CS 561, HW4

Prof. Jared Saia, University of New Mexico

Due: October 11th

1. Consider the following alternative greedy algorithms for the activity
selection problem discussed in class. For each algorithm, either prove
or disprove that it constructs an optimal schedule.

Choose an activity with shortest duration, discard all conflicting
activities and recurse

Choose an activity that starts first, discard all conflicting activi-
ties and recurse

Choose an activity that ends latest, discard all conflicting activ-
ities and recurse

Choose an activity that conflicts with the fewest other activities,
discard all conflicting activities and recurse

2. Now consider a weighted version of the activity selection problem.
Imagine that each activity, a; has a weight, w(a;) (weights are totally
unrelated to activity duration). Your goal is now to choose a set of non-
conicting activities that give you the largest possible sum of weights,
given an array of start times, end times, and values as input.

(a)

(b)

Prove that the greedy algorithm described in class - Choose the
activity that ends first and recurse - does not always return an
optimal schedule for this problem

Describe an algorithm to compute the optimal schedule in O(n?)
time. Hint: 1) Sort the activities by finish times. 2) Let m(j) be
the maximum weight achievable from activities a1, ag, ..., a;. 3)
Come up with a recursive formulation for m(j) and use dynamic
programming. Hint 2: In the recursion in step 3, it’ll help if you
precompute for each job j, the value x; which is the largest index
1 less than j such that job ¢ is compatible with job j. Then when



computing m(j), consider that the optimal schedule could either
include job j or not include job j.

3. Consider the following problem.
INPUT: Positive integers r1,...,7r, and ¢y, ..., cy.
OUTPUT: An n by n matrix A with 0/1 entries such that for all ¢ the
sum of the ith row in A is r; and the sum of the ith column in A is ¢;,
if such a matrix exists.
Think of the problem this way. You want to put pawns on an n by n
chessboard so that the ith row has r; pawns and the ith column has ¢;
pawns. Consider the following greedy algorithm that constructs A row
by row. Assume that the first ¢ — 1 rows have been constructed. Let
a; be the number of 1s in the jth column in the first 7 — 1 rows. Now
the r; columns with maximum c¢; — a; are assigned 1s in row i, and the
rest of the columns are assigned 0’s. That is, the columns that still
needs the most 1s are given 1s. Formally prove that this algorithm is
correct using an exchange argument.

4. Suppose we can insert or delete an element into a hash table in O(1)
time. In order to ensure that our hash table is always big enough,
without wasting a lot of memory, we will use the following global
rebuilding rules:

e After an insertion, if the table is more than 3/4 full, we allocate
a new table twice as big as our current table, insert everything
into the new table, and then free the old table.

e After a deletion, if the table is less than 1/4 full, we allocate a
new table half as big as our current table, insert everything into
the new table, and then free the old table.

Show that for any sequence of insertions and deletions, the amortized
time per operation is still O(1). Hint: Do not use potential functions.

5. Suppose we are maintaining a data structure under a series of opera-
tions. Let f(n) denote the actual running time of the nth operation.
For each of the following functions f, determine the resulting amor-
tized cost of a single operation.

e f(n) =nif nis a power of 2, and f(n) = 1 otherwise.

e f(n) =n?if nis a power of 2, and f(n) = 1 otherwise.



6. Describe and analyze a data structure to support the following oper-
ations on an array A[l...n] as quickly as possible. Initially, A[i] =0
for all 4.

e SetToOne(i) Given an index i such that A[i] =0, set A[i] to 1.

e GetValue(i) Given an index i, return Al]

e GetClosestRightZero(i) Given an index 4, return the smallest
index j7 > i such that A[j] = 0, or report that no such index
exists.

The first two operations should run in worst-case constant time, and
the amortized cost of the third operation should be as small as possible.



