Byzantine Agreement in
Polynomial Expected
Time

Jared Saia

Joint with Valerie King

New Mexico

-
-
-
.
-
-
-
.
-
.
.
-
-
-
-
.
-
-
-
-
-
-
-
-
-
-
.
-
.
-
-
-
-
-
-
-
.
-
-
-
-
-
.
-
-
-
-
-
.
-
-
-
-
-
-
-
-
.
.
-
-
-
-
-
-
.
-
-
-
-
-
-
.
-
-
-
.
-
»
-
.
-
»
-
.
-
.
-
.
-
.
-
.
-
.
-
.
-
.
-
.
-
-
.
.
.
.
.
-
.
-
-
.
-
-
.
-
-
-
.
-
-
-
-
-
-
-
.
-
-
-
-
-
-
-
-

UNM CS Research

~ Biological
Sirﬁnulations; Comp.
~ Medicine

Computer Immung
Systems

Cyberdefense through

data mining

I?eliable, decentralized
. computation

Group Decisions

o Periodically, components unite in a decision

o Idea: components vote. Problem: Who counts the
votes?

Idea: Majority Filtering

Input Output

0

0

Idea: Majority Filtering

Input Output

i)

Byzantine Agreement

o Each processor starts with a bit

o Goal: 1) all good procs output the same bit; and 2)
this bit equals an input bit of a good proc

o t = # bad procs controlled by an adversary

Problem

Input Output

i)
& N0

Byzantine

: Agreement

All good procs always output same bit

Input Output

e
R =

Byzantine

Agreement

[f majority bit held by >= 3 good procs,
then all procs will output majority bit

Input Output

e
R =

Byzantine

Agreement

Impossibility Result

o 1982: FLP show that 1 fault makes
deterministic BA impossible in asynch
model

e 2007: Nancy Lynch wins Knuth Prize
for this result, called “fundamental in
all ot Computer Science”

Applications

e Peer-to-peer networks

“These replicas cooperate with one another in a Byzantine agreement

protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ "00]

o Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD '03]

o Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]

Applications

o Peer-to-peer networks

“These replicas cooperate with one another in a Byzantine agreement

protocol to choose the final commit order for
updates.” [KBCCEGGRWWWZ 00]

e Rule Enforcement

“... requiring the manager set to perform a Byzantine agreement
protocol” [NWD 03]

o Game Theory (Mediators)

“deep connections between implementing mediators and various
agreement problems, such as Byzantine agreement” [ADH "08]

o Also: Databases, State Machine Replication, Secure Multiparty
Computation, Sensor Networks, Cloud Computing, Control systems,
et

Model

o Public channels
o Asynchronous
o Unlimited messages for bad procs

o Adaptive adversary

Adv. takes over procs at any time, up to t total

Previous Work

e Time is defined to be the maximum length of any
chain of messages

e In ’83, Ben-Or described the first algorithm to solve
BA in this model

o His algorithm requires expected exponential time

o [Ben-Or et al., "06] : “'In the case of an asynchronous
network, achieving even a polynomial rounds BA
protocol 1s open.”

Previous Work

e Time is defined to be the maximum length of any
chain of messages Computation is instantaneous

e In ’83, Ben-Or described the first algorithm to solve
BA in this model

o His algorithm requires expected exponential time

o [Ben-Or et al., "06] : “'In the case of an asynchronous
network, achieving even a polynomial rounds BA
protocol 1s open.”

Our Result

e First algorithm that runs in expected polynomial
time in this model

e Our algorithm runs in expected O(n?®) time

THEOREM 1. Let n be the number of processors. There s
at=0O(n) such that Byzantine Agreement can be solved in
expected time O(n2'5) and expected polynomzual bits of com-
munication, in the asynchronous message passing model with
an adaptive, full-information adversary that controls up to t

PTroOCESSOTS.

BA with Global Coin, GC
Ben-Or’s Algorithm

Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2 /3, set vote to majority bit; else set
vote to GC

BA with Global Coin, GC
Ben-Or’s Algorithm

Set your vote to input bit
Repeat clogn times:
Send your vote to everyone
Let fraction be fraction of votes for majority bit

If fraction >= 2 /3, set vote to majority bit; else set
vote to GC

Output your vote

=
e
2
@\
|
N\
AR
S
-_—
QO
=
&

-
S/ =

-}

v

201330 B0 B0 50 o Bo o e

(@)

fraction < 2/3. I'm
checking the coin.

