
CS 561, Lecture 3

Jared Saia

University of New Mexico



Recurrence Relations

“Oh how should I not lust after eternity and after the nuptial

ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus

Spoke Zarathustra

• Getting the run times of recursive algorithms can be chal-

lenging

• Consider an algorithm for binary search (next slide)

• Let T (n) be the run time of this algorithm on an array of

size n

• Then we can write T (1) = 1, T (n) = T (n/2) + 1

1



Alg: Binary Search

bool BinarySearch (int arr[], int s, int e, int key){

if (e-s<=0) return false;

int mid = (e+s)/2;

if (key==arr[mid]){

return true;

}else if (key < arr[mid]){

return BinarySearch (arr,s,mid,key);}

else{

return BinarySearch (arr,mid,e,key)}

}

2



Recurrence Relations

• T (n) = T (n/2) + 1 is an example of a recurrence relation

• A Recurrence Relation is any equation for a function T , where

T appears on both the left and right sides of the equation.

• We always want to “solve” these recurrence relation by get-

ting an equation for T , where T appears on just the left side

of the equation

3



Recurrence Relations

• Whenever we analyze the run time of a recursive algorithm,

we will first get a recurrence relation

• To get the actual run time, we need to solve the recurrence

relation

4



Substitution Method

• One way to solve recurrences is the substitution method aka

“guess and check”

• What we do is make a good guess for the solution to T (n),

and then try to prove this is the solution by induction

5



Example

• Let’s guess that the solution to T (n) = T (n/2)+1, T (1) = 1

is T (n) = O(logn)

• In other words, T (n) ≤ c logn for all n ≥ n0, for some positive

constants c, n0

• We can prove that T (n) ≤ c logn is true by plugging back

into the recurrence

6



Proof

We prove this by induction:

• B.C.: T (2) = 2 ≤ c log 2 provided that c ≥ 2

• I.H.: For all j < n, T (j) ≤ c log(j)

• I.S.:

T (n) = T (n/2) + 1 (1)

≤ (c log(n/2)) + 1 (2)

= c(logn− log 2) + 1 (3)

= c logn− c+ 1 (4)

≤ c logn (5)

Last step holds for all n > 0 if c ≥ 1. Thus, entire proof holds if

n ≥ 2 and c ≥ 2.

7



Recurrences and Induction

Recurrences and Induction are closely related:

• To find a solution to f(n), solve a recurrence

• To prove that a solution for f(n) is correct, use induction

For both recurrences and induction, we always solve a big prob-

lem by reducing it to smaller problems!

8



Some Examples

• The next several problems can be attacked by induction/recurrences

• For each problem, we’ll need to reduce it to smaller problems

• Question: How can we reduce each problem to a smaller

subproblem?

9



Sum Problem

• f(n) is the sum of the integers 1, . . . , n

10



Tree Problem

• f(n) is the maximum number of leaf nodes in a binary tree

of height n

Recall:

• In a binary tree, each node has at most two children

• A leaf node is a node with no children

• The height of a tree is the length of the longest path from

the root to a leaf node.

11



Binary Search Problem

• f(n) is the maximum number of queries that need to be

made for binary search on a sorted array of size n.

12



Dominoes Problem

• f(n) is the number of ways to tile a 2 by n rectangle with

dominoes (a domino is a 2 by 1 rectangle)

13



Simpler Subproblems

• Sum Problem: What is the sum of all numbers between 1

and n− 1 (i.e. f(n− 1))?

• Tree Problem: What is the maximum number of leaf nodes

in a binary tree of height n− 1? (i.e. f(n− 1))

• Binary Search Problem: What is the maximum number of

queries that need to be made for binary search on a sorted

array of size n/2? (i.e. f(n/2))

• Dominoes problem: What is the number of ways to tile a

2 by n − 1 rectangle with dominoes? What is the number

of ways to tile a 2 by n − 2 rectangle with dominoes? (i.e.

f(n− 1), f(n− 2))

14



Recurrences

• Sum Problem: f(n) = f(n− 1) + n, f(1) = 1

• Tree Problem: f(n) = 2 ∗ f(n− 1), f(0) = 1

• Binary Search Problem: f(n) = f(n/2) + 1, f(2) = 1

• Dominoes problem: f(n) = f(n − 1) + f(n − 2), f(1) = 1,

f(2) = 2

15



Guesses

• Sum Problem: f(n) = (n+ 1)n/2

• Tree Problem: f(n) = 2n

• Binary Search Problem: f(n) = logn

• Dominoes problem: f(n) = 1√
5

(
1+
√

5
2

)n
− 1√

5

(
1−
√

5
2

)n

16



Inductive Proofs

“Trying is the first step to failure” - Homer Simpson

• Now that we’ve made these guesses, we can try using induc-

tion to prove they’re correct (the substitution method)

• We’ll give inductive proofs that these guesses are correct for

the first three problems

17



Sum Problem

• Want to show that f(n) = (n+ 1)n/2.

