
Byzantine Agreement in
Polynomial Expected

Time

Jared Saia

Joint with Valerie King

New Mexico

UNM CS Research

HPC Security

Reliable, decentralized
computation

Bio
Computer Immune

Systems

Biological
Simulations; Comp.

Medicine

Cyberdefense through
data mining

Group Decisions
Periodically, components unite in a decision

Idea: components vote. Problem: Who counts the
votes?

Idea: Majority Filtering
Input Output

0

0

0

1

1

0

0

0

0

0

Idea: Majority Filtering
Input Output

0

0

1

1

0

0

0

0

Problem
Input Output

0

0

1

1

0

0

1

1

0

0

1

1

Byzantine Agreement

Each processor starts with a bit

Goal: 1) all good procs output the same bit; and 2)
this bit equals an input bit of a good proc

t = # bad procs controlled by an adversary

Problem
Input Output

0

0

1

1

0

0

1

1

0

0

1

1

Idea
Input Output

Byzantine
Agreement

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

?

Input Output

Byzantine
Agreement

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

?

All good procs always output same bit

Input Output

Byzantine
Agreement

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

1

?

If majority bit held by >= 3 good procs,
then all procs will output majority bit

1982: FLP show that 1 fault makes
deterministic BA impossible in asynch
model

2007: Nancy Lynch wins Knuth Prize
for this result, called “fundamental in
all of Computer Science”

Impossibility Result

Applications
Peer-to-peer networks
“These replicas cooperate with one another in a Byzantine agreement
protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH ’08]

• Also: Control systems, Databases, Sensor networks, Cloud Computing,
etc.

Applications
Peer-to-peer networks
“These replicas cooperate with one another in a Byzantine agreement
protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH ’08]
Also: Databases, State Machine Replication, Secure Multiparty
Computation, Sensor Networks, Cloud Computing, Control systems,
etc.

Model

Public channels

Asynchronous

Unlimited messages for bad procs

Adaptive adversary

Adv. takes over procs at any time, up to t total

Previous Work
Time is defined to be the maximum length of any
chain of messages

In ’83, Ben-Or described the first algorithm to solve
BA in this model

His algorithm requires expected exponential time

[Ben-Or et al., ’06] : ``In the case of an asynchronous
network, achieving even a polynomial rounds BA
protocol is open.”

Previous Work
Time is defined to be the maximum length of any
chain of messages

In ’83, Ben-Or described the first algorithm to solve
BA in this model

His algorithm requires expected exponential time

[Ben-Or et al., ’06] : ``In the case of an asynchronous
network, achieving even a polynomial rounds BA
protocol is open.”

Computation is instantaneous

Our Result

First algorithm that runs in expected polynomial
time in this model

Our algorithm runs in expected O(n2.5) time

Byzantine Agreement in Polynomial Expected Time

[Extended Abstract]

Valerie King
⇤

Dept. of Computer Science, University of Victoria
P.O. Box 3055

Victoria, BC, Canada V8W 3P6
val@cs.uvic.ca

Jared Saia
†

Dept. of Computer Science, University of New
Mexico

Albuquerque, NM 87131-1386
saia@cs.unm.edu

ABSTRACT
In the classic asynchronous Byzantine agreement problem,
communication is via asynchronous message-passing and the
adversary is adaptive with full information. We present a
polynomial expected time algorithm to solve asynchronous
Byzantine Agreement when the adversary controls a con-
stant fraction of processors. This is the first improvement
in running time for this problem since Ben-Or’s exponential
expected time solution in 1983.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems

General Terms
Theory

Keywords
Byzantine Agreement, Distributed Computing, Randomized
Algorithms, Consensus

1. INTRODUCTION
How can we build a reliable system our of unreliable parts?

Byzantine agreement is fundamental to addressing this ques-
tion. The Byzantine agreement problem is to devise an algo-
rithm so that n agents, each with an private input can agree
on a single common output that is equal to some agent’s
input. For example, if all processors start with 1, they must
all decide on 1. The processors should successfully termi-
nate despite the presence of t = ✓(n) bad processors. An

⇤This research was partially supported by an NSERC grant
†This research was partially supported by NSF CAREER
Award 0644058, NSF CCR-0313160, and an AFOSR MURI
grant.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise, to

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.

