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Abstract
We describe an asynchronous algorithm to solve secure multiparty computation (MPC) over

n players, when strictly less than a 1/8 fraction of the players are controlled by a static adversary.
For any function f that can be computed by a circuit with m gates, our algorithm requires each
player to send a number of bits and perform an amount of computation that is Õ(n+m

n +
√
n).

This significantly improves over traditional algorithms, which require each player to both send
a number of messages and perform computation that is Ω(nm).
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1 Introduction

Secure multiparty computation (MPC) abstracts numerous important problems in distributed se-
curity, and so, not surprisingly, there have been thousands of papers over the last several decades
addressing this problem. In the MPC problem, n players each have a private input, and their goal is
to compute the value of an n-ary function, f , over the inputs. They must do this without revealing
any information about the inputs, other than what is revealed by the output of the function and
their own input. The problem is complicated by the fact that a hidden subset of the players are
controlled by an adversary which actively tries to subvert this goal.

Unfortunately, there is a striking barrier that prevents wide-spread use of MPC algorithms:
resource inefficiency. In particular, if there are n players involved in the computation and the
function f can be computed by a circuit with m gates, then most algorithms require each player
to send a number of messages and perform a number of computations that is Ω(mn) [14, 15, 6, 1,
16, 12, 17, 18, 3].

Recent years have seen exciting improvements in the cost of secure MPC when m is much larger
than n. [9, 11, 10]. For example, the computation and communication cost for the algorithm of [10]
is Õ(m) plus a polynomial in n. However, the additive polynomial in n is large (e.g. Ω(n6)) and so
these new algorithms are only efficient for relatively small n. Thus, there is still a need for secure
MPC algorithms that are efficient in both n and m.

1.1 Model and Formal Problem Statement

Model: We assume a private and authenticated communication channel exists between every pair
of players. Unlike much past work on secure MPC, we do not assume the existence of a public
broadcast channel.

We further assume a completely asynchronous communication model. In particular, the adver-
sary can arbitrarily delay messages sent over all communication channels. Latency in this model
is defined to be the maximum length of any chain of messages (see [7, 2]). In particular, latency
ignores all computation by individual processors.

The function to be computed is presented as a circuit C with m gates, numbered 1, 2, . . . ,m,
where the gate numbered 1 is the output gate. Also, it is convenient for presentation to assume
that all gates have in-degree 2 and out-degree at most 2, however we can tolerate arbitrary constant
degrees. We also assume that all computations in the circuit occur over a finite field F.

An unknown subset of the players are controlled by an adversary that is actively trying to
prevent the computation of the function. We say that the players controlled by the adversary
are bad (i.e. Byzantine) and that the remaining players are good. We assume a static adversary,
meaning that the adversary must select the set of bad players at the start of the algorithm. In our
model, the adversary is computationally unbounded, and so we make no cryptographic hardness
assumptions.
Problem Statement: In secure MPC, there are n players, and each player i has a private input,
xi. There is an n-ary function f that is known to all players. The goal is to ensure that: 1)
all players learn the value f(x1, x2, . . . , xn); and 2) the inputs remain as private as possible: each
player i learns nothing about the private inputs other than what is revealed by f(x1, x2, . . . , xn)
and xi. In general, we seek to obtain a result that is equivalent to the scenario where all inputs are
sent to a trusted external party, who computes the output, and then sends it back to each player.

In the asynchronous setting, the problem is challenging even with a trusted external party. In
particular, the trusted party can not distinguish between the case when it has not received an input
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because either 1) the player sending the input message is bad; or 2) the message sent by the player
has been delayed indefinitely by the adversary.

Here is how a trusted party can help. Let t be the number of bad players. Since up to t of
the inputs may never be sent, the trusted party must wait until at least n − t inputs are received
and then compute the function f over those inputs, with default values for the inputs not received.
Finally, the output and the set of players from which inputs were received can be sent back to the
players.

The goal of an asynchronous secure multiparty computation protocol is to simulate the above
scenario, even without the trusted party. Our additional goal is to do this using a scalable amount
of communication.

Let S denote the set of players from whom input is received by the (simulated) trusted party.
|S| ≥ n− t, as noted above.1 For arbitrary such S a description of S requires Ω(n) bits, and cannot
be sent back to the players using only a scalable amount of communication. Thus, we relax the
standard requirement that S be sent back to the players. Instead we require that at the end of the
protocol each good player learns the output of f ; whether or not their own input was included in
S; and the size of S.

1.2 Our Results

We describe an algorithm (Algorithm 1) to perform efficient, asynchronous secure MPC. The main
result of this paper is as follows.

Theorem 1.1. Assume there are n players, strictly less than a 1/8 fraction of which are bad, and
an n-ary function f that can be computed by a circuit with m gates. If the good players follow
Algorithm 1, then w.h.p., the algorithm terminates and they can solve secure MPC, while ensuring:

1. Each player sends at most Õ(n+mn +
√
n) messages;

2. Each player performs Õ(n+mn +
√
n) computations; and

3. Total latency is O(d+ polylog(n)) where d is the depth of the circuit.

Paper Organization: The rest of this paper is organized as follows. Section 2 gives a technical
overview. In Section 3, we describe our algorithms. We conclude and give problems for future work
in Section 4. All proofs are in Sections A and B.

2 Technical Overview

2.1 Building Blocks

We now describe the fundamental protocols that we use as building blocks in this paper: AVSS-
SHARE, AVSS-RECONSTRUCT, and HW-MPC.

Our algorithm repeatedly uses an asynchronous verifiable secret sharing scheme from [4]. This
scheme consists of two protocols. First, a sharing protocol, which we denote AVSS-SHARE. During
this protocol, a dealer shares the secret among the players and each player verifies for itself that
there is a unique secret defined by the shares. Second, a reconstruction protocol, which we denote
AVSS-RECONSTRUCT. During this protocol, the players reconstruct the secret from their shares.

1We allow |S| > n − t because the adversary is not limited to delivering one message at a time; two or more
messages may be received simultaneously.
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Both of these protocols work correctly even if up to 1/4 of the players are bad. In particular,
no information about the secret can be obtained if the bad players share information; and AVSS-
RECONSTRUCT reconstructs the correct secret despite any efforts of the bad players to prevent
this. The latency of both protocols is O(1) and the communication cost of both protocols is
polynomial in x, where x is the number of players participating in the protocol. In this paper, we
will use the protocols only among small sets of players (“quorums”) of logarithmic size, so x will
be O(log n) and the communication cost per invocation will be polylogarithmic in n.

We also use a (heavy-weight) asynchronous algorithm for MPC that we call HW-MPC. This
algorithm, due to Ben-Or et al. [4], is an errorless protocol for MPC that tolerates up to 1/4 bad
players. The latency is at most linear in m and the number of bits sent is a polynomial in n and
m.

2.2 Our Contributions

Our result in Theorem 1.1 requires three new techniques: Asynchronous Quorum Formation,
Quorum-Based Gate Evaluation, and a Commitment Tree. Asynchromous Quorum formation and
Commitment Tree techniques address the challenge of asynchronicity.

Asynchronous Quorum Formation: A quorum is a set of C log n players for some constant
C. A quorum is called good if at least a 7/8 fraction of the players in it are good. In the quorum
formation problem, we want a set of n players, t of which may be bad, to agree on a set of n good
quorums. Moreover, we want the quorums to be load-balanced: each player is mapped to O(log n)
quorums.

Recently, King et al. [19] described an efficient algorithm to solve the quorum formation problem,
w.h.p., in the synchronous model with full-information. Our first result builds on the result of [19]
to solve the quorum formation problem in the asynchronous model, with private channels. Our
new algorithm, CREATE-QUORUMS, is described by the following theorem, whose proof is given
in Section B.

Theorem 2.1. CREATE-QUORUMS solves the quorum formation problem, w.h.p., in the asyn-
chronous communication model with private channels, when t < (1/4− ε)n for any2 fixed, positive
ε. Moreover, it ensures:

• Each player sends at most Õ(
√
n) bits;

• Each player performs Õ(
√
n) computations.

• Total latency is O(polylog(n)).

Quorum-Based Gate Evaluation: Below, we assume all random variables are chosen uniformly
at random from F. Each player initializes the circuit by secret-sharing a random number R to the
quorum associated with its input X, using AVSS-SHARE, and sending RX +X to the members of
that quorum, as well. This quorum then provides an input to one or more gates in the cirucuit.

The technique for evaluating a gate of the circuit, is illustrated in Figure 1. The three ovals
in the figures represent three good quorums, one for each input to the gate and one for the gate.
At the start of the gate evaluation, we assume X and Y are the inputs to the gate. Every player
in the input quorum for X, (Y , resp.) has the value X + RX (Y + RY , resp.), and a share of the
secret RX (resp., RY ). Step 1 describes these initial conditions of the input quorums.

2In general we prove the correctness of Theorem 2.1 for t < (1/4 − ε)n and by assuming ε > 1/8, we ensure the
fraction of good players is strictly greater than 7/8 which is necessary for our definition of good quorums.
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Figure 1: Example Computation of a Gate

In Step 2, the gate quorum runs an algorithm to distributed shares of a third random value R3.
Step 2 illustrates what is known by the players of each quorum after Step 1.

