
CS 561, Lecture 2 : Hash Tables, Skip

Lists, Bloom Filters, Count-Min sketch

Jared Saia

University of New Mexico



Outline

• Hash Tables

• Skip Lists

• Count-Min Sketch

1



Dictionary ADT

A dictionary ADT implements the following operations

• Insert(x): puts the item x into the dictionary

• Delete(x): deletes the item x from the dictionary

• IsIn(x): returns true iff the item x is in the dictionary

2



Dictionary ADT

• Frequently, we think of the items being stored in the dictio-

nary as keys

• The keys typically have records associated with them which

are carried around with the key but not used by the ADT

implementation

• Thus we can implement functions like:

– Insert(k,r): puts the item (k,r) into the dictionary if the

key k is not already there, otherwise returns an error

– Delete(k): deletes the item with key k from the dictionary

– Lookup(k): returns the item (k,r) if k is in the dictionary,

otherwise returns null

3



Implementing Dictionaries

• The simplest way to implement a dictionary ADT is with a

linked list

• Let l be a linked list data structure, assume we have the

following operations defined for l

– head(l): returns a pointer to the head of the list

– next(p): given a pointer p into the list, returns a pointer

to the next element in the list if such exists, null otherwise

– previous(p): given a pointer p into the list, returns a

pointer to the previous element in the list if such exists,

null otherwise

– key(p): given a pointer into the list, returns the key value

of that item

– record(p): given a pointer into the list, returns the record

value of that item

4



At-Home Exercise

Implement a dictionary with a linked list

• Q1: Write the operation Lookup(k) which returns a pointer

to the item with key k if it is in the dictionary or null otherwise

• Q2: Write the operation Insert(k,r)

• Q3: Write the operation Delete(k)

• Q4: For a dictionary with n elements, what is the runtime

of all of these operations for the linked list data structure?

• Q5: Describe how you would use this dictionary ADT to

count the number of occurences of each word in an online

book.

5



Dictionaries

• This linked list implementation of dictionaries is very slow

• Q: Can we do better?

• A: Yes, with hash tables, AVL trees, etc

6



Hash Tables

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case

7



Direct Addressing

• Suppose universe of keys is U = {0,1, . . . ,m− 1}, where m is

not too large

• Assume no two elements have the same key

• We use an array T [0..m− 1] to store the keys

• Slot k contains the elem with key k

8



Direct Address Functions

DA-Search(T,k){ return T[k];}

DA-Insert(T,x){ T[key(x)] = x;}

DA-Delete(T,x){ T[key(x)] = NIL;}

Each of these operations takes O(1) time

9



Direct Addressing Problem

• If universe U is large, storing the array T may be impractical

• Also much space can be wasted in T if number of objects

stored is small

• Q: Can we do better?

• A: Yes we can trade time for space

10



Hash Tables

• “Key” Idea: An element with key k is stored in slot h(k),

where h is a hash function mapping U into the set {0, . . . ,m−
1}
• Main problem: Two keys can now hash to the same slot

• Q: How do we resolve this problem?

• A1: Try to prevent it by hashing keys to “random” slots and

making the table large enough

• A2: Chaining

• A3: Open Addressing

11



Chained Hash

In chaining, all elements that hash to the same slot are put in a

linked list.

CH-Insert(T,x){Insert x at the head of list T[h(key(x))];}

CH-Search(T,k){search for elem with key k in list T[h(k)];}

CH-Delete(T,x){delete x from the list T[h(key(x))];}

12



Analysis

• CH-Insert and CH-Delete take O(1) time if the list is doubly

linked and there are no duplicate keys

• Q: How long does CH-Search take?

• A: It depends. In particular, depends on the load factor,

α = n/m (i.e. average number of elems in a list)

13



CH-Search Analysis

• Worst case analysis: everyone hashes to one slot so Θ(n)

• For average case, make the simple uniform hashing assump-

tion: any given elem is equally likely to hash into any of the

m slots, indep. of the other elems

• Let ni be a random variable giving the length of the list at

the i-th slot

• Then time to do a search for key k is 1 + nh(k)

14



CH-Search Analysis

• Q: What is E(nh(k))?