STOC ’13 Palo Alto, CA USA

Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

adversary controls the behavior of the bad processors which
can deviate from the algorithm in arbitrary ways. Byzan-
tine agreement is one of the most fundamental problems in
distributed computing; it has been studied for over 30 years
and is referenced in tens of thousands of papers.
In this paper, we consider Byzantine agreement in the

challenging classic asynchronous model. The adversary is
adaptive: it can determine which processors to corrupt and
what strategy these processors should use as the algorithm
proceeds. Communication is asynchronous: the scheduling
of the delivery of messages is set by the adversary, so that
the delays are unpredictable to the algorithm. Finally, the
adversary has full information: it knows the states of all pro-
cessors at any time, and is assumed to be computationally
unbounded. Such an adversary is also known as “strong” [6].
The major constraint on the adversary is that it cannot

predict future coinflips, and we assume that each processor
has its own fair coin and may at any time flip the coin and
decide what to do next based on the outcome of the flip.
Time in this model is defined to be the maximum length

of any chain of messages (see [12, 6]). In particular, all com-
putation by individual processors is assumed to be instan-
taneous, and sending a message over the network is counted
as taking 1 unit of time.
The only results known to the authors for this classic

model are the works of Ben-Or (1983) [8] and Bracha (1984)
[7]. Ben-Or gave a Byzantine agreement (BA) algorithm tol-
erating t < n/5. Bracha improved this tolerance to t < n/3.
Unfortunately, both of these algorithms run in exponential
expected time if t = ⇥(n). As recently as 2006, Ben-Or,
Pavlov and Vaikuntanathan [9] wrote:

“In the case of an asynchronous network, achieving even a
polynomial-rounds BA protocol is open. We note that the
best known asynchronous BA protocols [8, 7] have exponen-
tial expected round-complexity”

To the authors’ knowledge, we present the first algorithm
for this problem to achieve better than exponential expected
run time. Our main result is the following.

Theorem 1. Let n be the number of processors. There is
a t = ⇥(n) such that Byzantine Agreement can be solved in
expected time O(n2.5) and expected polynomial bits of com-
munication, in the asynchronous message passing model with
an adaptive, full-information adversary that controls up to t
processors.

Note that we leave open the problem of whether the com-
putations required by each individual processor can be done

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Ben-Or’s Algorithm

 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:

Send your vote to everyone

Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit; else set
vote to GC

Output your vote

Ben-Or’s Algorithm

fraction >= 2/3. I’m
voting for 0.

0

0

0

0

0

0

1

0

0

0

0

1

1

1

fraction < 2/3. I’m
checking the coin.

0

1

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

All-
to-all

Note: The procs with fraction >= 2/3
will all change vote to same value

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

Probability 1/2 that both groups change vote
to the same value

All-
to-all

fraction >= 2/3. I’m
voting for 0.

fraction < 2/3. I’m
checking the coin.

Probability 1/2 that both groups change vote
to the same value

Once this happens, all votes of good
procs will be equal evermore

All-
to-all

Prob of failure = (1/2)clogn

Probability 1/2 that both groups change vote
to the same value

Once this happens, all votes of good
procs will be equal evermore

All-
to-all

Prob of failure = (1/2)clogn

= 1/nc

Probability 1/2 that both groups change vote
to the same value

Once this happens, all votes of good
procs will be equal evermore

All-
to-all

Prob of failure = (1/2)clogn

= 1/nc

Prob of success = 1� 1/nc

Probability 1/2 that both groups change vote
to the same value

Once this happens, all votes of good
procs will be equal evermore

All-
to-all

Prob of failure = (1/2)clogn

whp

Prob of success = 1� 1/nc

= 1/nc

Probability 1/2 that both groups change vote
to the same value

Once this happens, all votes of good
procs will be equal evermore

Idea for fail-stop faults (see e.g.
[AC ’08])

Flip n2 coins. Let heads be +1 and tails be -1, and
dev be the sum of all coins

With constant probability, |dev| ≥ kn for any
constant k

If |dev| ≥ kn

Direction of dev gives a fair global coin

Direction of dev is robust to loosing some coins

Key Idea

Each proc flips n coins; deviation (dev) is the sum
of all n2

If dev ≥ kn, direction of dev is a fair global coin

Problem: Bad procs may lie about their coinflips

Q: Can we determine which procs are bad by
studying deviation of coinflips?