In Steps 3 and 4, the players of all three quorums run HW-MPC, using all of their inputs, in
order to compute the value g(X,Y ) + R3. This is the output of the gate g on the inputs, masked
by the random value R3. The gate quorum now knows 1) the output of the gate plus the value of
R3; and 2) shares of R3. Thus the gate quorum may serve as an input quorum to a higher level
gate in the circuit.

Commitment Tree: We use a Commitment Tree to ensure that inputs of n − t of the players
are committed to before the circuit evaluation occurs. A Commitment Tree is a complete binary
tree with n leaf nodes, where each node of the tree is a quorum. Each of the n players is assigned
to one leaf node, and a key job of the tree is to count the number of players that have properly
committed an input value to the appropriate quorum. The tree enables efficient input commitment
with asynchronous communication, and may be of use for other problems beyond MPC.

Consider a quorum Q in the tree. A naive approach to counting input commitments is for each
child of Q to send Q a message with its number of received inputs, every time there is a change in
this number. The problem with this approach is that it is not load-balanced: each quorum at depth
i has n

2i
descendants in the tree, and therefore, in the worst case, sends n

2i
messages to its parent.

Thus a child of the root, sends n/2 messages to the root. To solve the load-balancing problem,
we require a clever “halving trick” in which each quorum aggregates a certain number of messages
before sending them to its parent. We describe details of this method in Section 3.

3 Our Algorithm

Our algorithm makes use of a circuit graph, G, that is based on the circuit that computes f . The
circuit graph is a directed acyclic graph over m + n nodes. There are n of these nodes, one per
player, that we call the input nodes. There are m remaining nodes, one per gate, that we call the
gate nodes. For every pair of gate nodes x and y, there is an edge from x to y iff the output of the
gate represented by node x is an input to the gate represented by node y. Also for any input node
z and gate node y, there is an edge from z to y if the player represented by gate node z has an
input that feeds into the gate represented by node y.

For any two nodes x and y in G, if x has an edge to y, we say that x is a child of y and that y
is a parent of x. Also, for a given node v, we will say the height of v is the number of edges on the
longest path from v to any input node in G.

We number the nodes of G canonically with 1, 2, . . .m+ n from the input nodes up, in such a
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way that the input node numbered i corresponds to player i. We refer to the node corresponding
to the output gate as the output node and denote it outnode.

Algorithm 1 consists of four main parts. The first part is to run CREATE-QUORUMS in order
to agree on n good quorums. The second part of the algorithm is INPUT-COMMITMENT. In this
part, players form the Commitment Tree. Then, each player i commits its input values to quorum
i at the leaf nodes of the Commitment Tree and finally the players in that quorum decide whether
these values are part of the computation or not. The details of how this part of the algorithm works
is described in Section 3.1. The third part of the algorithm is evaluation of the circuit (Step 3 of
Algorithm 1, described in detail in Section 3.2). Finally, the output from the circuit evaluation is
sent back to all the players by performing Algorithm 10.

Algorithm 1 Main Algorithm

1. All players run CREATE-QUORUMS

2. All players run INPUT-COMMITMENT

3. All players participate in the computation of the circuit:

(a) For each input node v, if p is in the quorum for v, then after finishing INPUT-
COMMITMENT with mVal(v) and a share of mask(v) as its output, p runs GATE-
COMPUTATION on each parent node of v with inputs mVal(v) and a share of mask(v).

(b) For each gate node v, if p is in the quorum for v:
i. p runs GENERATE-MASK on v and gets a share of mask(v) as output

ii. p runs GATE-COMPUTATION on v with its share of mask(v) as the input and
gets mVal(v) as output

iii. p runs GATE-COMPUTATION on each parent node of v with input mVal(v) and
p’s share of mask(v)

(c) After finishing computation of the gate represented by the output node, the players at
the output node reconstruct the output (Algorithm 9).

4. All players perform OUTPUT-PROPAGATION (Algorithm 10)

3.1 INPUT-COMMITMENT

The algorithm INPUT-COMMITMENT (Algorithm 2) makes use of the Commitment Tree. The
Commitment Tree is a complete binary tree with n leaf nodes, one for each player. We assume a
canonical numbering of the quorums 1 through n. We also assume a canonical numbering of nodes
in the Commitment Tree, starting with the leaf nodes and numbering left to right and bottom up.
We assign the quorum numbered i to any node in the Commitment Tree with number j s.t. (j
mod n) = i. This assignment ensures that the quorum mapped to leaf node i in the Commitment
Tree is the same as the quorum mapped to input node i in G.

When we say quorum A sends a message M to quorum B, we mean that every (good) player
in quorum A sends M to every player in quorum B. A player in quorum B is said to have received
M from A if it receives M from at least 7/8 of the players in A.

The Commitment Tree is used for input commitment as follows. Let vi denote the leaf node
in the Commitment Tree associated with player i and let Qi denote the quorum assigned to ths
node. Player i samples a value uniformly at random from F and sets mask(vi) to this value. Let
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Qi be the quorum associated with leaf node vi in the Commitment Tree. Player i sets mVal(vi)
to xi + mask(vi) and send mVal(vi) to all players in Qi. Next, player i uses the algorithm AVSS-
SHARE to commit to the secret value mask(vi) to all players in Qi. Once player i has verifiably
completed this process for the values xi and mask(vi), we say that player i has committed its
masked value to Qi, and each player j in Qi then sets a bit bi,j to 1. If player i’s shares fail the
verification process, then the bi,j ’s are set to 0, which is also the value they default to when not
explicitly set to 1.

The Commitment Tree determines when at least n−t inputs have been committed. The process
starts with the quorums at the leaf nodes of the Commitment Tree. When player i commits its
value to quorum Qi using the process stated above, then the players in Qi notify the players in the
parent quorum of Qi that player i has successfully completed the commit process.

The players in the quorum associated with each internal node v of the Commitment Tree
maintain four quantities λv, ρv, σv and τv.

• λv and ρv represent the input count received by v from its left and right children. Initially,
λv = ρv = 0 for all v.

• σv represents the input count thus far sent to v’s parent. This is also zero initially.

• τv represents the input count v waits to receive from its children, before communicating with
its parent, or in the case of the root, before sending the computation triggering message down
the tree. Initially τv is

⌈
n−t
2d

⌉
; where d is the depth of the node.

Each player p in the quorum at node v runs INPUT-COMMITMENT to continually update
these values based on messages received from quorums associated with nodes that are either a
parent or child of v. The main idea is that player p will communicate its input count to its parent
only when the increase in input count, since the last communication to the parent, exceeds half the
number of inputs the parent is waiting for. When at least n − t inputs have been detected at the
root, the quorum at the root sends a 〈DONE〉 message to its two children. This is forwarded by
each receiving node to its children and eventually gets back to the leaf nodes.

When a player j in Qi receives the 〈DONE〉 message, j participates in a HW-MPC with other
members of Qi, using bi,j as its input. This HW-MPC determines if at least 5/8 of the bits are 1. If
they are, then the quorum decides that i ∈ S and uses the received value of mVal(vi) and shares of
mask(vi) as their input into GATE-COMPUTATION. Otherwise they set mVal(vi) to the default
input and the shares of mask(v) to 0. We call this the 5/8-MAJORITY step.

3.2 Evaluating the Circuit

We assign nodes of G to quorums as follows. The output node of G is assigned to quorum 1; then
every other node in G numbered i is assigned to quorum number j where j = (i mod n).

Assume player j is in quorum Qv at the leaf node v of Commitment Tree, which is the same
quorum assigned to input node v in G. The computation phase of the protocol for player j starts
after the completion of the 5/8-MAJORITY step for node v in INPUT-COMMITMENT algorithm.

The first step is to generate shares of uniformly random field elements for all gate nodes. If
player j is in a quorum at the gate node v, he generates shares of mask(v), a uniformly random
field element, by participating in the GENERATE-MASK algorithm. These shares are needed as
inputs to the subsequent perform of HW-MPC algorithm.

Next, players begin computation of the gate associated with each gate node (Algorithm 8).
Let Qv be the quorum assigned to node v. For each input node v, the players in Qv know the
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masked input mVal(v) and each has a share of the random element mask(v), although the actual
input and mask are unknown to any single player. From the bottom (input gates) of the circuit
to the top, we ensure the following gate invariant: For each gate node v with children `(v) and
r(v), let x = value(`(v)) and y = value(r(v)) be the inputs to the gate associated with v and let
value(v) be the output of v as it would be computed by a trusted party. Then before participating
in HW-MPC each player in Qv has a share of the random element mask(v) (via Algorithm 7),
and each player in Q`(v) (resp. Qr(v)) has the masked value mVal(`(v)) and a share of mask(`(v))
(resp.mVal(r(v)) and a share of mask(r(v))). These are their inputs into the HW-MPC at v. After
participating in HW-MPC, each player in Qv learns the masked value mVal(v), which is equal to
value(v) + mask(v). Of course they still have the shares of mask(v), so they are now prepared
for the computation at the gates which are parents of v. Note that both value(v) and mask(v)
themselves are unknown to any individual.

The output of the quorum associated with the output node in G is the output of the entire
algorithm. Thus the quorum Qoutnode will unmask the output (Algorithm 9). The last step of the
algorithm is to send this output to all players. We do this using a complete binary tree rooted at
the output quorum. (see Algorithm 10).