#
#
#
%)
#
#

s =

=

oo e o oo . o o oo

= ¢

Note: The procs with fraction >=2/3
will all change vote to same value

g
.
.
. i
- it
.
.
.t
-t

oo e o oo . o o oo

= ¢

Probability 1/2 that both groups change vo
to the same value

g
.
.
. i
- it
.
.
.t
-t

Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

#
#
)
#
#
#
#
#
)

“B01230 10 B0 o -0 1o 1o

Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @

#
#
)
#
#
#
#
#
)

02030 =50 o Bo 2o 3o

Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @
1/n°

#
#
)
#
#
#
#
#
)

02030 =50 o Bo 2o 3o

Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @
1/n°

Prob of success =1 —1/n°

#
#
)
#
#
#
#
#
)

02030 =50 o Bo 2o 3o

Probability 1/2 that both groups change vo
to the same value

Once this happens, all votes of good
/l\ procs will be equal evermore

Erob of failune — @

Prob of success :

whp

#
#
)
#
#
#
#
#
)

02030 =50 o Bo 2o 3o

Idea for fail-stop faults (see e.§.
[AC’08])

e Flip n? coins. Let heads be +1 and tails be -1, and
dev be the sum of all coins

o With constant probability, | dev| > kn for any

constant k
o If |Idevl| =kn
e Direction of dev gives a fair global coin

e Direction of dev is robust to loosing some coins

Key Idea

e Each proc flips n coins; deviation (dev) is the sum
of all n?

o If dev > kn, direction of dev is a fair global coin
o Problem: Bad procs may lie about their coinflips

o Q: Can we determine which procs are bad by
studying deviation of coinflips?

Deviation Probabilities

0.0(?/"
f L

l \
-
0 .?06 [
I
l

iprobability

deviation

Deviation Probabilities

\
\

-\ t procs
0 ,("'(]6 : \\.‘ /

n-t procs

0 .()Oi}»r\
iprobability

0.002 F

deviation

~ Deviation Probabilities

fprobability

0.002 F

0.008 R

9'.0

kn

deviation

[F\ t procs
0-9'.06: .'... /

n-t procs

prob n-t procs
have dev > kn

Deviation Probabilities

zprobability

et -l

prob t good
procs have dev

0.0084,

! / t prOCS

o.q'()(s :

9'.0

/ 00021

n-t procs

prob n-t procs
have dev > kn

-kn

deviation

Deviation Probabilities

0.0084,

t procs
0-(,".06 . |'.|. /

%probab1l1ty n-t procs

9".0
é)bserved

E)rob for t_
bad procs

fooozl prob n-t procs
| have dev > kn

SR kn

prob t good
procs have dev

deviation

Key Idea

o With constant probability, the direction of good
dev gives a fair global coin

o Bad nodes need to generate bad dev. in the
opposite direction of equal magnitude to foil this
good event

o Problem (for bad): There are fewer bad procs than
good ones; if the few bad procs generate large
amounts of bad dev. repeatedly, we can find them

Reliable Broadcast
(Bracha)

o All coinflip values sent using reliable broadcast

e Ensures if a message is “received” by a good proc,
same message is eventually “received” by all procs

e Prevents equivocation

e Doesn’t solve BA

e If a bad player reliably broadcasts, may be case
that no good player “receives” the message

Coinflip Messages

e We can ensure the following:

e Each processor broadcasts no more than n
coinflips

e Bad procs forced to be consistent about their
coinflip values

o Most (n-4t) good processors receive all but 2
coinflips from all good processors

Deviation

o We assume all coinflips are either +1 or -1

o The deviation of p in an iteration is the absolute
value of the sum of p’s coinflips

o The direction of p in an iteration is the sign of
the sum of p’s coinflips

e idev(S,1): absolute value of all coinflips sent by
procs in S in iteration 1

Perspective

o In reality, different processors may receive
different sets of coinflips

o To be precise, we should have subscripts for terms
like idev to indicate the n different perspectives

o In this talk, we omit subscripts and assume
perspective of a processor that receives all coinflips

Iterations and Epochs

e In each iteration, we run Ben-Or
e There are cn iterations in an epoch

o In each epoch, we expect a constant fraction of
iterations to be good i.e. dev. of good procs is > B
in right direction (B = ¢’n for a fixed ¢’)

Iterations and Epochs

e In each iteration, we run Ben-Or
e There are cn iterations in an epoch

o In each epoch, we expect a constant fraction of
iterations to be good i.e. dev. of good procs is > B
in right direction (B = ¢’n for a fixed ¢’)

e In a good iteration, bad procs must have dev. > B/2

o (Remaining “good” deviation undone by scheduler)

