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Abstract
A recent theoretical result by King and Saia [?] shows that it is possible to solve the Byzantine

agreement, leader election and universe reduction problems in the full information model with Õ(n3/2)
total bits sent. However, this result, while theoretically interesting, is not practical due to large hidden
constants. In this paper, we design a new practical algorithm, based on the results in[?]. For networks
containing more than about 1, 000 processors, our new algorithm sends significantly fewer bits than a
well-known algorithm due to Cachin, Kursawe and Shoup [?]. To obtain a more practical algorithm, we
relax the fault model compared to the model of King and Saia by (1) allowing the adversary to control
only a 1/8, and not a 1/3 fraction of the processors; and (2) assuming the existence of a cryptographic
bit commitment primitive. Our algorithm assumes a partially synchronous communication model, where
any message sent from one honest player to another honest player needs at most ∆ time steps to be
received and processed by the recipient for some xed delta, and we assume that the clock speeds of the
honest players are roughly the same. However, the clocks do not have to be synchronized (i.e., show
the same time) nor do we require the protocols to run in a synchronous mode (i.e., all players must send
their messages at exactly the same time).
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1 INTRODUCTION

Increases in speed, frequency and severity of attacks on the Internet have led to a resurgence of interest in
traditional problems of robust distributed computing like Byzantine agreement (BA) [?, ?]. Unfortunately,
traditional algorithms for solving problems of robust distributed computation typically require each
processor to send messages to every other processor in the network, and so simply do not scale to modern
network sizes, which may be on the order of hundreds of thousands for peer-to-peer systems, overlay
networks and server farms.

In this paper, we seek to redress this issue by designing, implementing and testing an algorithm that
solves Byzantine agreement with a total number of bits sent that is Õ(n3/2). This paper focuses on a well-
studied message-passing model: n processors are in a fully connected network and a malicious adversary
controls a constant fraction of these processors. The contributions of this paper are as follows

• We design a new algorithm which is based on, but more practical than, the consensus algorithm
from [?]. Our new algorithm significantly reduces the constants compared to the previous algorithm
through use of cryptography.

• We implement and simulate our new algorithm, showing empirically that for large networks, it can
achieve consensus with significantly less bandwidth than algorithms that are currently used in practice.

1.1 Model
We assume a fully connected network of n processors, whose IDs are common knowledge. Each processor
has a private coin. Communication channels are authenticated, in the sense that whenever a processor sends
a message directly to another, the identity of the sender is known to the recipient. We assume a nonadaptive
(sometimes called static) adversary. That is, the adversary chooses the set of t bad processors at the start
of the protocol, where t is a constant fraction, of the number of processors n. The adversary is malicious:
it chooses the input bits of every processor, bad processors can engage in any kind of deviations from the
protocol, including false messages and collusion, or crash failures, while the remaining processors are good
and follow the protocol. Bad processors can send any number of messages.

We assume a partially synchronous communication model: any message sent from one honest player
to another honest player needs at most ∆ time steps to be received and processed by the recipient for some
xed delta, and we assume that the clock speeds of the honest players are roughly the same. However, the
clocks do not have to be synchronized (i.e., show the same time) nor do we require the protocols to run in
a synchronous mode (i.e., all players must send their messages at exactly the same time). Our algorithm
makes use of a distributed random number generating algorithm from [?] and the algorithm from [?] as a
subroutine. Thus, we must make the same assumptions as in those papers. Namely, we assume the existence
of 1) public key cryptography (but not a public key infrastructure) ; 2) a digital signature scheme; and 3) a
bit commitment scheme h, i.e. a function such that h(x) reveals nothing about x.

We overcome the lower bound of [?] by allowing for a small probability of error. In particular, the Ω(n2)
lower bound on the number of messages to compute Byzantine agreement deterministically implies that any
randomized protocol which always uses o(n2) messages must err with some probability ρ > 0, since with
probability ρ > 0, an adversary can guess the random coinflips and cause the protocol to fail when those
coinflips occur. Thus, any randomized algorithm that always achieves o(n2) messages must necessarily be
a Monte Carlo algorithm.

1.2 Problems
One of the most well studied problems in distributed computing is the Byzantine agreement problem. In
this problem, each processor begins with either a 0 or 1. An execution of a protocol is successful if all
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processors terminate and, upon termination, agree on a bit held by at least one good processor at the start.
The leader election problem is the problem of all processors agreeing on a good processor [?]. The universe
reduction problem [?] is to bring processors to agreement on a small subset of processors with a fraction of
bad processors close to the fraction for the whole set. I.e., the protocol terminates and each good processor
outputs the same set of processor ID’s such that this property holds. For each of these problems, we say
the protocol solves the problem with probability ρ if, given any worst case adversary behavior, including
choice of initial inputs, the probability of success of any execution over the distribution of private random
coin tosses is at least ρ.

Almost everywhere Byzantine agreement, universe reduction, and leader election is the modified version
of each problem where instead of bringing all good processors to agreement, a large majority, but not
necessarily all, good processors are brought to agreement.

1.3 Our Results
We show that by making use of the cryptographic assumptions detailed above and by relaxing the fraction
of bad processors to 1/8, we can significantly improve the communication costs and improve the load
balancing characteristics while keeping the latency the same or slightly better. Our algorithm works in
the synchronous model of communication; although we conjecture that our algorithm could be converted
to make it asynchronous. Our research is an extension of the work of two previous papers [?, ?] which
introduce the concept of an election graph with groups of processors called committees. The algorithms in
these two papers use Feige’s protocol described in [?] to elect processors in committees in successive layer’s
of the election graph. The use of Feige’s protocol in the previous algorithms carry a heavy penalty in terms
of the message complexity for any reasonable size of networks.