• A: We know that h(k) is uniformly distributed among {0, ..,m−
1}
• Thus, E(nh(k)) =

∑m−1
i=0 (1/m)ni = n/m = α

15



Hash Functions

• Want each key to be equally likely to hash to any of the m

slots, independently of the other keys

• Key idea is to use the hash function to “break up” any pat-

terns that might exist in the data

• We will always assume a key is a natural number (can e.g.

easily convert strings to naturaly numbers)

16



Division Method

• h(k) = k mod m

• Want m to be a prime number, which is not too close to a

power of 2

• Why? Reduces collisions in the case where there is periodicity

in the keys inserted

17



Hash Tables Wrapup

Hash Tables implement the Dictionary ADT, namely:

• Insert(x) - O(1) expected time, Θ(n) worst case

• Lookup(x) - O(1) expected time, Θ(n) worst case

• Delete(x) - O(1) expected time, Θ(n) worst case

18



Skip List

• Enables insertions and searches for ordered keys in O(logn)

expected time

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time (e.g. Find-Max, Predecessor/

Sucessor)

• Can even enable ”find-i-th value” if store with each edge the

number of elements that edge skips

19



Skip List

• A skip list is basically a collection of doubly-linked lists,

L1, L2, . . . , Lx, for some integer x

• Each list has a special head and tail node, the keys of these

nodes are assumed to be −MAXNUM and +MAXNUM re-

spectively

• The keys in each list are in sorted order (non-decreasing)

20



Skip List

• Every node is stored in the bottom list

• For each node in the bottom list, we flip a coin over and

over until we get tails. For each heads, we make a duplicate

of the node.

• The duplicates are stacked up in levels and the nodes on

each level are strung together in sorted linked lists

• Each node v stores a search key (key(v)), a pointer to its

next lower copy (down(v)), and a pointer to the next node

in its level (right(v)).

21



Example

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

−∞ +∞

1 2 3 4 5 6 7 8 90

1 6 7 90

1 6 7

3

1 7

7

22



Search

• To do a search for a key, x, we start at the leftmost node L

in the highest level

• We then scan through each level as far as we can without

passing the target value x and then proceed down to the next

level

• The search ends either when we find the key x or fail to find

x on the lowest level

23



Search

SkipListFind(x, L){

v = L;

while (v != NULL) and (Key(v) != x){

if (Key(Right(v)) > x)

v = Down(v);

else

v = Right(v);

}

return v;

}

24



Search Example

−∞ +∞1 2 3 4 5 6 7 8 90

−∞ +∞1 6 7 90

−∞ +∞1 6 7

3

−∞ +∞1 7

−∞ +∞7

−∞ +∞

25



Insert

p is a constant between 0 and 1, typically p = 1/2, let rand()

return a random value between 0 and 1

Insert(k){

First call Search(k), let pLeft be the leftmost elem <= k in L_1

Insert k in L_1, to the right of pLeft

i = 2;

while (rand()<= p){

insert k in the appropriate place in L_i;

}

26



Deletion

• Deletion is very simple

• First do a search for the key to be deleted

• Then delete that key from all the lists it appears in from

the bottom up, making sure to “zip up” the lists after the

deletion

27



Analysis

• Intuitively, each level of the skip list has about half the num-

ber of nodes of the previous level, so we expect the total

number of levels to be about O(logn)

• Similarly, each time we add another level, we cut the search

time in half except for a constant overhead

• So after O(logn) levels, we would expect a search time of

O(logn)

• We will now formalize these two intuitive observations

28



Height of Skip List

• For some key, i, let Xi be the maximum height of i in the

skip list.

• Q: What is the probability that Xi ≥ 2 logn?

• A: If p = 1/2, we have:

P (Xi ≥ 2 logn) =
(

1

2

)2 logn

=
1

(2logn)2

=
1

n2

• Thus the probability that a particular key i achieves height

2 logn is 1
n2

29



Height of Skip List

• Q: What is the probability that any key achieves height

2 logn?

• A: We want

P (X1 ≥ 2 logn or X2 ≥ 2 logn or . . . or Xn ≥ 2 logn)

• By a Union Bound, this probability is no more than

P (X1 ≥ k logn) + P (X2 ≥ k logn) + · · ·+ P (Xn ≥ k logn)

• Which equals:
n∑
i=1

1

n2
=

n

n2
= 1/n

30



Height of Skip List

• This probability gets small as n gets large

• In particular, the probability of having a skip list of size ex-

ceeding 2 logn is o(1)

• If an event occurs with probability 1 − o(1), we say that it

occurs with high probability

• Key Point: The height of a skip list is O(logn) with high

probability.