• Prove by induction on n

• Base case: f(1) = 2 ∗ 1/2 = 1

• Inductive hypothesis: for all j < n, f(j) = (j + 1)j/2

• Inductive step:

f(n) = f(n− 1) + n (6)

= n(n− 1)/2 + n (7)

= (n+ 1)n/2 (8)

18



Tree Problem

• Want to show that f(n) = 2n.

• Prove by induction on n

• Base case: f(0) = 20 = 1

• Inductive hypothesis: for all j < n, f(j) = 2j

• Inductive step:

f(n) = 2 ∗ f(n− 1) (9)

= 2 ∗ (2n−1) (10)

= 2n (11)

19



Binary Search Problem

• Want to show that f(n) = logn. (assume n is a power of 2)

• Prove by induction on n

• Base case: f(2) = log 2 = 1

• Inductive hypothesis: for all j < n, f(j) = log j

• Inductive step:

f(n) = f(n/2) + 1 (12)

= logn/2 + 1 (13)

= logn− log 2 + 1 (14)

= logn (15)

20



In Class Exercise

• Consider the recurrence f(n) = 2f(n/2) + 1, f(1) = 1

• Guess that f(n) ≤ cn− 1:

• Q1: Show the base case - for what values of c does it hold?

• Q2: What is the inductive hypothesis?

• Q3: Show the inductive step.

21



Recurrences and Inequalities

• Often easier to prove that a recurrence is no more than some

quantity than to prove that it equals something

• Consider: f(n) = f(n− 1) + f(n− 2), f(1) = f(2) = 1

• “Guess” that f(n) ≤ 2n

22



Inequalities (II)

Goal: Prove by induction that for f(n) = f(n − 1) + f(n − 2),

f(1) = f(2) = 1, f(n) ≤ 2n

• Base case: f(1) = 1 ≤ 21, f(2) = 1 ≤ 22

• Inductive hypothesis: For all j < n, f(j) ≤ 2j

• Inductive step:

f(n) = f(n− 1) + f(n− 2) (16)

≤ 2n−1 + 2n−2 (17)

< 2 ∗ 2n−1 (18)

= 2n (19)

23



Recursion-tree method

• Each node represents the cost of a single subproblem in a

recursive call

• First, we sum the costs of the nodes in each level of the tree

• Then, we sum the costs of all of the levels

24



Recursion-tree method

• Can use to get a good guess which is then refined and verified

using substitution method

• Best method (usually) for recurrences where a term like

T (n/c) appears on the right hand side of the equality

25



Example 1

• Consider the recurrence for the running time of Mergesort:

T (n) = 2T (n/2) + n, T (1) = O(1)

n

n/2 n/2

n/4 n/4 n/4 n/4

n/8 n/8 n/8 n/8 n/8 n/8 n/8 n/8

n

n

n

n

26



Example 1

• We can see that each level of the tree sums to n

• Further the depth of the tree is logn (n/2d = 1 implies that

d = logn).

• Thus there are logn+ 1 levels each of which sums to n

• Hence T (n) = Θ(n logn)

27



Example 2

• Let’s solve the recurrence T (n) = 3T (n/4) + n2

• Note: For simplicity, from now on, we’ll assume that T (i) =

Θ(1) for all small constants i. This will save us from writing

the base cases each time.

(n/16)^2 (n/16)^2

n^2

(n/4)^2 (n/4)^2

(n/16)^2

(n/4)^2

(n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2 (n/16)^2

n^2

(3/16)n^2

(3/16)^2*n^2

...

28



Example 2

• We can see that the i-th level of the tree sums to (3/16)in2.

• Further the depth of the tree is log4 n (n/4d = 1 implies that

d = log4 n)

• So we can see that T (n) =
∑log4 n
i=0 (3/16)in2

29



Solution

T (n) =
log4 n∑
i=0

(3/16)in2 (20)

< n2
∞∑
i=0

(3/16)i (21)

=
1

1− (3/16)
n2 (22)

= O(n2) (23)

30



Master Theorem

• Divide and conquer algorithms often give us running-time

recurrences of the form

T (n) = aT (n/b) + f(n) (24)

• Where a and b are constants and f(n) is some other function.

• The so-called “Master Method” gives us a general method

for solving such recurrences when f(n) is a simple polynomial.

