
Byzantine Agreement in 
Polynomial Expected 

Time

Jared Saia

Joint with Valerie King



New Mexico



UNM CS Research

HPC Security

Reliable, decentralized
computation

Bio
Computer Immune

Systems

Biological 
Simulations; Comp. 

Medicine

Cyberdefense through
data mining 



Group Decisions
Periodically, components unite in a decision

Idea: components vote.  Problem: Who counts the 
votes? 
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Byzantine Agreement

Each processor starts with a bit

Goal: 1) all good procs output the same bit; and 2) 
this bit equals an input bit of a good proc

t = # bad procs controlled by an adversary
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All good procs always output same bit
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then all procs will output majority bit



1982: FLP show that 1 fault makes 
deterministic BA impossible in asynch 
model

2007: Nancy Lynch wins Knuth Prize 
for this result, called “fundamental in 
all of Computer Science”

Impossibility Result



Applications
Peer-to-peer networks
“These replicas cooperate with one another in a Byzantine agreement 
protocol to choose the final commit order for 
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement 
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various 
agreement problems, such as Byzantine agreement” [ADH ’08]

• Also: Control systems, Databases, Sensor networks, Cloud Computing, 
etc.
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protocol to choose the final commit order for 
updates.” [KBCCEGGRWWWZ ’00]
Rule Enforcement
“... requiring the manager set to perform a Byzantine agreement 
protocol” [NWD ’03]
Game Theory (Mediators)

“deep connections between implementing mediators and various 
agreement problems, such as Byzantine agreement” [ADH ’08]
Also:  Databases, State Machine Replication, Secure Multiparty 
Computation, Sensor Networks, Cloud Computing, Control systems,  
etc.



Model

Public channels

Asynchronous

Unlimited messages for bad procs

Adaptive adversary

Adv. takes over procs at any time, up to t total



Previous Work
Time is defined to be the maximum length of any 
chain of messages

In ’83, Ben-Or described the first algorithm to solve 
BA in this model

His algorithm requires expected exponential time

[Ben-Or et al., ’06] : ``In the case of an asynchronous 
network, achieving even a polynomial rounds BA 
protocol is open.”



Previous Work
Time is defined to be the maximum length of any 
chain of messages

In ’83, Ben-Or described the first algorithm to solve 
BA in this model

His algorithm requires expected exponential time

[Ben-Or et al., ’06] : ``In the case of an asynchronous 
network, achieving even a polynomial rounds BA 
protocol is open.”

Computation is instantaneous



Our Result

First algorithm that runs in expected polynomial 
time in this model

Our algorithm runs in expected O(n2.5) time
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ABSTRACT
In the classic asynchronous Byzantine agreement problem,
communication is via asynchronous message-passing and the
adversary is adaptive with full information. We present a
polynomial expected time algorithm to solve asynchronous
Byzantine Agreement when the adversary controls a con-
stant fraction of processors. This is the first improvement
in running time for this problem since Ben-Or’s exponential
expected time solution in 1983.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonnumerical Algorithms and Prob-
lems

General Terms
Theory

Keywords
Byzantine Agreement, Distributed Computing, Randomized
Algorithms, Consensus

1. INTRODUCTION
How can we build a reliable system our of unreliable parts?

Byzantine agreement is fundamental to addressing this ques-
tion. The Byzantine agreement problem is to devise an algo-
rithm so that n agents, each with an private input can agree
on a single common output that is equal to some agent’s
input. For example, if all processors start with 1, they must
all decide on 1. The processors should successfully termi-
nate despite the presence of t = ✓(n) bad processors. An
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adversary controls the behavior of the bad processors which
can deviate from the algorithm in arbitrary ways. Byzan-
tine agreement is one of the most fundamental problems in
distributed computing; it has been studied for over 30 years
and is referenced in tens of thousands of papers.
In this paper, we consider Byzantine agreement in the

challenging classic asynchronous model. The adversary is
adaptive: it can determine which processors to corrupt and
what strategy these processors should use as the algorithm
proceeds. Communication is asynchronous: the scheduling
of the delivery of messages is set by the adversary, so that
the delays are unpredictable to the algorithm. Finally, the
adversary has full information: it knows the states of all pro-
cessors at any time, and is assumed to be computationally
unbounded. Such an adversary is also known as “strong” [6].
The major constraint on the adversary is that it cannot

predict future coinflips, and we assume that each processor
has its own fair coin and may at any time flip the coin and
decide what to do next based on the outcome of the flip.
Time in this model is defined to be the maximum length

of any chain of messages (see [12, 6]). In particular, all com-
putation by individual processors is assumed to be instan-
taneous, and sending a message over the network is counted
as taking 1 unit of time.
The only results known to the authors for this classic

model are the works of Ben-Or (1983) [8] and Bracha (1984)
[7]. Ben-Or gave a Byzantine agreement (BA) algorithm tol-
erating t < n/5. Bracha improved this tolerance to t < n/3.
Unfortunately, both of these algorithms run in exponential
expected time if t = ⇥(n). As recently as 2006, Ben-Or,
Pavlov and Vaikuntanathan [9] wrote:

