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The Problem

Given:

• Convex space K
• Convex function f

Goal: Find x ∈ K that minimizes f(x)
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Variables

• D = maxx,y∈K|x− y|
• G is an upperbound on |∇f(x)| for any x ∈ K

Note: all norms are 2-norms. D is known as the diameter of K
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Convexity - Another View

A convex function that is differentiable satisfies the following

(basically, this says that the function is above the tangent plane

at any point). Recall that ∇f(x) is the vector whose i-th coor-

dinate is ∂f/∂xi

f(x+ z) ≥ f(x) +∇f(x) · z, for all x, z

This is equivalent to:

f(x)− f(y) ≤ ∇f(x) · (x− y) for all x, y
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Gradient Descent Algorithm

η ← D
G
√
T

Repeat for i = 0 to T :

1. yi+1 ← xi − η∇f(xi)

2. xi+1 ← Projection of yi+1 onto K

Output z = 1
T

∑
i xi
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Theorem 1

Theorem 1 Let x∗ ∈ K be the value that minimizes f . Then,

for any ε > 0, if we set T = 4D2G2

ε2
, we can ensure that:

f(z) ≤ f(x∗) + ε
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Proof (I)

|xi+1 − x∗|2 ≤ |yi+1 − x∗|2

= |xi − x∗ − η∇f(xi)|2

= |xi − x∗|2 + η2|∇f(xi)|2 − 2η∇f(xi) · (xi − x∗)

First step holds since xi+1 projects yi+1 onto a space that con-

tains x∗. Second step holds by definition of yi+1. Last step holds

by noting that |v|2 = v · v and using linearity.
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Proof (II)

From last slide, we have:

|xi+1 − x∗|2 ≤ |xi − x∗|2 + η2|∇f(xi)|2 − 2η∇f(xi) · (xi − x∗)

Reorganizing, and using definition of G, we get:

∇f(xi) · (xi − x∗) ≤
1

2η
(|xi − x∗|2 − |xi+1 − x∗|2) +

η

2
G2

Using Slide 3, we then get:

f(xi)− f(x∗) ≤
1

2η
(|xi − x∗|2 − |xi+1 − x∗|2) +

η

2
G2
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Proof (III)

Now sum last inequality for i = 1 to T . After cancellations, we

get.

T∑
i=1

(f(xi)− f(x∗)) ≤
1

2η
(|x1 − x∗|2 − |xT − x∗|2) +

Tη

2
G2

Divide the above inequality by T. By convexity, f(1
T (

∑
i xi)) ≤

1
T

∑
i f(xi). Since z = 1

T

∑
i xi, we now get

f(z)− f(x∗) ≤
D2

2ηT
+
η

2
G2.

Since η = D
G
√
T

, the right hand side is at most 2DG√
T

. Then since

T = 4D2G2

ε2
, we see that f(z) ≤ f(x∗) + ε
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Online Gradient Descent

• Surprisingly, the gradient descent algorithm can work even

when the function to minimize changes in every round!

• Even if these functions are chosen by an adversary! (so long

as they are always convex)

• We just need to make a slight tweak in the algorithm (next

slide - can you spot the differences?)
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Gradient Descent Algorithm

η ← D
G
√
T

Repeat for i = 0 to T :

1. yi+1 ← xi − η∇fi(xi)
2. xi+1 ← Projection of yi+1 onto K
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Online Gradient Theorem

Theorem 2 Let x∗ ∈ K be the value that minimizes
∑
i fi(x

∗).
Then, for all T > 0,

1

T

∑
i

(fi(xi)− f(x∗)) ≤
2DG√
T
.

Notes: The left hand side of this inequality is called the regret

per step. This theorem is called Zinkevich’s theorem. The proof

is almost equivalent to the previous proof.
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Stochastic Gradient Descent

The final major trick of GD enables significant speed up. Assume

we want to minimize over just one function, f , again.

• In each step, i, we estimate the gradient of f at xi based on

one random data item

• Call this random gradient gi, where E(gi) = ∇f(xi)

• Then, using the gi’s we get essentially same results as if we

had the true gradient
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Stochastic GD Algorithm

η ← D
G
√
T

Repeat for i = 0 to T :

1. gi ← a random vector, such that E(gi) = ∇f(xi)

2. yi+1 ← xi − ηgi
3. xi+1 ← Projection of yi+1 onto K

Output z = 1
T

∑
i xi
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Stochastic GD Theorem

Theorem 3 E(f(z)) ≤ f(x∗) + 2DG√
T
.
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Proof

E(f(z)− f(x∗)) ≤
1

T
E(

∑
i

f(xi)− f(x∗)) By convexity of f

≤
1

T

∑
i

E(∇f(xi) · (xi − x∗)) Using Slide 3

≤
1

T

∑
i

E(gi · (xi − x∗)) Cuz E(gi · x) = ∇f(xi) · x

=
1

T

∑
i

E(fi(xi)− fi(x∗)) Since fi(x) = gi · x

= E(
1

T

∑
i

fi(xi)− fi(x∗)) Linearity of Exp.

≤
2DG√
T

Regret bound using Zinkevich’s Thm
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Proof Notes

Some notes on the proof in the previous slide:

• Requirement: E(gi · x) = ∇f(xi) · x, for all x

• Holds since E(gi) = ∇f(xi), and dot product is linear

• Requirement: fi(x) = gi · x is convex - to use Zinkevich

• Holds since fi(x) is linear
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Take Away

Gradient Descent comes in 3 basic flavors

• Standard Gradient Descent

• Online Gradient Descent - Works even when function is chang-

ing

• Stochastic Gradient Descent - Just need the correct gradient

in expectation
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