31



Master Theorem

• Unfortunately, the Master Theorem doesn’t work for all func-

tions f(n)

• Further many useful recurrences don’t look like T (n)

• However, the theorem allows for very fast solution of recur-

rences when it applies

32



Master Theorem

• Master Theorem is just a special case of the use of recursion

trees

• Consider equation T (n) = aT (n/b) + f(n)

• We start by drawing a recursion tree

33



The Recursion Tree

• The root contains the value f(n)

• It has a children, each of which contains the value f(n/b)

• Each of these nodes has a children, containing the value

f(n/b2)

• In general, level i contains ai nodes with values f(n/bi)

• Hence the sum of the nodes at the i-th level is aif(n/bi)

34



Details

• The tree stops when we get to the base case for the recur-

rence

• We’ll assume T (1) = f(1) = Θ(1) is the base case

• Thus the depth of the tree is logb n and there are logb n+ 1

levels

35



Recursion Tree

• Let T (n) be the sum of all values stored in all levels of the

tree:

T (n) = f(n)+a f(n/b)+a2 f(n/b2)+· · ·+ai f(n/bi)+· · ·+aL f(n/bL)

• Where L = logb n is the depth of the tree

• Since f(1) = Θ(1), the last term of this summation is Θ(aL) =

Θ(alogb n) = Θ(nlogb a)

36



A “Log Fact” Aside

• It’s not hard to see that alogb n = nlogb a

alogb n = nlogb a (25)

alogb n = aloga n∗logb a (26)

logb n = loga n ∗ logb a (27)

• We get to the last eqn by taking loga of both sides

• The last eqn is true by our third basic log fact

37



Master Theorem

• We can now state the Master Theorem

• We will state it in a way slightly different from the book

• Note: The Master Method is just a “short cut” for the re-

cursion tree method. It is less powerful than recursion trees.

38



Master Method

The recurrence T (n) = aT (n/b) + f(n) can be solved as follows:

• If a f(n/b) ≤ Kf(n) for some constant K < 1, then T (n) =

Θ(f(n)).

• If a f(n/b) ≥ K f(n) for some constant K > 1, then T (n) =

Θ(nlogb a).

• If a f(n/b) = f(n), then T (n) = Θ(f(n) logb n).

39



Proof

• If f(n) is a constant factor larger than a f(n/b), then the sum

is a descending geometric series. The sum of any geometric

series is a constant times its largest term. In this case, the

largest term is the first term f(n).

• If f(n) is a constant factor smaller than a f(n/b), then the

sum is an ascending geometric series. The sum of any ge-

ometric series is a constant times its largest term. In this

case, this is the last term, which by our earlier argument is

Θ(nlogb a).

• Finally, if a f(n/b) = f(n), then each of the L + 1 terms in

the summation is equal to f(n).

40



Example

• T (n) = T (3n/4) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

4/3,f(n) = n

• Here a f(n/b) = 3n/4 is smaller than f(n) = n by a factor of

4/3, so T (n) = Θ(n)

41



Example

• Karatsuba’s multiplication algorithm: T (n) = 3T (n/2) +

n

• If we write this as T (n) = aT (n/b) + f(n), then a = 3,b =

2,f(n) = n

• Here a f(n/b) = 3n/2 is bigger than f(n) = n by a factor of

3/2, so T (n) = Θ(nlog2 3)

42



Example

• Mergesort: T (n) = 2T (n/2) + n

• If we write this as T (n) = aT (n/b) + f(n), then a = 2,b =

2,f(n) = n

• Here a f(n/b) = f(n), so T (n) = Θ(n logn)

43



Example

• T (n) = T (n/2) + n logn

• If we write this as T (n) = aT (n/b) + f(n), then a = 1,b =

2,f(n) = n logn

• Here a f(n/b) = n/2 logn/2 is smaller than f(n) = n logn by

a constant factor, so T (n) = Θ(n logn)

44



In-Class Exercise

• Consider the recurrence: T (n) = 4T (n/2) + n lg n

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

45



In-Class Exercise

• Consider the recurrence: T (n) = 2T (n/4) + n lg n

• Q: What is f(n) and a f(n/b)?

• Q: Which of the three cases does the recurrence fall under

(when n is large)?

• Q: What is the solution to this recurrence?

46



Take Away

• Recursion tree and Master method are good tools for solving

many recurrences

• However these methods are limited (they can’t help us get

guesses for recurrences like f(n) = f(n− 1) + f(n− 2))

• For info on how to solve these other more difficult recur-

rences, review the notes on annihilators on the class web

page.