Our new algorithm has two parts. The first part is an almost everywhere Byzantine agreement algorithm
similar to [?, ?] except that instead of using Feige’s protocol we use a protocol by Awerbuch and Scheideler
[?] to elect processors in the committees. This allows us to make the sizes of the committees much
smaller, which leads to a significant improvement on the message complexity performance of our algorithms
from [?, ?]. Secondly, we implement and make use of a protocol recently described in [?] which allows us
to go from almost everywhere Byzantine agreement to everywhere Byzantine agreement using only Õ(

√
n)

messages. In particular, this new algorithm ensures that with high probability all good processors in our new
algorithm learn the correct bit unlike the algorithms in [?, ?].

1.4 Related Work
The algorithm presented in this paper, along with the algorithm of [?], use randomization to break through
the 1985 Ω(n2) barrier [?] for message and bit complexity for Byzantine agreement in the deterministic
synchronous model, if we assume the adversary’s choice of bad processors is made at the start of the
protocol, i.e., independent of processors’ private coinflips. As mentioned above, the algorithm in this paper
also makes use of algorithms from [?, ?] to solve the almost everywhere Byzantine agreement problem.

In the empirical section of our paper, we compare the resource costs of our algorithm with the Byzantine
agreement algorithm proposed by Cachin, Kursawe and Shoup [?]. Their algorithm withstands up to n/3
bad processors, runs in constant expected time, and sends θ(n2) messages. However, unlike our algorithm,
their algorithm requires a trusted dealer to distribute cryptographic keys initially in order to set up a public
key infrastructure. We emphasize that our algorithm does not require the establishment of a public key
infrastructure. As pointed out in the abstract, the algorithm we describe in this paper is partially synchronous,
while the algorithm of Cachin, Kursawe and Shoup is asynchronous.

Organization of the paper In Section 2 we describe our algorithm. In Section 3 we empirically evaluate
our algorithm. Finally, in Section 4 we conclude and describe open problems.
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2 Our Algorithm
Our algorithm consists of two parts: 1) a procedure for solving almost-everywhere universe reduction (and
BA); and 2) a procedure for going from almost-everywhere universe reduction to everywhere BA. Our
procedure for solving almost-everywhere universe reduction is essentially the same as that of [?], with the
following two differences: (1) we replace the committee election protocol used in [?], with a new election
protocol based on a random number generation protocol by Awerbuch and Scheideler [?]; and (2) we reduce
the size of all committees from O(log3 n) to O(log n) and make the appropriate changes in our election
graph. This reduction in committee size is made possible by the new election protocol from [?], which
makes use of a cryptographic commitment scheme. It is this reduction in committee size that leads to
significant savings in bandwidth over the protocol of [?]. We note that we are not particularly dependent on
the algorithm from [?]; any robust, distributed random number generating algorithm will work. We simply
use this algorithm because it is the current state of the art in terms of resource costs.

Below, we sketch our entire protocol, details are given in Appendix A.

2.1 Almost Everywhere Universe Reduction and BA
We first describe our protocol to compute almost everywhere universe reduction, based on [?]. The
processors are assigned to groups of logarithmic size; each processor is assigned to multiple groups. In
parallel, each group then elects a small number of processors from within their group to move on. We then
recursively repeat this step on the set of elected processors until the number of processors left is logarithmic.
Although this approach is intuitively simple, there are several complications that must be addressed.

(1) The groups must be determined in such a way that the election mechanism cannot be sabotaged by
the bad processors.

(2) After each step, each elected processor must determine the identities of certain other elected
processors, in order to hold the next election.

(3) Election results must be communicated to the processors.

(4) To ensure load balancing, a processor which wins too many elections in one round cannot be allowed
to participate in too many groups in the next round.

We address these problems as follows. Item (1): we use a layered network with extractor-like properties.
Every processor is assigned to a specific set of nodes on layer 0 of the network. In order to assign processors
to a node A on layer ` > 0, the set of processors assigned to nodes on layer ` − 1 that are connected to A
hold an election. In other words, the topology of the network determines how the processors are assigned
to groups. By choosing the network to have certain desired properties, we can ensure that the election
mechanism is robust against malicious adversaries.

To accomplish item (2), we use monitoring sets. Each node A of the layered network is assigned a set
of nodes from layer 0, which we denote m(A). The job of the processors from m(A) is simply to know
which processors are assigned to node A. Since the processors of m(A) are fixed in advance and known
to all processors, any processor that needs to know which processors are assigned to A can simply ask the
processors from m(A). (In fact, the querying processor only needs to randomly select a polylogarithmic
subset of processors from m(A) in order to learn the identities of the processors in A with high probability.
This random sampling will be used to ensure load balancing.)

Since the number of processors that need to know the identities of processors in node A is polyloga-
rithmic, the processors of m(A) will not need to send too many messages, but they need to know which
processors need to know so they do not respond to too many bad processors’ queries. Hence the monitoring
sets need to inform relevant other monitoring sets of this information.
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Item (3): We use a communication tree connecting monitoring sets of children in the layered networks
with monitoring sets of parents to inform the monitoring sets which processors won each of their respective
elections and otherwise pass information to and from the individual processors on layer 0.