Key fact

In every non-terminating epoch e, there is a set of
con iterations I. and a set of <t processors Be, such
that for all i in L

idev(B,,i) > B/2

Bipartite Graph

Bipartite Graph

edge between
each proc p and
each iter i with
weight = dvtn of
p 1n 1ter 1

Processors iterations

Bipartite Graph

ILI =n

edge between
each proc p and
each iter i with

weight = dvtn of

= pan et
Processors 1terations

cumdev(p)

o cumdev(p) starts at 0

e In each epoch, for every proc p in Be, cumdev(p) +=
“deviation of each processor p in direction of B,
summed over all iterations I ”

o We blacklist any proc p when cumdev(p) exceeds
nl>(In n)

s
(e
4>
£
O
Q0
<

I I R R L A A R A AL LA AR

Algorithm

e Run an epoch (cn iterations of modified Ben-Or)
o If the epoch fails, find sets Be and I.

e Increase cumdev scores for every proc in Be by
amount they contributed to dev in each iter in I.

o Blacklist blacklist any proc p when cumdev(p)
exceeds nl->(In n)

o (We also blacklist any proc which has highly
unlikely dev in any iteration (>c'n?logn))

cumdev facts

o Let X be the sum of cumdev(p) for all procs p

o Fact 1: X is upper bounded by ~n?>(In n)

e Fact 2: X increases by (B/2)con ~ n? in every epoch

Thus there are ~n->(In n) epochs

Lemma 12

Lemma 12: Assume the number of blacklisted procs
is <t. Then in every non-terminating epoch e, there
is a set of con iterations I. and a set of <t processors
B., such that for all i in Le:

idev(B,,i) > B/2

Lemma 14

o Lemma 14: The number of blacklisted good procs
is no more than t (whp).

Sketch of Lemma 14

o Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e

Sketch of Lemma 14

o Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e

e Lemma 13: Whp, for any epoch e,

cumdev(GOOD,e) < (B/5)cn

Sketch of Lemma 14

o Let GOOD be the set of good procs, BAD be set of
bad procs; cumdev(S,e) = amount added to
cumdev for all procs in S in epoch e

e Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) < (B/5)cn

o Fact 2: X increases by (B/2)con in every epoch

e Thus: cumdev(BADNBe,e) = (3 B/10)cn

Sketch of Lemma 14

o cumdev(GOOD,e) increases by < (2 B/10)con
o cumdev(BADNB,,e) increases by > (3 B/10)con

e You can see where this is going!

Proof of Lemma 13

o Let G = GOODNBe

e Fix a set G, a set I and a mapping, d, from
iterations in I. to {-1,+1}

e Let Y = sum of coins generated by G in iterations Ie
in directions given by d

Proof of Lemma 13

Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) < (B/5)con

o Let G = GOODNBe

e Fix a set G, a set I and a mapping, d, from
iterations in I. to {-1,+1}

e Let Y = sum of coins generated by G in iterations Ie
in directions given by d

Proof of Lemma 13

Lemma 13: Whp, for any epoch e,
cumdev(GOOD,e) < (B/5)con

o Let G = GOODNBe

e Fix a set G, a set I and a mapping, d, from
iterations in I. to {-1,+1}

e Let Y = sum of coins generated by G in iterations Ie
in directions given by d

We use Y to bound amount added to cumdev(G)

in epoch e

Bounding Y

Chernoff bound

P?“(Y Z (6/6)(62’0)) 6—(ch5/6)2/2(\G|ch2)

—.026con? /t

€

Bounding Y

Chernoff bound

Pr(Y > (8/6)(can)) o~ (c2nB/6)?/2(|G|can?)

6—.026(:2712 e

Let £ be event that Y > (5/6)(con) for any G, I., and mapping d

o (C'"’) < (ce/cy)™ ways to pick the iterations I,

con

e > . (?) < 2" ways to pick the set G

o 29" ways to pick the mapping d

Bounding Y

Chernoff bound

e

L = (5/6)(on) < SO

Let £ be event that Y > (5/6)(con) for any G, I., and mapping d

o (C‘;"Z) g ways to pick the iterations /.

¢ (") g@ways to pick the set G

o @ ways to pick the mapping d

Union Bound

(66/62)czn2n202n6—02662n2/t

6110271—(.0260277,2/16)

g i) Setting n/t > 500

S
o
=

Union Bound

(66/62)czn2n202n€—.02602n2/t

6110271—(.()26(:277,2/t)

g i) Setting n/t > 500

S
o
=

Another union bound over the polynomial
number of epochs and (views of) all good procs
completes the proof. B

Conclusion

o First expected polynomial time algorithm for
traditional Byzantine agreement

e Previous best algorithm (Ben-or’s) was expected
exponential time

o New technique: design of algorithms that force
attackers into statistically deviant behavior that is
detectable

Open Problems

o Can we improve resilience (currently we must
have t <n/500)

o Our algorithm requires exponential computation.
Can we reduce this to polynomial computation?

o Computational problem is similar to finding a

hidden high-weight subgraph

o Can we improve other randomized algorithms by
forcing bad procs into detectably deviant
behavior?

0
-
O
m
P
O
)
«

I I R R L A A R A AL LA AR

