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Abstract

Imagine that Alice wants to send a message to Bob, and that Carol wants to prevent this. Assume
there is a communication channel between Alice and Bob, but that Carol is capable of blocking this
channel. Furthermore, there is a cost of S dollars to send on the channel, L dollars to listen on the
channel and J to block the channel. How much will Alice and Bob need to spend in order to guarantee
transmission of the message?

This problem abstracts many types of conflict in information networks including: jamming attacks
in wireless networks and distributed denial-of-service (DDoS) attacks on the Internet, where the costs
to Alice, Bob and Carol represent an expenditure of energy and network resources. The problem allows
us to quantitatively analyze the economics of information exchange in an adversarial setting and ask: Is
communication cheaper than censorship?

We answer this question in the affirmative by showing that it is significantly more costly for Carol to
block communication of the message than for Alice to communicate it to Bob. Specifically, if S, L and
J are fixed constants, and Carol spends a total of B dollars to try to block the message, then Alice and
Bob must spend onlyO(Bϕ−1+1) = O(B.62+1) dollars in expectation to transmit the message, where
ϕ = (1 +

√
5)/2 is the golden ratio. Surprisingly, this result holds even if (1) the value of B is unknown

to both Alice and Bob; (2) Carol knows the algorithms of both Alice and Bob, but not their random bits;
and (3) Carol is adaptive: able to launch attacks using total knowledge of past actions of both players.

Finally, we apply our work to two concrete problems: (1) denial-of-service attacks in wireless sensor
networks and (2) application-level distributed denial-of-service attacks in a wired client-server scenarios.
Our applications show how our results can provide an additional tool in mitigating such attacks.

Keywords: Adverarial fault tolerance, algorithms, jamming attacks, denial-of-service attacks, wireless sen-
sor networks, Byzantine faults.
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1 Introduction
In November of 2010, several web hosting and banking companies, including Amazon.com, Visa, Master-
card, and PayPal, severed ties with the website Wikileaks [42, 62]. In retaliation, the Anonymous group
of Internet activists launched distributed denial-of-service (DDoS) attacks against these companies [2, 43].
Surprisingly, the web pages of both Wikileaks, and all the companies that were attacked by Anonymous
emerged relatively unscathed despite the fact that Wikileaks suffered a significant attack on its financial
and computational resources, and all parties suffered prolonged and sophisticated DDoS attacks. Some in-
teresting questions arise in light of this incident: Is it fundamentally easier to communicate in large-scale
networks than it is to block communication? How does the Internet compare with wireless networks where
denial-of-service (DoS) attacks are easily launched via disruption of the communication medium [46, 51]?
When altercations arise on modern networks, what are the most effective strategies for both sides?

To understand these questions from an algorithmic perspective, we define the following simple problem,
which we call the 3-Player Scenario: Alice wishes to guarantee transmission of a message m directly to
Bob over a single communication channel. However, there exists an adversary Carol who aims to prevent
communication by blocking transmissions over the channel. We consider two cases: (Case 1) when Carol
may spoof or even control Bob, which allows her to manipulate an unwitting Alice into incurring exces-
sive sending costs; and (Case 2) where Bob is both correct, unspoofable, and his communications cannot
be blocked. Here, “cost” corresponds to a network resource, such as energy in wireless sensor networks
(WSNs) or bandwidth in wired networks.

In the 3-Player Scenario, we show that communication is fundamentally cheaper than censorship. Specif-
ically, we describe a protocol that guarantees correct transmission ofm, and given that Carol incurs a cost of
B, has the following properties. In Case 1, the expected cost to both Alice and Bob is O(Bϕ−1 + 1) where
ϕ is the golden ratio. In Case 2, the expected cost to both Alice and Bob is O(B0.5 + 1). In both cases,
Carol’s cost asymptotically exceeds the expected cost of either correct player.

In the remainder of this section, we describe our model setup, state our main results and summarize
related work. Section 2 includes our full proofs for the 3-Player Scenario. Section 3 addresses jamming
adversaries in WSNs and applies our results to the problems of single-hop local broadcast and multi-hop
reliable broadcast. Section 4 shows how our results can be employed to mitigate application-level DDoS
attacks. We conclude with a discussion of open problems in Section 5

1.1 The 3-Player Scenario: Model Specification and Assumptions

We now describe the critical model parameters of the 3-Player Scenario. We defer an in-depth discussion of
these parameters until Sections 3 and 4.
Las Vegas Property: Communication ofm from Alice to (a correct) Bob must be guaranteed with probabil-
ity 1; that is, we require a Las Vegas protocol for solving the 3-Player Scenario. An obvious motivation for
this Las Vegas property is a critical application, such as an early warning detection system or the dessimina-
tion of a crucial security update, where minimizing the probability of failure is paramount. The Las Vegas
property has additional merit in multi-hop WSNs where Monte Carlo algorithms may not be able to achieve
a sufficiently low probability of error; due to space constraints, we expand on this in Section B.4.1.
Channel Utilization: Sending or listening on the communication channel by Alice and Bob is measured
in discrete units called slots. For example, in WSNs, a slot may correspond to an actual time slot in a time
division multiple access (TDMA) type access control protocol. The cost for sending or listening is S or L
per slot, respectively. When Carol blocks a slot, she disrupts the channel such that no communication is
possible; blocking costs J per slot. If a slot contains traffic or is blocked, this is detectable by a player who
is listening at the receiving end of the channel, but not by the originator of the transmission. For example, a
transmission (blocked or otherwise) from Bob to Alice is detectable only by Alice; likewise, a transmission
(blocked or otherwise) from Alice to Bob is detectable only by Bob. A player cannot discern whether a
blocked slot has disrupted a legitimate message; only the disruption is detectable. For example, high energy
noise is detectable over the wireless channel in WSNs, but a receiving device cannot tell if this results from
a message collision or a device deliberately disrupting the channel. We let B be the total amount Carol will
spend over the course of the algorithm; this value is unknown to either Alice or Bob. Finally, we say that
any player is active in a slot if that player is sending, listening or blocking in that slot.
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Correct & Faulty Players: If Alice is faulty, there is clearly no hope of communicating m; therefore, Alice
is assumed to be correct. Regarding the correctness of Bob, in Case 1, Carol may spoof or control Bob; in
Case 2, communications from Bob are always trustworthy. We emphasize that, in Case 1, Alice is uncertain
about whether to trust Bob since he may be faulty. This uncertainty corresponds to scenarios where a trusted
dealer attempts to dessiminate content to its neighbors, some of whom may be faulty and attempt to consume
resources by requesting numerous retransmissions. Case 2 corresponds to situations where communications
sent by Bob are never disrupted and can be trusted; here, the blocking of m is the only obstacle.
Types of Adversary: Carol has full knowledge of past actions by Alice and Bob. This allows for adaptive
attacks whereby Carol may alter her behavior based on observations she has collected over time. Further-
more, under conditions discussed in Section 2.2, Carol can also be reactive: in any slot, she may detect a
transmission and then disrupt the communication (however, she cannot detect when a player is listening).
This is pertinent to WSNs where the effectivess of a reactive adversary has been shown experimentally.

1.2 Solving the 3-Player Scenario: Fair & Favorable Protocols

We analyze the cost of our algorithms as a function of B. In this way, we obtain a notion of cost incurred
by a player that is relative to the cost incurred by Carol. In devising our algorithms, we seek to achieve two
properties with regards to relative cost.

First, our protocol should be fair; that is, Alice and Bob should incur the same worst case asymptotic
cost. When network devices have similar resource constraints, such as in WSNs where devices are typically
battery powered, this is critical. Alternatively, in networks where a collection of resource-scarce devices
(i.e. client machines represented by Alice) occupy one side of the communication channel and a single
well-provisioned device (i.e. a server represented by Bob) occupies the other side, the aggregate cost to
Alice’s side should be roughly equal to that of Bob.

Second, we desire favorable protocols; that is, for B sufficiently large, Alice and Bob both incur asymp-
totically less expected cost than Carol. DoS attacks are effective because a correct device is always forced to
incur a higher cost relative to an attacker. However, if the correct players incur asymptotically less cost than
Carol, then Alice and Bob enjoy the advantage, and Carol is faced with the problem of having her resources
consumed disproportionately in her attempt to censor communication.

1.3 Our Main Contributions

Throughout, let ϕ = (1 +
√

5)/2 denote the golden ratio. We assume that S, L, and J are fixed constants.
Our main analytical contributions are listed below.
Theorem 1. Assume Carol is an adaptive adversary and that she is active for B slots. There exists a fair
and favorable algorithm for the 3-Player Scenario with the following properties:

• In Case 1, the expected cost to each correct player is O(Bϕ−1 + 1) = O(B0.62 + 1). In Case 2, the
expected cost to each correct player is O(B0.5 + 1).

• If Bob is correct, then transmission of m is guaranteed and each correct player terminates within
O(Bϕ) slots in expectation.

In networks with sufficient traffic, Theorem 1 still holds when Carol is also reactive (Section 2.2). We
also prove that any protocol which achieves o(B0.5) expected cost for Bob requires more than 2B slots to
terminate (Section 2.3); this lower bound has bearing on the worst-case ω(B) slots required by our protocol.

Our next Theorems 2 & 3 are applications of Case 1 of Theorem 1 to WSNs. We consider a more
general setting where Alice wishes to locally (single-hop) broadcast to n neighboring receivers of which
any number are spoofed or controlled by Carol. Unfortunately, a naive solution of having each receiver
execute a separate instance of our 3-Player Scenario protocol fails to be fair. Thus, we need a different
algorithm to achieve the following result.
Theorem 2. There exists a fair (up to small polylogarithmic factors in n) and favorable algorithm for
achieving local broadcast with the following properties:

• If Carol’s receivers are active for a total of B slots, then the expected cost to Alice is O(Bϕ−1 lnn+
lnϕ n) and the expected cost to any correct receiver is O(Bϕ−1 + lnn).
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• Transmission of m is guaranteed and all correct players terminate within O((B+ lnϕ−1 n)ϕ+1) slots
(not in expectation). For B ≥ lnϕ−1 n, this is within an O(Bϕ)-factor of the optimal latency.

Reliable broadcast in multi-hop WSNs deals with conveying m from one node to all other nodes in the
network. We make the standard assumptions that any node p can be heard by the set of neighboring nodes
in the topology, N(p) and that, for any p, at most t nodes in N(p) suffer a fault (t-bounded fault model) [12,
13,36]. We analyze the grid model using the result of Bhandari & Vaidya [13], and general graphs using the
Certified Propagation Protocol (CPA) protocol of Pelc & Peleg [49].
Theorem 3. For each correct node p, assume the t nodes in N(p) are Byzantine and can be used by Carol
to disrupt p’s communications for β ≤B0 time slots. Then, using the local broadcast protocol of Theorem 2,
fair and favorable reliable broadcast is possible under the following topologies:

• In the grid with the optimal fault tolerance t < (r/2)(2r + 1).

• In any graph, assuming that (a) t is appropriately bounded such that CPA achieves reliable broadcast
and (b) the topology and location of the dealer is known to all nodes.

To the best of our knowledge, all previous reliable broadcast protocols require correct nodes to spend more
energy in communication attempts than that spent by adversarial nodes. Our results are the first favorable
protocols and, importantly, the first to account for the significant cost of listening to the wireless channel.

Finally, Theorem 4 is an application of Case 2 of Theorem 1 to a client-server scenario where Carol
represents malicious clients engaging in a DDoS attack on a server.
Theorem 4. Assume Carol commits her DDoS attack using a bandwidth R. Service is guaranteed if the
expected aggregate bandwidth (upstream or downstream bits per second) of both the clients and the server
is G = O(R0.5), and the probability of a serviced request is G/(G+R).

Therefore, against a server defended by our protocol, Carol must incur additional monetary costs in order to
procure the number of machines necessary for sustaining the level of attack she would otherwise achieve.

1.4 Related Work
Jamming Attacks in WSNs: Several works addressing applied security considerations demonstrate that
devices in a WSN are vulnerable to adversarial jamming [5, 9, 40, 68] where the adversary deliberately
disrupts the communication medium. Defenses include spread spectrum techniques, frequency or channel
hopping, and mapping with rerouting (see [30, 47, 66, 67] and references therein).