Algorithm 2 INPUT-COMMITMENT

Run the following algorithms in parallel:

1. Algorithm IC-PLAYER.

2. Algorithm IC-INPUT.

3. Algorithm IC-INTERNAL.

4. Algorithm IC-ROOT

Algorithm 3 IC-PLAYER

Player i with input xi

1. Qi ← the quorum at the leaf node vi associated with input of player i

2. Sample a uniformly random value from F and set mask(vi) to this value.

3. mVal(vi)← xi + mask(vi)

4. Send mVal(vi) to all the players in the quorum for the ith input.

5. Use the algorithm AVSS-SHARE to commit the secret value mask(vi) to the players in Qi.

3.3 Some Remarks

Note that it may be the case that a player p participates k > 1 times in the quorums performing a
single instance of HW-MPC. In such a case, we allow p to play the role of k different players in the
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Algorithm 4 IC-INPUT

Player j in Quorum Qi associated with node vi

1. After receiving mVal(vi) and a share of mask(vi), participate in the AVSS-SHARE verification
protocol and agreement protocol to determine whether consistent shares for mask(vi) and the
same mVal(vi) are sent to everyone.

2. If the AVSS-SHARE verification protocol and the agreement protocol end and it is agreed
that mVal(vi) was the same for all and shares of mask(vi) are valid and consistent, set bi,j ← 1
and send your parent quorum the message 〈1〉.

3. Upon receiving 〈DONE〉 from your parent quorum, participate in 5/8-MAJORITY using bi,j
as your input. If it returns FALSE, reset mVal(vi) to the default and your share of mask(v)
to 0. In this case i /∈ S.

Algorithm 5 IC-INTERNAL

Player in Quorum Qv at Internal Node v

1. λv ← 0; ρv ← 0; σv ← 0; τv ←
⌈

n−t
2depth(v)

⌉
; done ← false

2. while not done

(a) receive message M from a quorum Q
(b) If M = 〈DONE〉 from and Q is your parent quorum

• forward M to both your children.
• done ← true

(c) Else if M = 〈DONE〉 and Q is your left (resp. right) child quorum,
• λv ← λv + x (resp. ρv ← ρv + x)
• Go to step (e).

(d) Else if M = 〈λ, ρ, σ, τ〉 and Q is your parent quorum
• If you are the left child and σv > λ then λ← σv.

If you are the right child and σv > ρ then ρ← σv.
• τv ← d τ−(λ+ρ−σ)2 e
• Go to step (e).

(e) If λv + ρv − σv ≥ τv,
• σv ← σv + τv.
• Send message 〈σv〉 to your parent quorum.

Otherwise send message 〈λv, ρv, σv, τv〉 to both your children.
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Algorithm 6 IC-ROOT

Player in the quorum Qoutnode at the output node outnode

1. λv ← 0; ρv ← 0; τv ← n− t; done ← false.

2. while not done

• Upon receiving message 〈x〉 from your left (resp. right) child,
• λv ← λv + x (resp. ρv ← ρv + x)
• If λv + ρv ≥ τv,
• send the 〈DONE〉 message to both your children.
• done ← true

• Otherwise
• τv ← τv − (λv + ρv).
• Send message 〈λv, ρv, λv + ρv, τv〉 to both your children.

Algorithm 7 GENERATE-MASK

This protocol is run by each player p in a quorum associated with each gate node v ∈ G to generate
mask(v).

1. Choose uniformly at random an element rp,v ∈ F (this must be done independently each time
this algorithm is run and independently of all other randomness used to generate shares of
inputs etc.)

2. Use AVSS-SHARE and Create verifiable secret shares of rp,v for each player in the quorum
associated with v and deal these shares to all the players in the quorum associated with v
including itself.

3. Participate in the AVSS-SHARE verification protocol for each received share. If the verifica-
tion fails, set the particular share value to zero.

4. Add together all the shares (including the one it dealt to itself). This sum will be player p’s
share of the value mask(v).

Algorithm 8 GATE-COMPUTATION

For each gate node v with children `(v) and r(v), the participants are the players in
Qv, Q`(v) and Qr(v).

1. If you are a player in Q`(v), (resp. Qr(v)) use (mVal(`(v)), share of mask(`(v))) (resp.
(mVal(r(v)), share of mask(r(v)))) as your input to HW-MPC. If you are a player in Qv,
use share of mask(v) as your input to HW-MPC.

2. Participate in HW-MPC.

3. mVal(v)← value returned by HW-MPC.
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Algorithm 9 OUTPUT-RECONSTRUCTION

This protocol is run by all players in Qoutnode.

1. Reconstruct mask(outnode) from its shares using AVSS-RECONSTRUCT.

2. Set the output o← mVal(outnode)−mask(outnode).

3. Send o to all players in the quorums numbered 2 and 3

Algorithm 10 OUTPUT-PROPAGATION

Performed by the players in each quorum Q other than the quorum numbered 1.

1. i← quorum number of Q

2. Receive o from the quorum numbered bi/2c.

3. Send o to all the players in quorums numbered 2i and 2i+ 1.

secure MPC, one for each quorum to which p belongs. This ensures that the fraction of bad players
in any instance of HW-MPC is always less than 1/4. HW-MPC maintains privacy guarantees even
in the face of gossiping coalitions of constant size. Thus, player p will learn no information beyond
the output and its own inputs after running this protocol.

Also note that although we have not explicitly included this in INPUT-COMMITMENT, it is
very easy for the players to compute the size of the computation set S. Once each input quorum Qi
has performed the 5/8-MAJORITY step and agreed on the bit bi = 1i∈S they can simply use the
Commitment Tree as an addition circuit to add these bits together and then disperse the result.
Note that this is a multiparty computation, all of whose inputs are held by good players, since
each input bit bi is jointly held by the entire quorum Qi and all the quorums are good. Thus the
computation can afford to wait for all n inputs and will compute the correct sum.

4 Conclusion

We have described a Monte Carlo algorithm to perform asynchronous Secure Multiparty Computa-
tion in an efficient manner. Our algorithms are efficient in the sense that they require each player
to send Õ(n+mn +

√
n) messages and perform Õ(n+mn +

√
n) computations. They tolerate a static

adversary that controls up to a 1/8− ε fraction of the players, for ε any positive constant.
Many open problems remain including the following. Can we prove lower bounds for the commu-

nication and computation costs for Monte Carlo MPC? Can we implement and adapt our algorithm
to make it practical for a MPC problem such as the beet auction problem described in [6]. Fi-
nally, can we prove upper and lower bounds for resource costs to solve MPC in the case where the
adversary is dynamic, able to take over players at any point during the algorithm?
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Appendix

A Analysis

In this section, we give the proof of Theorem 1.1.
We begin by noting that the error probability in Theorem 1.1 comes entirely from the possi-

bility that CREATE-QUORUMS may fail to result in good quorums (see Theorem 2.1). All other
components of our algorithm are exact algorithms with no error probability.

For the remainder of this section we will assume that we are in the good event, i.e. that the
players have successfully formed n good quorums.

Lemma A.1. If quorum A sends quorum B a message M , eventually it is received by all good
players in B.

Proof. Recall that quorum A sends a message M means that all good players in the quorum send
the same message M . A player in B considers himself to have received the message M from A if
he receives it from at least 7/8 of the players in A. Since n good quorums have been successfully
formed, more than 7/8 of the players in each quorum are good. In particular, this is true for A.
Thus at least 7/8 of the members of A send M to each member of B. Since the adversary must
eventually deliver all the messages that have been sent, albeit with arbitrary delays, it follows that
eventually each good player in B must receive M from at least 7/8 of the members of A.

We remark that although the above lemma shows that a quorum A can send a message M to
another quorum B, there is some subtlety involved in using this fact in the algorithm. The players
in a quorum are going to communicate with their parent when they have at least half as many
inputs as the parents threshold. However, since among other reasons multiple messages may arrive
simultaneously, when the threshold is set, not all players in the quorum may be in the same state.
Some may already have more inputs than the threshold, while others may still be waiting, because
messages from their children have been delayed. Lemma A.1 tells us that if all the players in the
quorum send the same message to the parent quorum, then the parent quorum can resolve that
message. Thus, in order to ensure that all the players in the quorum send the same message to
the parent quorum, we have required that even if a player’s received inputs exceed his threshold,
he should only inform the parent of having met the threshold, not of having exceeded it. The
remaining inputs are held, to be sent later.

We now show the correctness of INPUT-COMMITMENT.
We’ll say that a quorum has come to agreement on X if all good players in the quorum agree

on X.

Lemma A.2. INPUT-COMMITMENT eventually results in all good players receiving the 〈DONE〉
message. Moreover, there exists a set S

1. For all 1 ≤ i ≤ n, quorum Qi eventually agrees on whether or not player i is in S;

2. There are at least n − t quorums Qi for 1 ≤ i ≤ n such that Qi agrees that player i’s input
is in S;

3. For 1 ≤ i ≤ n, quorum Qi agrees that player i is in S if and only if the players in Qi collective
have enough shares to reconstruct player i’s input. If Qi agrees that i ∈ S then player i’s
input will be used to compute the output of the algorithm; if not, the predetermined default
input value will be used.
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Proof. The 〈DONE〉 message is sent by the root quorum when it has detected at least n−t inputs in
the tree. By Lemma A.1, once the 〈DONE〉 message is sent, it is eventually received and forwarded
by all good players in the roots children. Since we are conditioning on all quorums being good, it
follows by induction that the message is eventually received by all the input quorums and therefore
all the good players.

