Online and offline preemptive two-machine job shop schedul-
ing

Tracy Kimbrel

IBM T.J. Watson Research Center
PO Box 704

Yorktown Heights, NY 10598
USA

914-784-7513 (voice) 914-784-6040 (fax)

kimbrel@watson.ibm.com

Jared Saia

Department of Computer Science and Engineering
University of Washington

Seattle, Washington

Research Division
Almaden - Austin - China - Haifa - T.J. Watson - Tokyo - Zurich

Online and offline preemptive two-machine job shop scheduling

Tracy Kimbrel Jared Saia

Abstract

We consider online and offline algorithms for special cases of preemptive job shop
scheduling to minimize makespan. These special cases are of interest because they
commonly arise in the scheduling of computer systems. We give a randomized on-
line algorithm for the two-machine preemptive job shop that is 1.5-competitive against
oblivious adversaries. The algorithm assigns priority for one machine according to an
arbitrary permutation of the jobs, and in the opposite order for the other machine. A
single random bit is used to select which machine is assigned which of the two orders.
Thus, our algorithm is easily derandomized in the offline case to yield a simple linear-
time 1.5-approximation algorithm. Simple arguments yield lower bounds showing that
the randomized online bound of 1.5 and the trivial deterministic online upper bound of

2 are asymptotically tight.

keywords: online algorithms, job shop scheduling, preemption, randomized algorithms

1 Introduction and related work

Job shop scheduling is one of the most notoriously difficult combinatorial optimization
problems [1]. In this paper, we consider some of the more tractable special cases of the
problem. Our interest in these variants stems from the fact that they arise naturally in the
scheduling of computer systems. We shall be concerned with the case of two machines in
which preemption is allowed. The two machines model the CPU processing power and the

I/O processing power of a computer system, respectively.

We will consider both the cases of an arbitrary number of jobs and of a constant number of
jobs. The latter case, arises in coscheduling [2] of multiprocessors for tightly synchronized
parallel applications. Under coscheduling, all processors of (a partition of) a multiprocessor
are scheduled as a unit, i.e., allocated to the same job at the same time. Performance
improves if the I/O subsystem is explicitly scheduled as well [3]. Many I/O-intensive parallel
applications alternate between CPU-intensive and I/O-intensive phases [4]. Moreover, the
large memory requirements of many parallel applications limit the number of jobs that can

run concurrently [5].

Most previous work on job shop scheduling concerns the nonpreemptive case [1]. A recent
series of results [6, 7, 8] applies to the preemptive case (equivalently, the case in which
all tasks are unit length, and a job is allowed to request the same machine twice without
intervening requests to another machine). These results apply to the more general case of

more than two machines, and give approximation bounds polylogarithmic in the number

of machines and the maximum number of tasks in a job. Shmoys, Stein, and Wein [7] give
a 2 + e-approximation algorithm for the case in which the number of machines and the
maximum number of tasks in a job are constants. Very recently, Jansen, Solis-Oba, and
Sviridenko [9] gave a PTAS for the special case of a constant numbers of machines and a
constant number of tasks per job. Sevastianov and Woeginger [10] give an offline linear-time
1.5-approximation for the two machine case (without restriction on the number of tasks in
a job). The derandomization of our online algorithm achieves the same performance and is

much simpler.

It is interesting that our randomized online algorithm requires only a single random bit and
is asymptotically optimal as the number of jobs increases, whereas any deterministic online
algorithm is able to achieve no better asymptotic competitive ratio than the most naive
algorithm. Ours is not the first randomized online algorithm to achieve good performance
while requiring only a constant number of random bits. The COMB algorithm of Albers
et al. [11], currently the best known randomized algorithm for the list update problem,
requires a number of random bits that depends only on the size of the list and not on the
length of the request sequence. The algorithm of Kalyanasundaram and Pruhs [12], for
maximizing the number of jobs on a single machine that complete before their deadlines,
uses only a single random bit; their algorithm achieves a constant competitive ratio. Like
our algorithm, a recent algorithm for online interval scheduling described by Ben-David et

al. [13] requires only a single random bit to be strongly competitive.