Item (4) is addressed by having such processors refrain from further participation.
The protocol results in almost everywhere agreement on the subset of nodes rather than everywhere

agreement, because the adversary can control a small fraction of the monitoring sets by corrupting their
nodes. Thus communication paths to some of the nodes are controlled by the adversary. We further note that
with this protocol, it is trivial to communicate a bit to almost all of the nodes in addition to communicating
a small subset. Thus, it solves both almost-everywhere BA and almost everywhere Universe reduction. 1

2.2 Almost Everywhere to Everywhere
In this section, we describe the Almost Everywhere to Everywhere protocol of [?]. This is exactly the same
protocol as from [?] but we include a description of it here for completeness. In the almost everywhere
protocol sketched above all but a 1/ lnn fraction of the good processors agree on a small subset of
representative processors (and a bit). This result is proven in [?]. Our goal in this section is to improve
the fraction of good processors that agree on the bit. The protocol assumes all processors have used the
almost-everywhere agreement protocol to ensure that the following precondition holds:

Precondition: We assume there is a subset C of O(log3 n) processors, a majority of which are good; and a
bit b that is the input bit of at least one good processor. Each processor p starts with an hypothesis of the
membership of C, Cp; this hypothesis may or may not be equal to C or may be empty; and each processor
p starts with a value bp that may or may not be equal to b. The following assumption is critical: there is a set
S of at least (1/2 + ε)n good processors, such that for all p ∈ S, Cp = C and bp = b.

p q p

Cq

< C ><
Po

ll p
, p

, 1
>

Listp

< Pollp, p,
2 >

< p, 3 >

Pollpp p

Figure 1: Steps 6-10 of Our Protocol

Overview of Algorithm: The main idea of this protocol is for each processor p to randomly select c log n
processors to poll as to the membership of C. Unfortunately, if these requests are made directly from p,

1Moreover the processors that correctly learn the subset of nodes will also learn the correct bit for BA.
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Algorithm 1 Almost Everywhere to Everywhere
Each processor executes the following steps in any order:

1. Each processor p selects uniformly at random, independently, and with replacement three subsets,
Listp, Forwardp, and Pollp of processor ID’s where: |Listp| = c

√
n log n; |Forwardp| =

√
n;

|Pollp| = c log n;

Verifying Membership in C:

2. memberp ← FALSE
3. If p ∈ Cp, then p sends a message < Am I in C? > to the members of Pollp;
4. If q receives a message < Am I in C? > from a processor p ∈ Cq, q sends < Y es > back to the p;
5. If p receives a message < Yes > from a majority of members of Pollp then p sets memberp ←
TRUE;

Determing C:

6. p sends a message < Pollp, p, 1 > (type 1 message) to each processor in Listp;
7. For each q: if < Pollp, p, 1 > is the first type 1 message received from processor p and p ∈
Forwardq, then q sends < Pollp, p, 2 > (a type 2 message) to every processor in Cq;

8. For each r: if memberr = TRUE then for every processor q, for the first
√
n type 2 messages of the

form < Pollp, p, 2 > which are received from q, send < p, 3 > (type 3 message) to every processor
in Pollp;

9. For each s: for the first
√
n log2 n different type 3 messages of the form

< p, 3 > which are each sent by a majority of processors in Cs, send < Cs, 4 > (type 4 message) to
p;

10. If s receives the same type 4 message < C ′, 4 > from a majority of processors in Polls then
(a) s sets Cs ← C ′; and
(b) s answers any remaining type 3 requests that have come from a majority of the current Cs, i.e.

for each such request < p, 3 > s sends < Cs, 4 > to p;
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the adversary can flood the network with “fake” requests so that the good processors are forced to send too
many responses. Thus, the polling request are made through the set C, which counts the messages received
from each processor to enforce that that total number of polling requests sent out is not too large.

Unfortunately, this approach introduces a new problem: processor p may have an incorrect guess about
the membership of C. We solve this by having p send a (type 1) message containing its poll-list (Pollp) to
Listp, a set of c log n

√
n randomly sampled processors. Processor p hopes that at least one processor in the

set Listp will have a correct guess about C and will thus be able to forward a (type 2) message containing
Pollp to C. To prevent these processors q ∈ Listp from being flooded, each such processor q only forwards
a type 2 message from a processor p if p appears in the set Forwardq, which is a set of

√
n processors that

are randomly sampled in advance. Upon receiving a < Pollp, p > (type 2) message from any processor q,
a processor in C then sends a (type 3) request with p’s ID to each member s ∈ Pollp. More precisely, a
processor in C only processes the first

√
n such type 2 messages that it receives from any given processor

q: this is the crucial filtering that ensures that the total number of requests answered is not too large. Upon
receiving a type 3 request, < p, 3 > from a majority of C, s sends Cs to p, a (type 4) message.

There are two remaining technical problems. First, since a confused processor, p, can have a Cp equal
to a mostly corrupt set C ′, C ′ can overload every confused processor. Hence we require that any processor,
p, who receives an overload (more than

√
n log2 n) of type 3 requests wait until their own Cp is verified

before responding. Second, the processors in C handle many more requests than the other processors. The
adversary can conceivably exploit this by bombarding confused processors which think they are in C with
type 2 requests. Thus, the algorithm begins with a verification of membership in C. Each processor p sends
a request message to a randomly selected sample (Pollp) which is responded to by a polled processor q if
and only if p ∈ Cq.

