
CS 362, Lecture 18

Jared Saia

University of New Mexico

Today’s Outline

• Breadth First and Depth First Search

• Single Source Shortest Path

1

Traversing a Graph

• Suppose we want to visit every node in a connected graph

(represented either explicitly or implicitly)

• The simplest way to do this is an algorithm called depth-first

search

• We can write this algorithm recursively or iteratively - it’s the

same both ways, the iterative version just makes the stack

explicit

• Both versions of the algorithm are initially passed a source

vertex v

2

Recursive DFS

RecursiveDFS(v){

if (v is unmarked){

mark v;

for each edge (v,w){

RecursiveDFS(w);

}

}

}

3

Iterative DFS

IterativeDFS(s){

Push(s);

while (stack not empty){

v = Pop();

if (v is unmarked){

mark v;

for each edge (v,w){

Push(w);

}

}

}

}

4

Generic Traverse

• DFS is one instance of a general family of graph traversal

algorithms

• This generic graph traversal algorithm stores a set of candi-

date edges in a data structure we’ll call a “bag”

• A “bag” is just something we can put stuff into and later

take stuff out of - stacks, queues and heaps are all examples

of bags.

5

Generic Traverse

Traverse(s){

put (nil,s) in bag;

while (the bag is not empty){

take some edge (p,v) from the bag

if (v is unmarked)

mark v;

parent(v) = p;

for each edge (v,w) incident to v{

put (v,w) into the bag;

}

}

}

}

6

Analysis

• Notice that we’re keeping edges in the bag instead of vertices

• This is because we want to remember when we visit vertex v

for teh first time, which previously-visited vertex p put v into

the bag

• This vertex p is called the parent of v

7

Lemma

• Traverse(s) marks each vertex in a connected graph exactly

once, and the set of edges (v, parent(v)), with parent(v) not

nil, form a spanning tree of the graph.

8

Proof

• It’s obvious that no node is marked more than once

• We next show that each vertex is marked at least once.

• Let v 6= s be a vertex and let s → · · · → u → v be the path

from s to v with the minimum number of edges. (Since the

graph is connected such a path always exists)

• If the algorithm marks u, then it must put (u, v) in the bag,

so it must later take (u, v) out of the bag, at which point v

must be marked

• Thus by induction on the shortest-path distance from s, the

algorithm marks every vertex in the graph

9

Proof

• Call an edge (v, parent(v)) with parent(v) 6= nil a parent edge.

• Note that since every node is marked, every node has a parent

edge except for s.

• It now remains to be shown that the parent edges form a

spanning tree of the graph

10

Proof

• For any node v 6= s, the path of parent edges v → parent(v) →
parent(parent(v)) → · · · eventually leads back to s, so the set

of parent edges form a connected graph.

• Since every node except s has a unique parent edge, the

total number of parent edges is exactly one less than the

total number of vertices. (i.e. if there are n nodes, then

there are n− 1 edges)

• Thus the parent edges form a spanning tree (we’ll show this

in the in-class exercise)

11

In Class Exercise

• Consider a connected graph G = (V, E) that has n vertices

and n− 1 edges where n > 1. First we will prove that G has

at least one vertex with degree 1

• Q: What is ∑
v∈V

deg(v)

• Q: Is it possible for each vertex to have degree ≥ 2? Why or

why not?

• Q: Now show that there must be at least one vertex that

has degree 1

12

In Class Exercise

Now we will prove by induction that any connected graph with

n vertices and n− 1 edges is a tree.

• Q: What is the base case?

• Q: What is the inductive hypothesis?

• Q: Now show the inductive step. Hint: Use the fact proved

in the last slide.

13

DFS and BFS

• If we implement the “bag” by using a stack, we have Depth

First Search

• If we implement the “bag” by using a queue, we have Breadth

First Search

14

Analysis

• Note that if we use adjacency lists for the graph, the overhead

for the “for” loop is only a constant per edge (no matter how

we implement the bag)

• If we implement the bag using either stacks or queues, each

operation on the bag takes constant time

• Hence the overall runtime is O(|V |+ |E|) = O(|E|)

15

DFS vs BFS

• Note that DFS trees tend to be long and skinny while BFS

trees are short and fat

• In addition, the BFS tree contains shortest paths from the

start vertex s to every other vertex in its connected compo-

nent. (here we define the length of a path to be the number

of edges in the path)

16

Final Note

• Now assume the edges are weighted

• If we implement the “bag” using a priority queue, always

extracting the minimum weight edge from the bag, then we

have a version of Prim’s algorithm

• Each extraction from the “bag” now takes O(|E|) time so

the total running time is O(|V |+ |E| log |E|)

17

Example

Analysis

• Note that if we use adjacency lists for the graph, the overhead
for the “for” loop is only a constant per edge (no matter how
we implement the bag)

• If we implement the bag using either stacks or queues, each
operation on the bag takes constant time

• Hence the overall runtime is O(|V | + |E|) = O(|E|)

4

DFS vs BFS

• Note that DFS trees tend to be long and skinny while BFS
trees are short and fat

• In addition, the BFS tree contains shortest paths from the
start vertex s to every other vertex in its connected compo-
nent. (here we define the length of a path to be the number
of edges in the path)

5

Final Note

• Now assume the edges are weighted
• If we implement the “bag” using a priority queue, always

extracting the minimum weight edge from the bag, then we
have a version of Prim’s algorithm

• Each extraction from the “bag” now takes O(|E|) time so
the total running time is O(|V | + |E| log |E|)

6

Example

a

b

e

d

f

c

a

b

e

d

f

c

A depth-first spanning tree and a breadth-first spanning tree
of one component of the example graph, with start vertex a.