Thus to prove that all players eventually receive the 〈DONE〉 message, it suffices to prove that
INPUT-COMMITMENT eventually results in the root quorum detecting n − t inputs. We will
proceed by an inductive argument. First note that since there are n − t good players, it follows
that at least n − t valid inputs are eventually committed to at the input level, i.e. , there are at
least n− t inputs in the subtree below the root. We will show that at any stage of the algorithm,
a node with a threshold of k which actually has k previously unaccounted inputs in the subtree
below it will eventually detect k inputs. As a base case, this is certainly true for the internal nodes
just above input level, since the input nodes send along the message 〈1〉 as soon as they have an
input. So whether a height 1 node has its threshold at 2 or has reduced it to 1, if it has that
many inputs below it, it will eventually detect them. Consider a node v at height h, which has at
some point in the algorithm, just set its threshold at k. We will make two induction hypotheses.
The first is that if a node at height at most h− 1 has at least as many inputs in its subtree as its
threshold, it will eventually detect those inputs. The second is that if a node with height h and a
threshold strictly less than k, has at least as many inputs in its subtree then it will eventually detect
them. Now suppose v, which has height h and threshold k, has at least k previously unaccounted
inputs below it. Then its children, which are at height h − 1, set their thresholds at dk/2e. By
the pigeonhole principle, at least one of the children has at least dk/2e inputs in its subtree. By
the first hypothesis, that child will eventually detect those inputs. At that point it will notify its
parent Q of dk/2e inputs. v now needs only bk/2c more inputs, and since its subtree originally
contained at least k previously unaccounted inputs, after accounting for the dk/2e, it still contains
at least bk/2c inputs. By the second hypothesis, v eventually detects those inputs, and therefore
has, at that point, detected k inputs. By induction, applying this to the root node, we see that the
root node eventually detects n− t inputs, as claimed.

Now, for each i, consider the players in Qi. Let q = |Qi|. Each player in Qi has set a bit to
either 1 or 0 depending on whether or not he has received a valid input shares from player i. Upon
receiving the 〈DONE〉 message, the players in Qi perform 5/8-MAJORITY to decide whether at
least 5q

8 of them have set the bit to 1. If they have, they decide that i ∈ S.
Note that if Qi is one of the quorums that has contributed to the root’s threshold of n− t then

at least 7q
8 of the players in Qi received input shares from player i before they received the 〈DONE〉

message. Of these, more than 3q
4 players are good and have set their bit to 1, since Qi contains less

than q/8 bad players. Since the asynchronous HW-MPC computes even if as many as q/8 inputs
are missing, the players in Qi will correctly decide that at least 5q

8 bits among them are set to 1.
Thus Qi will agree that i ∈ S. It follows that at least n − t input quorums will agree that the
corresponding input is in S, and therefore |S| ≥ n− t.

Now suppose Qi is not among the quorums accounted for in the root’s threshold. The players in
Qi will agree that i ∈ S if and only if HW-MPC detects at least 5q

8 bits set to 1. Since Qi contains
less than q/8 bad players, this means that more than q/2 players are good and have set their bit to
1, i.e. they have received valid input shares from player i. But this is sufficiently many good shares
to run AVSS-RECONSTRUCT. Thus we have shown that the players in Qi will agree that i ∈ S
if and only if i really has committed to an input.
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We now show the correctness of GATE-COMPUTATION.
For a leaf node v ∈ G that is numbered i for some 1 ≤ i ≤ n, if player i is in S, we define

value(v) to be xi. If player i is not in S, we define value(v) to be the predefined value. For a gate
node v ∈ G, we define value(v) to be the output of the gate associated with v in the circuit, when
using the given input values for all players in S and the predefined value for all players not in S.

Also for each node v recall that we have a field element mask(v) ∈ F. If v is an input node
corresponding to player i ∈ S, mask(v) is the field element selected by player i in INPUT-
COMMITMENT. If v is an input node corresponding to player i /∈ S, mask(v) is 0. If v is a
gate node mask(v) is the random field element jointly generated using GENERATE-MASK by the
quorum at v.

Let V be the set of all nodes in G which are either gate nodes or input nodes corresponding to
good players in S.

Lemma A.3. {mask(v)}v∈V are fully independent and uniformly random in F. Moreover, these
are also independent of the set of all other masks.

Proof. The masks corresponding to input nodes for good players in S are uniformly random by
choice (see IC-PLAYER). To see that the masks for the gates are uniformly random, recall that if
v is a gate node mask(j) =

∑
j∈Qv

rv,j where rj,i is the value selected by player j in GENERATE-
MASK. The players commit to the rv,j values by running AVSS-SHARE If player j is good, rv,j is
uniformly random. If player j is bad then rv,j could be anything. However, once the players have
committed to the values the bad players can no longer influence the sum of the rv,j , nor can they
bias the distributions of the rv,j in any way, because of the correctness of AVSS-SHARE. Since the
sum of elements of F is uniformly random if at least one of them is uniformly random, it follows
that mask(v) is uniformly random. The independence follows from the fact that all good players
have sampled their values independently, and although the bad players have access to some of the
shares rv,j they do not have enough to reconstruct any of the masks, and this means the shares
contain no information about the masks.

Lemma A.4. For each node v in G, eventually all good players in Qv agree on a field element
mVal(v) ∈ F such that mVal(v) −mask(v) = value(v). Moreover if v is either a gate or an input
node corresponding to i ∈ S, each player in the quorum Qv has a AVSS share of mask(v). If v is
an input node for i /∈ S then mask(v) and its shares are 0.

Proof. First consider an input node v corresponding to player i. By Lemma A.2, the players in Qi
have eventually either received consistent AVSS shares of mask(v) and agreed on mVal(v) as well
as on i being in S or else they have agreed that i /∈ S and have set value(v) and mVal(v) to the
predefined value and mask(v) and all its shares to 0.

Now let v be a gate node. By the correctness of GENERATE-MASK the players in Qv have
AVSS shares of mask(v). We prove the claim about mVal(v) by induction on the height of v. As a
base case, we already know from above that for input nodes v the players in Qv agree on mVal(v).
Suppose for all nodes v′ whose height is less than the height of v, that all the good players in Qv′

agree on a field element mVal(v′) and that this differs from value(v) by the field element mask(v)
they implicitly agree on through the shares they hold. Then the inductive hypothesis holds for the
children of v, which we will call u and w. In the computation at node v, the three quorums, Qv,
Qu and Qw run HW-MPC with inputs mVal(u),mVal(w) and the shares of mask(v),mask(u) and
mask(w). By correctness of HW-MPC, eventually all good players terminate the computation and
agree on a common value.
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To see that this common value is actually mask(v)+value(v) we note that the function computed
by HW-MPC consists of the following steps: 1) reconstructing mask(v),mask(u) and mask(w) from
their shares, 2) inferrring value(u) and value(w) from the corresponding masks and masked values;
3) computing value(v) from value(u) and value(w); and 4) adding mask(v) back in to get mVal(v).
All of this will, of course, be opaque to the players involved. Attempts to corrupt this computation
by lying about mVal(u) or mVal(w) are easily thwarted, because of the high redundancy in these
as inputs. For each of these masked values many more players provide them correctly as try to lie,
since each of Qu and Qw have at most 1/8th bad players. Moreover, the AVSS-RECONSTRUCT
used to infer the masks from their shares can tolerate up to a fourth of the shares being corrupted.
Thus, since all quorums are good, even if the bad players lie about their shares of the masks, they
cannot change the value of the computation. It follows that mVal(v) = value(v) + mask(v). By
induction, all the nodes in G compute the correct masked values.

Corollary A.5. Eventually all players at the output node will learn value(outnode).

Proof. By Lemma A.4, eventually all the players at the output node agree on mVal(outnode)
and have shares of mask(outnode). During OUTPUT-RECONSTRUCTION, these players run
the AVSS-RECONSTRUCT. Since at least 7/8ths of them are good, they correctly reconstruct
mask(outnode). Since all the good players at the output node know mVal(outnode), subtracting
from it the reconstructed mask(outnode), they all eventually learn value(outnode).

Lemma A.6. Eventually value(outnode) is learned by all good players.

Proof. This follows by induction. Since quorum 1 is at the output node, Corollary A.5 provides a
base case. Now suppose the correct output has been learned by all the players in quorums numbered
j for all j < i. Consider the players in quorum i. During the run of OUTPUT-PROPAGATION,
they will receive putative values for the output from the players at quorum bi/2c. Since quorum
bi/2c is good, and by induction hypothesis all good players in it have learned the correct output, it
follows that all good players in quorum bi/2c send the same message, which is the correct output.
By Lemma A.1 eventually all good players in quorum i learn the correct output. By induction, all
the players learn the correct value.

A.1 Input Privacy

We devote the rest of the section to showing that privacy of inputs is preserved. All results in this
section are conditioned on the event that all the quorums are good.