Example: An example run of our algorithm is shown in Figure 1. This figure follows the technically
challenging part of our protocol, steps 6-10, which are described in detail in Algorithm 1 listed below. In
Figure 1, time increases in the horizontal direction. This figure concerns a fixed processor p that concludes
p 6∈ C in the earlier parts of the algorithm (steps 2-5). For clarity, in this example, only messages that are
sent on behalf of p that eventually help p to determine C are shown. Moreover, again for clarity, we show
a best case scenario where all nodes in Pollp are assumed to have received no more than

√
n log2 n type 3

requests. In the first step of this example, p sends the message < Pollp, p, 1 > to all nodes in Listp. The
node q is the only node in this set such that p ∈ Forwardq, so q forwards a type 2 message of the form
< Pollp, p, 2 > to all the nodes in Cq. In this example, Cq = C. Next all nodes in Cq send the message
< p, 3 > to all nodes in Pollp. In this example, all nodes in Pollp know the set C, so they all send the
message < C > to p in the final step.

3 EXPERIMENTAL RESULTS

3.1 EXPERIMENTAL SETUP
We ran our simulations using the BEA 64 bit Java 6.0 virtual machine JRockit on a machine with 8G of
memory. The size of the network simulated was between 1,000 to 4,000,000 processors. In our algorithm,
the parameters for the sampler were γ = r/s = 60, β = ε0 = 1/12 making d ≥ 50 lnn. We used the latest
draft standards for hash functions FIPS 180-3[?] and the latest draft standards for digital signatures [?] in
our measure of the actual bit complexity of our algorithm. We used hash functions of size 512 bits, and 2048
bits for digital signatures.

We simulated two algorithm in the experiments: our algorithm which has been described previously;
and the algorithm from [?] which we will refer to as the CKS algorithm. We simulated our algorithm with
parameters set so that it can tolerate a 1/8 fraction of bad processors. Our choice of the CKS algorithm
was motivated by the fact that if seems to have the smallest message complexity of Byzantine agreement
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Figure 2: Left: Log of number of nodes vs. average number of messages; Right: Log of number of nodes
vs log of average number of messages

Figure 3: Left: Log of number of nodes vs. average number of bits sent; Right: Log of number of nodes vs
log of average number of bits sent

Figure 4: Left: Proportion of bandwidth used by the almost everywhere part of our algorithm. Right:
Latency vs. the logarithm of the number of nodes

algorithms described in the literature. We compared these two algorithms along three metrics: number of
messages sent, number of bits sent, and latency. The CKS algorithm requires each node to send to every
other node in the network, so the asymptotic number of messages sent per node is O(n). This is in contrast
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to Õ(
√
n for the same metric for our algorithm. The latency for the CKS algorithm is a constant in contrast

to the latency for our algorithm which is O(log n). The CKS algorithm can tolerate a 1/3 fraction of faulty
processors. We emphasize that this is larger than the fraction of bad processors that can be tolerated by our
algorithm as simulated here. However, our interest in scalable communication costs inclines us to consider
tradeoffs of fault tolerance for scalability.

3.2 Experimental Results
The outcomes of our experiments are shown in Figures 2, 3 and 4. We note that, in our experiments, the
measured message complexity for the CKS algorithm varies predictably for different network sizes. This
is true since the CKS algorithm requires every node to send messages to every other node in the network a
fixed number of times and then always stops. In contrast, the number of messages that a given node sends
in our algorithm is less predictable. All data points shown in all of our plots are the average over at least 5
trials.

Figure 2 (left) shows the log of the network size vs. average number of messages sent. This plot shows
that our algorithm begins to display better performance at about 65,000 processors on this metric, and for
networks much larger than this size, exhibits significant improvement over the CKS algorithm. Figure 2
(right) shows the log of the network size vs. log of the average number of messages sent. Since this is a
log-log plot, the slopes of the two lines fitting the data points give a good approximation to the exponents of
n in the function giving the average message cost. Thus, as expected, in this plot the slope for the line for the
CKS algorithm is approximately 1. Moreover, as expected, the slope for our algorithm is about 1/2, since
the almost everywhere to everywhere part of the algorithm requires each node to send Õ(n1/2) messages.

Figure 3 (left) shows the log of the network size vs the average number of bits sent. For this metric, our
algorithm performs better than the CKS algorithm for all networks of size greater than about 1, 000. This is
due to the larger message sizes of the CKS algorithm because of its extensive use of cryptography. Figure
2 (right) shows the log of the network size vs. log of the average number of messages sent. Again the CKS
algorithm displays linear slop for this plot. However, the slope for our algorithm is about 1/4, which much
less than the 1/2 expected. We believe this discrepancy is due to the fact that the “almost everywhere” stage
of our algorithm dominates in terms of the number of bits sent for network sizes we tested, and that this
stage has an asymptotic cost less than Õ(n1/2). The dominance of the almost everywhere stage is likely
due to the fact that it is the only part of our algorithm that uses cryptography. To verify our conjecture, we
separated out the bit cost for the almost everywhere stage in the plot shown in Figure 4 (left). As can be seen
in this figure, for larger values of n the dominance of the almost everywhere stage becomes less pronounced,
and so we expect that for very large values of n, the slop in the log-log plot will approach 1/2.

Figure 4 (right) shows the log of the network size vs latency. The latency for our algorithm is a step
function since many values of n map to the same election graphs, and the latency of our algorithm is
dominated by the diameter of the election graph.