There are a number of theoretical results on jamming adversaries; however, none explicitly account for
listening costs and there is no notion of favorability. Gilbert et al. [24] examine the duration for which
communication between two players can be disrupted in a model with collision detection in a time-slotted
network against an adversary who interferes with an unknown number of transmissions. As we do, the au-
thors assume channel traffic is always detectable at the receiving end (i.e. silent cannot be “forged”). Pelc
and Peleg [50] examine an adversary that randomly corrupts messages; we do not require the adversary
to behave randomly. Awerbuch et al. [7] give a jamming-resistant MAC protocol in a single-hop network
with an adaptive, but non-reactive, adversary. Richa et al [54] significantly extend this work to multi-hop
networks. Dolev et al. [18] address a variant of the gossiping problem when multiple channels are jammed.
Gilbert et al. [23] derive bounds on the time required for information exchange when a reactive adversary
jams multiple channels. Meier et al. [44] examine the delay introduced by a jamming adversary for the
problem of node discovery, again in a multi-channel setting. Dolev et al. [19] address secure communica-
tion using multiple channels with a non-reactive adversary. Recently, Dolev et al. [17] consider wireless
synchronization in the presence of a jamming adversary.
Reliable Broadcast: Reliable broadcast has been extensively studied in the grid model [10, 12–14, 35, 36,
60,61]. Listening costs are accounted for by King et al. [35,61] but jamming adversaries are not considered;
however, the authors introduce the Bad Santa problem which we use to achieve a lower bound result in
Section 2.3. With a reactive jamming adversary, Bhandhari et al. [15] give a reliable broadcast protocol when
the amount of jamming is bounded and known a priori; however, correct nodes must expend considerably
more energy than the adversary. Progress towards fewer broadcasts is made by Bertier et al. [11]; however,
each node spends significant time in the costly listening state. Alistarh et al. [3] assume collision detection
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3-PLAYER SCENARIO PROTOCOL for round i ≥ 2

Send Phase: For each of the 2ci slots do
• Alice sends m with probability 2/2i.
• Bob listens with probability 2/2(c−1)i.

If Bob received the message, then Bob terminates.
Ack Phase: For each of the 2i slots do
• Bob sends a req message.
• Alice listens with probability 4/2i.

If Alice listened to a slot in the Ack Phase where no reqmessage or blocking was detected, she terminates.

Figure 1: Pseudocode for 3-PLAYER SCENARIO PROTOCOL.

and achieve non-cryptographic authenticated reliable broadcast. They apply their result to the grid model
with a reactive jamming adversary; however, in their algorithm nodes incur considerable listening costs.
Wired DDoS Attacks: DDoS attacks are common with recorded attacks on high-profile companies such as
Yahoo, Amazon, CNN, eBay, and many others [22]. Proposals for dealing with DDoS attacks include over-
provisioning [1], throttling techniques [25,45], currency schemes (see [6,33,63] and references therein). In
currency schemes, the server provides service only to a client who pays in some form of currency. In [63],
bandwidth is used as currency and, if the clients’ aggregate bandwidth exceeds that of the attackers, then the
clients capture server resources. Our work is complementary in that it delineates bounds on the expected
bandwidth required in order to guarantee that the correct clients avoid zero throughput.

2 Our 3-Player Scenario Protocol
Figure 1 gives the pseudocode for our protocol called 3-PLAYER SCENARIO PROTOCOL (3PSP). Each
round i ≥ 2 consists of 2 phases and c is a constant to be determined later. We summarize a round i:
• Send Phase: This phase consists of 2ci slots. In each slot: Alice sends m with probability 2

2i
for an

expected total of 2(c−1)i+1 slots and Bob listens with probability 2
2(c−1)i for an expected total of 2i+1 slots.

• Ack Phase: This phase consists of 2i slots. If Bob has not received m, then Bob sends a request for
retransmission, req, for all 2i slots. Alice listens in each slot with probability 4/2i (note that i ≥ 2 is
required) for an expected total 4 slots.
Termination Conditions: Termination conditions are important because Carol cannot be allowed to keep
the players active in perpetuity while simultaneously forcing them to incur a higher cost. Bob terminates
the protocol upon receiving m. Since Alice is not spoofed, as discussed in Section 1.1, this termination
condition suffices. Alice terminates if she listens to a slot in the Ack Phase which is not blocked and does
not contain req message; since blocked slots are detectable by Alice (who is on the receiving end of a req
message) while listening (Section 1.1), this condition suffices. In other words, Alice continues into the next
round if and only if (1) Alice listens to zero slots or (2) all slots listened to by Alice in the Ack Phase contain
a blocked slot or req. We highlight the two situations where this condition is met:
• Send Failure: Bob is correct and has not received m.
• Ack Failure: Bob is faulty and sends reqs, or Bob is correct and terminated and Carol either spoofs reqs
or blocks slots in order to trick Alice into thinking a valid req was indeed sent and/or blocked.
Ack Failures and Cases 1 & 2: Note that an “acknowledgement” occurs via silence in at least one slot in
the Ack Phase. We say an Ack Failure occurs when Carol blocks for all slots in the Ack Phase.

In Case 1, an Ack Failure corresponds to a critical attack that can be employed in Ack Phase after the
delivery ofm. Carol can avoid the listening costs in the Send Phase, and then drain Alice’s energy by making
it appear as if Bob repeatedly did not receive m and is requesting a retransmission in the Ack Phase. This
attack affects Alice only. Note that if Bob is actually correct, the attack is only effective once m is received
since, if a correct Bob has not receivedm, a reqwill be issued anyway and the attack accomplishes nothing.

In Case 2, no blocking occurs in the Ack Phase and, therefore, no Ack Failure can occur. In fact, in Case
2, the Ack Phase can be shortened to a single slot where Bob sends his req and Alice listens; however, this
does not change our cost analysis and our current presentation is more general.
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2.1 Analysis of the 3-Party Scenario Protocol
For a given round, we say it is a send-blocking round if Carol blocks at least half of the slots in the Send
Phase; otherwise, it is a non-send-blocking round. Similarly, a ack-blocking round is a round where Carol
blocks or spoofs req messages from Bob in at least half the slots in the Ack Phase; otherwise, it is non-ack-
blocking. Throughout, assume ceilings on the number of active slots of a player if it is not an integer.
Bounds on c: Clearly, c > 1 or Bob’s listening probability in the Send Phase is nonsensical. For Case 1,
note that if c ≥ 2, then the expected cost to Alice is at least as much as the expected cost to a potentially
faulty/spoofed Bob. If Bob happens to be faulty/spoofed, then the cost to him for an Ack Failure is less than
the expected cost to Alice since a faulty/spoofed Bob will simply not listen in the Send Phase; as discussed
above, we must avoid this since it admits a draining attack against Alice. Therefore, we have 1 < c < 2.
For Case 2, since Bob is guaranteed to be correct, the acceptable range is 1 < c ≤ 2.
Lemma 1. Consider a non-send-blocking round of 3-PLAYER SCENARIO PROTOCOL. The probability that
Bob does not receive the message from Alice is less than e−2.
Proof. Let s = 2ci be the number of slots in the Send Phase. Let pA be the probability that Alice sends
in a particular slot. Let pB be the probability that Bob listens in a particular slot. Let Xj = 1 if the
message is not delivered from Alice to Bob in the jth slot. Then Pr[ m is not delivered in the Send
Phase]=Pr[X1X2 · · ·Xs = 1]=Pr[Xs = 1 | X1X2 · · ·Xs−1 = 1] ·

∏s−1
i=1 Pr[Xi = 1]. Let qj = 1 if Carol

does not block in slot j; otherwise, let qj = 0. The value of qj can be selected arbitrarily by Carol. Then
Pr[Xi = 1 |X1X2 · · ·Xi−1 = 1] = 1− pApBqj and substituting for each conditional probability, we have
Pr[X1X2 · · ·Xs = 1] = (1− pApBq1) · · · (1− pApBqs) =

∏s
j=1(1− pApBqj) ≤ e−pApB

∑s
j=1 qj < e−2

since pApB
∑s

j=1 qj > (2/2i)(2/2(c−1)i)(s/2) = (2/2i)(2/2(c−1)i)(2ci/2) = 2 since the round is not
send-blocking and so Carol blocks less than s/2 slots.

Note that Lemma 1 handles adaptive (but not reactive) adversaries. A simple but critical feature of
tolerating adaptive adversaries is: the probability that a player is active in one slot is independent from
the probability that the player is active in another slot. Therefore, knowing that a player was active for k
slots in the past conveys no information about future activity. Believing otherwise is the trap of the well-
known“Gambler’s Fallacy” [59]. For reactive adversaries, we need only modify Lemma 1 as we do later.

Lemma 2. Assume that Bob is correct and there are no send-blocking rounds and no ack-blocking rounds.
Then, the expected cost of each player is O(S + L) = O(1).

Proof. Using Lemma 1, the expected cost to Alice is at most
∑∞

i=2 e
−2(i−2) · (2 · 2(c−1)i · S + 4 · L)

≤
∑∞

i=2(e
5−i · S + e2−2i · 4 · L) = (e5 · S ·

∑∞
i=2 e

−i) + (e2 · 4 · L ·
∑∞

i=2 e
−2i) = O(S + L) = O(1).

Similarly, the expected cost to Bob is at most
∑∞

i=2 e
−2(i−2) · (2i+1 ·L+2i ·S)≤

∑∞
i=2(e

5−i ·L+e4−i ·S)
= O(S + L) = O(1) since S and L are constants.
Now consider when attacks may occur in the Ack Phase:
Lemma 3. Assume that Bob has received m by round i and that round i is non-ack-blocking. Then the
probability that Alice retransmits m in round i+ 1 is less than e−2.
Proof. Let s = 2i be the number of slots in the Ack Phase and let p = 4/2i be the probability that Alice
listens in a slot. For slot j, define Xj such that Xj = 1 if Alice does not terminate. Then Pr[ Alice
retransmits m in round i + 1] = Pr[X1X2 · · ·Xs = 1]. Let qj = 1 if Carol does not block in slot j;
otherwise, let qj = 0. The qj values are determined arbitrarily by Carol. Since Alice terminates if and only
if she listens and does not detect any activity, then Pr[Xj = 1] = (1− pqj). Therefore, Pr[X1X2 · · ·Xs =

1] ≤ e−p
∑s

j=1 qj < e−2.

Lemma 4. Assume there is at least one send-blocking round. Then, the expected cost to Alice isO(B(c−1)/c+

B(c−1)) and the expected cost to a correct Bob is O(B
1
c ).
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Proof. We consider Case 1 and Case 2 with regards to Bob, discussed in Section 1.1. Let i ≥ 2 be the last
round which is send-blocking. Let j ≥ i be the last round which is ack-blocking; if no such ack-blocking
round exists, then assume j = 0. In Case 1, the total cost to Carol is B = Ω(2ci · J + 2j · J) = Ω(2ci + 2j)
since J is a constant. In Case 2, only send-blocking occurs and so B = Ω(2ci · J).
Alice: We first calculate the expected cost to Alice prior to successfully transmitting m. In round i, Carol
blocks the channel for at least 2ci/2 slots. Using Lemma 1, the expected cost to Alice prior to m being
delivered isO(2(c−1)i·S+4·L)+

∑∞
k=1 e

−2(k−1)·(2·2(c−1)(i+k)·S+4·L) = O(2(c−1)i·S+L) = O(2(c−1)i)
by the bounds on c and given that S and L are constants; note, this is the total cost to Alice for Case 2.