Recall that V is the set of nodes in G that are either gate nodes or input nodes corresponding
to good players in S.

Lemma A.7. Let v be any node in V other than the output node. Using only messages received
by him as part of the algorithm, no player can learn any information about value(v), except what
is implicit in his own input and the final output value(outnode) of the circuit.

Proof. We prove this for a gate node v. By Lemmas A.3 and A.4, the value recovered by HW-MPC
during the computation of g is mVal(v) = value(v)+mask(v), where mask(v) is a uniformly random
element of F, independent of all other randomness in the algorithm. In particular this means that
mVal(v) holds no information about value(v). If player i is not in any of the quorums at v or its
neighbors, then all the messages he receives during the algorithm are independent of mask(v), and
hence mVal(v), and hence he cannot learn anything about value(v). On the other hand, if player
i is involved in the computation of v or one of its neighbors, then he may hold a share mask(v)
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as well as shares of the individual random field elements whose sum is mask(v) . In this case we
appeal to the privacy of HW-MPC and the embedded VSS algorithm to see that although he may
learn mVal(v), he cannot learn any additional information about the shares of mask(v) and hence
about mask(v) itself. Thus, he cannot learn any information about value(v) except what is implicit
in his input and the circuit output value(outnode).

The proof for an input node of a good player in S is similar except that we will have to appeal
to the privacy of AVSS-SHARE rather than the privacy of HW-MPC.

Lemma A.8. The input privacy of player i /∈ S is preserved.

Proof. The security of AVSS-SHARE ensures that player i’s input is not discovered by the players
in the Qi. Since i /∈ S, i’s input is not used in any further part of the algorithm, no other messages
sent in the algorithm can contain any information about it.

We now explore a stronger notion of privacy. Ben-Or et al. [5] distinguish between the two
kinds of deviant behaviour among players. The bad players are players controlled by an adversary
who may indulge in arbitrary kinds of erratic behaviour to try to break the protocol in any way
they can. However Ben-Or et al. also consider players who are good, in the sense that they follow
the protocol, but may also send and receive messages external to the protocol, to attempt to learn
whatever additional information they can. Such players are called gossiping players. A protocol is
called t-private if no coalition of size t (including coalitions of gossiping players) can learn anything
more than what is implied by their private inputs and the circuit output. The synchronous MPC
protocol of [5] is (n/3− δ)-private for any δ > 0.

We note that our algorithm is susceptible to adaptively chosen coalitions of gossiping players.
Indeed, if all the players in a quorum at a node v gossip with each other, they can reconstruct
mask(v) and hence value(v). In particular, the players in the quorum at an input node can jointly
reconstruct the corresponding input.

However, we can establish the following result, which shows that for large coalitions chosen
non-adaptively (in particular, the adversarial players) our algorithm will preserve privacy.

Lemma A.9. Let A be any set of players such that for every quorum Q, A ∩ Q contains fewer
than half of the players in Q. Let v be any node in V . Then the coalition A cannot learn any
information about value(v) that cannot be computed from their (collective) private inputs and the
circuit output value(outnode).

Proof. Once again we prove this only for gate node v in V . The proof for an input node is similar.
We know that HW-MPC when run at v computes value(v)+ mask(v), where mask(v) is uniform in
F and independent of all other randomness in the algorithm. As noted in the proof of Lemma A.7,
the players in A who are not in the quorums at v or any of its neighbors are irrelevant to the
coalition: all of the information that they hold is completely independent of mask(v) and mVal(v),
so they cannot assist in uncovering any information about value(v), except what is implicit in their
private inputs.

Now consider the players in the quorums at v or any of its neighbors. These players participate
in one or more of the instances of HW-MPC which involve v: the computation of v itself or the
computations in which the output of v is an input. Here we appeal to the privacy of HW-MPC to
see that the players cannot learn any additional information that is not implied by their inputs.
The players in A are unable to directly determine mask(v), since the only relevant inputs are the
shares of mask(v), and they do not have enough of those.
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Finally, let us consider the players from A at v itself. These players also do not have enough
shares of mask(v) to reconstruct it on their own. However, they recieve shares of each of the other
shares of mask(v) multiple times: once during the input commitment phase of each HW-MPC in
which v is involved. Each time, they do not get enough shares of shares mask(v) to reconstruct any
shares of mask(v). However, can they combine the shares of shares from different runs of AVSS-
SHARE for the same secret to gain some information? Since fresh, independent randomness was
used by the dealers creating these shares on each run, the shares from each run are independent
of the other runs, and so they do not collectively give any more information than each of the
runs give separately. Since each run AVSS-SHARE does not give the players in A enough shares
to reconstruct anything, it follows that they do not learn any information about mask(v). Since
mask(v) is uniformly random, so is mask(v) and it follows that the coalition A cannot get any extra
information about value(v).

Corollary A.10. The bad players cannot learn any information, except what is implied by the
output and the inputs to which they committed, about the input of any good player.

Proof. This follows immediately from Lemma A.9, since each quorum consists of no more than
1/8th bad players.

Let q be the size of the smallest quorum. Recall that q = Θ(log n).

Corollary A.11. Our algorithm is ( q2 − 1)-private.

Proof. Since q is the size of the smallest quorum, any set of size q
2 − 1 intersects a quorum Q in

fewer than half of its members. The result follows from Lemma A.9

We end with a simple analysis of the resource cost of our algorithm.

Lemma A.12. During INPUT-COMMITMENT, each node in the Commitment Tree sends at
most O(log2 n) messages.

Proof. We begin by showing that a node sends at most O(log2 n) messages to its children. We first
recall that the root starts out with a threshold of n− t. This threshold decreases to less than half
its previous size each time the root receives a message, and when it reaches zero, the root’s role in
the algorithm ends. Thus the root sends at most log(n− t) messages to its children.

Now consider an internal node v. Every time v receives a message from one of its children, its
effective threshold, τv − (λv + ρv − σv) decreases to less than half its previous value, and this can
happen at most log τv < log(n − t) times. On the other hand, every time v receives a message
from its parent, the value of τv is reset, and in the intervening period, if v has sent a message to
its parent, then σv = λv + ρv, so that the effective threshold actually increases. However, the new
value of τv is at most half the previous one, and the initial value was at most n− t, hence this can
happen at most log(n− t) times. Thus v sends at most O(log2 n) messages to its children.

Now what about the messages a node v sends to its parent? We note that initially, v may send
one message to its parent, when it has received enough inputs from its own children to meet its
initial threshold. However, subsequently, every message sent to its parent is preceded by a received
message from its parent. So the upward messages sent by v exceed the downward messages sent by
v’s parent by at most 1, and so this is also O(log2 n).

Since each quorum is mapped to at most one internal node of the count tree, it follows that the
total number of messages sent by each quorum is O(log2 n).
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Lemma A.13. If all good players follow Algorithm 1, w.h.p., each players sends at most Õ(n+mn +√
n) messages.

Proof. By Theorem 2.1 we need to send Õ(
√
n) messages per player to build the quorums. Sub-

sequently, each player must send messages for each quorum in which he is a member. Recall that
each players is in Θ(log n) quorums.

By Lemma A.12 each quorum sends O(log2(n)) messages during INPUT-COMMITMENT.
An additional polylog(n) messages are sent by each quorum to determine whether the input it
represents is in S.

Recall that each quorum is mapped to Θ(m+n
n ) nodes of G. A quorum runs GENERATE-MASK

and GATE-COMPUTATION once per node it is mapped to in G. Since each gate has in-degree 2
and out-degree at most 2, a quorum runs HW-MPC at most 3 times for every node it is mapped
to in G. polylog(n) messages are sent per player per instance of HW-MPC, GENERATE-MASK
and GATE-COMPUTATION. Finally each quorum sends O(log n) messages in the dissemination
of the output.

Thus each quorum sends polylog(n) messages per node which it represents. It follows that each
player sends Õ(n+mn +

√
n) messages.

B Asynchronous Scalable Solution to Quorum Formation Problem

This section is a modified reproduction of the paper [21] by King et al. We have changed the
algorithms and proofs as necessary to adapt to our asynchronous environment. However, we decided
to include all the algorithms and proofs to make it easier for the reader.

We start this section by defining the semi-random-string agreement problem in which we want
to reach a situation where, for any positive constant ε, 1/2 + ε fraction of players are good and
agree on a single string of length O(log n) with a constant fraction for random bits. King et al. [19]
present an asynchronous algorithm as an additional result that we call SRS-TO-QUORUM. The
SRS-TO-QUORUM algorithm can go from a solution for semi-random-string agreement problem
to the solution for quorum formation problem. Thus, their techniques can be extended to the
asynchronous model assuming a scalable asynchronous solution for semi-random-string agreement
problem. We describe CREATE-QUORUMS algorithm based on SRS-TO-QUORUM and an algo-
rithm, that solves semi-random-string agreement problem in the asynchronous model with pairwise
channels that we call SRS-AGREEMENT.