1.1 Results and organization of the paper

The remainder of this paper is organized as follows.
In Section 2, we define our problems formally.

In Section 3, we give our randomized algorithm RPRI against oblivious adversaries and an
asymptotically matching lower bound. The algorithm assigns priority for one machine ac-
cording to an arbitrary permutation of the jobs (e.g., the input order), and in the opposite
order for the other machine. One random bit is used to select which machine is assigned
which of the two orders. We prove the following: RPRI is %—competitz"ue against oblivi-
ous adversaries. No randomized online algorithm for the 2-machine, n-job preemptive job
shop problem J2|pmin|Cray achieves a competitive ratio less than % — % against oblivious
adversaries. For the case of two jobs, we give a somewhat tighter bound: No randomized
online algorithm for the 2-machine, 2-job preemptive job shop problem J2|pmitn;n = 2|Cpax

achieves a competitive ratio of v for r < % against oblivious adversaries.

In Section 4, we observe offline bounds implied by the randomized online algorithm. The
algorithm finds a schedule of length at most %max(Pmaw,Hmaw), where P,,.. and I, a0
denote the greatest job length and the maximum machine load, respectively, and are triv-
ial lower bounds on the optimal schedule length. Thus we have: For every instance of
J2|pmin|Crraz, there is a schedule of length %max(Pmaw, ynaz). Moreover, such a schedule
can be found in linear time. Thus, there is a deterministic linear-time %—appma:z'mation

algorithm for the NP-hard problem J2|pmin|Cpasz-

In Section 5, we consider deterministic online algorithms, and show that the trivial up-
per bound of 2 on the competitive ratio is asymptotically tight: No deterministic online
algorithm for the 2-machine, n-job preemptive job shop problem J2|pmin|Cpaz achieves a
competitive ratio less than 2 — % For the case of two jobs, we give a somewhat tighter

bound: No deterministic online algorithm for the 2-machine, 2-job preemptive job shop

problem J2|pmtn;n = 2|Cpay achieves a competitive ratio of ¢ for ¢ < 1.64.

Section 6 concludes the paper with directions for further work.

2 Preliminaries

We consider offline and online algorithms for the job shop scheduling problem with two
machines and two or more jobs. We will denote the two machines r and b, for red and
blue. In the case of two jobs, job 1 will be denoted by a list of tasks x1, x2, ... and job 2 by
a list y1,%2, ..., where odd-subscripted entries represent demands for the red machine and
even-subscripted entries represent demands for the blue machine. (Dummy entries equal
to zero can be added as needed in case a job does not begin with a request for r.) Each
task must be serviced only after all preceding tasks in the same job have been served. The
goal is to minimize the makespan, the time at which the last job finishes. We consider
nonclairvoyant online algorithms; that is, an algorithm learns of the existence of a task only
on completion of the previous task in the same job, and learns the service time of the task

only when it finishes serving the task.

We begin with some standard definitions. In the standard notation for scheduling problems
(see, for example, the survey by Lawler et al. [1]), our problems are denoted J2|pmin|Cpaz,
and so on; we will use this notation for each problem we consider. The J in the first field
indicates the job shop problem; a number, if present, denotes the number of machines.
Modifiers in the second field include pmin for preemption and n = ¢ to indicate that the
number of jobs is restricted to ¢ or fewer. We use n throughout to denote the number of
jobs. Ci,ez in the last field indicates that our optimality criterion is the completion time
of the last job to finish. As usual, P, denotes the maximum, over all jobs, of the sum of
task lengths in the job, and Il,,4, denotes the maximum load on any machine. A schedule

in which there is never a time at which all machines are idle is said to be busy.

