Fibonacci Heap, the amortized costs of Insert and DecreaseKey is $O(1)$ and the amortized cost of ExtractMin is $O(\log |V|)$
- Thus the overall run time of Prim's is $O(|E|+|V| \log |V|)$
- This is faster than Kruskal's unless $E=O(|V|)$
- This analysis assumes that it is fast to find all the edges that are incident to a given vertex
- We have not yet discussed how we can do this
- This brings us to a discussion of how to represent a graph in a computer
- This is faster than Kruskal's unless E ($O \mid$)

Graph Representation

\qquad

There are two common data structures used to explicity represent graphs

- Adjacency Matrices
- Adjacency Lists
\qquad
\qquad
- The adjacency matrix of a graph G is a $|V| \times|V|$ matrix of 0 's and 1's
- For an adjacency matrix A, the entry $A[i, j]$ is 1 if $(i, j) \in E$ and 0 otherwise
- For undirectd graphs, the adjacency matrix is always symmetric: $A[i, j]=A[j, i]$. Also the diagonal elements $A[i, i]$ are all zeros
$\frac{a b c d e f g h i}{a}$
b 101110000
c 110110000
d 011011000
e 011101000
$f 000110000$
g 000000010
$h 000000101$
$i 000000110$

Adjacency matrix and adjacency list representations for the example graph.

Example Graph

\qquad

Adjacency Matrix \qquad

- Given an adjacency matrix, we can decide in Θ (1) time whether two vertices are connected by an edge.
- We can also list all the neighbors of a vertex in $\Theta(|V|)$ time by scanning the row corresponding to that vertex
- This is optimal in the worst case, however if a vertex has few neighbors, we still need to examine every entry in the row to find them all
- Also, adjacency matrices require $\Theta\left(|V|^{2}\right)$ space, regardless of how many edges the graph has, so it is only space efficient for very dense graphs
\qquad
- For sparse graphs - graphs with relatively few edges we're better off with adjacency lists
- An adjacency list is an array of linked lists, one list per vertex
- Each linked list stores the neighbors of the corresponding vertex
- If we use the right type of heap and the right graph representation, then Prim's algorithm takes $O(|E|+|V| \log |V|)$
- This compares favorably with Kruskal's algorithm which takes $O(|E| \log |V|)$
- Kruskal's and Prims algorithms are the two main algorithms for finding the minimum spanning tree of a connected graph
- There are many, many other types of problems defined on graphs...

Adjacency Lists

\qquad

- The total space required for an adjacency list is $O(|V|+|E|)$
- Listing all the neighbors of a node v takes $O(1+\operatorname{deg}(v))$ time
- We can determine if (u, v) is an edge in $O(1+\operatorname{deg}(u))$ time by scanning the neighbor list of u
- Note that we can speed things up by storing the neighbors of a node not in lists but rather in hash tables
- Then we can determine if an edge is in the graph in expected $O(1)$ time and still list all the neighbors of a node v in $O(1+$ $\operatorname{deg}(v))$ time

Traversing a Graph \qquad

- Suppose we want to visit every node in a connected graph (represented either explicitly or implicitly)
- The simplest way to do this is an algorithm called depth-first search
- We can write this algorithm recursively or iteratively - it's the same both ways, the iterative version just makes the stack explicit
- Both versions of the algorithm are initially passed a source vertex v
\qquad
\qquad

```
RecursiveDFS(v){
    if ($v$ is unmarked){
        mark $v$;
        for each edge (v,w){
            RecursiveDFS(w);
        }
    }
}
```

- DFS is one instance of a general family of graph traversal algorithms
- This generic graph traversal algorithm stores a set of candidate edges in a data structure we'll call a "bag"
- A "bag" is just something we can put stuff into and later take stuff out of - stacks, queues and heaps are all examples of bags.

Iterative DFS

```
IterativeDFS(s){
    Push(s);
    while (stack not empty){
        v = Pop();
        if (v is unmarked){
            mark v;
            for each edge (v,w){
                Push(w);
            }
        }
    }
}
```

```
Traverse(s){
    put (nil,s) in bag;
    while (the bag is not empty){
        take some edge (p,v) from the bag
        if (v is unmarked)
            mark v;
            parent(v) = p;
            for each edge (v,w){
                put (v,w) into the bag;
            }
        }
    }
}
```

\qquad Proof \qquad

- Notice that we're keeping edges in the bag instead of vertices
- This is because we want to remember when we visit vertex v for teh first time, which previously-visited vertex p put v into the bag
- This vertex p is called the parent of v

Lemma

\qquad

- Traverse(s) marks each vertex in a connected graph exactly once, and the set of edges ($v, \operatorname{parent}(v)$), with parent (v) not nil, form a spanning tree of the graph.
- It's obvious that no node is marked more than once
- We next show that each vertex is marked at least once.
- Let $v \neq s$ be a vertex and let $s \rightarrow \cdots \rightarrow u \rightarrow v$ be the path from s to v with the minimum number of edges. (Since the graph is connected such a path always exists)
- If the algorithm marks u, then it must put (u, v) in the bag, so it must later take (u, v) out of the bag, at which point v must be marked
- Thus by induction on the shortest-path distance from s, the algorithm marks every vertex in the graph
mit

Proof
 \qquad

- Call an edge $(v, \operatorname{parent}(v))$ with $\operatorname{parent}(v) \neq n i l$ a parent edge
- It now remains to be shown that the parent edges form a spanning tree of the graph
- For any node v, the path of parent edges $v \rightarrow \operatorname{parent}(v) \rightarrow$ parent $($ parent $(v)) \rightarrow \cdots$ eventually leads back to s, so the set of parent edges form a connected graph.
- Since every node except s has a unique parent edge, the total number of parent edges is exactly one less than the total number of vertices
- Thus the parent edges form a spanning tree (we'll show this in the in-class exercise)
\qquad
- If we implement the "bag" by using a stack, we have Depth First Search
- If we implement the "bag" by using a queue, we have Breadth First Search

Analysis

\qquad
\qquad

- Note that if we use adjacency lists for the graph, the overhead for the "for" loop is only a constant per edge (no matter how we implement the bag)
- If we implement the bag using either stacks or queues, each operation on the bag takes constant time
- Hence the overall runtime is $O(|V|+|E|)=O(|E|)$
- Note that DFS trees tend to be long and skinny while BFS trees are short and fat
- In addition, the BFS tree contains shortest paths from the start vertex s to every other vertex in its connected component. (here we define the length of a path to be the number of edges in the path)

Now assume the edges are weighted

- If we implement the "bag" using a priority queue, always extracting the minimum weight edge from the bag, then we have a version of Prim's algorithm
- Each extraction from the "bag" now takes $O(|E|)$ time so the total running time is $O(|V|+|E| \log |E|)$

A depth-first spanning tree and a breadth-first spanning tree of one component of the example graph, with start vertex a.

In Class Exercise

\qquad

- Consider a connected graph that has n vertices and $n-1$ edges. Prove by induction on n that such a graph is a tree.
- Q: What is the base case?
- Q: What is the inductive hypothesis?
- Q: What is the inductive step?