Now, using Lemma 3, we calculate the expected cost to Alice after delivery; this addresses ack-blocking
rounds possible only in Case 1. By assumption, the last ack-blocking round occurs in round j and therefore
Alice’s expected cost isO(2(c−1)j ·S+4·L)+

∑∞
k=1 e

−2(k−1) ·(2·2(c−1)(j+k) ·S+4·L) = O(2(c−1)j ·S+L)

by the bounds on c. Therefore, the total expected cost to Alice is O(2(c−1)i · S + 2(c−1)j · S + L) =

O(2(c−1)i + 2(c−1)j). Since B = Ω(2ci + 2j), this cost as a function of B is O(B(c−1)/c +B(c−1)).
Bob: Finally, assume Bob is correct. Using Lemma 1, Bob’s expected cost prior to receiving m is O(2i+1 ·
L + 2i · S) +

∑∞
k=1 e

−2(k−1) · (2 · 2i+k · L + 2i+k · S) = O(2i · L + 2i · S) = O(2i) since S and L are
constants. Thus, the expected cost for Bob as a function of B is O(B1/c).
We now give the proof for Theorem 1 stated in Section 1.3:
Proof of Theorem 1: In Case 1, Lemma 4 tells us that the expected cost to Alice and Bob in terms of B is
O(B(c−1)/c + B(c−1)) and O(B1/c), respectively. Therefore, the exponents of interest which control the
cost to each player are (c − 1)/c, c − 1, and 1/c. The value of c that should be chosen must minimize
max{(c − 1)/c, c − 1, 1/c} since we are interested in fair protocols. Given that 1 < c < 2, we have
1/c > (c− 1)/c. Therefore, we solve for c in c− 1 = 1/c, this gives c = (1 +

√
5)/2 which is the golden

ratio. By Lemma 2 and the above argument, the expected cost to each player is O(Bϕ−1 + 1). In Case
2, Lemma 4 tells us that Alice’s expected cost in terms of B is O(B(c−1)/c) the exponents of interest are
simply (c− 1)/c and 1/c; minimizing them yields c = 2. Therefore, the cost to each player is O(B1/2 + 1).

Finally, define latency to be the number of slots prior that occur to termination by both correct play-
ers. Consider how many non-send-blocking or non-ack-blocking rounds either player may endure before
terminating successfully; let X denote the random variable for this number of rounds. Then, E[X] ≤
1·(1−e−2)+2·e−2(1−e−2)+3·e−4(1−e−2)+... =

∑∞
i=1 ie

2(1−i)(1−e−2) = (1−e−2)e2
∑∞

i=1 i(e
−2)i

by Lemmas 1 or 3. Therefore, E[X] ≤ 1/(1−e−2) = O(1) which translates intoO(1) time slots consumed
by non-send or non-ack-blocking rounds. Now consider the send- or ack-blocking rounds; note that Carol is
limited to at most lg (2B) +O(1) such rounds which translates to O(Bϕ) time slots. Therefore, regardless
of how Carol blocks, the expected number of time slots prior to successful termination is O(Bϕ).

2.2 Tolerating a Reactive Adversary
Consider a reactive adversary Carol who can detect channel activity without cost, and then block; this ability
is possible in WSNs (see Section 3.1). In our 3-Player Scenario, Carol can now detect that m is being sent
in the Send Phase and block it without fail. To address this powerful adversary, we consider the case where
critical data, m, and more often, non-critical data m′, is sent over the channel by other participants in
addition to Alice and Bob. Carol can detect the traffic; however, she cannot discern whether it is m or m′
without listening to a portion of the communication (such as packet header information).

In a slot where channel activity is detected, even if Carol listens for a portion of the message, she incurs a
substantial cost. Therefore, the cost to Carol is proportional to the number of messages to which she listens.
Importantly, in the presence of m′, Carol’s ability to detect traffic for free is unhelpful since m′ provides
“camouflage” for m. Certainly Carol may block all active slots to prevent transmission of m; however, this
is no different than blocking all slots in our original 3-Player Scenario (see Section A for more discussion).

This setting corresponds to situations where communication occurs steadily between many participants
or via several distributed applications, and Carol wishes to target only a critical few. If m and m′ are sent
over the channel in the same slot, the two messages collide and Bob receives neither. Define a slot as active
if either m or m′ is sent in that slot. For this result only, redefine a send-blocking round as one where Carol
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listens or blocks for at least a 1/3-fraction of the active slots; otherwise, it is a non-send-blocking round.
We provide a result analagous to Lemma 1.
Lemma 5. Let Carol be an adaptive and reactive adversary. Then, in a non-send-blocking round of the
3-PLAYER SCENARIO PROTOCOL, the probability that Bob does not receive m from Alice is at most e−2.
Proof. Let x = 2ci be the number of slots in the Send Phase. Consider the set of slots used by all participants
other than Alice. We assume these participants pick their slots at random to send, so that for any slot the
probability is 2/3 that the slot is chosen by at least one of them. Since we assume these messages m′ are
sent independently at random, then Chernoff bounds imply that w.h.p., i.e., 1 − 1/xc

′
for a constants c′, ε

and sufficiently large x, the number of slots y during which m′ is sent is greater than (2x/3)(1− ε) where x
is the total number of slots in a phase. In the same way, assume the number of slots in which Alice sends is
at least a = (1− δ)xpA = (1− δ)2(c−1)i+1 with probability 1− 1/xc

′′
for a constant δ, c′′ and sufficiently

large x. The number of active slots sent by Alice or other participants is clearly at least y.
By definition of a non-send-blocking round, Carol listens to or blocks less than x/3 (active) slots. As

Carol has no information about the source of a message sent in an active slot until she listens to it, her
choice is independent of the source of the message. Given a slot that Alice sends on, there is at least a
1 − (x/3)/y chance it will not be listened to or blocked by Carol. The probability that this slot will not
be used by another participant is 1/3 and the probability that Bob will listen to the slot is pB . Hence
the probability of a successful transmission from Alice to Bob on a slot which Alice sends on is at least
(1− x/(3y))(1/3)pB = (1− 1/(2(1− ε)))(1/3)pB ≥ (1/6)pB when y > (1− ε)(2x/3). The probability
that all messages that Alice sends fail to be delivered is at most (1− pB/6)a − 2/xc

′′
where the last term is

the probability that y or a is small and c′′ > 0 is a constant. Redefine pB = 6/((1−δ)2(c−1)i); note that this
constant factor increase in the listening probability does not change our asymptotic results and our analysis
in Section 2.1 proceeds almost identically. Therefore, we then have (1− pB/6)a − 2/xc

′′ ≤ e−2.

The 3-PLAYER SCENARIO PROTOCOL can be modified so that the initial value of i is large enough to ren-
der the error arising from the use of Chernoff bounds sufficiently small; we omit these details. Also, the
required level of channel traffic detected by Carol is flexible and different values can be accomodated if
the players’ probabilities for sending and listening are modified appropriately in the 3-PLAYER SCENARIO
PROTOCOL; our results hold asymptotically. Finally, we emphasize that Lemma 3 does not require modifi-
cation. Carol cannot decide to block only when Alice is listening since detecting when a node is listening is
impossible. Alternately, Carol cannot silence a req through (reactive) blocking since this is still interpreted
as a retransmission request. Using Lemma 5, Theorem 1 follows as before.

2.3 On Latency & Lower Bounds
King et al. [35] introduced the Bad Santa problem which is described as follows. A child is presented with
K boxes, one after another. When presented with each box, the child must immediately decide whether or
not to open it. If the child does not to open a box, it can never be revisited. Half the boxes have presents
in them, but the decision as to which boxes have presents is made by an adversarial Santa who wants the
child to open as many empty boxes as possible. The goal is for the child to obtain a present with probability
1, while opening the smallest expected number of boxes. In [35, 61], the authors prove a lower bound of
Ω(K0.5) on the expected number of opened boxes.
Theorem 5. Any algorithm that solves the 3-Player Scenario with o(B0.5) cost to Bob must have a latency
exceeding 2B.
Proof. A lower bound for the 3-Player Scenario is complicated by the possibility that the strategies of Alice
and Bob may adapt over time; for example, they may change depending on how Carol blocks. To address
this, we assume a more powerful Bob. Specifically, assume that communication of m occurs if Bob is able
to find an unblocked time slot in which to listen or to send. Furthermore, assume Bob can tell when he has
found such a slot once he listens or sends in that slot. Therefore, such a Bob is at least as powerful as the
Bob in the 3-Player Scenario.

Now, if Carol has a budget of size B, we ask: Does Bob have a strategy with o(B0.5) expected active
slots such that, with probability 1, he finds at least one unblocked slot within 2B slots? Assume that such
a strategy exists and consider the Bad Santa problem on 2B boxes. Using Bob’s strategy, the child is
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guaranteed to obtain a present with probability 1 while opening o(B0.5) boxes in expectation. However, this
contradicts the Ω(B0.5) lower bound result in [35] and the result follows.
This result illustrates a relationship between the Bad Santa problem and the 3-Player Scenario, and it pro-
vides some insight into why our protocol has a worst case latency of ω(B) slots.

3 Application 1: Jamming Resistance in Wireless Sensor Networks
The shared wireless medium of sensor networks renders them vulnerable to jamming attacks [64]. A jam-
ming attack occurs when an attacker transmits noise at high energy, possibly concurrently with a (legitimate)
transmission, such that communication is disrupted within the area of interference. Consequently, this be-
havior threatens the availability of sensor networks [66].

3.1 Rationale for the 3-Player Scenario Involving WSN Devices
Wireless network cards offer states such as sleep, receive (or listen) and transmit (or send). While the sleep
state requires negligible power, the cost of the send and listen states are roughly equivalent and dominate the
operating cost of a device. For example, the send and listen costs for the popular Telos motes are 38mW and
35mW, respectively (note S ≈ L) and the sleep state cost is 15µW [52]; therefore, the cost of the send/listen
state is more than a factor of 2000 greater and the sleep state cost is negligible. Disruption may not require
jamming an entire slot so we set J < S and assume a small m such that J and S are within a constant factor
of each other; larger messages can be sent piecewise. In our protocols, we account for both send and receive
costs. Throughout, when a node is not active, we assume it is in the energy-efficient sleep state.
Slots: There is a single channel and a time division multiple access (TDMA)-like medium access control
(MAC) protocol; that is, a time-slotted network. For example, the well-known LEACH [28] protocol is
TDMA-based. For simplicity, a global broadcast schedule assumed; however, this is likely avoidable if
nodes maintain multiple schedules as with S-MAC [69]. Even then, global scheduling has been demon-
strated by experimental work in [39] and secure synchronization has been shown [21].

A blocked slot occurs when Carol jams. Clear channel assessment (CCA), which subsumes carrier
sensing, is a common feature on devices for detecting such events [53] and practical under the IEEE 802.11
standard [16]. Collisions are only detectable by the receiver [66]. When a collision occurs, a correct node
discards any received data. The absence of channel activity cannot be forged; this aligns with the empirical
work by Niculescu [48] who shows that channel interference increases linearly with the combined rate of the
sources. Finally, we also note that several theoretical models feature collision detection (see [3,7,15,24,54]).
On Reactive Adversaries: CCA is performed via the radio chip using the received signal strength indi-
cator (RSSI) [31]. If the RSSI value is below a clear channel threshold, then the channel is assumed to
be clear [8]. Such detection consumes on the order of 10−6 W which is three orders of magnitude smaller
than the send/listen costs; therefore, Carol can detect activity (but not message content) at essentially zero-
cost. Listening to even a small portion of a message costs on the order of milliwatts and our argument from
Section 2.2 now applies.
Cryptographic Authentication: We assume that messages can be authenticated. Therefore, Carol cannot
spoof Alice; however, Bob’s req can essentially be spoofed by an Ack-Failure (as discussed in Section 2)
which, along with jamming, makes the problem non-trivial. Several results show how light-weight crypto-
graphic authentication can be implemented in sensor networks [29, 37, 41, 64, 65]; therefore, it is important
to consider its impact as we do here. However, the adversary may capture a limited number of players (such
as Bob in the 3-Player Scenario); these players are said to suffer a Byzantine fault and are controlled by the
adversary [64, 66]. Given this attack, we emphasize that, while we assume a shared key to achieve authen-
tication, attempts to share a secret send/listen schedule between Alice and Bob allows Carol to manipulate
players in ways that are problematic; due to lack of space, this is discussed further in Section B.3.

3.2 Local Broadcast & Guaranteed Latency
Our protocol LOCAL BROADCAST handles the general single-hop broadcast situation where Alice sends m
to a set of n neighboring receivers within her transmission range. At first glance, this seems achievable by
having each receiver execute an instance of 3PSP with Alice. However, the expected active time for Alice
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LOCAL BROADCAST(m,Alice, RAlice) for round i ≥ lg(4 lnn)

Probabilistic Send Phase: For each of the 2ϕi slots do
• Alice sends m with probability 3 lnn

2i
.

