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— The Problem ——

Given:

e Convex space K
e Convex function f

Goal: Find x € K that minimizes f(x)



C Variables —

o D = mazg yexlz — |
e (G is an upperbound on |V f(x)| for any x € K

Note: all norms are 2-norms. D is known as the diameter of



C Convexity - Another View ——

A convex function that is differentiable satisfies the following
(basically, this says that the function is above the tangent plane
at any point). Recall that Vf(x) is the vector whose i-th coor-
dinate is 9f/0x;

fle+2) > f(z) +Vf(z)- 2 forall z,z2

This is equivalent to:

flz) = f(y) <Vf(z) (x—y) for all z,y



o Gradient Descent Algorithm ——

N <—

G\/_

Repeat for + = 0 to T

1. yit1 <z — V. [(z;)
2. x;41 < Projection of y;41 onto K

Output z = %Zi x;



— Theorem 1

Theorem 1 Let x* € K be the value that minimizes f. Then,

. 22
for any ¢ > 0, if we set T = 4D€2G , we can ensure that:

flz) < f(@") +e



—— Proof (I) ——

Yi4+1 — 37*|2
x; — x* — nV f(z)|?
zi — |2 + 2|V f(x)|? — 20V f(x;) - (x5 — )

VA

>
|zj41 — ™

First step holds since z;4 1 projects y,41 onto a space that con-
tains z*. Second step holds by definition of yi+1. Last step holds

by noting that |[v|2 = v - v and using linearity.



—— Proof (IT) ——

From last slide, we have:

i1 —2*° < |z — 22+ 02|V (x)]? = 20V F(x) - (z; — )

Reorganizing, and using definition of G, we get:

1 ]
Vi(x;) (z;—z%) < 2_(|33i —a*? — |1 — F|?) + 2G?
n 2
Using Slide 3, we then get:

1 *
f@) = f@) < (=P = e = ") + 562



—— Proof (ITI) ———

Now sum last inequality for : = 1 to 1'. After cancellations, we
get.

- . 1 .2 w2y I o

d (flxy) — () < —(Jz1 — % = |ap —2"|]°) + —G

i=1 2n 2
Divide the above inequality by T. By convexity, f(%(zz'fb’z')) <
3 f(x;). Since z = 1Y x;, we now get

* D2 N 2
f(z>_f(x>§2n—T+§G :

Since n = %, the right hand side is at most 2D—\/%. Then since

T = 4D€22G2, we see that f(z) < f(z*) + ¢




o Online Gradient Descent —

e Surprisingly, the gradient descent algorithm can work even
when the function to minimize changes in every round!

e Even if these functions are chosen by an adversary! (so long
as they are always convex)

e We just need to make a slight tweak in the algorithm (next
slide - can you spot the differences?)



o Gradient Descent Algorithm ——

N <

G\/_

Repeat for : = 0 to T:

1. yit1 <z — nV fi(z;)
2. x;41 < Projection of y;4 1 onto K
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C Online Gradient Theorem ———

Theorem 2 Let x* € K be the value that minimizes Y, f;(z*).
Then, for all T > 0O,

1 " 2DG

Notes: The left hand side of this inequality is called the regret
per step. This theorem is called Zinkevich's theorem. The proof

IS almost equivalent to the previous proof.
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o Stochastic Gradient Descent —

The final major trick of GD enables significant speed up. Assume
we want to minimize over just one function, f, again.

e In each step, i, we estimate the gradient of f at x; based on
one random data item

e Call this random gradient g;, where E(g;) = V f(x;)

e T hen, using the g;’s we get essentially same results as if we
had the true gradient
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o Stochastic GD Algorithm ——

N <

G\/_

Repeat for ¢« = 0 to T
1. g; < a random vector, such that E(g;) = Vf(x;)
2. Y41 T — NG

3. x;41 < Projection of y;,4 1 onto K

Output z = %Zi x;
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—

Stochastic GD Theorem ——

Theorem 3 E(f(2)) < f(z*) +%.

s
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Proof

E(f(z) — f(z))

IA

IA

IA

%E(Z f(z;) — f(z¥)) By convexity of f

%ZE(W(%) (z; — ")) Using Slide 3

p B (@i ah) Cuz Blgi ) = Vi) @
SY B(iw) - fia")  Since fie) =g;-a
E(;Zfi(a:i) — £:(z™)) Linearity of Exp.

2DG
— Regret bound using Zinkevich's Thm

VT
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o Proof Notes —_

Some notes on the proof in the previous slide:

e Requirement: E(g;-x) = Vf(x;) -z, for all x

e Holds since E(g;) = Vf(x;), and dot product is linear

e Requirement: f;(x) = g; - x is convex - to use Zinkevich
e Holds since f;(x) is linear
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— Take Away ——

Gradient Descent comes in 3 basic flavors

e Standard Gradient Descent

e Online Gradient Descent - Works even when function is chang-
ing

e Stochastic Gradient Descent - Just need the correct gradient
in expectation
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