CS 561, HW3

Prof. Jared Saia, University of New Mexico

Due: October 21st

1. A certain computer virus spreads as follows. In a given minute, the
number of machines infected at the last minute will each infect one
new machine. However, a number of machines are disinfected that is
equal to the number of machines in an infected state 2 minutes ago. In
this problem, you will first write and solve a recurrence relation for the
number of machines infected after n minutes. Let f(n) be the number
of machines that are infected at minute n. Write a recurrence relation
for this value. Now find the general form solution to this recurrence
using annihilators. Now assume f(0) = 1 and f(1) = 2. What is the
exact solution for f(n)?

Now consider the following second computer virus. In a given minute,
only half of the number of machines infected at the last minute each
infect one new machine. However, no machines are ever disinfected.
What is the general form of the solution for this second virus? Which
virus spreads more quickly, the first or the second?

2. Problem 4-5 (VLSI chip testing) - This is a really good divide and
conquer problem I left out of the last hw

3. Exercise 6.4-2: Argue the correctness of heapsort
4. Exercise 12.2-4 (Prof. Bunyan’s property)

5. Problem 12-3 (Average Node Depth in Randomly Built Binary Search
Tree)



10.

Exercise 13.3-1 (“In line 16 of RB-Insert ...”)
Problem 13-3 (AVL Trees)
Problem 13-4 (Treaps)

(h-trees) A h-tree is a rooted binary tree that is a useful data structure
for designing self-healing networks. Let ¢ be a positive integer. For /¢
a power of 2, the complete tree with £ leaf nodes is the unique h-tree
with £ leaf nodes. For ¢ not a power of 2, a tree with ¢ leaf nodes
is a h-tree if and only if (1) the root node, r, has two children; (2)
the left subtree of r is the root of a complete binary containing 21°8¢]
leaf nodes; and (3) the right subtree of r is a h-tree. (Recall that a
complete binary tree is one where every internal node has two children
and every leaf node has the same depth)

Show the following by induction:

e For all positive £, there is a unique h-tree with £ leaf nodes.

e Call the h-tree with ¢ leaf nodes h — tree(f). Then, the height of
h — tree({) is [log ¢]

In the self-healing application of h-trees, the leaf nodes are associated
with actual machines in a network, and the internal nodes represent
additional “router nodes” (a scarce resource). To merge a list of h-
trees, hi, ha,...,h, we want to create a single new h-tree, h, which
contains as leaf nodes all the leaf nodes in hq, ho, ..., h;, and adds the
smallest number of new internal nodes as possible.

e Show how you can quickly merge a collection of z h-trees, each of
size no more than n, into a single big h-tree by adding no more
than O(xlogn) additional internal nodes. What is the runtime
of your algorithm?

Hint: Think about how to set up a correspondence between binary
numbers and h-trees, and binary addition and h-tree merging.