31



In-Class Exercise Trick

A trick for computing expectations of discrete positive random

variables:

• Let X be a discrete r.v., that takes on values from 1 to n

E(X) =
n∑
i=1

P (X ≥ i)

32



Why?

n∑
i=1

P (X ≥ i) = P (X = 1) + P (X = 2) + P (X = 3) + . . .

+ P (X = 2) + P (X = 3) + P (X = 4) + . . .

+ P (X = 3) + P (X = 4) + P (X = 5) + . . .

+ . . .

= 1 ∗ P (X = 1) + 2 ∗ P (X = 2) + 3 ∗ P (X = 3) + . . .

= E(X)

33



In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let Xi be the number of lists that element i is inserted in.

• Q: What is P (Xi ≥ 1), P (Xi ≥ 2), P (Xi ≥ 3)?

• Q: What is P (Xi ≥ k) for general k?

• Q: What is E(Xi)?

• Q: Let X =
∑n
i=1Xi. What is E(X)?

34



Search Time

• Its easier to analyze the search time if we imagine running

the search backwards

• Imagine that we start at the found node v in the bottommost

list and we trace the path backwards to the top leftmost

senitel, L

• This will give us the length of the search path from L to v

which is the time required to do the search

35



Backwards Search

SLFback(v){

while (v != L){

if (Up(v)!=NIL)

v = Up(v);

else

v = Left(v);

}}

36



Backward Search

• For every node v in the skip list Up(v) exists with probability

1/2. So for purposes of analysis, SLFBack is the same as

the following algorithm:

FlipWalk(v){

while (v != L){

if (COINFLIP == HEADS)

v = Up(v);

else

v = Left(v);

}}

37



Analysis

• For this algorithm, the expected number of heads is exactly

the same as the expected number of tails

• Thus the expected run time of the algorithm is twice the

expected number of upward jumps

• Since we already know that the number of upward jumps

is O(logn) with high probability, we can conclude that the

expected search time is O(logn)

38



Bloom Filters

• Randomized data structure for representing a set. Imple-

ments:

• Insert(x) :

• IsMember(x) :

• Allow false positives but require very little space

• Used frequently in: Databases, networking problems, p2p

networks, packet routing

39



Bloom Filters

• Have m slots, k hash functions, n elements; assume hash

functions are all independent

• Each slot stores 1 bit, initially all bits are 0

• Insert(x) : Set the bit in slots h1(x), h2(x), ..., hk(x) to 1

• IsMember(x) : Return yes iff the bits in h1(x), h2(x), ..., hk(x)

are all 1

40



Analysis Sketch

• m slots, k hash functions, n elements; assume hash functions

are all independent

• Then P (fixed slot is still 0) = (1− 1/m)kn

• Useful fact from Taylor expansion of e−x:

e−x − x2/2 ≤ 1− x ≤ e−x for x < 1

• Then if x ≤ 1

e−x(1− x2) ≤ 1− x ≤ e−x

41



Analysis

• Thus we have the following to good approximation.

Pr(fixed slot is still 0) = (1− 1/m)kn

≈ e−kn/m

• Let p = e−kn/m and let ρ be the fraction of 0 bits after n

elements inserted then

Pr(false positive) = (1− ρ)k ≈ (1− p)k

• Where the first approximation holds because ρ is very close

to p (by a Martingale argument beyond the scope of this

class)

42



Analysis

• Want to minimize (1−p)k, which is equivalent to minimizing

g = k ln(1− p)

• Trick: Note that g = −(m/n) ln(p) ln(1− p)

• By symmetry, this is minimized when p = 1/2 or equivalently

k = (m/n) ln 2

• False positive rate is then (1/2)k ≈ (.6185)m/n

43



Tricks

• Can get the union of two sets by just taking the bitwise-or

of the bit-vectors for the corresponding Bloom filters

• Can easily half the size of a bloom filter - assume size is

power of 2 then just bitwise-or the first and second halves

together

• Can approximate the size of the intersection of two sets -

inner product of the bit vectors associated with the Bloom

filters is a good approximation to this.

44



Extensions

• Counting Bloom filters handle deletions: instead of storing

bits, store integers in the slots. Insertion increments, deletion

decrements.

• Bloomier Filters: Also allow for data to be inserted in the

filter - similar functionality to hash tables but less space, and

the possibility of false positives.

