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Group Decisions

o Periodically, components unite in a decision

o Idea: components vote. Problem: Who counts the
votes?




Idea: Majority Filtering
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Byzantine Agreement

o Each processor starts with a bit

o Goal: 1) all good procs output the same bit; and 2)
this bit equals an input bit of a good proc

o t = # bad procs controlled by an adversary
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Byzantine
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All good procs always output same bit

Input Output
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[f majority bit held by >= 3 good procs,
then all procs will output majority bit
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Impossibility Result

o 1982: FLP show that 1 fault makes
deterministic BA impossible in asynch
model

e 2007: Nancy Lynch wins Knuth Prize
for this result, called “fundamental in
all ot Computer Science”




Applications

e Peer-to-peer networks

“These replicas cooperate with one another in a Byzantine agreement

protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ "00]

o Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD '03]

o Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]




Applications

o Peer-to-peer networks

“These replicas cooperate with one another in a Byzantine agreement

protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ 00]

e Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD 03]

o Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]

o Also: Databases, State Machine Replication, Secure Multiparty
Computation, Sensor Networks, Cloud Computing, Control systems,
et




Model

o Public channels
o Asynchronous
o Unlimited messages for bad procs

o Adaptive adversary

Adv. takes over procs at any time, up to t total




Previous Work

e Time is defined to be the maximum length of any
chain of messages

e In ’83, Ben-Or described the first algorithm to solve
BA in this model

o His algorithm requires expected exponential time

o [Ben-Or et al., "06] : “'In the case of an asynchronous
network, achieving even a polynomial rounds BA
protocol 1s open.”




Previous Work

e Time is defined to be the maximum length of any
chain of messages Computation is instantaneous

e In ’83, Ben-Or described the first algorithm to solve
BA in this model

o His algorithm requires expected exponential time

o [Ben-Or et al., "06] : “'In the case of an asynchronous
network, achieving even a polynomial rounds BA
protocol 1s open.”




Our Result

e First algorithm that runs in expected polynomial
time in this model

e Our algorithm runs in expected O(n?®) time

THEOREM 1. Let n be the number of processors. There s
at=0O(n) such that Byzantine Agreement can be solved in
expected time O(n2'5) and expected polynomzual bits of com-
munication, in the asynchronous message passing model with
an adaptive, full-information adversary that controls up to t

PTroOCESSOTS.




BA with Global Coin, GC
Ben-Or’s Algorithm

Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2 /3, set vote to majority bit; else set
vote to GC




BA with Global Coin, GC
Ben-Or’s Algorithm

Set your vote to input bit
Repeat clogn times:
Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2 /3, set vote to majority bit; else set
vote to GC

Output your vote
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Note: The procs with fraction >=2/3
will all change vote to same value
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Probability 1/2 that both groups change vo
to the same value
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Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore
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Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @
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Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @
1/n°
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Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @
1/n°

Prob of success =1 —1/n°
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Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @

Prob of success :

whp
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Idea for fail-stop faults (see e.§.
[AC’08])

e Flip n? coins. Let heads be +1 and tails be -1, and
dev be the sum of all coins

o With constant probability, | dev| > kn for any

constant k
o If |Idevl| =kn
e Direction of dev gives a fair global coin

e Direction of dev is robust to loosing some coins




Key Idea

e Each proc flips n coins; deviation (dev) is the sum
of all n?

o If dev > kn, direction of dev is a fair global coin
o Problem: Bad procs may lie about their coinflips

o Q: Can we determine which procs are bad by
studying deviation of coinflips?




Deviation Probabilities
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~ Deviation Probabilities
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Deviation Probabilities
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Key Idea

o With constant probability, the direction of good
dev gives a fair global coin

o Bad nodes need to generate bad dev. in the
opposite direction of equal magnitude to foil this
good event

o Problem (for bad): There are fewer bad procs than
good ones; if the few bad procs generate large
amounts of bad dev. repeatedly, we can find them




Reliable Broadcast
(Bracha)

o All coinflip values sent using reliable broadcast

e Ensures if a message is “received” by a good proc,
same message is eventually “received” by all procs

e Prevents equivocation

e Doesn’t solve BA

e If a bad player reliably broadcasts, may be case
that no good player “receives” the message




Coinflip Messages

e We can ensure the following:

e Each processor broadcasts no more than n
coinflips

e Bad procs forced to be consistent about their
coinflip values

o Most (n-4t) good processors receive all but 2
coinflips from all good processors