47



Intro to Annihilators

“Listen and Understand! That terminator is out there. It can’t

be bargained with, it can’t be reasoned with! It doesn’t feel pity,

remorse, or fear. And it absolutely will not stop, ever, until you

are dead!” - The Terminator

• Suppose we are given a sequence of numbers A = 〈a0, a1, a2, · · · 〉
• This might be a sequence like the Fibonacci numbers

• I.e. A = 〈a0, a1, a2, . . . ) = (T (1), T (2), T (3), · · · 〉

48



Annihilator Operators

We define three basic operations we can perform on this se-

quence:

1. Multiply the sequence by a constant: cA = 〈ca0, ca1, ca2, · · · 〉
2. Shift the sequence to the left: LA = 〈a1, a2, a3, · · · 〉
3. Add two sequences: if A = 〈a0, a1, a2, · · · 〉 and B = 〈b0, b1, b2, · · · 〉,

then A+B = 〈a0 + b0, a1 + b1, a2 + b2, · · · 〉

49



Annihilator Description

• We first express our recurrence as a sequence T

• We use these three operators to “annihilate” T , i.e. make it

all 0’s

• Key rule: can’t multiply by the constant 0

• We can then determine the solution to the recurrence from

the sequence of operations performed to annihilate T

50



Example

• Consider the recurrence T (n) = 2T (n− 1), T (0) = 1

• If we solve for the first few terms of this sequence, we can

see they are 〈20,21,22,23, · · · 〉
• Thus this recurrence becomes the sequence:

T = 〈20,21,22,23, · · · 〉

51



Example (II)

Let’s annihilate T = 〈20,21,22,23, · · · 〉

• Multiplying by a constant c = 2 gets:

2T = 〈2 ∗ 20,2 ∗ 21,2 ∗ 22,2 ∗ 23, · · · 〉 = 〈21,22,23,24, · · · 〉

• Shifting one place to the left gets LT = 〈21,22,23,24, · · · 〉
• Adding the sequence LT and −2T gives:

LT − 2T = 〈21 − 21,22 − 22,23 − 23, · · · 〉 = 〈0,0,0, · · · 〉

• The annihilator of T is thus L− 2

52



Distributive Property

• The distributive property holds for these three operators

• Thus can rewrite LT − 2T as (L− 2)T

• The operator (L − 2) annihilates T (makes it the sequence

of all 0’s)

• Thus (L− 2) is called the annihilator of T

53



0, the “Forbidden Annihilator”

• Multiplication by 0 will annihilate any sequence

• Thus we disallow multiplication by 0 as an operation

• In particular, we disallow (c−c) = 0 for any c as an annihilator

• Must always have at least one L operator in any annihilator!

54



Uniqueness

• An annihilator annihilates exactly one type of sequence

• In general, the annihilator L − c annihilates any sequence of

the form 〈a0c
n〉

• If we find the annihilator, we can find the type of sequence,

and thus solve the recurrence

• We will need to use the base case for the recurrence to solve

for the constant a0

55



Example

If we apply operator (L − 3) to sequence T above, it fails to

annihilate T

(L− 3)T = LT + (−3)T

= 〈21,22,23, · · · 〉+ 〈−3× 20,−3× 21,−3× 22, · · · 〉
= 〈(2− 3)× 20, (2− 3)× 21, (2− 3)× 22, · · · 〉
= (2− 3)T = −T

56



Example (II)

What does (L−c) do to other sequences A = 〈a0d
n〉 when d 6= c?:

(L− c)A = (L− c)〈a0, a0d, a0d
2, a0d

3, · · · 〉
= L〈a0, a0d, a0d

2, a0d
3, · · · 〉 − c〈a0, a0d, a0d

2, a0d
3, · · · 〉

= 〈a0d, a0d
2, a0d

3, · · · 〉 − 〈ca0, ca0d, ca0d
2, ca0d

3, · · · 〉
= 〈a0d− ca0, a0d

2 − ca0d, a0d
3 − ca0d

2, · · · 〉
= 〈(d− c)a0, (d− c)a0d, (d− c)a0d

2, · · · 〉
= (d− c)〈a0, a0d, a0d

2, · · · 〉
= (d− c)A

57



Uniqueness

• The last example implies that an annihilator annihilates one

type of sequence, but does not annihilate other types of

sequences

• Thus Annihilators can help us classify sequences, and thereby

solve recurrences

58



Lookup Table

• The annihilator L − a annihilates any sequence of the form

〈c1an〉

59



Example

First calculate the annihilator:

• Recurrence: T (n) = 4 ∗ T (n− 1), T (0) = 2

• Sequence: T = 〈2,2 ∗ 4,2 ∗ 42,2 ∗ 43, · · · 〉
• Calulate the annihilator:

– LT = 〈2 ∗ 4,2 ∗ 42,2 ∗ 43,2 ∗ 44, · · · 〉
– 4T = 〈2 ∗ 4,2 ∗ 42,2 ∗ 43,2 ∗ 44, · · · 〉
– Thus LT − 4T = 〈0,0,0, · · · 〉
– And so L− 4 is the annihilator

60



Example (II)

Now use the annihilator to solve the recurrence

• Look up the annihilator in the “Lookup Table”

• It says: “The annihilator L − 4 annihilates any sequence of

the form 〈c14n〉”
• Thus T (n) = c14n, but what is c1?