• Each receiver that has not terminated listens with probability 2
2(ϕ−1)i .

Deterministic Send Phase: For each of the 2(ϕ−1)i+1 slots do
• Alice sends m.
• Each receiver that has not terminated listens.

Any receiver that receives m terminates the protocol.
Probabilistic Ack Phase: For each of the 2i slots do
• Each receiver that has not terminated sends a req message.
• Alice listens with probability 4 lnn

2i
.

Deterministic Ack Phase: For each of the 2(ϕ−1)i+1 slots do
• Each reciever that has not received m sends a req message.
• Alice listens.

If Alice listened in either a Probabilistic Ack Phase or a Deterministic Ack Phase and detected no
req message or collision then she terminates the algorithm.

Figure 2: Pseudocode for LOCAL BROADCAST.

is an Ω(n)-factor larger than any correct receiver; thus, this is unfair. Furthermore, this protocol has poor
latency. Here, we give a fast protocol that is both fair and favorable up to small polylogarithmic factors.

Our pseudocode is given in Figure 2. The probabilities for sending and listening are modified and there
are two more phases (the Deterministic Send and Deterministic Ack Phases) where players act determinis-
tically. Note that req messages can collide in the Probabilistic Ack Phase and will certainly collide in the
Deterministic Ack Phase. This is correct as such a collision is due to either jamming or multiple receivers
(correct or faulty) requesting a retransmission; this is fine and Alice will resend. LOCAL BROADCAST takes
in as arguments the message m, the sender (Alice) and the set of receivers RAlice. If the adversary jams,
then none of the correct receivers receive m in that slot.

An important property of LOCAL BROADCAST is that there is a guaranteed bound on the latency. This
is useful for achieving reliable broadcast in multi-hop networks in the next section.
Lemma 6. Alice and all correct receivers terminate LOCAL BROADCAST in 25 · (B+lnϕ−1 n)ϕ time slots.
Proof. The deterministic phases play a key role in establishing the bound on latency. If the adversary is
not active for all slots in the deterministic Send Phase, then all correct receivers obtain m. Once all correct
receivers terminate, the adversary must be active in all slots of the deterministic Ack Phase in order to
prevent Alice from terminating. Therefore, prior to successful termination of all correct players (including
Alice), the adversary is active for at least 2(ϕ−1)i+1 slots per round i in Epochs 2 & 4. For d = lg(4 lnn), we
seek the number of rounds ρ such that

∑ρ
i=d 2(ϕ−1)i+1 ≥ B which yields that ρ ≥ ϕ lg(B + 2ϕ−1 lnϕ−1 n)

rounds suffices to exhaust the adversary (we are not being exact). Each round i has at most 4 · 2ϕ·i+1 slots
so ρ rounds equal at most 25 · (B + lnϕ−1 n)ϕ+1 slots.
Due to space constraints, the full proofs for the following result are included in Section B.1.
Lemma 7. Assume that Carol’s receivers are active for a total of B slots. Then, LOCAL BROADCAST has
the following properties:

• The expected cost to Alice is O(Bϕ−1 lnn + lnϕ n). Therefore, for B = ω(lnϕ+1 n), Alice spends
asymptotically less than Carol.

• The expected cost to any correct receiver isO(Bϕ−1 +lnn). Therefore, forB = ω(lnn), Bob spends
asymptotically less than Carol.

The value n is the number of devices within the broadcast range of Alice. For a determined adversary,
we expect B > n; that is, for an adversary intent on preventing communication, the number of time slots
jammed will likely exceed the number of neighbors. Therefore, B � lnϕ+1 n. In this case (actually for
B ≥ lnϕ−1 n), the latency is O(Bϕ+1) and, noting that Carol can prevent transmission for at least B slots,
this is within an O(Bϕ)-factor of the optimal latency. By this and Lemmas 6 & 7, Theorem 2 now follows.
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3.3 Jamming-Resistant Reliable Broadcast: Mitigating the Listening Cost Disadvantage
Reliable broadcast has been extensively studied in the multi-hop grid model [12–14, 36, 61], particularly
with a jamming adversary [3, 11, 15]. Reliable broadcast is possible when t Byzantine nodes can each jam
at most nc transmissions [15]. Unfortunately, the protocol of [15], and the improvement by [11], requires
that correct nodes possess much more energy than the Byzantine nodes. In particular, while the sending
costs are improved in [11], both [11, 15] allow the adversary to force a correct node to listen for Ω(t · nc)
slots (listening costs in [3] are similar). In contrast, each Byzantine node is active for nc. This Ω(t)-factor
advantage affords the adversary a DDoS attack since these previous protocols are consistently unfavorable.
Setup: Here, each node p(x, y) is situated at (x, y) in a grid. The dealer d is located at (0, 0) and seeks to
propagatem to all correct nodes in the network. When a node p sends a message, all listening nodes inN(p)
receive the message (analogous results will hold for the Euclidean metric [13]). There are t < (r/2)(2r+1)
Byzantine nodes in any neighborhood. For any correct node p, the adversary can use its t Byzantine nodes
in N(p) to jam for up to B0 = t · nc slots total. There is a global schedule (obeyed by the correct nodes)
that assigns each node a slot for broadcasting; a specification is unimportant here (see [36] for an example).

Unlike the single-hop case, here the amount of jamming in a neighborhood is upper bounded by B0 and
known. This is required in [11, 15] and a similar assumption is made in [7, 54]. B0 represents the number
of times a Byzantine node can deviate from the global schedule within some time frame in a neighborhood
before being identified and subjected to defensive techniques (see [66]). Not exceeding B0 in each time
frame allows the adversary to attack throughout the lifetime of the network and we pessimistically assume
that B0 is large so that the adversary may inflict sustained attacks (see Section B.2 for more discussion).

We incorporate LOCAL BROADCAST into the protocol of Bhandari & Vaidya [13] to achieve the first
favorable reliable broadcast protocol. The hard latency bound of LOCAL BROADCAST is crucial for estab-
lishing when nodes send and listen in order to propagate m. Due to space constraints, our description of the
protocol and proofs are given in Section B.4.2. We can show the following:
Lemma 8. Assume for each node p, t < (r/2)(2r + 1) nodes in N(p) are Byzantine and used by Carol to
disrupt p’s communications for β ≤B0 time slots. Let C = {Nodes q at (x, y) s.t. (−r ≤ x ≤ r) ∧ (y ≥
0)} be a corridor in the grid. There is a protocol for reliable broadcast in C with the following properties:
• If β = O(r2 lnϕ+1 r), then the expected cost to each each correct node is O(r2 lnϕ+2 r).
• If β = ω(r2 lnϕ+1 r), then the protocol is fair and the expected cost to each correct node is
O(r2(2−ϕ)βϕ−1 ln r + r2 lnϕ r) = o(β); that is, the expected cost to each correct node is asymptoti-
cally less than that incurred by Carol.

Note that, for ease of exposition, our result applies to a single corridor of the grid; however, this is sufficient
to prove reliable broadcast in the entire network since the grid can be covered piecewise by such corridors.

3.3.1 Reliable Broadcast for General Topologies
We examine the grid model above because it features in previous literature on jamming-resistant reliable
broadcast [3, 11, 15]. However, Pelc & Peleg [49] examine the t-locally bounded fault model for arbitrary
graphs.1 Specifically, they each examine the broadcast protocol of Koo [36], which they call the Certified
Propagation Algorithm (CPA). For any graph G, the authors prove that if t is bounded relative to some
parameter corresponding to the topology of G, then CPA achieves reliable broadcast. CPA does not always
achieve optimal fault tolerance; for example, it cannot tolerate the optimal number of faults t = (r/2)(2r+
1)− 1 in the grid as we do above. However, we address CPA because its generality is powerful.

The details of our protocol are presented in Section B.6. Each node requires knowledge of the full
network topology and the location of the dealer. Given that nodes can discover such information – perhaps
it is preprogrammed before deployment, or learned robustly after deployment – they then execute LOCAL
BROADCAST with their neighbors in a timed fashion that is topology-dependent. The following analysis
proves favorability, both for the grid and for general topologies where CPA achieves reliable broadcast:
Theorem 3 – Cost Analysis: In both of our protocols, each correct node p partakes in an execution of
LOCAL BROADCAST O(t) times as a sender and receiver; let k denote the total number of such executions.

1Ichimura & Shigeno [32] also examine general graphs and their approach can likely be incorporated also; however, in this
extended abstract, we focus on the result of Pelc & Peleg [49].
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For the ith such execution, let τi be the number of slots for which the adversary is active for i = 1, ..., k.
Denote the adversary’s total active time by β =

∑k
i=1 τi ≤ B0. Consider two cases:

Case I: Assume the adversary is active for a total of β =
∑k

i=1 τi = O(t lnϕ+1 t) slots over all k executions
of LOCAL BROADCAST involving p. For each execution, p incursO(τϕ−1i ln t+lnϕ t) cost in expectation by
Theorem 2. Therefore, over k = O(t) executions, p’s expected total cost is O((

∑k
i τ

ϕ−1
i ) ln t + t lnϕ t) =

O((
∑k

i τi) ln t+ t lnϕ t) = O(β ln t+ t lnϕ t)) = O(t lnϕ+2 t).
Case II: Otherwise, β =

∑k
i=1 τi = ω(t lnϕ+1 t). By a corollary of Jensen’s inequality for concave func-

tions, for a concave function f , f( 1k
∑k

i=1 τi) ≥
1
k

∑k
i=1 f(τi). Since f(τ) = τϕ−1 is concave, it follows

that
∑k

i=1 τ
ϕ−1
i ≤ k( 1k

∑k
i=1 τi)

ϕ−1 = k2−ϕ(
∑k

i=1 τi)
ϕ−1. Therefore, the total expected cost to p over

k = O(t) executions is O((
∑k

i=1 τ
ϕ−1
i ) ln t) + O(t lnϕ t) = O(t2−ϕ(

∑k
i=1 τi)

ϕ−1 ln t) + O(t lnϕ t) =

O(t(2−ϕ)βϕ−1 ln t+ t lnϕ t) = o(β). Therefore, p’s expected cost is less than that of the adversary.
Substituting t = O(r2) into the above analysis yields the favorability result above in Lemma 8 and, together,
gives our result for the grid model in Theorem 3.

4 Application 2: Application-Level DDoS Attacks
Typically in application-level DDoS attacks, a number of compromised clients, known collectively as a
botnet, are employed to overwhelm a server with requests. These botnets have become commercialized with
operators (“botmasters”) renting out time to individuals for the purposes of launching attacks [20, 38].

We assume a model of botnet attacks similar to that described by Walfish et al. [63]. In this model, a
request is cheap for a client to issue, expensive for the server to service, and all requests incur the same
computational cost (heterogeneous requests can likely be handled as in [63]). There is a high-capacity
communication channel and the crucial bottleneck is the server’s inability to process a heavy request load.

The client rate is g requests per second. The aggregate botnet rate is R requests per second and this is
assumed to be both relatively constant and the botnet’s maximum possible rate. If the server is overloaded,
it randomly drops excess requests. In this case, the good clients only receive a fraction g/(g + R) of the
servers resources; it is assumed that R� g so that g/(g +R) is very small.

Walfish et al. [63] propose a protocol SPEAK-UP for resisting DDoS attacks by having clients increase
their sending rate such that their aggregate bandwidth G is on the same order as that of R. Since botnet ma-
chines are assumed to have already “maxed-out” their available bandwidth in attacking, SPEAK-UP greatly
increases the chance that the server processes a legitimate request sinceG/(G+R)� g/(g+R). A crucial
component of SPEAK-UP is a front-end to the server called the “thinner” which controls which requests are
seen by the server and asks a client to retry her request if it was previously dropped.

4.1 Our Protocol
We employ Case 2 of our 3-PLAYER SCENARIO PROTOCOL to achieve a SPEAK-UP-like algorithm with
provable guarantees. Bandwidth (upstream and downstream rates in bits per second) is our measure of cost
and, as such, our results should be interpreted as quantifying the expected upstream bandwidth required
by the client and the expected downstream bandwidth with which the server should be provisioned. Using
bandwidth as a form of currency has been previously employed by the research community [26, 56, 63].