See Borodin and El-Yaniv [14] for background on competitive analysis of online algorithms.
An online algorithm A is ¢-competitive if there is some constant d such that for any input
z,

costa(z) < ¢ costopr(z) +d,

where cost4(x) is the cost incurred by algorithm A on input z and costopr(z) is the
optimal (offline) cost on z. The competitive ratio of A is the infimum over ¢ such that A
is c-competitive. If A is c-competitive and no online algorithm is ¢-competitive for ¢’ < c,

algorithm A is said to be strongly competitive.

In the literature on randomized online algorithms, three types of adversarially generated
inputs have been considered. We will be concerned with only two here. An oblivious ad-

versary generates an input without knowledge of the randomized algorithm’s online choices

(i.e., the outcomes of its random events), although it does know the randomized algorithm
and the probability distributions it uses. An offline adaptive adversary is allowed to gen-
erate its 5" input after observing the online algorithm’s responses to the first 4 — 1 inputs.
The offline adaptive adversary serves the input offline, with full knowledge of the entire
input sequence. Clearly, the latter adversary is at least as powerful as the former; also,
lower bounds using an offline adaptive adversary apply to deterministic algorithms as well.
Randomization does not add power to either type of adversary (Theorem 7.1 of [14]). For
randomized online algorithms, we replace the costs in the definition of competitiveness by

their expectations.

3 Randomized online algorithms against oblivious adversaries

3.1 Upper bound

We will now describe a randomized algorithm that achieves a competitive ratio of % against

oblivious adversaries for the 2-machine preemptive job shop problem J2|pmin|Crqz-

Definition: Let 1...7n be an arbitrary ordering of the n jobs. Let R; denote the total
service time of all requests in job ¢ for the red machine, and let B; denote the total service
time of all requests in job ¢ for the blue machine. Let PRI1 denote the algorithm that
assigns priority for the red machine in the order 1...n (i.e., job ¢ has priority over jobs
i+1...n) and for the blue machine in the order n...1, and let PRI2 denote the algorithm

that reverses these orders. Let RPRI denote the randomized algorithm that runs PRI1 and

PRI2 each with probability 1/2.
Theorem 1 RPRI is %—competitz've against oblivious adversaries.

Proof: Let 7; be the index of the last job to complete under PRI1, and let 79 be the index

of the last job to complete under PRI2.

Claim: PRI1’s cost is at most Z 1R+, B

To see this, note that at any time job j, 5 > ¢; is running on the red machine, job i;
(which has not yet completed) must be either running on the blue machine or waiting for
the blue machine; otherwise, 4; would preempt the red machine from j. Thus some job j’,
i1 < j' < n must be running on the blue machine, since jobs 1...4; — 1 have priority lower
than 41, so that 3°7_; . R; can be charged against }°7_; B;. Similarly E“ ! Bj can be

charged to 2;1:1 R;
A similar argument shows that PRI2’s cost is at most 23-2:1 Bj + 375, Rj.

Thus we need to show

1/2 % ZR +ZR —I—ZB +ZB)

Jj=ia Jj=i

is at most 3/2 the cost of an optimal schedule OPT, or

1 n 12 n
> Rj+ Y Rj+Y Bj+ Y Bj<=3xcost(OPT).

Jj=1 Jj=t2 j=1 Jj=t1
case 1 — 11 > i9: Each of the first two terms on the left side of the inequality is at most

Z?Zl R;, and the sum of the last two terms is at most E;-lzl B;. Each of these is a lower

bound on the optimal cost.
case 2 — 41 < 19: Similar to case 1.

case 3 — 11 = i9: The expression on the left side of the inequality is equal to

n n
> Ri+)Y_ Bi+Ri + B,.
=1 j=1

The first two terms are each lower bounds on the optimal cost, and so is the sum of the last

two terms. O

3.2 Lower bounds

Theorem 2 No randomized online algorithm for the 2-machine, n-job preemptive job

shop problem J2|pmin|Ch,qz achieves a competitive ratio less than % — % against oblivious

adversaries.