Algorithm 11 CREATE-QUORUMS

Performs by all players:

1. All players run SRS-AGREEMENT.

2. All players run SRS-TO-QUORUM

King et al. [21] present a synchronous algorithm that a set of players, up to 1/3 of which are
controlled by an adversary, can reach almost-everywhere3 agreement with probability 1−o(1). Their
main technique is to divide the players into groups of polylogarithmic size; each player is assigned

3King et al. [21] relax the requirement that all uncorrupted players reach agreement at the end of the protocol,
instead requiring that a 1 − o(1) fraction of uncorrupted players reach agreement. They refer to this relaxation as
almost-everywhere agreement.
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to multiple groups. In parallel, each group then use bin election algorithm [13] to elect a small
number of players from within their group to move on. This step is recursively repeated on the set
of elected players until size of the remaining players in this set becomes polylogarithmic. At this
point, the remaining players can solve the semi-random-string agreement problem (Similarly, they
can run bysantine agreement protocol to agree on a bit). Provided the fraction of bad players in the
set of remaining players is less than 1/3 w.h.p., these players succeed in agreeing on a semi-random
string. Then, these players communicate the result value to the rest of the players.

Bringing players to agreement on a semi-random string is trickier in the asynchronous model.
The major difficulty is that the bin election algorithm can not be used in asynchronous model since
the adversary can prevent a fraction of the good players from being heard and then prevent them to
be part of the election. We present a similar algorithm to [21] that solves this issue in asynchronous
model with private channels. The main result of this section is as follows.

Theorem B.1. Suppose there are n players, for any fix positive ε constant fraction b < 1/4 − ε
of which are bad. There is a polylogarithmic (in n) bounded degree network and a protocol such
that:

• With high probability, a 1−O(1/ lnn) fraction of the uncorrupted players agree on the same
value (bit or string).

• Every uncorrupted player sends and processes only a polylogarithmic (in n) number of bits.

• The number of rounds required is polylogarithmic in n.

The important novelty of our method compare to King et al. [21] is that instead of bin election
algorithm, we use HW-MPC to decide on the players who move on to the next level. The simple
version of our election method is presented in Algorithm 12, that has properties as described in
Lemma B.2. The complete algorithms and its proof of correctness are in the next sub sections of
this appendix.

Algorithm 12 Simple Version of ELECT-SUBCOMMITTEE

Performs by players p1, ..., pk ∈W with k = Ω(ln8 n).

1. Player pi generate a vector of c ln3 n random numbers chosen uniformly and independently
at random from 1 to k where each random number maps to one player.

2. Run HW-MPC to compute the component-wise sum modulo k of all the vectors. Arbitrarily,
add enough additional numbers from 1 to k to the sum vector to ensure it has c ln3 n unique
numbers.

3. Let WB be the set of winning players which are those associated with the components of the
sum vector.

4. Return WB as the elected subcommittee.

Lemma B.2. Let W be a committee of Ω(ln8 n) players, where the fraction, fW , of uncorrupted
players is greater than 3/4. Then, there exists some constant c, such that w.h.p., the ELECT-
SUBCOMMITTEE protocol elects a subset WB of W such that |WB| = c ln3 n and the fraction
of uncorrupted players in WB is greater than (1 − 1/ lnn)fW . The ELECT-SUBCOMMITTEE
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protocol uses a polylogarithmic number of bits and polylogarithmic number of rounds in a fully
connected network.

Proof. The proof follows from a straightforward application of union and Chernoff bounds. Let X
be the number of good players in WB. By the correctness of the HW-MPC algorithm, each player
in WB is randomly chosen from W . Let Yi be an indicator random variable, that equals to 1 if the
i-th member of WB is good. Then, E[Yi] = fW and E[X] = fW c1 ln3 n. Using Chernoff bounds,

we have Pr[X < (1− 1/ lnn)fW c1 ln3 n] = Pr[X < (1− 1/ lnn)E[X]] ≤ e−
E[X]/ ln2 n

2 < 1/nc. Since
fW > 1/2, setting c1 = 4c, establishes the first part of Lemma B.2.

We establish a polylogarithmic bound on the number of bits used in ELECT-SUBCOMMITTEE
protocol since the bit cost of ELECT-SUBCOMMITTEE is polynomial in the number of players
participating in the algorithm.

B.1 The election graph

Our algorithms make use of an election graph to determine which players will participate in which
elections. This graph was described in [20, 21] and is repeated here.

Before describing the election graph, we first present a result similar to that used in [8]. Let X
be a set of players. For a collection F of subsets of X, a parameter δ, and a subset X ′ of X, let
F(X ′, δ) be the sub-collection of all F ′ ∈ F for which

|F ′
⋂
X ′|

|F ′|
>
|X ′|
|X|

+ δ.

In other words, F(X ′, δ) is the set of all subsets of F whose overlap with X ′ is larger than the
“expected” size by more than a δ fraction.

Let Γ(r) denote the neighbors of node r in a graph.

Lemma B.3. Let l, r, n be positive integers such that l and r are all no more than n and r/l ≥
ln1−zn. Then, there is a bipartite graph G(L,R) such that |L| = l and |R| = r and

1. Each node in R has degree lnz n.

2. Each node in L has degree O((r/l) lnz n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then for any subset L′ of L,
|F(L′, 1/ lnn)| < max(l, r)/ lnz−2 n.

The proof of Lemma B.3 follows from a counting argument using the probabilistic method and
is omitted.

The following corollaries follows immediately by repeated application of the above lemma.

Corollary B.4. Let `∗ be the smallest integer such that n/ ln`
∗
n ≤ ln10 n. There is a family

of bipartite graphs G(Li, Ri), i = 0, 1, . . . , `∗, and constants c1 and c2 such that |Li| = n/ lni n,
|Ri| = n/ lni+1 n, and

1. Each node in Ri has degree lnc1 n.

2. Each node in Li has degree O(lnc2 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then for any subset L′i of Li,
|F(L′i, 1/ lnn)| < |Ri|/ ln6 n.
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4. Let F ′ be the collection of sets Γ(l) for each l ∈ L. Then for any subset R′i of Ri,
|F ′(R′i, 1/ lnn)| < |Li|/ ln6 n.

Corollary B.5. Let `∗ be the smallest integer such that n/ ln`
∗
n ≤ ln10 n. There is a family of

bipartite graphs G(Li, Ri), i = 0, 1, . . . , `∗, such that |Li| = n/ lni n, |Ri| = n/ lni+1 n, and

1. Each node in Ri has degree ln5 n.

2. Each node in Li has degree O(ln4 n).

3. Let F be the collection of sets Γ(r) for each r ∈ R. Then for any subset L′i of Li,
|F(L′i, 1/ lnn)| < |Li|/ ln3 n.

Lemma B.3 and its corollaries show there exists a family of bipartite graphs with strong ex-
pansion properties which allow the formation of subsets of players where all but a small fraction
contain a majority that are uncorrupted.

We are now ready to describe the election graph. Throughout, we refer to nodes of the election
graph as e-nodes to distinguish them from nodes of the static network. Let `∗ be the minimum
integer ` such that n/ ln` n ≤ ln10 n; note that `∗ = O(lnn/ ln lnn). The topmost layer `∗ has
a single e-node which is adjacent to every e-node in layer `∗ − 1. For the remaining layers ` =
0, 1, ..., `∗ − 1, there are n/ ln`+1 n e-nodes. There is an edge between the ith e-node, A, in layer `
and the jth e-node, B, in layer `+ 1 iff there is an edge between the ith node in L`+1 and the jth
node in R`+1 from Corollary B.5. In such a case, we say that B is the parent of A, and A is the
child of B. Note that e-nodes have many parents.

Each e-node will contain a set of players known as a committee. All e-nodes, except for the
one on the top layer and those in layer 0, will contain c ln3 n players. Initially, we assign the n
players to e-nodes on layer 0 using the bipartite graph G(L0, R0) described in Corollary B.5. The
ith player is a member of the committee contained in the jth e-node of layer 0 iff there is an edge
in G between the ith node of L0 and the jth node of R0. Note every e-node on layer 0 has ln5 n
players in it.

The e-nodes on higher layers have committees assigned to them during the course of the protocol.
Let A be an e-node on layer ` > 0, let B1, . . . , Bs be the children of A on layer `− 1, and suppose
that we have already assigned committees to e-nodes on layers lower than `. If ` < `∗, we assign
a committee to A by running Elect-Subcommittee on the players assigned to B1, . . . , Bs, and
assigning the winning subcommittee to A. (Note that we can run each of these elections in parallel.)
If A is at layer `∗, the players in A, B1, . . . , Bs, run byzantine agreement for Byzantine Agreement.

B.2 The polylogarithmic bounded degree static network.

We now repeat the description of the bounded degree static network [21] and show how it can be
used to hold elections specified by the election graph. For each e-node A, we form a collection of
players which we call it s-node: s(A). Intuitively, the s-node s(A) serves as a central communication
point for an election occurring at e-node A. Our goal is to bound the fraction of s-nodes controlled
by the adversary by a decreasing function in n, namely 1/ ln10 n, for each layer. As the number of
s-nodes grows much smaller with each layer, we need to make each s-node more robust. To do this,
the number of players contained in the s-node increases with the layer. Specifically, the s-nodes
for layer i are sets of lni+12 n players. We determine these s-nodes using the bipartite graph from
Lemma B.3, where L is a collection of n nodes, one for each player, R is the set of s-nodes for layer
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i and the degree of each node in R is set to lni+12 n. The neighbors of each node in R constitute a
set of players in an s-node on layer i.