The client plays the role of Alice where the message is a request; the server plays the role of Bob. This
application falls into Case 2 of Theorem 1: a DDoS attack targets the server while communications from the
server to the clients are not disrupted. The client and server are assumed to be synchronized such that they
always agree on the current round and a maximum round number is set a priori. Such synchronization is
certainly possible over Internet-connected machines and the maximum round value should be set to account
for the level of DDoS resistance the participants wish to have; for most attacks, R is in the low hundreds of
Mbits/second [55]. We give an overview of our protocol; the pseudocode is provided in Section C.
Send Phase: Each Send Phase occurs over a uniform and fixed duration ∆; for simplicity, we set ∆ = 1
second, and the slot length changes in each round appropriately. The client sends in each slot with probability
2/2i with an expected 2i upstream bits per second. The server listens in each slot with probability 2/2i for an
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expected 2i downstream bits per second. If the received traffic substantially exceeds 2i, requests are dropped;
probabilistic listening and traffic measurement on the server side can be performed by the thinner [63].

Note that in each round, the client increases her sending rate in the Send Phase to “speak up”. Any
correct client that reaches its bandwidth limit remains at this limit for the duration of the protocol. When the
maximum round number is reached, the clients maintain their sending rate until the thinner informs them
that the attack has ended. For the purposes of analysis, a blocked slot occurs when Carol overwhelms the
server with requests and the client’s request is dropped in that slot. Define a send-blocked phase as one
where Carol blocks at least 22i/2 slots; therefore, Carol uses an upstream bandwidth of at least 22i/2 bits
per second. As in [63], if the thinner drops a request, it immediately asks the client to retry in the next round.
Ack Phase: The server does not increase its sending rate per round (only the client speaks up) since there
are no attacks in the Ack Phase for Case 2. This simplifies the Ack Phase as mentioned in Section 2 in our
discussion of Ack Failures; the server simply returns the requested data to the client at some reasonable rate.
The constants S = J and L correspond to the rate of 1 bit per second. We assume upstream and downstream
bandwidth are capped; this is true of residential Internet packages, as well as hosted services. In the case of
residential service, upstream bandwidth is scarcer than downstream bandwidth, while servers are generally
well-provisioned for both; this can be reflected in our cost constants. By Case 2 of Theorem 1 we have:
Corollary 1. If Carol uses bandwidth R to attack, then the client’s request is serviced, and the expected
bandwidth (upstream and downstream) used by the client and the server is O(R0.5).

Bob can represent multiple good clients. We assume the same synchronization with the server; however,
clients joining at different times are informed by the thinner of the current round. In order to be guaranteed
some of the server’s resources, the clients’ expected aggregate bandwidth is G = Ω(R0.5). Therefore,
our result quantifies the minimum expected aggregate upstream bandwidth for clients and the expected
downstream bandwidth for the server required to ensure that total censorship is averted; in contrast, SPEAK-
UP cannot make such a guarantee. This is useful for applications where a critical update or warning must be
dessiminated, and delivery to even a handful of clients is sufficient since they may then share it with others
(via multicast, peer-to-peer distribution, etc.).

As with SPEAK-UP, the probability of legitimate request being serviced is still G/(G+R). In addition
to admitting an analysis, our iterative approach of geometrically increasing the aggregrate bandwidth should
mitigate attempts by Carol at launching short duration DDoS attacks in order to provoke a steep and dis-
ruptive traffic increase from correct clients. Our protocol is fair as described in Section 1.2 – the aggregate
requirements of the bandwidth constrained clients is asymptotically equal to that of the well-provisioned
server. Restating our result above in the context of multiple clients yields Theorem 4.

Finally, in order to achieve the same level of denial-of-service against a server that is defended by our
protocol, Carol must procure a much larger botnet in order to obtain the necessary bandwidth; however, this
comes at a cost. For example, one study found the cost of a single bot to be between $2 and $25 [20]. There-
fore, since Carol’s bandwidth requirements increase quadratically, her monetary costs increase significantly
with the use of our protocol.

5 Conclusion
We have examined an abstract model of conflict over a communication channel. In the 3-Player Scenario,
we remark that there is an O(1) “up-front” cost per execution of our protocol when there are no send- or
ack-blocking attacks. Similarly, there are small up-front costs for our other favorable protocols. This is
the (tolerable) price for communication in the presence of a powerful adversary, even if that adversary is
not necessarily very active. The golden ratio arises naturally from our analysis, and its appearance in this
adversarial setting is interesting; an important open question is whether Ω(Bϕ−1 + 1) cost is necessary.

Also of interest is determining whether there are fair and favorable algorithms for other types of prob-
lems. An interesting problem to start with would be the problem of conflict over dissemination of an idea in
a social network, using the models of Kempe et al. [34].
Acknowledgements: We thank Martin Karsten, Srinivasan Keshav, and James Horey for their valuable
comments.
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[48] Dragoş Niculescu. Interference Map for 802.11 Networks. In Internet Measurement Comference
(IMC), pages 339–350, 2007.

[49] Andrzej Pelc and David Peleg. Broadcasting with Locally Bounded Byzantine Faults. Information
Processing Letters, 93(3):109–115, 2005.

[50] Andrzej Pelc and David Peleg. Feasibility and Complexity of Broadcasting with Random Transmission
Failures. In Proceedings of the ACM Symposium on Principles of Distributed Computing (PODC),
pages 334–341, 2005.

[51] Konstantinos Pelechrinis, Marios Iliofotou, and Srikanth V. Krishnamurthy. Denial of Service Attacks
in Wireless Networks: The Case of Jammers. To appear in IEEE Communications Surveys & Tutorials,
2011.

[52] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling Ultra-Low Power Wireless
Research. In IPSN, 2005.

[53] Iyappan Ramachandran and Sumt Roy. Clear Channel Assessment in Energy-Constrained Wideband
Wireless Networks. IEEE Wireless Communications, 14(3):70–78, 2007.

[54] Andrea Richa, Christian Scheideler, Stefan Schmid, and Jin Zhang. A Jamming-Resistant MAC Proto-
col for Multi-Hop Wireless Networks. In Proceedings of the International Symposium on Distributed
Computing (DISC), pages 179–193, 2010.

[55] Vyas Sekar and Jacobus Van Der Merwe. LADS: Large-scale Automated DDoS Detection System. In
Proceedings of the USENIX ATC, pages 171–184, 2006.

[56] Micah Sherr, Michael Greenwald, Carl A. Gunter, Sanjeev Khanna, and Santosh S. Venkatesh. Mit-
igating DoS Attack Through Selective Bin Verification. In Proceedings of the First international
conference on Secure network protocols, NPSEC’05, pages 7–12, 2005.

[57] Dongjin Son, Bhaskar Krishnamachari, and John Heidemann. Experimental study of the effects of
Transmission Power Control and Blacklisting in Wireless Sensor Networks. In Proceedings of the
First IEEE Conference on Sensor and Adhoc Communication and Networks, pages 289–298, Santa
Clara, California, USA, October 2004. IEEE.

[58] Dongjin Son, Bhaskar Krishnamachari, and John Heidemann. Experimental Study of Concurrent
Transmission in Wireless Sensor Networks. In Proceedings of the 4th International Conference on
Embedded Networked Sensor Systems, SenSys, pages 237–250, 2006.

[59] James Sundali and Rachel Croson. Biases in Casino Betting: The Hot Hand and the Gamblers Fallacy.
Judgment and Decision Making, 1(1):1–12, 2006.

[60] Vinod Vaikuntanathan. Brief announcement: Broadcast in Radio Networks in the Presence of
Byzantine Adversaries. In Proceedings of the ACM Symposium on Principles of Distributed Com-
puting (PODC), 2005.

15



[61] Valerie King and Cynthia Phillips and Jared Saia and Maxwell Young. Sleeping on the Job: Energy-
Efficient and Robust Broadcast for Radio Networks. Accepted to Algorithmica, 2010.

[62] Ashlee Vance. WikiLeaks Struggles to Stay Online After Attacks.
http://www.nytimes.com/2010/12/04/world/europe/04domain.html? r=2&hp, 2010.

[63] Michael Walfish, Mythili Vutukuru, Hari Balakrishnan, David Karger, and Scott Shenker. Ddos de-
fense by offense. In Proceedings of the 2006 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications (SIGCOMM), pages 303–314, 2006.

[64] John Paul Walters, Zhengqiang Liang, Weisong Shi, and Vipin Chaudhary. Security in Distributed,
Grid, Mobile, and Pervasive Computing. Chapter 17: Wireless Sensor Network Security: A Survey.
Auerbach Publications, 2007.

[65] R. Watro, D. Kong, S. Cuti, C. Gariner, C. Lynn, and P. Kruus. TinyPK: Securing Sensor Networks
with Public Key Technology . In SASN, pages 59–64, 2004.

[66] Anthony D. Wood and John A. Stankovic. Denial of Service in Sensor Networks. Computer,
35(10):54–62, 2002.

[67] Wenyuan Xu, Ke Ma, Wade Trappe, and Yanyong Zhang. Jamming Sensor Networks: Attack and
Defense Strategies. IEEE Networks, 20(3):41–47, 2006.

[68] Wenyuan Xu, Wade Trappe, Yanyong Zhang, and Timothy Wood. The Feasibility of Launching and
Detecting Jamming Attacks in Wireless Networks. In MobiHoc, pages 46–57, 2005.

[69] Wei Ye, John Heidemann, and Deborah Estrin. An Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In INFOCOM, pages 1567–1576, 2002.

[70] Marco Zuniga and Bhaskar Krishnamachari. Analyzing the Transitional Region in Low Power Wire-
less Links. In Proceedings of the 1st IEEE International Conference on Sensor and Ad hoc Communi-
cations and Networks (SECON), pages 517–526, 2004.

16



Appendix
A significant amount of exposition and analysis had to be placed here in the appendix to meet the length
constraints of our submission. Throughout our paper, there are references to the relevant sections in the
event the reader wishes to verify our reasoning and analysis.

A Tolerating a Reactive Adversary: Further Discussion
Lemma 1 works for any adversary who makes her blocking decisions in slot j independently of channel
activity. However, it is flawed for a reactive adversary who can detect channel activity for free and then
block. The choice to set qj = 0 (Carol blocks) in the proof depends solely on this ability to detect traffic
since it is certain to be Alice’s transmission that is disrupted. A fix to this problem is render this ability
useless to Carol.

As an extreme example, assume that all slots in the Send Phase are used either by Alice to send m (as
per our protocol) or Dave, whose transmissions of m′ do not interest Carol, and the probability that a slot is
used by Dave is higher. Then detecting channel activity does not help Carol decide on whether to block; all
slots are used. Regardless of how she decides to act, Carol can do no better than picking slots independent
of whether she detects channel activity. In other words, channel activity is no longer useful in informing
Carol’s decisions about whether to block.

But assuming all slots are active is problematic: (1) How is this guaranteed or coordinated? (2) Doesn’t
this much background traffic interfere with Bob’s ability to receive from Alice? Instead, assume that other
network traffic occurs such that Carol will always detect traffic on at least a constant fraction of slots in the
Send Phase. Note that this does not help her block transmissions by Alice since she does not know the total
amount of traffic that she will detect. Now, not all slots will necessarily be active. Upon detecting traffic,
can Carol listen to a portion of the message to discover if it is m or m′ and then decide on whether to block?
Yes, but this is roughly as expensive (perhaps more so in WSNs) as simply blocking outright. So again,
detecting channel activity does not inform Carol’s decisions. This is the idea behind our analysis.

We note that the conclusion of our argument aligns with claims put forth in empirical results on reac-
tive jamming in WSNs; that is, such behavior does not necessarily result in a more energy-efficient attack
because the adversary must still be listening to the channel for broadcasts prior to committing itself to their
disruption [68].

B Application 1: Wireless Sensor Networks
We present a full discussion along with our proofs that could not be provided in Section 3 which deals with
our WSN application.