• We know T (0) = 2, so T (0) = c140 = 2 and so c1 = 2

• Thus T (n) = 2 ∗ 4n

61



In Class Exercise

Consider the recurrence T (n) = 3 ∗ T (n− 1), T (0) = 3,

• Q1: Calculate T (0),T (1),T (2) and T (3) and write out the

sequence T

• Q2: Calculate LT , and use it to compute the annihilator of

T

• Q3: Look up this annihilator in the lookup table to get the

general solution of the recurrence for T (n)

• Q4: Now use the base case T (0) = 3 to solve for the con-

stants in the general solution

62



Remaining Outline

• Annihilators with Multiple Operators

• Annihilators for recurrences with non-homogeneous terms

• Transformations

63



Multiple Operators

• We can apply multiple operators to a sequence

• For example, we can multiply by the constant c and then by

the constant d to get the operator cd

• We can also multiply by c and then shift left to get cLT which

is the same as LcT

• We can also shift the sequence twice to the left to get LLT

which we’ll write in shorthand as L2T

64



Multiple Operators

• We can string operators together to annihilate more compli-

cated sequences

• Consider: T = 〈20 + 30,21 + 31,22 + 32, · · · 〉
• We know that (L−2) annihilates the powers of 2 while leaving

the powers of 3 essentially untouched

• Similarly, (L − 3) annihilates the powers of 3 while leaving

the powers of 2 essentially untouched

• Thus if we apply both operators, we’ll see that (L−2)(L−3)

annihilates the sequence T

65



The Details

• Consider: T = 〈a0 + b0, a1 + b1, a2 + b2, · · · 〉
• LT = 〈a1 + b1, a2 + b2, a3 + b3, · · · 〉
• aT = 〈a1 + a ∗ b0, a2 + a ∗ b1, a3 + a ∗ b2, · · · 〉
• LT − aT = 〈(b− a)b0, (b− a)b1, (b− a)b2, · · · 〉
• We know that (L−a)T annihilates the a terms and multiplies

the b terms by b− a (a constant)

• Thus (L− a)T = 〈(b− a)b0, (b− a)b1, (b− a)b2, · · · 〉
• And so the sequence (L− a)T is annihilated by (L− b)
• Thus the annihilator of T is (L− b)(L− a)

66



Key Point

• In general, the annihilator (L − a)(L − b) (where a 6= b) will

anihilate only all sequences of the form 〈c1an + c2b
n〉

• We will often multiply out (L−a)(L− b) to L2−(a+ b)L+ab

• Left as an exercise to show that (L− a)(L− b)T is the same

as (L2 − (a+ b)L + ab)T

67



Lookup Table

• The annihilator L−a annihilates sequences of the form 〈c1an〉
• The annihilator (L − a)(L − b) (where a 6= b) anihilates se-

quences of the form 〈c1an + c2b
n〉

68



Fibonnaci Sequence

• We now know enough to solve the Fibonnaci sequence

• Recall the Fibonnaci recurrence is T (0) = 0, T (1) = 1, and

T (n) = T (n− 1) + T (n− 2)

• Let Tn be the n-th element in the sequence

• Then we’ve got:

T = 〈T0, T1, T2, T3, · · · 〉 (28)

LT = 〈T1, T2, T3, T4, · · · 〉 (29)

L2T = 〈T2, T3, T4, T5, · · · 〉 (30)

• Thus L2T − LT − T = 〈0,0,0, · · · 〉
• In other words, L2 − L− 1 is an annihilator for T

69



Factoring

• L2 − L− 1 is an annihilator that is not in our lookup table

• However, we can factor this annihilator (using the quadratic

formula) to get something similar to what’s in the lookup

table

• L2−L− 1 = (L− φ)(L− φ̂), where φ = 1+
√

5
2 and φ̂ = 1−

√
5

2 .

70



Quadratic Formula

“Me fail English? That’s Unpossible!” - Ralph, the Simpsons

High School Algebra Review:

• To factor something of the form ax2 + bx + c, we use the

Quadratic Formula:

• ax2 + bx+ c factors into (x− φ)(x− φ̂), where:

φ =
−b+

√
b2 − 4ac

2a
(31)

φ̂ =
−b−

√
b2 − 4ac

2a
(32)

71



Example

• To factor: L2 − L− 1

• Rewrite: 1 ∗ L2 − 1 ∗ L− 1, a = 1, b = −1, c = −1

• From Quadratic Formula: φ = 1+
√

5
2 and φ̂ = 1−

√
5

2
• So L2 − L− 1 factors to (L− φ)(L− φ̂)

72



Back to Fibonnaci

• Recall the Fibonnaci recurrence is T (0) = 0, T (1) = 1, and

T (n) = T (n− 1) + T (n− 2)