4 FUTURE WORK AND CONCLUSION

We have described in this paper an algorithm for solving the Byzantine agreement problem using Õ(n1/2)
average messages per node. We simulated this algorithm and ran extensive experiments suggesting that for
large networks, it requires significantly less bandwidth than the CKS algorithm from [?], which seems to be
one of the more bandwidth efficient Byzantine agreement algorithms in the literature. For all networks our
algorithm required fewer total bits sent than the CKS algorithm, and for networks of size larger than about
65, 000, our algorithm also required fewer messages sent. Our results suggest that our algorithm might be a
significant step toward developing Byzantine agreement algorithm for large networks.

Several open problems remain including the following. First, the algorithm of Awerbuch and
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Scheideler [?] is a significant bottleneck for reducing bit cost in our algorithm. Can we devise a more
efficient subroutine for choosing random numbers in our committees? We believe that this might be possible,
by careful recursive use of our algorithm, coupled with use of the algorithm from Feige [?]. Second, we
are interested in designing scalable algorithms for other fault-tolerant distributed computing problems, most
generally, secure multi-party computation. A final goal would to implement the algorithm on a cluster of
computers to do an actual distributed run of the algorithm on multiple processors.
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A OUR ALGORITHM AND THE ELECTION GRAPH DESCRIPTION

A.1 COMMITTEES
In a network with n processors, a committee is a collection of O(lnn) processors in the network. First, we
choose a set of committees each of size O(lnn) chosen uniformly at random from the n processors in the
network. We call this initial set of processors in committees layer ’0’ committees.

DEFINITION 1. A committee is called good if less than a 1/8 fraction of the processors in the committee
have been taken over by the adversary.

A.2 COMMITTEE SELECTION
We use the sampler to spread out coalitions of bad processors. Each committee is selected from the
processors elected by the ELECTHIGHERCOMM algorithm from the previous layer so that the fraction of
bad committees is bounded by ε′/2 lnn for some ε′ ∈ [0, 1]. The RANDOMID protocol, which guarantees
that the additional fraction of bad processors due to elections from good committees is also bounded by
ε′/2 lnn which then gives a total bound of ε′/ lnn on the growth of the fraction of bad processors appearing
in successive layers in the worst case.

A.3 ELECTION DESCRIPTION
The election graph consists of a full tree with the layer ’0’ committees at the leaf nodes. Initially, there
are committees only at the leaf nodes. These committees are created by a uniform sampler that assigns the
processors to committees. The processors in non-leaf nodes will be elected by the algorithm described later
in this section. This algorithm repeatedly makes use of the RANDOMID protocol from [?]. This protocol is
used to assign random numbers in the range [0, 1]. We use these random numbers to select a processor in
each committee to advance to subsequent layers. First, we describe the properties of the protocol in [?] by
the following Theorem from [?].

A.3.1 COMMITTEE ELECTION PROTOCOL

The method used to run elections is a simple adaptation from the random number generation protocol of [?].
This protocol requires a bit commitment scheme h, where h(x) reveals nothing about x. In practice, a
cryptographic hash function should be sufficient for h.

Suppose that we have a set P of m players, p1, . . . pm, that know each other and their indexing, with
any t of them being adversarial for some t < m/6. The round-robin random number generator works as
follows for some player p? ∈ P initiating it.

1. Each player pi ∈ P sets Pi := P\{pi} and waits for 8i time steps. Each time it receives an accusation
(pk)pj from a player pj ∈ P it has not received an accusation from yet, it sets Pi := P\{pk}. Once
the 8i steps are over, pi initiates the next step. pi terminates after 8(m+ 1) steps.

2. If |Pi| ≥ 2m/3, then pi chooses a random xi ∈ {0, 1}s and sends (h(xi), Pi)pi to all players in Pi.
Otherwise, pi aborts the protocol (which will not happen if t < m/6).

3. Each player pj ∈ Pi receiving a message (h(xi), Pi)pi for the first time from pi with Pi ≥ 2m/3
chooses a random xj ∈ {0, 1}s and sends the message (pi, h(xj), Pi)pj to pi. Otherwise, it does
nothing.

11



4. If all players in Pi reply within 2 time steps, then pi sends ({(pi, h(xj), Pi)pj |pj ∈ Pi})pi to all players
in Pi. Otherwise, pi sends an accusation (pj)pi for any pj ∈ Pi that did not reply correctly or in time
to all players in P and stops its attempt of generating a random number.

5. Once pj ∈ Pi receives ({(pi, h(xk), Pi)pk
|pk ∈ Pi})pi from pi, pj sends (xj)pj to pi.

6. If pi gets a correct reply back from all players in Pi within 2 time steps, then it sends (xi, {(xj)pj |pj ∈
Pi})pi to all players in Pi and computes yi = xi⊕

⊕
pj∈Pi

xj where
⊕

is the bit-wise XOR operation.
Otherwise, pi sends an accusation (pj)pi to all players in P for any pj ∈ Pi that did not reply correctly
or in time and stops.

7. Once pj ∈ Pi receives (xi, {(xk)pk
|pk ∈ Pi})pi , pj verifies that all keys are correct. Then pj computes

y
(i)
j = xi ⊕

⊕
qk
∈ Pixk and sends the message (y(i)

j )pj to pi.

8. If pi receives yi from at least 2m/3 players in P within 2 time steps, it accepts the computation and
otherwise sends an accusation (pj)pi to all players in P for any pj ∈ Pi that did not reply correctly or
in time.