B.1 Proofs for LOCAL BROADCAST

Below are the full proofs leading to Theorem 2 wth regards to our protocol LOCAL BROADCAST. A round
is again defined as send-jamming if at least 1/2 of the slots in the Probabilistic Send Phase are jammed
while a round is ack-jamming if at least 1/2 the slots in Probabilistic Ack Phase are jammed or spoofed. We
omit the constants S, L and J for simplicity.

Lemma 9. Consider a non-send-jamming round. The probability that at least one correct receiver does not
receive the message from Alice is less than 1/n2.

Proof. Let s be the number of slots in the Probabilistic Send Phase of round i. Let pA = 3 lnn/2i be the
probability that Alice transmits in a particular slot. Let pb = 2/2(ϕ−1)i be the probability that a particular
correct receiver b listens in a particular slot. Let Xj = 1 if the message is not transmitted from Alice to
receiver b in the jth slot. Then Pr[ m is not successfully transmitted to the b during the Probabilistic Send
Phase]=Pr[X1X2 · · ·Xs = 1]=Pr[Xs = 1 | X1X2 · · ·Xs−1 = 1] · Pr[X1X2 · · ·Xs−1 = 1]. Let qj = 1
if the adversary does not jam given X1X2 · · ·Xi−1; otherwise, let qj = 0. The value of qj can be selected
arbitrarily by the adversary. Then Pr[Xi = 1 |X1 · · ·Xi−1 = 1] = 1− pApbqi = 1− (6 lnn/2ϕi)qj . Then
we have Pr[X1X2 · · ·Xs = 1] = (1− pApbq1) · · · (1− pApbqs) ≤

∏s
j=1(1− pApbqj) ≤ e

−pApb
∑s

j=1 qj <
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1/n3 since pApb
∑
qj > (6 lnn/2ϕi)·(2ϕi/2) = 3 lnn given that this is a non-send-jamming round. Taking

a union bound, the probability that at least one correct receiver has not received m is less than n−2.

We note Lemma 9 can be modified to handle a reactive adversary in the same way as done for 3-PLAYER
SCENARIO PROTOCOL; we omit the details.

Lemma 10. Assume that by round i all correct receivers have heard the message m. Assume that round i is
non-ack-jamming. Then the probability that Alice retransmits the message in round i+ 1 is less than 1/n2.

Proof. This is computed similarly to the proof of Lemma 9. Let s be the number of slots in the Probabilistic
Ack Phase and let p = 4/2i be the probability that Alice listens in a slot. For slot j, define Xj such that
Xj = 1 if Alice does not terminate. Then Pr[ Alice retransmits m in round i+ 1] = Pr[X1X2 · · ·Xs = 1].
Let qj = 1 if the adversary does not jam given X1X2 · · ·Xi−1; otherwise, let qj = 0. The qj values are
determined arbitrarily by the adversary who controls the faulty receivers. Since Alice terminates if and only
if it listens and does not detect any activity, then Pr[Xj = 1] = (1 − pqj). Therefore, Pr[X1X2 · · ·Xs =

1] ≤ e−p
∑s

j=1 qj < n−2 since p
∑s

j=1 qj > (4 lnn/2i)(2i/2) = 2 lnn given that this is a non-ack-jamming
round.

Lemma 11. Assume all receivers are correct and there are no send-jamming or ack-jamming rounds. Then
the expected cost to Alice is O(lnϕ n) and the expected cost to any correct receiver is O(lnn).

Proof. Let d = lg(4 lnn). Using Lemma 9, the expected cost to Alice is at most:

∞∑
i=d

n−2(i−d) · (2(ϕ−1)i · 3 lnn+ 2(ϕ−1)i+1 + 4 + 2(ϕ−1)i+1)

= O(lnϕ n) +O

lnn ·
∞∑
k=1

(
2(ϕ−1)

n2

)k
= O(lnϕ n) by the geometric series.

Similarly, using Lemma 10, the expected cost to each receiver is at most:

∞∑
i=d

n−2(i−d) · (2i+1 + 2(ϕ−1)i+1 + 2i + 2(ϕ−1)i+1)

= O(lnn) +O

( ∞∑
k=1

(
2

n2

)k)
= O(lnn) by the geometric series.

Lemma 12. Assume there is at least one send-jamming round. The expected cost to Alice is O(Bϕ−1 lnn+
lnϕ n) and the expected cost to any correct receiver is O(Bϕ−1 + lnn).

Proof. Let i ≥ dlg(4 lnn)e be the last round which is send-jamming and let j be the last round which is
ack-jamming, j ≥ i. Then the cost to the adversary is B = Ω(2ϕi + 2j).
Alice: Using Lemma 10, the expected cost to Alice prior to successfully terminating is O(2(ϕ−1)i lnn) +∑∞

k=1 n
−2(k−1) · O(2(ϕ−1)(j+k) lnn) = O(2(ϕ−1)i lnn + 2(ϕ−1)j lnn). Therefore, in terms of B, the cost

to Alice is O(Bϕ−1 lnn) and by Lemma 11, Alice’s total expected cost is O(Bϕ−1 lnn+ lnϕ n).
Correct Receivers: In the worst case, all rounds up to i have been send-jamming, in which case the expected
cost to each correct receiver up to the end of round i + 1 is O(2i). Therefore, in terms of B, and using
Lemma 11, the cost to each correct receiver is O(Bϕ−1 + lnn) noting that 1/ϕ = ϕ− 1.
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B.2 Further Discussion on T0

The amount of jamming in a neighborhood (but not the total for adversary in the network) is bounded by
B0 and known. This is required in [11, 15] and a similar assumption is made in [7, 54]. Alternatively, nodes
may perpetually listen for transmissions; however, the receive state costs are then problematic. In order to
let nodes sleep most of the time, our protocol synchronizes sending/receiving. Therefore, a bound seems
necessary so that correct nodes know when to wake up as m propagates outward.

B.3 Why a Shared Schedule is Problematic
In our WSN application, we assume that messages from Alice can be authenticated using light-weight
cryptographic techniques. Given this, we consider: might Alice and Bob (or even more players) also share
a secret schedule? This would reduce the costs in Theorem 1 due to the Send Phase where neither player
knows if the other is active with any certainty.

Unfortunately, such a schedule becomes known to the adversary if a player suffers a Byzantine fault and
this causes problems in more general scenarios. For instance, consider the simple extension of Alice and
two receivers. In our local broadcast problem, which is a key subroutine for our reliable broadcast protocol,
Alice broadcasts to its two neighboring receivers concurrently in order to be fair. Therefore, both receivers
must know when Alice transmits in the Send Phase. By corrupting one receiver, this schedule becomes
known to the adversary who can then block transmissions by Alice perfectly and easily prevent the other
receiver from receiving m. Clearly, this attack extends to the case where there are n receivers and Alice
wants to achieve a local broadcast.

Other problems arise in a multi-hop scenario. For example, in our reliable broadcast protocol, each
node listens to many different senders. A faulty receiver can interfere with many more senders by acting
in the same manner as above for each of these senders. Therefore, by purposely avoiding a pre-set shared
schedule, our use of randomness allows us to foil such attempts by the adversary.

B.4 Reliable Broadcast
Our expanded discussion and proofs with regards to reliable broadcast are given in this section.

B.4.1 The Las Vegas Guarantee in Multi-Hop WSNs
In addition to the rationale given in Section 1.1, the Las Vegas property is also valuable in multi-hop sensor
networks for the following reason. Let n be the number of devices within transmitting distance of a device,
and let N be the total number of devices in the network. Monte Carlo protocols that succeed with high
probability in n are possible. However, typically, n� N and messages will traverse multiple hops; consider
Ω(N) hops. Even if the failure probability for a single and the failure probability for each hop is O(n−c)
for some constant c > 0, or even O(2−n), then communication fails along the chain with at least constant
probability. Alternatively, we might achieve protocols that succeed with high probability in N . However,
in large networks, N may not be known a priori. Furthermore, achieving a high probability guarantee in N
typically involves Ω(logN) operations which, for large N , may be too costly. Therefore, by devising Las
Vegas protocols, we avoid assumptions that are problematic given that n� N .

We note that transmission over the wireless medium is subject to error due to radio-irregularity and gray-
zone effects. Does this reduce the utility of our Las Vegas guarantee? In many cases, we argue that it does
not. Under fair weather conditions, the percentage of successfully received packets is nearly 100% up to a
distance threshold exceeding 25 meters in the case of the MICA2DOT mote [4]. Other experimental studies
have shown that communication is reliable so long as the signal-to-interference-plus-noise-ratio exceeds a
threshold value [57, 58]; therefore, using a transmission power above this threshold yields highly reliable
communication. Other experimental studies on the packet reception rate, which closely approximates the
probability of successfully receiving a packet between two neighbouring nodes, is perfect up to a fixed
distance [70]. Therefore, for an appropriate transmission power in dense sensor networks, communication
over the wireless medium should not undermine our Las Vegas guarantee.

B.4.2 Reliable Broadcast in the Grid
We reiterate the grid model: each node p(x, y) is situated at (x, y) in a grid. The dealer d (who is correct)
is located at (0, 0) and seeks to propagate m to all correct nodes in the network. When a node p sends
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a message, all listening nodes within L∞ distance r (i.e. the (2r + 1) × (2r + 1) square centered about
p) receive the message; this neighborhood is denoted by N(p). Analogous results hold for the Euclidean
metric (see [13]). There are t < (r/2)(2r + 1) Byzantine nodes in any neighborhood. For any correct node
p, the adversary can use its t Byzantine nodes in N(p) to jam for up to B0 = t · nc slots total.

There is a global broadcast schedule (obeyed by the correct nodes) that assigns each node a slot for
broadcasting; the ordering is always the same but the actual specification is unimportant (see [36] for an
example). A cycle is defined as on full pass through a global broadcast schedule – we call these transmit
slots – plus an additional n slots that we call response slots; we expand on this later.
Overview of the Protocol: The pseudocode is in Figure 3. Our protocol starts at slot 0 and synchronizes
the timing of nodes for sending and listening. While this synchronization is not mathematically challenging,
a full description yields an unreadable protocol. For ease of exposition, our treatment addresses each node
q in C = {q(x, y)|− r ≤ x ≤ r ∧ y ≥ 0}; that is, a corridor of width 2r+ 1 moving up from d. Traversing
the x-coordinates is nearly identical and the grid can be covered piecewise by these two types of corridors.

For each node p, define Ap = {q(u, v) | (a − r) ≤ u ≤ (a + z) and (b + 1) ≤ v ≤ (b + r)},
Bp = {q(u, v) | (a+z+1) ≤ u ≤ (a+r) and (b+1) ≤ v ≤ (b+r)} andB′p = {q′(u′, v′) | (a+z+1−r) ≤
u′ ≤ (a) and (b+ r + 1) ≤ v′ ≤ (b+ 2r)} for 0 ≤ z ≤ r. The set B′p is obtained from Bp by shifting left
by r units and up by r units; under this 1-to-1 translation, q1 ∈ Bp and q2 ∈ B′p are sister nodes. The reader
is referred to [13] or [61] for a more in-depth discussion of these sets.

While a full presentation is somewhat tedious, the main idea is that where a node would have broad-
casted a message to a group of nodes in the protocol of Bhandari & Vaidya [13], we now use LOCAL
BROADCAST to communicate a message to that group of nodes. In terms of the messages themselves, node
q issues a COMMIT(q,m) message if q has committed to m. Node q2 sends HEARD(q2, q1,m) if q2 has
received a message COMMIT(q1,m). As in [13], p commits to m when it receives t + 1 COMMIT(q,m) or
HEARD(q2, q1,m) from node-disjoint paths all lying within a single (2r + 1)× (2r + 1) area.

We now discuss how to move from slots in LOCAL BROADCAST to slots in a cycle. In general, the
transmit slots in a cycle are used by a node p to transmit a HEARD or COMMIT message via LOCAL BROAD-
CAST to a receiving set of nodes Rp, while the response slots in a cycle are used by nodes in Rp to send
back req messages to p. Therefore, there are up to n transmit slots needed. For simplicity, we do not go
into detail about how these are set up; we simply assume that nodes in Rp know which response slot to use.