We use the term link to denote a direct connection in the static network. The communications
for an election A will all be routed through s(A): a message from a player x to s(A) on layer i
will pass from the player to a layer 0 s-node, whose players will forward the message to a layer 1
s-node and so on, the goal being to reliably transmit the message via increasingly larger s-nodes up
to s(A). Similarly, communications to an individual player x from s(A) will be transmitted down
to a layer 0 s-node whose players will transmit the message to x. We describe the connections in
the static network.

Connections in the static network

• Let A be an e-node on layer 0 in the election graph. Every player in A has a link to every
player in s(A).

• Let A and B be e-nodes in the election graph at levels i and i− 1 respectively such that A is
a parent of B. Thus, s(A) has lni+12 n players in it and s(B) has lni+11 n players in it. Let
G be a bipartite graph as in Lemma B.3 where L is the set of players in s(A), R is the set
of players in s(B) and the degree of R is set to lnc1 n and the degree of L is set to O(lnc2 n).
If there is an edge between two nodes in L and R respectively, then the corresponding player
in s(A) has a link to the corresponding player in s(B). We will sometimes say that s(A) is
adjacent to s(B) in the static network.

The following lemma follows easily from the application of Lemma B.3 and its corollaries. Item
(1) follows from Lemma 3.1; items (2) and (4) from Corollary 3.2; and item (3) from Corollary
3.1. Although item (2) only makes a guarantee about layer 0 e-nodes, we will see eventually that
w.h.p., the fraction of bad e-nodes on every layer is small.

Lemma B.6. W.h.p., the election graph and the static network have the following properties:

1. (Bad s-nodes) Any s-node whose fraction of corrupt players exceeds b+ 1/ lnn will be called
bad. Else we will call the s-node good. No more than a 1/ ln10 n fraction of s-nodes on any
given layer are bad.

2. (Bad e-nodes) Any e-node whose fraction of corrupt players exceeds b+ 1/ lnn will be called
bad. Else we call the e-node good. No more than a 1/ ln2 n fraction of e-nodes on layer 0 are
bad.

3. (Bad s-node to s-node connection) For any pair of e-nodes A and B joined in the election
graph, the players in s-nodes s(A) and s(B) are linked such that the following holds. For any
subset WA of players in s(A), at most a 1/ ln6 n fraction of players in s(B) have more than a
|WA|/|s(A)|+ 1/ lnn fraction of their links to s(A) with players in WA.

4. (Bad e-node to e-node connection) Let |I| represent the total number of e-nodes on layer i
in the election graph. For any set W of e-nodes on any layer i, at most a 1/ ln2 n fraction of
e-nodes on layer i+ 1 have more than |W |/|I|+ 1/ lnn fraction of their neighbors in W .

The degree of the static network is polylogarithmic
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B.3 Communication Protocols

A permissible path is a path of the form P = x, s(A0), s(A1), ..., .s(Ai) where x is a player in A0, i
is the current layer of elections being held, each Aj is an e-node on layer j, and there is an edge in
the election graph between Aj and Aj+1 for j = 0, ..., i. Each player y in an s-node s(A) on each
layer j keeps a List of permissible paths which determine which players’ messages it will forward.
The List (for y ∈ s(A)) represents y’s view of which players are elected (to the subcommittee) at A
that are still participating in elections on higher layers. If y’s List indicates that x is such a player,
then the List will also have the entire path for x, which stretches from x to the elections on layer i
in which x is currently participating in. We have the following definitions.

• We say a s-node knows a message [resp., knows a permissible path, or resp., knows a List of
permissible paths] if 1− b−2/ lnn players in the s-node are uncorrupted and receive the same
message [resp., have the same path on their Lists, or resp., all have the same List.]

• A permissible path P is good if every s-node on the path knows P . Else the path is bad.
We will show our construction of the static network ensures at most a 1/ lnn fraction of the
permissible paths are bad.

We now describe three primitive communication subroutines: Sendhop, Send, and Mes-
sagePass. The subroutine Sendhop describes how s-nodes (with direct links) communicate with
each other, Send describes how a player communicates with an s-node, and MessagePass de-
scribes how two players communicate with each other.

Sendhop(s, r,m, P ): A message m can be passed from s (the sender) to r (the receiver) from a
level i to a level i− 1 or from a level i to a level i+ 1, where s and r are s-nodes on these layers or
one of s, r is a 0-layer s-node and the other is a player. If a player x sends a message to a layer 0
s-node s(A) it sends the message to every player in s(A) (note by construction it will have a direct
link with every player in s(A)). Similarly if a message is sent from a layer 0 s-node s(A) to a player
x, every player in s(A) sends the message to x.

When an s-node s(A) sends a message to s-node s(B), every player in s(A) sends the message
to those players of s(B) to which it has a direct link. When each player in s(B) receives such a
set of messages, it waits until it receives the same messages from the majority to determine the
message. If there is no majority value, the player ignores the message. Along with sending the
message the players also send information which specifies along which path P the message is being
sent. Each time a message is received by a player of an s-node s(B) on layer j ≤ i, it checks that:

1. The message came from the s-node previous to it in the path P ; if not the message is dropped.

2. The path P (or its reverse) is on its List of permissible paths. If not, the message is dropped.

3. Only messages that conform to the protocol in size and number are forwarded up and down
the permissible paths. If more or longer messages are received from a player, messages from
that player are dropped.

Send(s, r,m, P ): {Of the first two parameters, one must be a player (“x”) and one must be an
s-node (“s(A)”). The path P contains the first parameter s as its start and the second parameter r
as its endpoint.} Send(s, r,m, P ) sends the message m from s to r along the path P via repeated
application of Sendhop.
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MessagePass(x ∈ A, y ∈ B,m,Px, Py): { Both A and B are adjacent e-nodes. Hence, s(A) and
s(B) are adjacent in the static network. } A message from player x in e-node A sends message m
to player y in e-node B by first calling Send(x, s(A),m, Px). Then s(A) sends m to s(B) by calling
Sendhop(s(A), s(B),m, P ), where P is the path consisting of two s-nodes s(A), s(B). Finally, the
message is transmitted from s(B) to y by calling Send(s(B), y,m, P ry ), where P ry is the reversal of
path Py.

B.4 The Protocol for SRS-AGREEMENT

Before we describe the SRS-AGREEMENT protocol, we first need to adapt the Elect-Subcommittee
protocol for the static network. Let A be an e-node with children B1, . . . , Bs, and let X be the
set of all players from B1, . . . , Bs. For each i ∈ [s] and x ∈ Bi, let Px denote a good path of
s-nodes from x to s(Bi), concatenated with s(A). At the start of the election for A, we assume that
each node in Px knows Px and s(A) knows {Px | x ∈ X}. We now describe the implementation
of the ELECT-SUBCOMMITTEE algorithm. Every player x ∈ X generate a vector of random
numbers chosen uniformly and independently at random where each random number maps to one
player. The players use the HW-MPC protocol to determine the winners. (Recall that the number
of players in e-nodes is always polylogarithmic, so this can be done sending only polylogarithmic
messages.) The list of winners is sent up to s(A), where each player in s(A) takes a majority to
determine the winners. Then s(A) sends down the list of winners along all the permissible paths
to each player x ∈ X. players on the path (i.e. in s-nodes along the path) update their Lists
of permissible paths to remove those player-paths who lost as well as those player-pairs who won
too many elections (we will quantify this shortly), and make ln4 n copies of each of the winners’
paths and concatenate a different layer i + 1 s-node parent onto each one. We present a detailed
description of Elect-Subcommittee below.

The condition in Step 5 that requires players who have won more than 8 elections to be elim-
inated is a technical condition that insures the protocol is load-balanced and players in an s-node
do not communicate more than a polylogarithmic number of bits. We now describe the SRS-
AGREEMENT protocol.

Note every player is a member of s(A∗), thus Steps 5 and 6 will insure the final result of the
protocol is communicated to every player.

B.5 Proofs

To establish the correctness of the protocol presented in Section B.4, we first state some claims
regarding the primitive communication protocols. Their proofs follow by straightforward proba-
bilistic arguments and are omitted in the interest of space. Recall the fraction of corrupted players
is b, where b < 1/4− ε for any fix positive ε.

Claim B.7. Let s(A) and s(B) be s-nodes on consecutive layers. Assume the following three
conditions hold.

• Both s(A) and s(B) are good.

• s(A) is on a permissible path known by s(B).

• There exists a set W of players from s(A) such that for every message m, all players in W
are uncorrupted and agree on a message m. Further W consists of at least a 1 − b − 2/ lnn
fraction of the players in s(A)

25



Algorithm 13 Elect-Subcommittee:

1. For each x ∈ X: // This phase done in parallel

2. player x randomly selects one of k/(c1 ln3 n) random numbers chosen uniformly and inde-
pendently at random from zero to k where each random number maps to one player.

3. players in X run HW-MPC to compute the component-wise sum modulo k of all the vector.
Arbitrarily, add enough additional numbers to the vector to ensure it has c ln3 n unique
numbers.

