
CS 561, Lecture 4

Jared Saia

University of New Mexico

Outline

• Loop Invariants

• Heaps

1

Correctness of Algorithms

• The most important aspect of algorithms is their correctness

• An algorithm by definition always gives the right answer to

the problem

• A procedure which doesn’t always give the right answer is a

heuristic

• All things being equal, we prefer an algorithm to a heuristic

• How do we prove an algorithm is really correct?

2

Loop Invariants

• A useful tool for proving correctness is loop invariants.

• Loop Invariants are essentially proof by induction

3

Loop Invariants

Three things must be shown about a loop invariant

• Initialization: Invariant is true before first iteration of loop

(Base Case)

• Maintenance: If invariant is true before iteration i, it is also

true before iteration i + 1 (Inductive Step)

• Termination: When the loop terminates, the invariant gives

a property which can be used to show the algorithm is correct

(Wrapup)

4

Example Loop Invariant

• We’ll prove the correctness of a simple algorithm which solves

the following interview question:

• Find the middle of a linked list, while only going through the

list once

• The basic idea is to keep two pointers into the list, one of

the pointers moves twice as fast as the other

• (Call the head of the list the 0-th elem, and the tail of the list

the (n−1)-st element, assume that n−1 is an even number)

5

Example Algorithm

GetMiddle (List l){

pSlow = pFast = l;

while ((pFast->next)&&(pFast->next->next)){

pFast = pFast->next->next

pSlow = pSlow->next

}

return pSlow

}

6

Example Loop Invariant

• Invariant: At the start of the i-th iteration of the while loop,

pSlow points to the i-th element in the list and pFast points

to the 2i-th element

• Initialization: True when i = 0 since both pointers are at

the head

• Maintenance: if pSlow, pFast are at positions i and 2i re-

spectively before i-th iteration, they will be at positions i+1,

2(i + 1) respectively before the i + 1-st iteration

• Termination: When the loop terminates, pFast is at ele-

ment n− 1. Then by the loop invariant, pSlow is at element

(n− 1)/2. Thus pSlow points to the middle of the list

7

Challenge

• Figure out how to use a similar idea to determine if there is

a loop in a linked list without marking nodes!

8

What is a Heap

• “A heap data structure is an array that can be viewed as a

nearly complete binary tree”

• Each element of the array corresponds to a value stored at

some node of the tree

• The tree is completely filled at all levels except for possibly

the last which is filled from left to right

9

heap-size (A)

• An array A that represents a heap has two attributes

– length (A) which is the number of elements in the array

– heap-size (A) which is the number of elems in the heap

stored within the array

• I.e. only the elements in A[1..heap-size (A)] are elements of

the heap

10

Tree Structure

• A[1] is the root of the tree

• For all i, 1 < i < heap-size (A)

– Parent (i) = bi/2c
– Left (i) = 2i

– Right (i) = 2i + 1

• If Left (i) > heap-size (A), there is no left child of i

• If Right (i) > heap-size (A), there is no right child of i

• If Parent (i) < 0, there is no parent of i

11

Example

11

4

2 1

9

7

3

8

65

A:

 1 2 3 4 5 6 7 8 9 10

11 9 4 7 8 2 1 5 3 6

12

Max-Heap Property

• For every node i other than the root, A[Parent (i)] ≥ A[i]

13

Max-Heap Property

• For every node i other than the root, A[Parent (i)] ≥ A[i]

• Parent is always at least as large as its children

• Largest element is at the root

(A Min-heap is organized the opposite way)

14

Height of Heap

• Height of a node in a heap is the number of edges in the

longest simple downward path from the node to a leaf

• Height of a heap of n elements is Θ(log n). Why?

15

Maintaining Heaps

• Q: How to maintain the heap property?

• A: Max-Heapify is given an array and an index i. Assumes

that the binary trees rooted at Left(i) and Right(i) are max-

heaps, but A[i] may be smaller than its children.

• Max-Heapify ensures that after its call, the subtree rooted

at i is a Max-Heap

16

Max-Heapify

• Main idea of the Max-Heapify algorithm is that it percolates

down the element that start at A[i] to the point where the

subtree rooted at i is a max-heap

• To do this, it repeatedly swaps A[i] with its largest child until

A[i] is bigger than both its children

• For simplicity, the algorithm is described recursively.

