
CS 561, HW2

Prof. Jared Saia, University of New Mexico

Due: Sept. 19

1. You toss m pebbles onto the n nodes of a k-regular undirected graph
(recall that a graph is k-regular if every node has degree k). Each
pebble lands on a node selected uniformly at random. A pair of pebbles
is said to “collide” if they fall on the same node or on two nodes that
are neighbors. What is the expected number of pairs of pebbles that
collide? About how large must m be before you would expect at least
1 pair of pebbles to collide?

2. In a k-coloring of a graph, you must assign one of k different colors
to each node in the graph. An edge (u, v) in the graph is said to be
satisfied if u and v have been assigned different colors. In the problems
below, assume your graph has n nodes and m edges.

(a) Consider the following randomized algorithm for 3 coloring a
graph: assign each node a color selected independently and uni-
formly at random. What is the expected number of edges satisfied
by this algorithm?

(b) Give a lower bound on the probability that the above algorithm
satisfies at least m/2 edges. Hint: Let Y be a random variable
that is equal to the number of edges that are not satisfied.

(c) Now assume that each node is assigned a color independently and
uniformly at random from a set of cm colors for some constant
c. What is an upper bound on the probability that some edge is
not satisfied? Hint let ξ be the bad event that some edge is not
satisfied.

3. Consider the recurrence f(n) = 3f(n/2) +
√
n

(a) Use the Master method to solve this recurrence

1



(b) Now use annihilators (and a transformation) to solve the recur-
rence. Show your work. (This is perhaps stating the obvious, but
please note that your two bounds should match)

4. Consider the following function:

int f (int n){

if (n==0) return 2;

else if (n==1) return 5;

else{

int val = 2*f (n-1);

val = val - f (n-2);

return val;

}

}

(a) Write a recurrence relation for the value returned by f . Solve the
recurrence exactly. (Don’t forget to check it)

(b) Write a recurrence relation for the running time of f . Get a tight
upperbound (i.e. big-O) on the solution to this recurrence.

5. Silly-Sort Consider the following sorting algorithm

Silly-Sort(A,i,j)

if A[i] > A[j]

then exchange A[i] and A[j];

if i+1 >= j

then return;

k = floor(j-i+1)/3);

Silly-Sort(A,i,j-k);

Silly-Sort(A,i+k,j);

Silly-Sort(A,i,j-k);

(a) Argue (by induction) that if n is the length of A, then Silly-
Sort(A,1,n) correctly sorts the input array A[1...n]

(b) Give a recurrence relation for the worst-case run time of Silly-Sort
and a tight bound on the worst-case run time

(c) Compare this worst-case runtime with that of insertion sort, merge
sort, heapsort and quicksort.

2



6. Primes and Probability.

In this problem, you will use the following facts. 1) any integer can be
uniquely factored into primes; 2) the number of primes less than any
number m is θ(m/ logm) (this is the prime number theorem).

We will also make use of the following notation for integers x and y: 1)
x|y means that x “divides” y, which means that there is no remainder
when you divide y by x. and 2) x ≡ y (mod p) means that x and y
have the same remainder when divided by p, or in other words, p|x−y.

(a) Show that for any integer x, x factors into at most log x primes.
Hint: 2 is the smallest prime.

(b) Let x be some positive integer and let p be a prime chosen uni-
formly at random from all primes less than or equal to m. Use
the prime number theorem to show that the probability that p|x
is O((log x)(logm)/m).

(c) Now let x and y both be positive integers less than n, such
that x 6= y, and let p be a prime chosen uniformly at ran-
dom from all primes less than or equal to m. Using the pre-
vious result, show that the probability that x ≡ y (mod p) is
O((log n)(logm)/m)).

(d) If m = log2 n in the previous problem, then what is the prob-
ability that x ≡ y (mod p). Hint: If you’re on the right track,
you should be able to show that this probability is “small”, i.e.
it goes to 0 as n gets large.

(e) Finally, show how to apply this result to the following problem.
Alice and Bob both have databases x and y where x and y have
value no more than n, for n a very large number (think terabytes).
They want to check to see if their databases are consistent (i.e.
they want to check if they are the same) but Alice does not want
to have to send her entire database to Bob. What is an algorithm
Alice and Bob can use to check consistency with reasonably good
probability by sending a lot fewer bits? How many bits does
Alice need to send to Bob as a function of n, and what is the
probability of failure, where failure means that this algorithm
says the databases are the same but in fact they are different?

7. Bad Santa A child is presented with n boxes, one after another. Upon
receiving a box, the child must decide whether or not to open it. If the

3



child does not open a box, he is never allowed to revisit it. Half the
boxes have presents in them, but the decision about which boxes have
presents is made by an omniscient and malicious Santa who wants the
child to open as many empty boxes as possible before finding a present.

Devise and analyze a randomized algorithm for the child which min-
imizes the expected number of boxes that need to be opened before
the child finds the first present. Assume Santa knows your algorithm,
but can not predict the random choices made by your algorithm. Your
algorithm must always eventually find a present.

Hint: Birthday paradox.

Note: this problem has applications to wireless networks. Boxes are
time-steps, “Santa” is a jamming adversary, and opening a box means
spending energy to listen in a time-step.

4