Deviation

o We assume all coinflips are either +1 or -1

o The deviation of p in an iteration is the absolute
value of the sum of p’s coinflips

o The direction of p in an iteration is the sign of
the sum of p’s coinflips

e idev(S,1): absolute value of all coinflips sent by
procs in S in iteration 1




Perspective

o In reality, different processors may receive
different sets of coinflips

o To be precise, we should have subscripts for terms
like idev to indicate the n different perspectives

o In this talk, we omit subscripts and assume
perspective of a processor that receives all coinflips




Iterations and Epochs

e In each iteration, we run Ben-Or
e There are cn iterations in an epoch

o In each epoch, we expect a constant fraction of
iterations to be good i.e. dev. of good procs is > B
in right direction (B = ¢’n for a fixed ¢’)




Iterations and Epochs

e In each iteration, we run Ben-Or
e There are cn iterations in an epoch

o In each epoch, we expect a constant fraction of
iterations to be good i.e. dev. of good procs is > B
in right direction (B = ¢’n for a fixed ¢’)

e In a good iteration, bad procs must have dev. > B/2

o (Remaining “good” deviation undone by scheduler)




Key fact

In every non-terminating epoch e, there is a set of
con iterations I. and a set of <t processors Be, such
that for all i in L

idev(B,,i) > B/2




Bipartite Graph




Bipartite Graph

edge between
each proc p and
each iter i with
weight = dvtn of
p 1n 1ter 1

Processors iterations
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cumdev(p)

o cumdev(p) starts at 0

e In each epoch, for every proc p in Be, cumdev(p) +=
“deviation of each processor p in direction of B,
summed over all iterations I ”

o We blacklist any proc p when cumdev(p) exceeds
nl>(In n)
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Algorithm

e Run an epoch (cn iterations of modified Ben-Or)
o If the epoch fails, find sets Be and I.

e Increase cumdev scores for every proc in Be by
amount they contributed to dev in each iter in I.

o Blacklist blacklist any proc p when cumdev(p)
exceeds nl->(In n)

o (We also blacklist any proc which has highly
unlikely dev in any iteration (>c'n?logn))




cumdev facts

o Let X be the sum of cumdev(p) for all procs p

o Fact 1: X is upper bounded by ~n?>(In n)

e Fact 2: X increases by (B/2)con ~ n? in every epoch

Thus there are ~n->(In n) epochs




Lemma 12

Lemma 12: Assume the number of blacklisted procs
is <t. Then in every non-terminating epoch e, there
is a set of con iterations I. and a set of <t processors
B., such that for all i in Le:

idev(B,,i) > B/2




Lemma 14

o Lemma 14: The number of blacklisted good procs
is no more than t (whp).




Sketch of Lemma 14

o Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e
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cumdev for all procs in S in epoch e

e Lemma 13: Whp, for any epoch e,

cumdev(GOOD,e) < (B/5)cn




Sketch of Lemma 14

o Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e

e Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) < (B/5)cn

o Fact 2: X increases by (B/2)con in every epoch

e Thus: cumdev(BADNBe,e) = (3 B/10)cn




Sketch of Lemma 14

o cumdev(GOOD,e) increases by < (2 B/10)con
o cumdev(BADNB,,e) increases by > (3 B/10)con

e You can see where this is going!




Proof of Lemma 13

o Let G = GOODNBe

e Fix a set G, a set I and a mapping, d, from
iterations in I. to {-1,+1}

e Let Y = sum of coins generated by G in iterations Ie
in directions given by d
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Proof of Lemma 13

Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) < (B/5)con

o Let G = GOODNBe

e Fix a set G, a set I and a mapping, d, from
iterations in I. to {-1,+1}

e Let Y = sum of coins generated by G in iterations Ie
in directions given by d

We use Y to bound amount added to cumdev(G)

in epoch e




Bounding Y

Chernoff bound
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Bounding Y

Chernoff bound
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o 29" ways to pick the mapping d




Bounding Y

Chernoff bound

e

L = (5/6)(on) < SO

Let £ be event that Y > (5/6)(con) for any G, I., and mapping d

o (C‘;"Z) g ways to pick the iterations /.

¢ (") g@ways to pick the set G

o @ ways to pick the mapping d




Union Bound
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Union Bound
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Another union bound over the polynomial
number of epochs and (views of) all good procs
completes the proof. B




Conclusion

o First expected polynomial time algorithm for
traditional Byzantine agreement

e Previous best algorithm (Ben-or’s) was expected
exponential time

o New technique: design of algorithms that force
attackers into statistically deviant behavior that is
detectable




Open Problems

o Can we improve resilience (currently we must
have t <n/500)

o Our algorithm requires exponential computation.
Can we reduce this to polynomial computation?

o Computational problem is similar to finding a

hidden high-weight subgraph

o Can we improve other randomized algorithms by
forcing bad procs into detectably deviant
behavior?
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