7

A depth-first spanning tree and a breadth-first spanning tree

of one component of the example graph, with start vertex a.

18

Searching Disconnected Graphs

If the graph is disconnected, then Traverse only visits nodes in

the connected component of the start vertex s. If we want to

visit all vertices, we can use the following “wrapper” around

Traverse

TraverseAll(){

for all vertices v{

if (v is unmarked){

Traverse(v);

}

}

}

19

DFS and BFS

• Note that we can do DFS and BFS equally well on undirected

and directed graphs

• If the graph is undirected, there are two types of edges in G:

edges that are in the DFS or BFS tree and edges that are

not in this tree

• If the graph is directed, there are several types of edges

20

DFS in Directed Graphs

• Tree edges are edges that are in the tree itself

• Back edges are those edges (u, v) connecting a vertex u to

an ancestor v in the DFS tree

• Forward edges are nontree edges (u, v) that connect a vertex

u to a descendant in a DFS tree

• Cross edges are all other edges. They go between two ver-

tices where neither vertex is a descendant of the other

21

Acyclic graphs

• Useful Fact: A directed graph G is acyclic if and only if a

DFS of G yeilds no back edges

• Challenge: Try to prove this fact.

22

Take Away

• BFS and DFS are two useful algorithms for exploring graphs

• Each of these algorithms is an instantiation of the Traverse

algorithm. BFS uses a queue to hold the edges and DFS

uses a stack

• Each of these algorithms constructs a spanning tree of all

the nodes which are reachable from the start node s

23

Shortest Paths Problem

• Another interesting problem for graphs is that of finding

shortest paths

• Assume we are given a weighted directed graph G = (V, E)

with two special vertices, a source s and a target t

• We want to find the shortest directed path from s to t

• In other words, we want to find the path p starting at s and

ending at t minimizing the function

w(p) =
∑
e∈p

w(e)

24

Example

• Imagine we want to find the fastest way to drive from Albu-

querque,NM to Seattle,WA

• We might use a graph whose vertices are cities, edges are

roads, weights are driving times, s is Albuquerque and t is

Seattle

• The graph is directed since driving times along the same

road might be different in different directions (e.g. because

of construction, speed traps, etc)

25

SSSP

• Every algorith known for solving this problem actually solves

the following more general single source shortest paths or

SSSP problem:

• Find the shortest path from the source vertex s to every

other vertex in the graph

• This problem is usually solved by finding a shortest path tree

rooted at s that contains all the desired shortest paths

26

Shortest Path Tree

• It’s not hard to see that if the shortest paths are unique,

then they form a tree

• To prove this, we need only observe that the sub-paths of

shortest paths are themselves shortest paths

• If there are multiple shotest paths to the same vertex, we

can always choose just one of them, so that the union of the

paths is a tree

• If there are shortest paths to two vertices u and v which

diverge, then meet, then diverge again, we can modify one

of the paths so that the two paths diverge once only.

27

Example

Shortest Path Tree

• It’s not hard to see that if the shortest paths are unique,
then they form a tree

• To prove this, we need only observe that the sub-paths of
shortest paths are themselves shortest paths

• If there are multiple shotest paths to the same vertex, we
can always choose just one of them, so that the union of the
paths is a tree

• If there are shortest paths to two vertices u and v which
diverge, then meet, then diverge again, we can modify one
of the paths so that the two paths diverge once only.

16

Example

s

u

v

a

b c

d

x y

If s → a → b → c → d → v and s → a → x → y → d → u are both
shortest paths,

then s → a → b → c → d → u is also a shortest path.

17

MST vs SPT

• Note that the minimum spanning tree and shortest path tree
can be different

• For one thing there may be only one MST but there can be
multiple shortest path trees (one for every source vertex)

18

Example

8 5

10

2 3

18 16

12

14

30

4 26

8 5

10

2 3

18 16

12

14

30

4 26

A minimum spanning tree (left) and a shortest path tree rooted at the
topmost vertex (right).

19

If s → a → b → c → d → v and s → a → x → y → d → u are both

shortest paths,

then s → a → b → c → d → u is also a shortest path.

28

MST vs SPT

• Note that the minimum spanning tree and shortest path tree

can be different

• For one thing there may be only one MST but there can be

multiple shortest path trees (one for every source vertex)

29

Example

Shortest Path Tree

• It’s not hard to see that if the shortest paths are unique,
then they form a tree

• To prove this, we need only observe that the sub-paths of
shortest paths are themselves shortest paths

• If there are multiple shotest paths to the same vertex, we
can always choose just one of them, so that the union of the
paths is a tree

• If there are shortest paths to two vertices u and v which
diverge, then meet, then diverge again, we can modify one
of the paths so that the two paths diverge once only.

16

Example

s

u

v

a

b c

d

x y

If s → a → b → c → d → v and s → a → x → y → d → u are both
shortest paths,

then s → a → b → c → d → u is also a shortest path.

17

MST vs SPT

• Note that the minimum spanning tree and shortest path tree
can be different

• For one thing there may be only one MST but there can be
multiple shortest path trees (one for every source vertex)

18

Example

8 5

10

2 3

18 16

12

14

30

4 26

8 5

10

2 3

18 16

12

14

30

4 26

A minimum spanning tree (left) and a shortest path tree rooted at the
topmost vertex (right).

19

A minimum spanning tree (left) and a shortest path tree rooted at the
topmost vertex (right).

30