Proof: We describe an adversary ADV which, for any T' > 0, and for any randomized
online algorithm ALG, will construct an input for which the optimal schedule has length at
least T and for which ALG’s expected schedule length is at least % — % times the optimum.

For convenience, assume 7'/n is an integer; otherwise, round up to the next larger integer.

The adversary chooses one job ¢ uniformly at random. All jobs request the same machine
(say the red one) at time 0. All jobs request 7'/n units of service on the red machine. All
jobs other than 7 end after their first request. Job i requests T'(n —1)/n on the blue machine

after its red request is satisfied.

By the adversary’s choice, job i is equally likely to be the j* job to finish receiving its
service on the red machine under ALG, for each 1 < 5 < n. Thus the expected length of

ALG’s schedule is at least

"1 T 1. 1am+1)T n-1 3 1

n J—
il A, o = - T=T(-—-—).
;n[n-i_ n] n 2 n+ n (2 Qn)
The optimal schedule length is easily seen to be 7', giving the desired ratio. O

For the two-job case we are able to give a tighter bound.

Theorem 3 No randomized online algorithm for the 2-machine, 2-job preemptive job

shop problem J2|pmin;n = 2|Cper achieves a competitive ratio of v for r < % against

oblivious adversaries.

Proof: For convenience, assume that time is divisible into arbitrarily small units. We can
remove this assumption by approximating it to within an arbitrarily small ¢ > 0, and then

scaling all values by 1/e to obtain integer inputs.

We describe a randomized adversary ADV such that, for any randomized algorithm ALG,
E(cost(ALG)) = 3E(cost(OPT)), where OPT denotes an optimal algorithm. ADV first
uses one random bit to select job 1 or job 2 as the “good” job, i.e. the one that the optimal
algorithm will execute first. Let G denote this choice. ADV then selects z uniformly at
random from the interval (0,1]. If G = 1, ADV sets 1 = z, 2 = y1 = 1, and y2 = 0;

otherwise, ADV sets y; =z, yo =1 =1, and 2 = 0. ADV sets z; = y; = 0 for ¢ > 2.
It is easy to see that E(cost(OPT)) = 3/2. Now, we show that E(cost(ALG))—E(cost(OPT)) =
1/2. ALG pays OPT’s cost, plus whatever amount of service it gives to the bad job before

10

reaching the end of the bad job, or the end of the good job’s requirement on r. Consider
the curve contained in the unit square which denotes ALG’s action in servicing jobs 1 and
2 when presented with an input for which the two jobs each have a single task for the red
machine for 1 unit of time. The curve starts at the origin. From this point, movement in
the x direction corresponds to executing job 1 on the red machine, and movement in the
y direction corresponds to executing job 2 on the red machine. The curve is continuous,

nondecreasing in x and y, and ends when x =1 or y = 1.

We note that this curve can be used to determine ALG’s behavior on any type of job
sequence that ADV might generate. For example, fix z and let G = 1. Then on this
sequence, ALG will follow the behavior specified by the curve until z = z. At this point,
ALG will service the remainder of both jobs in parallel. The key observation is that the
excess time ALG spends on this input sequence (beyond the optimal time) is the y value
of the curve when z = z. Hence the average excess time of ALG over OPT when G =1 is
the area under the curve. Similarly, the average excess time when G = 2 is the area to the

left of the curve.

Finally, we note that sum of the two areas is 1, and the events G = 1 and G = 2 each occur

with probability 1/2; thus, the expected excess time is 1/2. |

11

4 An offline 1.5-approximation

Theorem 4 For every instance of J2|pmitn|Cpaqz, there is a schedule of length % max(Praz, Hmaz)-
Moreover, such a schedule can be found in linear time. Thus, there is a deterministic linear-

time %—approximation algorithm for the NP-hard problem J2|pmitn|Cpag.