THEOREM 1. Suppose that |P | = m and there are t < 1/6m adversarial peers in P. Then the RANDOMID
protocol generates random keys y1, y2, . . . yk ∈ {0, 1}s with m− 2t ≤ k ≤ m and the property that for all
subsets S ⊆ {0, 1}s with σ = |S|/2s, E[|i |yi ∈ S|] ∈ [(m− 2t)σ,m · σ]
Further, the worst-case message complexity of the protocol is O(m2).

ALGORITHMIC DESCRIPTION. The RANDOMID protocol elects only one processor from each committee
to advance to the next layer i of the network and broadcasts a message to its members informing them
which processor was elected. This is done using a procedure called ELECTHIGHERCOMM(A) shown
in Figure 1. The procedure is called once for each layer i − 1 to elect the nodes in layer i. As each
processor is elected to layer i, the processors in its respective committees in layer i − 1 are informed via
a broadcast to the processors in their committees of the election of these processors. Within the procedure
ELECTHIGHERCOMM, the selected processors are assigned committees by the sampler to disperse possible
coalitions of bad processors to reduce the probability of having bad processors take over a committee. The
sampler selects the processors in each committee such that there are O(lnn) sized committees with only a
small fraction of these committees being bad at each layer i. The processors in each committee A ,learn
which processors belong to A by contacting a set of processors called the monitoring set of A which we
will refer to as m(A) which is a structure from [?]. The monitoring set of a committee A, is a set of layer
’0’ committees which know the processors assigned to A, whose identity is fixed in advance and is known
to all processors. The processors in committee A, need only randomly sample O(lnn) processors in m(A)
to learn the processors in A with high probability. We will describe later in this section the mechanism by
which these monitoring sets learn the processors in each committee. These elections continue until layer l
consisting of at least O(ln3 n) processors, this algorithm is performed by a procedure called TREESELECT

given in figure 2. This procedure is later called by the BA algorithm shown in figure 3. After receiving a set
of O(ln3 n) processors from TREESELECT, it runs the Byzantine agreement algorithm in [?] which we will
refer to from now on as the RANDOMORACLE on these set of processors. The agreed upon bit by the good
processors is then broadcast to all other processors in the network. This is done by traversing the Election
graph downward in a breadth first manner and broadcasting the identity of the processor selected to be the
leader to each processor in each committee. We note here that this algorithm can be adapted easily to solve
the Leader Election problem by using the RANDOMID protocol to select a leader and then broadcasting the
identity of this leader downward through the Election graph as mentioned earlier. The monitoring sets are
described in [?].
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A.4 ALMOST EVERY WHERE BYZANTINE AGREEMENT PROTOCOL
The almost everywhere Byzantine agreement Protocol, called AEBA, works by calling the RANDOMOR-
ACLE algorithm with the group of processors in the last layer of the election graph as input. The RAN-
DOMORACLE algorithm has a message complexity O(n2) on input of size n. We show that the algorithm
AEBA sends no more that O(ln3 n) messages per processor in a fully connected communication network.
We show this by the following Theorem.
THEOREM 2. The Byzantine agreement Protocol AEBA sends at most O(n ln3 n) messages in total using
a fully connected communication network (complete graph) .

Algorithm 2 INFORMMONITORINGSET(A)
Input: A the set of processors in a committee in layer i

1: while not layer 0 do
2: if the processors if the processors in the child nodes C1, C2, . . . Cj for A are unknown then
3: CALL FINDPROCESSORS(Cj) to learn the processors in each Cj that are children of A.
4: committee A in layer i, sends a message to each of it’s children C1, C2, . . . Cj in layer i− 1
5: CALL INFORMMONITORINGSET on each of C1, C2, . . . Cj

Figure 5: Algorithm for informing sending messages to monitoring sets.

Algorithm 3 FINDPROCESSORS(A)
Input: A the set of processors in a committee in layer i

1: for each processor p ∈ A do
2: sample uniformly at random a set S of O(lnn) processors in m(A)
3: poll the processors in S for the identities of the processors in A
4: accept via majority filtering the identities of the processors in A from S

Figure 6: Algorithm for learning the identity of the processors its committee.

B SAMPLERS,COMMUNICATION TREE AND MONITORING SETS

B.1 SAMPLERS
Our protocols makes use of samplers, which are a special family of bipartite graphs that define subsets of
elements such that all but a small number of the selected subsets contain close to the fraction of bad elements
in the whole set. We use the definition of samplers found in [?] and equivalent to the one defined in [?].
DEFINITION 2. Let [r] denote the set 1,. . . r and [s]d be subsets of [s] size d. Let F be a function [r]→ [s]d

that assigns the elements to subsets of size d. Then F is a (θ, ε, β) sampler if ∀S ⊂ [s] with |S| > βs ,and
at most an ε fraction of the inputs x have |F (x)∩S|

d > |S|
S + θ

LEMMA B.1. For every r, s, d, θ, ε, β > 0 such that (log2 e)(dθ2βr)/3 > s/ε, there exists a (θ, ε, β)
sampler [r]→ [s]d.
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Algorithm 4 ELECTHIGHERCOMM(A)
Input: A the set of processors in layer i of the election graph
Output: D the set of processors, elected to layer i+ 1 in the election graph

1: for each committee C in layer i do
2: for each processor pi in C do
3: FINDPROCESSORS(C)
4: C selects the processor p with p← RANDOMID(C)
5: add p to D
{use the sampler to spread out the bad processors in committees}

6: D = F (D)
7: for each committee Ci in D do
8: CALL INFORMMONITORINGSET(Ci).
9: return D

Figure 7: Algorithm for electing the next layer of processors.