4. Let M be the set of winning players, which are those associated with some component of the
vector sum.

5. Each y ∈ X sends M to s(A) by calling Send(y, s(A),M, Py).

6. The players in s(A) determine M by waiting until they receive the majority of same
messages. These become the elected players.

7. For each player x ∈ X that is elected, the players in s(A) use Send(s(A), x,m, P rx ) to tell x,
along with each s-node in Px, that x was elected.

8. Each player in each s-node revises its l ist of permissible paths to:

Retain only the winners. Eliminate players who have won more than 8 elections. Make
ln4 n copies of remaining permissive paths, concatenating each with a different s-node
neighbor on layer i+ 1.

9. s(A) sends its list to every adjacent s-node s(B) on layer i + 1 using Send-
hop(s(A), s(B),m, P ), where P is the path consisting only of s(A), s(B).

Algorithm 14 Scalable-SRS-AGREEMENT:

1. For l = 1 to l∗:

2. For each e-node A in layer l, (let B1, ..., Bs be the children of A in layer l−1 of the election
graph.)

3. If l < l∗, run Elect-Subcommitteeon the players in nodes B1, ..., Bs. Assign winning
players to node A.

4. Else players in nodes B1, ..., Bs solve semi-random-string agreement problem.

5. Let A∗ be the e-node on layer l∗, every player x assigned to A∗ communicates the result of
step four to s(A∗) using Send(x, s(A∗),m, Px).

6. Every player in s(A∗) waits for the majority of same message to determine the result of step
four.
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Then there is a set W ′ of players from s(B) such that for every message m, every player in W ′

is uncorrupted and agrees on the message m after Sendhop(s(A), s(B),m, P ) is called. (Here, P is
the path s(A), s(B).) Further, W ′ consists of all but a 1/ ln6 n fraction of the uncorrupted players
in s(B).

Proof. Every player in W is good and sends the same massage to its connected players in s(B).
The players in s(B) can afford to wait for the majority of same messages, since s(A) is good and
W consists of at least 1− b− 2/ lnn fraction of players which is more than 1/2 and for majority we
need to receive a fraction of 1/2 same messages from the players in s(A). Thus, all good player but
a 1/ ln6 n fraction of players in s(B) will eventually receive the message based on corollary B.4.

Claim B.8. Let x be an uncorrupted player. Assume Px is a good path. Then after Send(x, s(A),m, Px)
is executed, there is a fixed set W of uncorrupted players which contains all but a 1/ ln6 n fraction
of the uncorrupted players in s(A) and every player z ∈W agrees on m.

An election at e-node A is legitimate if the following two conditions hold simultaneously for more
than a 3/4 fraction of players x participating in the election at A: (1) player x is uncorrupted; (2)
The path Px is good.

Lemma B.9. For a legitimate election at node A, let X be a set of uncorrupted players with good
permissible paths. (Note |X| > 3 ln8 n/4.) Let W be the set of uncorrupted players in s(A) that
know X. Then after the execution of Elect-subcommittee, the players in W know the winners
of the election in A, as do the s-nodes that belong to good paths Px.

Proof. From Claim B.8, we have that every message m sent by MessagePass(y ∈ Bi, z ∈
Bj ,m, Py, Pz) from y ∈ X to z ∈ X is received by some fixed set W of uncorrupted players in
s(Bi), such that W contains at least 1− b− 2/ lnn fraction of the players in s(Bi). By Claim B.7,
every message sent by y is received by z. Since X contains more than 3/4 of the total players
participating in the election, (after running HW-MPC) all the players in X will all agree on the
same set of for random players. Thus after the players in X send these values to s(A), s(A) will
know the winners. When s(A) sends these winners to X, by repeated application of Claim B.7, we
have every x ∈ X and every s-node in Px will know these winners.

We have shown that in a legitimate election at node A, s(A) knows the list of winners. We next
consider when paths are dropped from the permissible path Lists.

B.5.1 The removal of permissible paths from Lists

Let y be a player in some s-node on layer i. A permissible path Px is removed from a player y’s
List on layer i if y receives a message from an s-node above it in Px, indicating either x has won
more than 8 elections or x lost in the election held at the last node of Px. Here, we consider when
Px is removed for the former reason. I.e., we give an upper bound on the fraction of players that
are reported to have won too many elections on layer i. First we consider the effect of legitimate
elections. The following lemma, a version of which appears in [20, 21], shows that on a given layer
a very small fraction of uncorrupted players win more than 8 times in legitimate elections.

Lemma B.10. W.h.p., the players that win more than 8 elections, counting multiplicities, account
for no more than a 16/ ln3 n fraction of the uncorrupted players that are winners of legitimate
elections.
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Next we bound the effect of elections that are not legitimate. We first consider the case where
s(A) is good, yet the fraction of uncorrupted players participating in A with good paths is less than
3/4. For the remainder of the proof we shall treat such an e-node A as a bad e-node.

Claim B.11. Suppose less than a 1/7 fraction of the uncorrupted players of a good s(A) agree on
a message m. Then after Sendhop(p(A), p(B),m, P ) is executed, all but a 1/ ln6 n fraction of the
good players in s(B) will ignore m.

Proof. Even if the corrupted players agree on m, since b < 1/4, the total fraction of players in s(A)
sending the message m is less than 11/28. Thus at most a 1/ ln6 n fraction of the players in s(B)
will receive m from a majority of players in s(A).

Hence a good s(A) can only communicate 7 different sets of winners to the s-nodes below
it. Since each uncorrupted player will send ln3 n winners, the total number of winners sent is at
most 7 ln3 n. Hence a bad e-node can cause at most 7 ln3 n players to have their permissible paths
removed. Next we consider the effect of a bad s-node. We will assume one bad s-node s(A) on layer
i can cause the removal of all the permissible paths for every player participating in the election at
A. Since ln8 n players participate in an election, and fewer than a 1/ ln10 n fraction of the s-nodes
are bad on a layer, the fraction of uncorrupted winners affected is less than 1/ ln2 n. Thus we can
bound the fraction of the uncorrupted winners on any layer i that have their permissible paths
removed by 1/ ln2 n + 1/ ln3 n + 7βi; where βi represents the fraction of bad e-nodes on layer i.
Thus we have the following lemma.

Lemma B.12. Assume the fraction of bad e-nodes on layer i is bounded by c/ ln2 n, for some
constant c. Then the fraction of uncorrupted winners that have their permissible paths removed
on layer i is bounded by 8c/ ln2 n.

B.5.2 Proof of Theorems B.1

We now complete the proof of Theorems B.1. They will follow from the lemma below.

Lemma B.13. On layer i, w.h.p., at least a 1−4/ ln2 n fraction of s-nodes s(Aj) have the following
properties:

• s(Aj) is good.

• At least a 1− b− 4i/ lnn fraction of the players in node Aj are uncorrupted and have good
paths to s(Aj) (note this implies s(Aj) knows this path). That is, Aj is a good e-node.

Proof. We prove the lemma by induction. On all layers and particularly layer 0, only a 1/ ln10 n
fraction of the s-nodes are bad. If s(A) is good, then every player in A has a good path to s(A).
Further by construction all but a 1/ ln2 n fraction of the e-nodes on layer 0 consist of at least a
1− b− 1/ lnn fraction of uncorrupted players. So the lemma is true on layer 0.

Assume the lemma is true for layer i. Then a 1 − 4/ ln2 n fraction of e-nodes are good, more
specifically these e-nodes have at least a 1− b− 4i/ lnn fraction of uncorrupted players that have a
good path to their corresponding s-node. Since the election is legitimate by Lemmas B.2 and B.9,
w.h.p., after Elect-Subcommittee at least a 1 − b − 4i/ lnn − 1/ lnn fraction of the players
elected are uncorrupted and have a good path to any good parent of their s-node. Thus at least a
1− b− (4i+ 1)/ lnn fraction of the players elected at layer i are uncorrupted and have good paths
to good parent s-nodes on layer i+1. By Lemma B.12 this fraction is reduced by at most 32/ ln2 n.
Thus at least a 1−b−(4i+2)/ lnn fraction of the players elected at layer i are uncorrupted and have
good paths to good parent s-nodes on layer i+ 1. Since the fraction of bad s-nodes on layer i+ 1
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is at most 1/ ln10 n, by Corollary B.5 at least a 1− 1/ ln2 n− 1/ ln10 n fraction of the e-nodes (and
their corresponding s-nodes) are good on layer i+1, and have at least a 1−b−(4i+2)/ lnn−1/ lnn
fraction of uncorrupted players that have good paths to their corresponding s-nodes.

By Lemma B.13, w.h.p. the layer `∗ e-node is good. Thus the players in this e-node succeed
in solving the semi-random-string agreement problem (step 4 of algorithm SRS-AGREEMENT).
Since all the players are in the s-node (though they may appear multiple times) corresponding
to A on `∗, by Claim B.8 all but a O(1/ lnn) fraction of the good players learn the final result.
To prove the number of bits sent by each player is polylogarithmic we note each player is in a
polylogarithmic number of e-nodes and s-nodes on each layer i, and participates in at most a
polylogarithmic number of election on layer i. Since the number of layers is O(lnn) Theorem B.1
follows. Finally, the correctness of Theorem 2.1 follows from Theorem B.1 and the correctness of
SRS-TO-QUORUM protocol.
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