Proof: The first claim is evident from an examination of the proof of Theorem 1. It remains

to illustrate that the algorithm can be implemented to run in linear time.

The offline approximation algorithm runs an offline version of PRI1 and then PRI2 to
produce two schedules, and returns the schedule with the shortest makespan. Below we

give a linear time algorithm for PRI1.

In the following, let above(j) be the next job in the current priority ordering for the red
machine that has priority greater than job j, and let below(j) be the next job with priority
less than j. Initially, above(j) = j — 1 and below(j) = j + 1; as jobs complete, they will
create gaps in this list. The jobs are stored in a doubly linked list ordered by priority, so
that jobs which have completed can be removed and the priority ordering reestablished in
constant time. For convenience, Offline PRI1 assumes there are two dummy jobs, job 0,
which has the least priority for the blue machine and which always requests blue, and job
n + 1 which has least priority on the red machine and which always requests red. We also

append dummy tasks of length 0 for the red machine to the beginning of each real job.

The algorithm starts with the blue machine assigned to job 0 and the red machine assigned

to below(0) = 1; this is an instance of state A below. The algorithm will always be in one

12

of the two following states:

state A: Some job j executes on the blue machine and below(j) executes on the red machine.

state B: Some job j executes on the red machine and below(j) executes on the blue machine.

In either state, jobs less than j all wait for the blue machine, and jobs greater than below(j)

all wait for the red machine.

In both states, the jobs j and below(j) run in parallel. In state A, if one job’s current task
completes before the other, the algorithm remains in state A, but j increases or decreases
by 1, i.e., the pointer moves up or down by one job on the priority list of jobs. If both jobs
complete their tasks at the same time but one or both of the jobs is finished at this point,
we similarly stay in state A with the new j increasing or decreasing by 1. However if both
jobs’ tasks finish at the same time and neither job is finished, the algorithm moves to state

B with j and below(j) interchanged.

iFrom state B, the algorithm always moves to state A. If one task completes before the
other, the new j for state A is a job one position lower or one position higher in the priority
list. If they complete at the same time, the new j (in state A) is the same as in state B

unless the job j has ended in which case the new j is 1 above the old j.

Each transition to a new state requires constant time, and at least one complete task is
scheduled by each transition; thus the running time is linear in the total number of tasks.

a

13

5 Deterministic online algorithms

In this section, we consider deterministic online algorithms and randomized online algo-
rithms against adaptive offline adversaries. It is easy to show that any deterministic algo-
rithm that produces only busy schedules is 2-competitive. We now show that, this bound is

asymptotically tight as the number of jobs increases.

Theorem 5 No randomized online algorithm for the 2-machine, n-job preemptive job
shop problem J2|pmin|Ciay achieves a competitive ratio less than 2 — % against offline

adaptive adversaries.

Proof: We describe an adversary ADV which, for any 7' > 0 and for any randomized online
algorithm ALG, will construct an input for which the optimal schedule has length at least
T and for which ALG constructs a schedule of length at least 2 — % times the optimum.

For convenience, assume 7T'/n is an integer; otherwise, round up to the next larger integer.

All jobs request the same machine (say the red one) at time 0. All jobs will continue to
request the red machine until the last one (say i) receives T'/n units of service under ALG.
At that time, all jobs other than i end. Let 7" > T'(n —1)/n denote the sum of the amounts
of service received by jobs other than 7 on the red machine. Job i now requests the blue

machine for time 7".

The length of ALG’s schedule is 27" +T'/n. It is easy to see that an optimal schedule OPT
is obtained by serving job i first on the red machine, and then serving the other jobs on

the red machine in parallel with job i’s request for the blue machine. The length of this

14

schedule is T’ 4+ T'/n. Thus we have

cost(ALG) 2T+ T/n S 2T(n —1)/n+T/n _ 5 1

cost(OPT) T'+T/n = T(n—1)/n+T/n n’

Corollary 6 No deterministic online algorithm for the 2-machine, n-job preemptive job

shop problem J2|pmin|Cpqay achieves a competitive ratio less than 2 — %

For the two-job case we are able to give a somewhat tighter bound.