Deviation Probabilities

deviation

probability

Deviation Probabilities

deviation

probability n-t procs

t procs

Deviation Probabilities

deviation

probability n-t procs

t procs

prob n-t procs
have dev ≥ kn

kn

Deviation Probabilities

deviation

probability n-t procs

t procs

prob n-t procs
have dev ≥ kn

kn-kn
prob t good

procs have dev
≤ -kn

Deviation Probabilities

deviation

probability n-t procs

t procs

prob n-t procs
have dev ≥ kn

kn-kn
prob t good

procs have dev
≤ -kn

observed
prob for t
bad procs

Key Idea

With constant probability, the direction of good
dev gives a fair global coin

Bad nodes need to generate bad dev. in the
opposite direction of equal magnitude to foil this
good event

Problem (for bad): There are fewer bad procs than
good ones; if the few bad procs generate large
amounts of bad dev. repeatedly, we can find them

Reliable Broadcast
(Bracha)

All coinflip values sent using reliable broadcast

Ensures if a message is “received” by a good proc,
same message is eventually “received” by all procs

Prevents equivocation

Doesn’t solve BA

If a bad player reliably broadcasts, may be case
that no good player “receives” the message

Coinflip Messages

We can ensure the following:

Each processor broadcasts no more than n
coinflips

Bad procs forced to be consistent about their
coinflip values

Most (n-4t) good processors receive all but 2
coinflips from all good processors

Deviation

We assume all coinflips are either +1 or -1

The deviation of p in an iteration is the absolute
value of the sum of p’s coinflips

The direction of p in an iteration is the sign of
the sum of p’s coinflips

idev(S,i): absolute value of all coinflips sent by
procs in S in iteration i

Perspective

In reality, different processors may receive
different sets of coinflips

To be precise, we should have subscripts for terms
like idev to indicate the n different perspectives

In this talk, we omit subscripts and assume
perspective of a processor that receives all coinflips

Iterations and Epochs

In each iteration, we run Ben-Or

There are cn iterations in an epoch

In each epoch, we expect a constant fraction of
iterations to be good i.e. dev. of good procs is ≥ B
in right direction (B = c’n for a fixed c’)

Iterations and Epochs

In each iteration, we run Ben-Or

There are cn iterations in an epoch

In each epoch, we expect a constant fraction of
iterations to be good i.e. dev. of good procs is ≥ B
in right direction (B = c’n for a fixed c’)

In a good iteration, bad procs must have dev. ≥ B/2

(Remaining “good” deviation undone by scheduler)

Key fact

In every non-terminating epoch e, there is a set of
c2n iterations Ie and a set of ≤t processors Be , such
that for all i in Ie:

idev(Be,i) ≥ B/2

Bipartite Graph

Bipartite Graph

processors iterations

edge between
each proc p and
each iter i with

weight = dvtn of
p in iter i

Bipartite Graph
|R| = cn

c2nt

� �/2 weightBe Ie

|L| = n

processors iterations

edge between
each proc p and
each iter i with

weight = dvtn of
p in iter i

cumdev(p)

cumdev(p) starts at 0

In each epoch, for every proc p in Be, cumdev(p) +=
“deviation of each processor p in direction of Be,
summed over all iterations Ie ”

We blacklist any proc p when cumdev(p) exceeds
n1.5(ln n)

Algorithm

Algorithm

Run an epoch (cn iterations of modified Ben-Or)

If the epoch fails, find sets Be and Ie

Increase cumdev scores for every proc in Be by
amount they contributed to dev in each iter in Ie

Blacklist blacklist any proc p when cumdev(p)
exceeds n1.5(ln n)

(We also blacklist any proc which has highly
unlikely dev in any iteration (> c’n.5 log n))

cumdev facts

Let X be the sum of cumdev(p) for all procs p

Fact 1: X is upper bounded by ~n2.5(ln n)

Fact 2: X increases by (B/2)c2n ~ n2 in every epoch

Thus there are ~n.5(ln n) epochs

Lemma 12

Lemma 12: Assume the number of blacklisted procs
is ≤t. Then in every non-terminating epoch e, there
is a set of c2n iterations Ie and a set of ≤t processors
Be , such that for all i in Ie:

idev(Be,i) ≥ B/2

Lemma 14

Lemma 14: The number of blacklisted good procs
is no more than t (whp).