45



Data Streams

• A router forwards packets through a network

• A natural question for an administrator to ask is: what is the

list of substrings of a fixed length that have passed through

the router more than a predetermined threshold number of

times

• This would be a natural way to try to, for example, identify

worms and spam

• Problem: the number of packets passing through the router

is *much* too high to be able to store counts for every

substring that is seen!

46



Data Streams

• This problem motivates the data stream model

• Informally: there is a stream of data given as input to the

algorithm

• The algorithm can take at most one pass over this data and

must process it sequentially

• The memory available to the algorithm is much less than the

size of the stream

• In general, we won’t be able to solve problems exactly in this

model, only approximate

47



Our Problem

• We are presented with a stream of items i

• We want to get a good approximation to the value Count(i,T),

which is the number of times we have seen item i up to time

T

48



Count-Min Sketch

• Our solution will be to use a data structure called a Count-

Min Sketch

• This is a randomized data structure that will keep approxi-

mate values of Count(i,T)

• It is implemented using k hash functions and m counters

49



Count-Min Sketch

• Think of our m counters as being in a 2-dimensional array,

with m/k counters per row and k rows

• Let Ca,b be the counter in row a and column b

• Our hash functions map items from the universe into coun-

ters

• In particular, hash function ha maps item i to counter Ca,ha(i)

50



Updates

• Initially all counters are set to 0

• When we see item i in the data stream we do the following

• For each 1 ≤ a ≤ k, increment Ca,ha(i)

51



Count Approximations

• Let Ca,b(T ) be the value of the counter Ca,b after processing

T tuples

• We approximate Count(i,T) by returning the value of the

smallest counter associated with i

• Let m(i, T ) be this value

52



Analysis

Main Theorem:

• For any item i, m(i, T ) ≥ Count(i,T)

• With probability at least 1− e−mε/e the following holds:

m(i, T ) ≤ Count(i,T) +εT

53



Proof

• Easy to see that m(i, T ) ≥ Count(i,T), since each counter

Ca,ha(i) incremented by ct every time pair (i, ct) is seen

• Hard Part: Showing m(i, T ) ≤ Count(i,T) +εT .

• To see this, we will first consider the specific counter C1,h1(i)
and then use symmetry.

54



Proof

• Let Z1 be a random variable giving the amount the counter

is incremented by items other than i

• Let Xt be an indicator r.v. that is 1 if j is the t-th item, and

j 6= i and h1(i) = h1(j)

• Then Z1 =
∑T
t=1Xt

• But if the hash functions are “good”, then if i 6= j,

Pr(h1(i) = h1(j)) ≤ k/m (specifically, we need the hash func-

tions to come from a 2-universal family, but we won’t get

into that in this class)

• Hence, E(Xt) ≤ k/m

55



Proof

• Thus, by linearity of expectation, we have that:

E(Z1) =
T∑
t=1

(k/m) (1)

≤ Tk/m (2)

• We now need to make use of a very important inequality:

Markov’s inequality

56



Markov’s Inequality

• Let X be a random variable that only takes on non-negative

values

• Then for any λ ≥ 0:

Pr(X ≥ λ) ≤ E(X)/λ

• Proof of Markov’s: Assume instead that there exists a λ such

that Pr(X ≥ λ) was actually larger than E(X)/λ

• But then the expected value of X would be at least λ∗Pr(X ≥
λ) > E(X), which is a contradiction!!!

57



Proof

• Now, by Markov’s inequality,

Pr(Z1 ≥ εT ) ≤ (Tk/m)/(εT ) = k/(mε)

• This is the event where Z1 is “bad” for item i.

58



Proof (Cont’d)

• Now again assume our k hash functions are “good” in the

sense that they are independent

• Then we have that

k∏
i=1

Pr(Zj ≥ εT ) ≤
(
k

mε

)k

59



Proof

• Finally, we want to choose a k that minimizes this probability

• Using calculus, we can see that the probability is minimized

when k = mε/e, in which case

(
k

mε

)k
= e−mε/e

• This completes the proof!

60



Recap

• Our Count-Min Sketch is very good at giving estimating

counts of items with very little external space

• Tradeoff is that it only provides approximate counts, but we

can bound the approximation!

• Note: Can use the Count-Min Sketch to keep track of all the

items in the stream that occur more than a given threshold

(“heavy hitters”)

• Basic idea is to store an item in a list of “heavy hitters” if

its count estimate ever exceeds some given threshold

61