Theorem 7 No randomized online algorithm for the 2-machine, 2-job preemptive job
shop problem J2|pmin;n = 2|Cpey achieves a competitive ratio of r for r < 1.64 against

offline adaptive adversaries.

Proof: For convenience, assume that time is divisible into arbitrarily small units. We can
remove this assumption by approximating it to within an arbitrarily small ¢ > 0, and then

scaling all values by 1/e to obtain integer inputs.

The adversary ADV will generate k tasks in each job for some k, followed by a final task in
only one of the two jobs. ADV’s offline schedule will be obtained by executing either z; in

parallel with y;11 or y; in parallel with z; 1, for 1 <14 < k.

ADV causes both jobs to request the red machine at time 0. ADV determines the lengths
of tasks x1 and 7, for the red machine in response to the online algorithm ALG’s actions.

Both jobs continue to request the red machine until they have each received time at least

15

1; thus, min(z1,y1) = 1. In the following stages, ADV generates tasks on the opposite
machine to that of the previous stage. ADV does so until ALG has given each job as much
service as the opposite job in the previous stage; i.e., so that z;41 > y; and y;41 > z;; note
that either the cost of z; or that of y; can be hidden in the offline schedule. Finally, ADV
sets either zx 1 = yk, yx = 0 or yxr1 = g, 2 = 0, and z; = y; = 0 for ¢ > k + 1. Notice
that ALG never executes the two jobs in parallel, whereas the length of the offline schedule
is equal to Pj,4,. In the former case, ALG’s cost is y + Zle T; + Zle y; and the offline
cost is yr + Ele x;; in the latter, ALG’s cost is z + Ele T; + Zle 1; and the offline cost
is zx + i1 ¥

It remains to describe how ADV determines k. If at any time ADV is able to terminate the
game and cause the ratio of the online cost to the offline cost to exceed the stated bound,
it does so. The following exhaustive analysis shows that by choosing k£ € {1, 2}, this must

be possible for ADV, and thus yields the stated ratio.

We can view this adversarial process as a two-player game in which the ALG chooses the

values z; and y; subject to constraints imposed by ADV. ADV imposes the constraints

X1 Z 1

o > 1
Tiv1 =2 Vi
Yir1 = Z;

16

along with the (nonlinear) condition that at least one member of each pair of constraints is

tight.

In order to achieve a competitive ratio 2 — §, ALG must ensure that

2-6

Yo+ S i+ 2y <
Yr + Zf:l T; B

and

Tk + 2521 z; + 21?21 Yi o

A 2.
Tp+ D i1 Yi

Rearranging these, ALG must ensure that

k-1 k
Szp+ Y i < (1—6)) v
=1 =1

and
k-1 k
Sy + Y 3 < (1 =6z
i=1 i=1

We will show that every solution to this set of constraints for k¥ € {1, 2} yields a value of §

around 0.352 or less.

Assume without loss of generality that yo = x1; the case z9 = ¥ is symmetric. We can

write

oy1 < (1-96)m; (1)
z1+0zy < (1-6)(y1 +y2) (2)
y1+oys < (1-6)(z1 +x2) (3)

17

g > 1>0
Y2 = 1
i From these it follows that
6(z1+z2) < (1-6)-un
52
o0x1 + 1 < % N
_£\2
0z < (% —1)-y5
1-6)2 _
(5:121 S (%—1)-%-.’1)1
(1-6)2-6 1-6
6 < T T

or 26 — 462 +46 —1 < 0.

The polynomial on the left has a single root at approximately 0.352.