17

Max-Heapify

Max-Heapify (A,i)

1. l = Left(i)

2. r = Right(i)

3. largest = i

4. if (l ≤ heap-size(A) and A[l] > A[i]) then largest = l

5. if (r ≤ heap-size(A) and A[r] > A[largest]) then largest = r

6. if largest 6= i then

(a) exchange A[i] and A[largest]

(b) Max-Heapify (A,largest)

18

Example

11

4

2 17

35

11

4

2 1

9

7

35

11

4

2 1

9

7

3

8

5

6

6

6

9

8
8

i

19

Analysis

• Let T (h) be the runtime of max-heapify on a subtree of

height h

• Then T (1) = Θ(1), T (h) = T (h− 1) + 1

• Solution to this recurrence is T (h) = Θ(h)

• Thus if we let T (n) be the runtime of max-heapify on a sub-

tree of size n, T (n) = O(log n), since log n is the maximum

height of heap of size n

20

Build-Max-Heap

• Q: How can we convert an arbitrary array into a max-heap?

• A: Use Max-Heapify in a bottom-up manner

• Note: The elements A[bn/2c+ 1],..,A[n] are all leaf nodes of

the tree, so each is a 1 element heap to begin with

21

Build-Max-Heap

Build-Max-Heap (A)

1. heap-size (A) = length (A)

2. for (i = blength(A)/2c;i > 0;i−−)

(a) do Max-Heapify (A,i)

22

Example
A = 4 2 1 6 7 9 11 5 3 8

35 8

4

12

6 9 117

35

4

12

9 11

35

4

96

35

4

2

9 116

35

96

35

6

6

1 11

1

2

8

7

8

7

8

7

8

7

2

4

11

1

11

9

4 1

8

7

2

23

Loop Invariant

• Loop Invariant: “At the start of each iteration of the for

loop, each node i + 1, i + 2, . . . n is the root of a max-heap”

24

Correctness

• Initialization: i = bn/2c prior to first iteration. But each

node bn/2c+ 1, bn/2c+ 2,. . . ,n is a leaf so is the root of a

trivial max-heap

• Termination: At termination, i = 0, so each node 1, . . . , n

is the root of a max-heap. In particular, node 1 is the root

of a max heap.

25

Maintenance

• Maintenance: First note that if the nodes i+1,. . . n are the

roots of max-heaps before the call to Max-Heapify (A,i), then

they will be the roots of max-heaps after the call. Further

note that the children of node i are numbered higher than i

and thus by the loop invariant are both roots of max heaps.

Thus after the call to Max-Heapify (A,i), the node i is the

root of a max-heap. Hence, when we decrement i in the for

loop, the loop invariant is established.

26

Time Analysis

(Naive) Analysis:

• Max-Heapify takes O(log n) time per call

• There are O(n) calls to Max-Heapify

• Thus, the running time is O(n log n)

27

Time Analysis

Better Analysis. Note that:

• An n element heap has height no more than log n

• There are at most n/2h nodes of any height h (to see this,

consider the min number of nodes in a heap of height h)

• Time required by Max-Heapify when called on a node of

height h is O(h).

• Thus total time is:
∑log n

h=0
n
2hO(h)

28

Analysis

log n∑
h=0

n

2h
O(h) = O

n
log n∑
h=0

h

2h

 (1)

= O

n
∞∑

h=0

h

2h

 (2)

= O(n) (3)

29

Analysis

The last step follows since for all |x| < 1,

∞∑
i=0

ixi =
x

(1− x)2
(4)

Can get this equality by recalling that for all |x| < 1,

∞∑
i=0

xi =
1

1− x
,

and taking the derivative of both sides!

30

Heap-Sort

Heap-Sort (A)

1. Build-Max-Heap (A)

2. for (i=length (A);i > 1;i−−)

(a) do exchange A[1] and A[i]

(b) heap-size (A) = heap-size (A) - 1

(c) Max-Heapify (A,1)

31

Analysis

• Build-Max-Heap takes O(n), and each of the O(n) calls to

Max-Heapify take O(log n), so Heap-Sort takes O(n log n)

• Correctness???

32