In our p in our pseudocode, Rp = N(p) ∩ C and p executes LOCAL BROADCAST(m, p,Rp) in the
context of the global broadcast schedule. By this, we mean that a slot in the Probabilistic Sending Phase of
LOCAL BROADCAST corresponds to p’s transmit slot in some cycle, the next slot in that same Probabilistic
Sending Phase corresponds to p’s transmit slot in the next cycle, and so on. The same thing happens with
the Deterministic Sending Phase. In both cases, the response slots are unused. Then in the Probabilistic Ack
Phase and Deterministic Ack Phase, the response are used by each Rp set in the same fasion, where p now
listens. By using a response slot, the nodes in Rp send back to p simultaneously as in LOCAL BROADCAST.
Note that in the Probabilistic and Deterministic Ack phases, the transmit slots are now unused. Therefore, in
each cycle, only the transmit slots or response slots, but not both, are used. For LOCAL BROADCAST running
in at most D slots, executing LOCAL BROADCAST in the context of the global broadcast schedule requires
at most D cycles. Figure 3 gives our pseudocode where D = 25 · (B0 + lnϕ−1 n)ϕ in concordance with
Lemma 6.

We include the detailed proof of completeness for Theorem 3 by showing that each node eventually
commits to the correct value m sent by the dealer. Our analysis in Section 3.3.1 already provides the cost
analysis. The following Lemma 13 proves the correctness of our protocol in the grid; we emphasize that our
argument follows that of [13].

Lemma 13. Assume for each node p, t < (r/2)(2r+ 1) nodes in N(p) are Byzantine and used by Carol to
disrupt p’s communications for β ≤ B0 time slots. Let C = {Nodes q at (x, y)| − r ≤ x ≤ r ∧ y ≥ 0}
be a corridor of nodes in this network. Then DOS-RESISTANT RELIABLE BROADCAST achieves reliable
broadcast in C.

Proof. In [13], it is shown that each node p(x, y) can obtainm by majority filtering on messages from 2t+1
node-disjoint paths contained within a single (2r + 1) × (2r + 1) area since at least t + 1 will be m. Our
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DOS-RESISTANT RELIABLE BROADCAST

1: Starting in cycle 1, and ending no later than cycleD, node d executes LOCAL BROADCAST(m, d,Rd)
and each node i ∈ Rd commits to the first value it receives from d.
As in [13], p(x, y) commits to m when, through Steps 4 & 5, it receives t + 1 COMMIT(q,m) or
HEARD(q2, q1,m) from node-disjoint paths all lying within a single (2r + 1) × (2r + 1) area; our
analysis shows this occurs in cycle 2yD − 1. The following step is executed by each node p:

2: Starting in cycle 2yD, and ending no later than cycle (2y + 1)D − 1, node p(x, y) performs LOCAL
BROADCAST(COMMIT(p,m), p, Rp).
The following steps are executed by each node excluding those nodes in N(d):

3: for i = 0 to r − 1 do
4: Starting in cycle 2(y−r+i)D, and ending no later than cycle 2(y−r+i)D+D−1, node p(x, y) lis-

tens for COMMIT messages by executing LOCAL BROADCAST(COMMIT(q,m), q(x′, y′), Rq) with
each node in row y′ = y − r + i in C and where p ∈ Rq.

5: Starting in cycle 2(y− r+ i)D+D, and ending no later than cycle 2(y− r+ i)D+ 2D− 1, node
p(x, y) listens for HEARD messages by executing LOCAL BROADCAST(HEARD(q2, q1,m), q2, Rq2)
with each node q2 ∈ B′p in row y + i and where p ∈ Rq2 .

6: Starting in cycle 2(y − r)D +D, and ending no later than cycle 2(y − r)D + 2D−1, node q2 sends
a HEARD message by executing LOCAL BROADCAST(HEARD(q2, q1,m), q2, Rq2) where q1, q2 are
sister nodes.

Figure 3: Pseudocode for DOS-RESISTANT RELIABLE BROADCAST.

correctness proof is similar; however, we argue along a corridor and show that nodes in the yth row can
commit to m by slot 2yD − 1.
Base Case: Each node in N(d) commits to the correct message m immediately upon hearing it directly
from the dealer by cycle D. Therefore, clearly, every node p(x, y) ∈ N(d) commits by cycle 2yD − 1.
Induction Hypothesis: Let −r ≤ a ≤ r. If each correct node p′(x′, y′) ∈ N(a, b) commits to m by cycle
2y′D − 1, then each correct node p(x, y) ∈ N(a, b+ 1)−N(a, b) commits to m in cycle 2yD − 1.
Induction Step: We now show 2t + 1 connectedness within a single neighborhood and we argue simulta-
neously about the time required for p to hear messages along these disjoint paths. The node p(x, y) lies in
N(a, b+ 1)−N(a, b) and can be considered to have location (a− r + z, b+ r + 1) where 0 ≤ z ≤ r (the
case for r + 1 ≤ z ≤ 2r follows by symmetry). We demonstrate that there exist r(2r + 1) node-disjoint
paths P1, ..., Pr(2r+1) all lying within the same neighborhood and that the synchronization prescribed by our
protocol is correct:
One-Hop Paths: the set of nodes Ap = {q(u, v) | (a − r) ≤ u ≤ (a + z) and (b + 1) ≤ v ≤ (b + r)} lie
in N(a, b) and neighbor p. Therefore, there are r(r + z + 1) paths of the form q → p where q ∈ Ap.

By their position relative to p(x, y), each correct node q(u, v) ∈ Ap is such that v = y− r+ c for some
fixed c ∈ {0, ..., r−1}. Therefore, by the induction hypothesis, q commits tom by cycle 2(y−r+c)D−1.
By the protocol, q(u, v) sends COMMIT messages using LOCAL BROADCAST in cycle 2vD = 2(y−r+c)D
until cycle 2(v + 1)D − 1 = (2(y − r + c) + 1)D − 1 at the latest. By the protocol, p(x, y) listens
for COMMIT messages from q starting in cycle 2(y − r + c)D until v (2(y − r + c) + 1)D − 1 at the
latest; note that p listens to many executions of LOCAL BROADCAST containing HEARD messages, but
we focus on this particular one from q. Therefore, p and q are synchronized in the execution of LOCAL
BROADCAST and p will receive q’s message by cycle (2(y − r+ c) + 1)D− 1 = (2(b+ c+ 1) + 1)D− 1
at the latest. Since this occurs for all nodes in Ap, node p has received all COMMIT messages from Ap by
cycle (2(y − 1) + 1)D − 1 = (2(b+ r) + 1)D − 1 ≤ (2(b+ r + 1) + 1)D − 1 = 2yD − 1.
Two-Hop Paths: consider the sets Bp = {q(u, v) | (a+ z + 1) ≤ u ≤ (a+ r) and (b+ 1) ≤ v ≤ (b+ r)}
and B′p = {q′(u′, v′) | (a + z + 1 − r) ≤ u′ ≤ (a) and (b + r + 1) ≤ v′ ≤ (b + 2r)}. The nodes in Bp
lie in N(a, b) while the nodes in B′p lie in N(p). Moreover, the set B′p is obtained by shifting left by r units
and up by r units. Recall that there is a one-to-one mapping between the nodes in Bp and the nodes in B′p;
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Figure 4: Depiction of the sets Ap, Bp, B′p and sister nodes for a particular node p in the grid. Here
a, b, z = 0 and r = 3 so the corridor C has width 2r + 1 = 7.

these are sister nodes. There are r(r − z) paths of the form q → q′ → p. Figure 5 illustrates the sets and
sister nodes for a particular p.

Consider a correct node q(u, v) ∈ Bp and its sister node q′(u′, v′) ∈ B′p where v′ = v+ r by definition.
Again, given the location of q(u, v) relative to p(x, y), we have v = y−r+c for some fixed c ∈ {0, ..., r−1}.
By the induction hypothesis, q commits to m by cycle 2vD − 1. Then by DOS-RESISTANT RELIABLE
BROADCAST, q sends a COMMIT message using LOCAL BROADCAST in cycle 2vD = 2(y− r+ c)D until
cycle 2(v+1)D−1 = (2(y−r+c)+1)D−1 at the latest. Again, this is the particular execution of LOCAL
BROADCAST between q and q′; q performs others. By DOS-RESISTANT RELIABLE BROADCAST, q′(u′, v′)
receives COMMIT messages from q using LOCAL BROADCAST starting in cycle 2(v′ − r + c)D = 2vD =
2(y−r+c)D and ending no later than cycle 2(v′−r+c+1)D−1 = 2(v+1)D−1 = (2(y−r+c)+1)D−1.
Therefore, q and q′ are synchronized in the execution of LOCAL BROADCAST and q′ will receive q’s message
by cycle (2(y − r + c) + 1)D − 1 ≤ 2yD − 1 at the latest.

By the above, each node q′(u′, v′) ∈ B′p can start sending a HEARD message using LOCAL BROAD-
CAST in cycle 2(v′ − r)D + D and ending no later than cycle 2(v′ − r)D + 2D − 1. Starting in cycle
2(y − r + c)D +D, node p(x, y) uses LOCAL BROADCAST to listen for a HEARD message from q′(u′, v′)
where v′ = y+c. Therefore, p is listening to q′ starting in 2(y−r+c)D+D = 2(v′−r)D+D and ending
no later than 2(v′ − r)D + 2D − 1; p and q′ are synchronized. Therefore, p receives all HEARD messages
by cycle 2(v′ − r)D + 2D − 1 when v′ = y + r − 1; that is, by cycle 2(y − 1)D + 2D − 1 = 2yD − 1.

Therefore, a total of r(r+z+1)+r(r−z) = r(2r+1) node-disjoint paths fromN(a, b) to PN(a, b) exist,
all lying in in a single neighborhood N(a, b+ r+ 1). For an adversary corrupting t < (r/2)(2r+ 1) nodes,
a correct node can majority filter to obtain m. Furthermore, we have shown that any p(x, y) ∈ N(a, b+ 1)
executes LOCAL BROADCAST r(2r + 1) = O(r2) times in order to receives all COMMIT and HEARD
messages by cycle 2yD − 1. Therefore, p can commit to the correct message by cycle 2yD − 1; this
concludes the induction.
Finally, we reiterate that proving reliable broadcast in a corridor is sufficient as the entire grid can be covered
piecewise by such corridors.

B.5 Further Discussion on Our Result in the Grid
A more contemplative point concerns the maximum number of Byzantine faults per broadcast neighborhood
t = (r/2)(2r + 1) − 1 for which reliable broadcast is shown to be feasible in the presence of a jamming
adversary in [15]; recall that previous protocols require that correct nodes possess more energy. However,
this is problematic since, if nodes are subverted, it seems more reasonable to assume that Byzantine and
correct nodes will each possess roughly equal energy. Assume that each node can be active for nc slots.
Consider the particular situation where the adversary targets p by having each of its nodes in N(p) jam for
nc instances. This exhausts p’s energy and reliable broadcast fails; this attack is suggested in [15]. Under
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Ap Bp

B�’p

Listen to HEARD in row 4: [3D, 4D 1]

Listen to HEARD in row 6: [7D, 8D 1]
Listen to HEARD in row 5: [5D, 6D 1]

Send COMMIT: [2D, 3D 1]
Send COMMIT: [4D, 5D 1]
Send COMMIT: [6D, 7D 1]

Listen to COMMIT in row 1: [2D, 3D 1]
Listen to COMMIT in row 1: [4D, 5D 1]
Listen to COMMIT in row 1: [6D, 7D 1]

Send COMMIT: [8D, 9D 1]

Node p

Listen to COMMIT in row 4: [8D, 9D 1]
Listen to COMMIT in row 4: [8D, 9D 1]
Listen to COMMIT in row 4: [8D, 9D 1]

Listen to COMMIT in row 2: [4D, 5D 1]

Listen to COMMIT in row 3: [6D, 7D 1]

Listen to COMMIT in row 1: [2D, 3D 1]
Send HEARD: [3D, 4D 1]

Send HEARD: [5D, 6D 1]

Send HEARD: [7D, 8D 1]

Figure 5: An example of some steps of the protocol for r = 3. The node in row 4 highlighted with the
horizontal lines in the B′p listens to a COMMIT message from its sister node in Bp by partaking in LOCAL
BROADCAST as a receiver from cycle 2D to cycle 3D − 1. Then, in cycle 3D to cycle 4D − 1, that node
uses LOCAL BROADCAST to send a HEARD message to p who is listening in this execution of LOCAL
BROADCAST from cycle 3D to cycle 4D− 1. The listening for p for each row is described on the left; note
the synchronization. We also illustrate that those nodes above p will be listening for p’s COMMIT message
using LOCAL BROADCAST at the appropriate time.

our reliable broadcast protocol, such an attack can be mitigated. To see this, we examine the asymptotic
upper bound on t for which our protocol still can admit reliable broadcast.