Algorithm 5 TREESELECT(A)
Input: A the set of n processors
Output: P a set of ln3 n processors .

1: Com0 ← A
2: for i=0 to l and |Comi+1| > ln3 n do
3: for each processor in layer i {elect the processors to layer i+ 1 }
4: Comi+1 ← ELECTHIGHERCOMM(Comi)
5: return P

Figure 8: Algorithm for electing a set of ln3 n processors

B.2 COMMUNICATION TREE AND MONITORING SETS
When processors advance in the election graph, processors within a committee do not know the identity of
the other peers within the committee. The monitoring sets provide this information to the members of each
committee. The monitoring set of a committee A , m(A) is the set of layer ’0’ committees in the election
graph known to everyone in advance, they are children of committee A in layer ’0’ in the election graph. It
is convenient to assume that the committee A, in layer i is the root of some tree with it’s children being the
committees linked to it via the processors elected from layer i− 1. We will from now on refer to this tree as
the communication tree. This communication tree is rooted at the set of O(ln3 n) processors in layer ’0’ of
the election graph referred to in Lemma C. The children of some node i in layer l in the communication tree
is the set of O(lnn) committees in layer l−1, that is committees numbered i ·γ, i ·γ+1, · · · , (i+1) ·γ−1
from layer l − 1 where γ = r/s from the sampler properties. The leaf nodes of the communication tree are
the layer ’0’ committees in the election graph. This scheme embeds the communication tree completely in
the election graph. We assume sending messages from node A to node B to simply mean every processor in
nodeA sending messages to every processor in nodeB with each processor deciding by majority filtering on
the messages it received. The identity of the processors in committeeA, are sent tom(A) after the election of
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Algorithm 6 AEBA(A)
Input: A the set of n processors
Output: Most good processors agree on the value of a bit.

1: A0 ← A
2: A1 ← TREEELECT(A0)
3: RANDOMORACLE(A1) { Run Byzantine agreement protocol on A1 O(ln3n) subset of A } {inform

the processors in successive layers the of the value of the bit}
4: for i=l to 1 do
5: for each node(committee) in layer i
6: Broadcast to the processors in child nodes in layer i-1 the bit agreed upon.
7: The processors in layer i-1 use majority filtering to accept the bit agreed upon.

Figure 9: Algorithm for Byzantine agreement.

each processor to a committee using the procedure called INFORMMONITORINGSET. The procedure sends
the identity of the elected processors in A to m(A) by recursively sending messages through the children
of node A in the communication tree.. The procedure FINDPROCESSORS is called by each processor in
a committee to learn the identities of the processors in that particular committee. It does this by sampling
uniformly at randomO(lnn) processors inm(A) to learn the identity of the processors in A. This guarantees
that with high probability, these nodes know the processors in A.

C DETAILED PROOFS.
LEMMA C.1. In the election graph, if the number of processors in layer i− 1 is no less than ln3 n and the
fraction of bad processors is no more than 1/8 − ε0 then, the fraction of bad committees in layer i is no
more than ε′/2 lnn.

Proof. Using the uniform (θ, ε, β) sampler with θ = ε0, β = 1/8 − ε0, γ = s/r = 1/c1, c1 > 1, ε =
ε′/2 lnn and (log2 e)(dε20(1/8− ε0))/3 > 2 lnn/c1ε′ ⇒ d > C lnn for some constant C. We see that the
bounds are automatically satisfied from the properties of the sampler.
LEMMA C.2. Let G be the set of processors elected from good committees at layer i with at least ln3 n
processors in layer i, and the fraction of bad processors in layer i, is no more than fi. Then with high
probability, the fraction of bad processors in G is no more than fi + ε′/2 lnn.
Proof. Let Xj be the random variable assigned to jth processor elected at layer i − 1, such that Xj = 1 if
the jth processor is bad and 0 otherwise with X =

∑i=l
j=1Xj where l is the number of processors in layer i,

then these random variables are independent. Using Chernoff bounds Pr(|X − µ| ≥ δµ) ≤ 2e−δ
2µ/3 with

µ = E[X] = βl, δ = ε′/2 lnn we get Pr(|X − µ| ≥ βlε′/2 lnn) ≤ 2e−βlε
′2/12 ln2 n = 1/nc for some

constant c, if l ≥ ln3 n.
LEMMA C.3. With high probability, at layer i, with the number of processors in layer i − 1 being no less
than ln3 n, the fraction of bad processors in layer i is no more than fi = f0 + iε′/ lnn for some constant ε′.
Proof. The proof is by induction on the layer i.

1. Base case i = 0.
The fraction of bad processors initially at layer 0 is f0 .

2. Inductive Step.
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We assume the statement is true for layer i, so using the Inductive Hypothesis, fi = f0 + iε′/ lnn.
For layer i + 1, using Lemma 1.3 the additional fraction of bad processors elected to layer i + 1 due
to bad committees is at most ε′/2 lnn applying Lemma 1.4 the additional fraction of bad processors
elected from good committees is at most ε′/2 lnn. So the total fraction of bad processors at layer i+1
is fi + ε′/2 lnn+ ε′/2 lnn = fi + ε′/ lnn which is f0 + (i+ 1)ε′/ lnn.