• We’ve shown the annihilator for T is (L − φ)(L − φ̂), where

φ = 1+
√

5
2 and φ̂ = 1−

√
5

2
• If we look this up in the “Lookup Table”, we see that the

sequence T must be of the form 〈c1φn + c2φ̂
n〉

• All we have left to do is solve for the constants c1 and c2
• Can use the base cases to solve for these

73



Finding the Constants

• We know T = 〈c1φn + c2φ̂
n〉, where φ = 1+

√
5

2 and φ̂ = 1−
√

5
2

• We know

T (0) = c1 + c2 = 0 (33)

T (1) = c1φ+ c2φ̂ = 1 (34)

• We’ve got two equations and two unknowns

• Can solve to get c1 = 1√
5

and c2 = − 1√
5

,

74



The Punchline

• Recall Fibonnaci recurrence: T (0) = 0, T (1) = 1, and T (n) =

T (n− 1) + T (n− 2)

• The final explicit formula for T (n) is thus:

T (n) =
1√
5

(
1 +
√

5

2

)n
−

1√
5

(
1−
√

5

2

)n

(Amazingly, T (n) is always an integer, in spite of all of the square

roots in its formula.)

75



A Problem

• Our lookup table has a big gap: What does (L − a)(L − a)

annihilate?

• It turns out it annihilates sequences such as 〈nan〉

76



Example

(L− a)〈nan〉 = 〈(n+ 1)an+1 − (a)nan〉
= 〈(n+ 1)an+1 − nan+1〉
= 〈(n+ 1− n)an+1〉
= 〈an+1〉

(L− a)2〈nan〉 = (L− a)〈an+1〉
= 〈0〉

77



Generalization

• It turns out that (L − a)d annihilates sequences of the form

〈p(n)an〉 where p(n) is any polynomial of degree d− 1

• Example: (L − 1)3 annihilates the sequence 〈n2 ∗ 1n〉 =

〈1,4,9,16,25〉 since p(n) = n2 is a polynomial of degree

d− 1 = 2

78



Lookup Table

• (L− a) annihilates only all sequences of the form 〈c0an〉
• (L−a)(L−b) annihilates only all sequences of the form 〈c0an+

c1b
n〉

• (L− a0)(L− a1) . . . (L− ak) annihilates only sequences of the

form 〈c0an0 + c1a
n
1 + . . . cka

n
k〉, here ai 6= aj, when i 6= j

• (L−a)2 annihilates only sequences of the form 〈(c0n+c1)an〉
• (L − a)k annihilates only sequences of the form 〈p(n)an〉,
degree(p(n)) = k − 1

79



Lookup Table (Final!)

(L− a0)b0(L− a1)b1 . . . (L− ak)bk

annihilates only sequences of the form:

〈p1(n)an0 + p2(n)an1 + . . . pk(n)ank〉

where pi(n) is a polynomial of degree bi − 1 (and ai 6= aj, when

i 6= j)

80



Examples

• Q: What does (L− 3)(L− 2)(L− 1) annihilate?

• A: c01n + c12n + c23n

• Q: What does (L− 3)2(L− 2)(L− 1) annihilate?

• A: c01n + c12n + (c2n+ c3)3n

• Q: What does (L− 1)4 annihilate?

• A: (c0n
3 + c1n

2 + c2n+ c3)1n

• Q: What does (L− 1)3(L− 2)2 annihilate?

• A: (c0n
2 + c1n+ c2)1n + (c3n+ c4)2n

81



Annihilator Method

• Write down the annihilator for the recurrence

• Factor the annihilator

• Look up the factored annihilator in the “Lookup Table” to

get general solution

• Solve for constants of the general solution by using initial

conditions

82



Annihilator Method

• Write down the annihilator for the recurrence

• Factor the annihilator

• Look up the factored annihilator in the “Lookup Table” to

get general solution

• Solve for constants of the general solution by using initial

conditions

83



Lookup Table

(L− a0)b0(L− a1)b1 . . . (L− ak)bk

annihilates only sequences of the form:

〈p0(n)an0 + p1(n)an1 + . . . pk(n)ank〉

where pi(n) is a polynomial of degree bi − 1 (and ai 6= aj, when

i 6= j)

84



Examples

• Q: What does (L− 3)(L− 2)(L− 1) annihilate?

• A: c01n + c12n + c23n

• Q: What does (L− 3)2(L− 2)(L− 1) annihilate?

• A: c01n + c12n + (c2n+ c3)3n

• Q: What does (L− 1)4 annihilate?

• A: (c0n
3 + c1n

2 + c2n+ c3)1n

• Q: What does (L− 1)3(L− 2)2 annihilate?