We want to know when nc is sufficient to support the expected cost incurred by such an attack. We
assume p has nc energy and we know from Lemma 8 that the cost to p of t nodes each jamming for nc time
slots is O(r2(2−ϕ)(t · nc)ϕ−1 ln r + r2 lnϕ r). Therefore, we ask: for what value of t is p’s available energy
nc = ω(r2(2−ϕ)(t · nc)ϕ−1 ln r + r2 lnϕ r)? Solving yields t = o((n2−ϕc − n1−ϕc r2 lnϕ r)/r2(2−ϕ) ln r)ϕ.
Although, we note that for this t value, p’s survival is not guaranteed, this is an improvement over previous
results which simply cannot tolerate this attack. Under our protocol, we also note that for larger values of
t, the adversary can expect to disable p by using enough of its nodes and it is currently an open question
whether there is a reliable broadcast protocol that can tolerate larger t values. In this sense, our protocol
and analysis illustrates the importance of accounting for both send and receive state costs when considering
bounds on t in the grid when jamming is possible.

Our results for reliable broadcast are also novel in accounting for both sending and listening costs, while
most previous results address focus on sending costs only. Under our protocols, nodes spend a substantial
amount of time in the energy-efficient sleep state, waking up to send or listen. We note that switching
from the sleep state to an active state incurs some cost (less than transmitting or receiving); however, in our
protocols, the number of state switches is limited by the number of active slots and, therefore, our asymptotic
analysis holds.

B.6 Reliable Broadcast in General Topologies
In this section, we present our results for reliable broadcast on an arbitrary graph G = (V,E). Pelc &
Peleg [49] examine a generalization of the t-locally bounded fault model; that is, where each node contains
at most t Byzantine nodes within its neighborhood. Specifically, they examine the broadcast protocol of
Koo [36], which the authors call the Certified Propagation Algorithm (CPA), with the aim of establishing
conditions for which it achieves reliable broadcast under arbitrary graphs in contrast to the grid model.
Again, CPA addresses the case where all nodes obey a global broadcast schedule (i.e. there is no jamming
adversary). Pelc & Peleg [49] define X(p, d) to be the number of nodes in p’s neighborhood N(p) that are
closer to d than p and then introduce the parameter X(G) = min{X(p, d) | p, d ∈ V, (p, s) /∈ E}. One
of their main results is that, for any graph G with dealer d such that t < X(G)/2, CPA achieves reliable
broadcast. For our purposes, define for each node p the set of nodes X(p) to be those X(p, d) nodes closer
to the dealer than to p. Clearly, it is possible to identify X(p) in polynomial time and so we observe:
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Certified Propagation Algorithm (Koo [36] and Pelc & Peleg [49])
• The dealer d sends the message to all of its neighbors and terminates.
• For a correct node u ∈ N(d), upon receiving m from d it commits to m, node u announces this

committment of its neighbors and terminates.
• If a node is not a neighbor of the source, then upon receiving t+1 copies ofm from t+1 distinct

neighbors, it commits to m, and announces this committment to its neighbors and terminates.

Figure 6: Pseudocode for the Certified Propagation Algorithm (CPA).

Observation 1. If the topology of G and the location of d is known to all nodes, then each node p can
calculate X(p).

B.6.1 A Favorable Protocol in General Topologies
The pseudocode for CPA is given in Figure 6. Note that, unless a node is sending in the slot allotted to it
by the global broadcast schedule, or it has terminated, it is perpetually listening. We aim to remove this
wasteful listening by synchronizing the sending and listening of nodes.

In the context of CPA, we call a single iteration of the global broadcast schedule a broadcast round.
Throughout, assume that time is measured from when the dealer first broadcasts m in broadcast round 0.
Under CPA, regardless of the worst case delay imposed by the adversary, there is a broadcast round where
p must have received at least t + 1 messages from distinct correct nodes in X(p) allowing p to commit to
m; denote this broadcast round by sp. Note, that in any execution of reliable broadcast, p may actually be
able to commit before broadcast round sp, but sp is the maximum broadcast round in which p is guaranteed
to have all the information it needs to commit to m regardless of how the adversarial nodes behave.

Since a correct node u ∈ N(d) accepts what it hears from the dealer d immediately, and d’s broadcast
round is 0, su = 1. For nodes not in N(d), the situation is slightly more complicated. In the grid, for
node p(x, y), we were able to compute sp explicitly (in terms of cycles) as 2yD − 1 in the corridor C (see
proof of Lemma 13). Here, unlike with the grid, we cannot specify sp explicitly for any graph G because it
is dependent on the topology; however, by the correctness of CPA, every node eventually commits and so
sp must exist for each node p. In fact, our protocol based on CPA is simpler than that in the grid because
the protocol of Bhandari & Vaidya [13] uses HEARD messages (which makes the synchronization tedious),
while CPA uses only COMMIT messages.

For a fixed G whose topology is known to all nodes (including knowledge of where the dealer d is
situated), each node p can calculate sp. This is done by simulating the propagation of m using CPA. In this
simulation, each node p has the maximum t = X(G) − 1 Byzantine nodes in X(p) and these Byzantine
nodes send their faulty messages prior to the t+ 1 correct responses in order delay propagation of m for as
long as possible. By assuming that every X(p) has the maximum number of Byzantine nodes, the actual
placement of the Byzantine nodes in G does not affect the worst case broadcast time sp. In tracing this
propagation, any node can calculate sp for any node p. Therefore, we have another observation:
Observation 2. If the topology ofG and the location of d is known to all nodes, then each node can calculate
sp for any node p.

Now, consider the following minor modifications to CPA: (1) each correct node p only listens to q ∈
X(p) in broadcast round sq + 1, and (2) each correct node p only sends its commit message in broadcast
round sp+1. In all other slots, a node p is sleeping. This is a minor modification of CPA, call it CPA0. These
modifications synchronize the sending/listening and allow nodes to otherwise sleep instead of perpetually
listening as in CPA. The pseudocode for CPA0 is given in Figure 7.
Lemma 14. If CPA achieves reliable broadcast, then CPA0 achieves reliable broadcast.

Proof. For every node p, assume X(p) has the maximum t = X(G) − 1 Byzantine nodes and that these
Byzantine nodes all send their messages to p ahead of the correct nodes in X(p) according to the broadcast
schedule. Pelc & Peleg [49] showed that CPA is correct in this situation (their result is independent of any
particular ordering of sending in the broadcast schedule; that is, CPA remains correct if Byzantine nodes
always send first). Therefore, in this case, each correct node p would receive a committment from q ∈ X(p)
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CPA0

• In broadcast round 0, the dealer d sends the message to all of its neighbors and terminates.
• For a correct node u ∈ N(d), u listens in broadcast round 0 and accepts m as correct, announces

this committment to its neighbors in broadcast round 1, and terminates.
• If a node p is not a neighbor of the source, then p listens to each neighbor q ∈ X(p) in broadcast

round sq +1; otherwise, p sleeps. Upon receiving t+1 copies ofm from t+1 distinct neighbors
inX(p), it acceptsm as correct, announces this committment to its neighbors in broadcast round
sp + 1, and terminates.

Figure 7: Pseudocode for CPA0.

FCPA
• The dealer d sends the message to all of its neighbors using LOCAL BROADCAST(m, d, N(d))

and terminates after at most D cycles.
• If node u ∈ N(d), then upon receiving m from d via LOCAL BROADCAST(m, d, N(d)), it

accepts m as correct, announces this committment to its neighbors in cycle D, and terminates.
• If a node p is not a neighbor of the source, then p listens to each neighbor q ∈ X(p) via LOCAL

BROADCAST(m, q, N(q)) starting in cycle sq ·D + 1 and ending by (sq + 1) ·D; otherwise, p
sleeps. Upon receiving t + 1 copies of m in this fashion from t + 1 distinct neighbors in X(p),
it accepts m as correct, announces this committment to its neighbors using LOCAL BROAD-
CAST(m, p, N(p)) in broadcast cycle sp ·D + 1, and terminates by cycle (sp + 1) ·D.

Figure 8: Pseudocode for FCPA.

in broadcast round sq + 1 and node p would announce its committment in round sp + 1. This is exactly
what happens in CPA0 with nodes sleeping otherwise. Therefore, if CPA achieves reliable broadcast, then
so does CPA0.
Define a cycle as done before in the grid. In Figure 8, we provide pseudocode for a fair and favorable reliable
broadcast algorithm FCPA that tolerates the jamming adversary described in Theorem 3.

Lemma 15. Assume CPA achieves reliable broadcast on a graphG. Then FCPAguarantees reliable broad-
cast on G.

Proof. Using FCPA, we claim that every correct node can commit by cycle sp ·D. To prove this, assume
the opposite: that some node p does not commit to the correct value by cycle sp · D. Then, there is some
correct node in q ∈ X(p) that: (1) could not commit to a message by time slot sq · D (and could not
send p a committment message), or (2) committed to a wrong message (and sent that wrong message to
p). Note that the time for any node u to send its commit message to v is at most D cycles by Lemma 6.
Therefore, if q cannot commit by sq · D in FCPA, then q cannot commit by cycle sq in CPA0; therefore,
CPA0 fails to achieve reliable broadcast. Similarly, if q commits to the wrong value in FCPA, then it would
also commit to the wrong in CPA0 , and so CPA0 fails to achieve reliable broadcast. However, if CPA0

fails to achieve reliable broadcast, then by the contrapositive of Lemma 14, this contradicts the assumption
that CPA achieves reliable broadcast.

Finally, note that each node will execute LOCAL BROADCAST for O(t) times as a listener, and then execute
it once as a sender. Combining Lemma 15 above with the cost analysis in Section 3.3.1 yields the results
stated in Theorem 3 for general graphs.

C Application 2: Application-Level DDoS Attacks

We present further discusion of our result in the client-server model. Our pseudocode is given in Figure 9.
Note that the Ack Phase is simplified due to the fact that attacks do not occur in this phase for Case 2

of the 3-PLAYER SCENARIO PROTOCOL. Like [63], our protocol is suitable for applications where there is
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DOS-RESISTANT CLIENT-SERVER COMMUNICATION for round i ≥ 2

Send Phase: For each of the 22i slots do
• The client sends her request with probability 2/2i.
• The server (via the thinner) admits listens with probability 2/2i.

Ack Phase:
• The server sends back the requested data.
• The client listens.

If the client receives her data, she terminates; otherwise, the thinner tells her to retry in the next round.

Figure 9: Pseudocode for the application of Case 2 of our 3-Player Scenario to the client-server scenario.

no pre-defined clientele (so the server cannot traffic filter) and the clientele can be non-human (so “proof-
of-humanity” tests cannot be relied upon solely). Unlike the wireless domain, we do not address reactive
adversaries. Determining when a player is sending over the wire in order to control when its traffic arrives
at the targeted player seems beyond the capability of a realistic attacker.

Unlike the WSN domain, neither player sleeps since energy is not a concern. Rather, the client terminates
in the sense that her current request is satisfied. The server is always awake to process incoming requests;
however, it can be said to terminate in the sense that the client’s current request is not re-serviced. The client
and server are assumed to be synchronized so that they always agree on the current round and a maximum
round number is set a priori. This synchronization is certainly possible over Internet-connected machines
and the maximum round value should be set to account for the level of DDoS resistance the participants
wish to have; again, R upper bounds this rate and it has been observed that most attacks have R in the low
hundreds of Mbits/second [55]. Our protocol is used when the server detects a DDoS attack (for details,
see [27] and references therein). Finally, we mention that the effects of increasing the client traffic are
examined experimentally by Walfish et al. [63] and shown to be acceptable.

26