(by 2 and 5)

(by 3 and 5)

Corollary 8 No deterministic online algorithm for the 2-machine, 2-job preemptive job

shop problem J2|pmin;n = 2|Cpey achieves a competitive ratio of ¢ for ¢ < 1.64.

Our exhaustive analysis for small k surely does not yield the greatest lower bound that can

be obtained; however, it can be shown that unless we consider more than just two offline

schedules, the method cannot yield a bound greater than 1.8.

18

6 Discussion

In this paper, we have studied some practical and tractable special cases of the job shop
scheduling problem. An obvious open question is whether there is a PTAS for the general
case of J2|pmitn|Cpez. We would like to obtain tighter bounds (both deterministic and
randomized) for the online problem with a fixed number of jobs. Optimization criteria

other than minimum makespan are other directions for further work.

Acknowledgements

We thank Anna Karlin for stimulating discussions relating to this work, Jayram Thathachar
for discussions and for simplifying the proof of Theorem 7, and Gerhard Woeginger for

pointing out related results.

References

[1] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys. Sequencing and Scheduling:
Algorithms and Complexity. In S.C. Graves, A.-H.G. Rinnooy Kan, and P.H. Zipkin (eds.),
Logistics of Production and Inventory, Handbooks in Operations Research and Management

Science 4, North-Holland, Amsterdam, 1993, 445-522.

[2] J. Ousterhout. Scheduling Techniques for Concurrent Systems. In Proceedings of the Interna-

tional Conference on Distributed Computing Systems, pp. 22-30, 1982.

19

3]

[4]

[5]

[6]

[7]

(8]

[9]

E. Rosti, G. Serazzi, E. Smirni, and M. Squillante. The Impact of I/O on Program Behav-
ior and Parallel Scheduling. In Proceedings of the ACM SIGMETRICS / IFIP WG 7.3 Joint

International Conference on Measurement and Modeling of Computer Systems, pp.56-65, 1998.

E. Smirni and D. Reed. Lessons from Characterizing the Input/Output Behavior of Parallel

Scientific Applications. Performance Fvaluation 33, pp. 27-44, 1998.

D. Burger, R. Hyder, B. Miller, and D. Wood. Paging Tradeoffs in Distributed-Shared-Memory

Multiprocessors. In Proceedings of Supercomputing 94, 1994.

F.T. Leighton, B. Maggs, and S. Rao. Packet routing and jobshop scheduling in O(congestion

+ dilation) steps. Combinatorica 14, pp. 167-186, 1994.

D. Shmoys, C. Stein, and J. Wein. Improved Approximation Algorithms for Shop Scheduling

Problems. STAM Journal on Computing 23:3, 617-632, 1994.

L.A. Goldberg, M. Paterson, A. Srinivasan, and E. Sweedyk. Better Approximation Guarantees
for Job-Shop Scheduling. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms

(SODA), pp. 599-608, 1997.

K. Jansen, R. Solis-Oba, and M. Sviridenko. A linear time approximation scheme for the job shop
scheduling problem. In Proceedings of the The Second International Workshop on Approzimation

Algorithms for Combinatorial Optimization Problems, August, 1999.

[10] S.V. Sevastianov and G.J. Woeginger. Makespan minimization in preemptive two machine job

shops. Computing 60 (1998), 73-79.

[11] S. Albers, B. von Stengel, and R. Werchner. A combined BIT and TIMESTAMP Algorithm

for the List Update Problem. Information Processing Letters, 56:135-139, 1995.

[12] B. Kalyanasundaram and K. Pruhs. Maximizing Job Completions Online. In Proceedings of

the European Symposium on Algorithms (ESA), 1998.

20

[13] S. Ben-David, E. Dichterman, J. Noga, and S. Seiden. On the Power of Barely Random Online

Algorithms. Unpublished manuscript, 1998.

[14] A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge Uni-

versity Press, 1998.

21