• A: (c0n
2 + c1n+ c2)1n + (c3n+ c4)2n

85



Example

Consider the recurrence T (n) = 7T (n−1)−16T (n−2)+12T (n−
3), T (0) = 1, T (1) = 5, T (2) = 17

• Write down the annihilator: From the definition of the

sequence, we can see that L3T − 7L2T + 16LT − 12T = 0,

so the annihilator is L3 − 7L2 + 16L− 12

• Factor the annihilator: We can factor by hand or using a

computer program to get L3−7L2+16L−12 = (L−2)2(L−3)

• Look up to get general solution: The annihilator (L −
2)2(L− 3) annihilates sequences of the form 〈(c0n+ c1)2n +

c23n〉
• Solve for constants: T (0) = 1 = c1 + c2, T (1) = 5 =

2c0 + 2c1 + 3c2, T (2) = 17 = 8c0 + 4c1 + 9c2. We’ve got

three equations and three unknowns. Solving by hand, we

get that c0 = 1,c1 = 0,c2 = 1. Thus: T (n) = n2n + 3n

86



Example (II)

Consider the recurrence T (n) = 2T (n− 1)− T (n− 2), T (0) = 0,

T (1) = 1

• Write down the annihilator: From the definition of the se-

quence, we can see that L2T−2LT+T = 0, so the annihilator

is L2 − 2L + 1

• Factor the annihilator: We can factor by hand or using the

quadratic formula to get L2 − 2L + 1 = (L− 1)2

• Look up to get general solution: The annihilator (L−1)2

annihilates sequences of the form (c0n+ c1)1n

• Solve for constants: T (0) = 0 = c1, T (1) = 1 = c0 + c1,

We’ve got two equations and two unknowns. Solving by

hand, we get that c0 = 0,c1 = 1. Thus: T (n) = n

87



At Home Exercise

Consider the recurrence T (n) = 6T (n−1)−9T (n−2), T (0) = 1,

T (1) = 6

• Q1: What is the annihilator of this sequence?

• Q2: What is the factored version of the annihilator?

• Q3: What is the general solution for the recurrence?

• Q4: What are the constants in this general solution?

(Note: You can check that your general solution works for T (2))

88



Non-homogeneous terms

• Consider a recurrence of the form T (n) = T (n − 1) + T (n −
2) + k where k is some constant

• The terms in the equation involving T (i.e. T (n − 1) and

T (n− 2)) are called the homogeneous terms

• The other terms (i.e.k) are called the non-homogeneous terms

89



Example

• In a height-balanced tree, the height of two subtrees of any

node differ by at most one

• Let T (n) be the smallest number of nodes needed to obtain

a height balanced binary tree of height n

• Q: What is a recurrence for T (n)?

• A: Divide this into smaller subproblems

– To get a height-balanced tree of height n with the smallest

number of nodes, need one subtree of height n − 1, and

one of height n− 2, plus a root node

– Thus T (n) = T (n− 1) + T (n− 2) + 1

90



Example

• Let’s solve this recurrence: T (n) = T (n − 1) + T (n − 2) + 1

(Let Tn = T (n), and T = 〈Tn〉)
• We know that (L2−L−1) annihilates the homogeneous terms

• Let’s apply it to the entire equation:

(L2 − L− 1)〈Tn〉 = L2〈Tn〉 − L〈Tn〉 − 1〈Tn〉
= 〈Tn+2〉 − 〈Tn+1〉 − 〈Tn〉
= 〈Tn+2 − Tn+1 − Tn〉
= 〈1,1,1, · · · 〉

91



Example

• This is close to what we want but we still need to annihilate

〈1,1,1, · · · 〉
• It’s easy to see that L− 1 annihilates 〈1,1,1, · · · 〉
• Thus (L2−L−1)(L−1) annihilates T (n) = T (n−1) +T (n−

2) + 1

• When we factor, we get (L−φ)(L−φ̂)(L−1), where φ = 1+
√

5
2

and φ̂ = 1−
√

5
2 .

92



Lookup

• Looking up (L− φ)(L− φ̂)(L− 1) in the table

• We get T (n) = c1φ
n + c2φ̂

n + c31n

• If we plug in the appropriate initial conditions, we can solve

for these three constants

• We’ll need to get equations for T (2) in addition to T (0) and

T (1)

93



General Rule

To find the annihilator for recurrences with non-homogeneous

terms, do the following:

• Find the annihilator a1 for the homogeneous part

• Find the annihilator a2 for the non-homogeneous part

• The annihilator for the whole recurrence is then a1a2

94



Another Example

• Consider T (n) = T (n− 1) + T (n− 2) + 2.

• The residue is 〈2,2,2, · · · 〉 and

• The annihilator is still (L2−L− 1)(L− 1), but the equation

for T (2) changes!

95



Another Example

• Consider T (n) = T (n− 1) + T (n− 2) + 2n.

• The residue is 〈1,2,4,8, · · · 〉 and

• The annihilator is now (L2 − L− 1)(L− 2).