THEOREM 3. The Byzantine agreement Protocol BA sends at most O(n ln3 n) messages in total using a
fully connected communication network (complete graph) .
Proof. The number of committees in layer i of the election graph is n/γi+1. The number of processors in
layer i is Cn lnn/γi+1. The election graph is of height l = lnnC − 2 ln lnn− ln γ/ ln γ and C lnn is the
size of a committee, where C > 0 is some constant defined by the properties of the sampler in Lemma 2.2.

• Communication costs for informing monitoring sets for processors in layer i:
– Each node in the communication tree needs only to learn the identity of it’s immediate children

in layer i − 1 once. The identity of the processors in child nodes in the lower layers of the
communication tree are already known.

– The cost of learning the identity of a committee by sampling 10 lnn processors is 10C2 ln3 n.
– The cost of learning the processors for all the immediate children of the nodes in layer i is

10nC2 ln3 n/γi.
– The cost of learning all the processors in the communication tree of height l is then

10C ln3 n
(
nC − (γ lnn)2

)
/γ (γ − 1).

– The cost of sending messages down the tree for all layers 1 · · · l is:
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)2.

– So the total cost of informing the monitoring sets is:
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)2

+ 10C ln3 n
(
nC − (γ lnn)2

)
/γ (γ − 1). Which is O(n ln3 n).

• Next, we calculate the message complexity for the election process:
– The cost of learning the processors for all committees in all the layers of the election graph is

10C ln3 n
(
nC − (γ lnn)2

)
/γ (γ − 1).

– The cost of running the RANDOMID algorithm for all layers of the algorithm is
10C2 ln2 n

(
nC − γ ln2 n

)
/ (γ − 1)

– The total cost of the election process is O(n ln3 n).
• The cost of the Byzantine Agreement Algorithm run on the processors in the last layer is O(ln6 n).
• The cost of sending the agreed bit down to the processors in layer ’0’ from the O(ln3 n) processors in

layer l is C ln2 n
(
nC − γ ln2 n

)
/ (γ − 1).

• The total cost of this process is O(n ln3 n).

The proofs of the correctness of the algorithm to inform all the confused processors can be found in King
and Saia [?].

C.1 PROOF OF MESSAGE COMPLEXITY OF ALMOST EVERYWHERE BYZANTINE AGREEMENT
ALGORITHM
• Communication costs for informing monitoring sets for processors in layer i:

– Each node in the communication tree needs only to learn the identity of it’s immediate children
in layer i − 1 once. The identity of the processors in child nodes in the lower layers of the
communication tree are already known.
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– The cost of learning the identity of a committee by sampling 10 lnn processors is 10C2 ln3 n.
– The cost of learning the processors for all the immediate children of the nodes in layer i is

10nC2 ln3 n/γi.
– The cost of learning all the processors in the communication tree of height l is then∑

2≤i≤l 10nC2 ln3 n/γi = 10nC2 ln3 n
(
1− γ−l+1

)
/γ (γ − 1). For the value of l defined

above we have this cost to be 10C ln3 n
(
nC − (γ lnn)2

)
/γ (γ − 1).

– The cost of sending messages down the communication tree from layer h to inform the
monitoring sets in layer ’0’ is:

∑
1≤i≤l nC

2 ln2 n/γi = nC2 ln2 n
(
1− γ−h

)
/ (γ − 1).

– The cost of sending messages down the tree for all layers 1 · · · l is:∑
1≤h≤l nC

2 ln2 n
(
1− γ−h

)
/ (γ − 1) = nC2 ln2 n

(
γ−l + l (γ − 1)− 1

)
/ (γ − 1)2.

For the value of l defined above we have this cost to be
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)2.

– So the total cost of informing the monitoring sets is:
C ln2 n

(
nC ln

(
nC/ ln2 n

)
(γ − 1) + γ ln γ

(
nC − ln2 n

))
/ ln γ (γ − 1)2

+ 10C ln3 n
(
nC − (γ lnn)2

)
/γ (γ − 1). Which is O(n ln3 n).

• Next, we calculate the message complexity for the election process:

– The communication cost for learning the processors in layer i ≥ 1 is 10nC2 ln3 n/γi+1.
– The cost of learning the processors for all committees in all the layers of the election

graph is
∑

1≤i≤l−1 10nC2 ln3 n/γi+1 = 10nC2 ln3 n
(
1− γ−l+1

)
/γ (γ − 1). The actual cost

substituting for the value of l is 10C ln3 n
(
nC − (γ lnn)2

)
/γ (γ − 1).

– The cost of running the RANDOMID algorithm per committee election is 10C2 ln2 n, the
cost of running the algorithm for layer i is nC2 ln2 n/γi+1. The cost for all layers of the
algorithm is

∑
0≤i≤l−1 10nC2 ln2 n/γi+1 = 10C ln2 n

(
nC − γ ln2 n

)
/ (γ − 1). The actual

cost substituting the value of l is 10 ∗ C ln2 n
(
nC − γ ln2 n

)
/ (γ − 1)

– The total cost of the election process is O(n ln3 n).

• The cost of the Byzantine Agreement Algorithm run on the processors in the last layer is 4 ln6 n.

• The cost of sending the agreed bit down to the processors in layer ’0’ from the O(ln3 n) in layer l is∑
1≤i≤l

(
nC2 ln2 n

)
/γi = C2n ln2 n

(
1− γ−l

)
/ (γ − 1) substituting the value of l into this we get

C ln2 n
(
nC − γ ln2 n

)
/ (γ − 1).

• The total cost of this process is O(n ln3 n).
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Figure 10: Logarithm of the committee size vs logarithm of the number of nodes.
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