Sketch of Lemma 14
Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e

Sketch of Lemma 14
Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e

Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) ≤ (B/5)c2n

Sketch of Lemma 14
Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e

Fact 2: X increases by (B/2)c2n in every epoch

Thus: cumdev(BAD⋂Be,e) ≥ (3 B/10)c2n

Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) ≤ (B/5)c2n

Sketch of Lemma 14

cumdev(GOOD,e) increases by ≤ (2 B/10)c2n

cumdev(BAD⋂Be,e) increases by ≥ (3 B/10)c2n

You can see where this is going!

Proof of Lemma 13

Let G = GOOD⋂Be

Fix a set G, a set Ie and a mapping, d, from
iterations in Ie to {-1,+1}

Let Y = sum of coins generated by G in iterations Ie

in directions given by d

Proof of Lemma 13
Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) ≤ (B/5)c2n

Let G = GOOD⋂Be

Fix a set G, a set Ie and a mapping, d, from
iterations in Ie to {-1,+1}

Let Y = sum of coins generated by G in iterations Ie

in directions given by d

Proof of Lemma 13
Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) ≤ (B/5)c2n

Let G = GOOD⋂Be

Fix a set G, a set Ie and a mapping, d, from
iterations in Ie to {-1,+1}

Let Y = sum of coins generated by G in iterations Ie

in directions given by d

We use Y to bound amount added to cumdev(G)
in epoch e

Bounding Y

Pr(Y � (�/6)(c2n))  e�(c2n�/6)2/2(|G|c2n2)

 e�.026c2n2/t

Chernoff bound

Bounding Y

Pr(Y � (�/6)(c2n))  e�(c2n�/6)2/2(|G|c2n2)

 e�.026c2n2/t

Chernoff bound

Let ⇠ be event that Y � (�/6)(c2n) for any G, Ie, and mapping d

•
�
cn
c2n

�
 (ce/c2)c2n ways to pick the iterations Ie

•
Pt

i=1

�
n
i

�
 2

n
ways to pick the set G

• 2

c2n
ways to pick the mapping d

Bounding Y

Pr(Y � (�/6)(c2n))  e�(c2n�/6)2/2(|G|c2n2)

 e�.026c2n2/t

Chernoff bound

Let ⇠ be event that Y � (�/6)(c2n) for any G, Ie, and mapping d

•
�
cn
c2n

�
 (ce/c2)c2n ways to pick the iterations Ie

•
Pt

i=1

�
n
i

�
 2

n
ways to pick the set G

• 2

c2n
ways to pick the mapping d

Union Bound

Pr(⇠)  (ce/c2)
c2n2n2c2ne�.026c2n2/t

 e11c2n�(.026c2n2/t)

 e�⌦(n) Setting n/t � 500

Union Bound

Pr(⇠)  (ce/c2)
c2n2n2c2ne�.026c2n2/t

 e11c2n�(.026c2n2/t)

 e�⌦(n) Setting n/t � 500

Another union bound over the polynomial
number of epochs and (views of) all good procs
completes the proof.

Conclusion

First expected polynomial time algorithm for
traditional Byzantine agreement

Previous best algorithm (Ben-or’s) was expected
exponential time

New technique: design of algorithms that force
attackers into statistically deviant behavior that is
detectable

Open Problems
Can we improve resilience (currently we must
have t ≤ n/500)

Our algorithm requires exponential computation.
Can we reduce this to polynomial computation?

Computational problem is similar to finding a
hidden high-weight subgraph

Can we improve other randomized algorithms by
forcing bad procs into detectably deviant
behavior?

Questions

?