96



Another Example

• Consider T (n) = T (n− 1) + T (n− 2) + n.

• The residue is 〈1,2,3,4, · · · 〉
• The annihilator is now (L2 − L− 1)(L− 1)2.

97



Another Example

• Consider T (n) = T (n− 1) + T (n− 2) + n2.

• The residue is 〈1,4,9,16, · · · 〉 and

• The annihilator is (L2 − L− 1)(L− 1)3.

98



Another Example

• Consider T (n) = T (n− 1) + T (n− 2) + n2 − 2n.

• The residue is 〈1− 1,4− 4,9− 8,16− 16, · · · 〉 and the

• The annihilator is (L2 − L− 1)(L− 1)3(L− 2).

99



In Class Exercise

• Consider T (n) = 3 ∗ T (n− 1) + 3n

• Q1: What is the homogeneous part, and what annihilates

it?

• Q2: What is the non-homogeneous part, and what annihi-

lates it?

• Q3: What is the annihilator of T (n), and what is the general

form of the recurrence?

100



Limitations

• Our method does not work on T (n) = T (n−1)+ 1
n or T (n) =

T (n− 1) + lgn

• The problem is that 1
n and lgn do not have annihilators.

• Our tool, as it stands, is limited.

• Key idea for strengthening it is transformations

101



Transformations Idea

• Consider the recurrence giving the run time of mergesort

T (n) = 2T (n/2) + kn (for some constant k), T (1) = 1

• How do we solve this?

• We have no technique for annihilating terms like T (n/2)

• However, we can transform the recurrence into one with

which we can work

102



Transformation

• Let n = 2i and rewrite T (n):

• T (20) = 1 and T (2i) = 2T (2i
2 ) + k2i = 2T (2i−1) + k2i

• Now define a new sequence t as follows: t(i) = T (2i)

• Then t(0) = 1, t(i) = 2t(i− 1) + k2i

103



Now Solve

• We’ve got a new recurrence: t(0) = 1, t(i) = 2t(i− 1) + k2i

• We can easily find the annihilator for this recurrence

• (L−2) annihilates the homogeneous part, (L−2) annihilates

the non-homogeneous part, So (L−2)(L−2) annihilates t(i)

• Thus t(i) = (c1i+ c2)2i

104



Reverse Transformation

• We’ve got a solution for t(i) and we want to transform this

into a solution for T (n)

• Recall that t(i) = T (2i) and 2i = n

t(i) = (c1i+ c2)2i (35)

T (2i) = (c1i+ c2)2i (36)

T (n) = (c1 lgn+ c2)n (37)

= c1n lgn+ c2n (38)

= O(n lgn) (39)

105



Success!

Let’s recap what just happened:

• We could not find the annihilator of T (n) so:

• We did a transformation to a recurrence we could solve, t(i)

(we let n = 2i and t(i) = T (2i))

• We found the annihilator for t(i), and solved the recurrence

for t(i)

• We reverse transformed the solution for t(i) back to a solu-

tion for T (n)

106



Another Example

• Consider the recurrence T (n) = 9T (n3) + kn, where T (1) = 1

and k is some constant

• Let n = 3i and rewrite T (n):

• T (30) = 1 and T (3i) = 9T (3i−1) + k3i

• Now define a sequence t as follows t(i) = T (3i)

• Then t(0) = 1, t(i) = 9t(i− 1) + k3i

107



Now Solve

• t(0) = 1, t(i) = 9t(i− 1) + k3i

• This is annihilated by (L− 9)(L− 3)

• So t(i) is of the form t(i) = c19i + c23i

108



Reverse Transformation

• t(i) = c19i + c23i

• Recall: t(i) = T (3i) and 3i = n

t(i) = c19i + c23i

T (3i) = c19i + c23i

T (n) = c1(3i)2 + c23i

= c1n
2 + c2n

= O(n2)

109



In Class Exercise

Consider the recurrence T (n) = 2T (n/4) + kn, where T (1) = 1,

and k is some constant

• Q1: What is the transformed recurrence t(i)? How do we

rewrite n and T (n) to get this sequence?

• Q2: What is the annihilator of t(i)? What is the solution for

the recurrence t(i)?

• Q3: What is the solution for T (n)? (i.e. do the reverse

transformation)

110



A Final Example

Not always obvious what sort of transformation to do:

• Consider T (n) = 2T (
√
n) + logn

• Let n = 2i and rewrite T (n):

• T (2i) = 2T (2i/2) + i

• Define t(i) = T (2i):

• t(i) = 2t(i/2) + i

111



A Final Example

• This final recurrence is something we know how to solve!

• t(i) = O(i log i)

• The reverse transform gives:

t(i) = O(i log i) (40)

T (2i) = O(i log i) (41)

T (n) = O(logn log logn) (42)

112