“In the case of an asynchronous network, achieving even a
polynomial-rounds BA protocol is open. We note that the
best known asynchronous BA protocols [8, 7] have exponen-
tial expected round-complexity”

To the authors’ knowledge, we present the first algorithm
for this problem to achieve better than exponential expected
run time. Our main result is the following.

Theorem 1. Let n be the number of processors. There is
a t = ⇥(n) such that Byzantine Agreement can be solved in
expected time O(n2.5) and expected polynomial bits of com-
munication, in the asynchronous message passing model with
an adaptive, full-information adversary that controls up to t
processors.

Note that we leave open the problem of whether the com-
putations required by each individual processor can be done



 BA with Global Coin, GC

Set your vote to input bit

Repeat clogn times:
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Let fraction be fraction of votes for majority bit

If fraction >= 2/3, set vote to majority bit;  else set 
vote to GC

Output your vote  

Ben-Or’s Algorithm
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All-
to-all

Prob of failure = (1/2)clogn

whp

Prob of success = 1� 1/nc

= 1/nc

Probability 1/2 that both groups change vote 
to the same value

Once this happens, all votes of good 
procs will be equal evermore



Idea for fail-stop faults (see e.g. 
[AC ’08])

Flip n2 coins.  Let heads be +1 and tails be -1, and 
dev be the sum of all coins

With constant probability, |dev| ≥ kn for any 
constant k

If |dev| ≥ kn

Direction of dev gives a fair global coin

Direction of dev is robust to loosing some coins



Key Idea

Each proc flips n coins; deviation (dev) is the sum 
of all n2

If dev ≥ kn, direction of dev is a fair global coin

Problem: Bad procs may lie about their coinflips

Q: Can we determine which procs are bad by 
studying deviation of coinflips?
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probability n-t procs 

t procs 

prob n-t procs
have dev ≥ kn

kn-kn
prob t good 

procs have dev 
≤ -kn

observed 
prob for t 
bad procs



Key Idea

With constant probability, the direction of good 
dev gives a fair global coin

Bad nodes need to generate bad dev. in the 
opposite direction of equal magnitude to foil this 
good event

Problem (for bad): There are fewer bad procs than 
good ones; if the few bad procs generate large 
amounts of bad dev. repeatedly, we can find them



Reliable Broadcast 
(Bracha)

All coinflip values sent using reliable broadcast

Ensures if a message is “received” by a good proc, 
same message is eventually “received” by all procs 

Prevents equivocation

Doesn’t solve BA

If a bad player reliably broadcasts, may be case 
that no good player “receives” the message



Coinflip Messages

We can ensure the following:

Each processor broadcasts no more than n 
coinflips

Bad procs forced to be consistent about their 
coinflip values

Most (n-4t) good processors receive all but 2 
coinflips from all good processors



Deviation

We assume all coinflips are either +1 or -1

The deviation of p in an iteration is the absolute 
value of the sum of p’s coinflips

The direction of p in an iteration is the sign of 
the sum of p’s coinflips

idev(S,i): absolute value of all coinflips sent by 
procs in S in iteration i



Perspective

In reality, different processors may receive 
different sets of coinflips 

To be precise, we should have subscripts for terms 
like idev to indicate the n different perspectives

In this talk, we omit subscripts and assume 
perspective of a processor that receives all coinflips



Iterations and Epochs

In each iteration, we run Ben-Or

There are cn iterations in an epoch

In each epoch, we expect a constant fraction of 
iterations to be good i.e. dev. of good procs is ≥ B   
in right direction (B = c’n for a fixed c’)



Iterations and Epochs

In each iteration, we run Ben-Or

There are cn iterations in an epoch

In each epoch, we expect a constant fraction of 
iterations to be good i.e. dev. of good procs is ≥ B   
in right direction (B = c’n for a fixed c’)

In a good iteration, bad procs must have dev. ≥ B/2   

(Remaining “good” deviation undone by scheduler)



Key fact

In every non-terminating epoch e, there is a set of 
c2n iterations Ie and a set of ≤t processors Be , such 
that for all i in Ie:

idev(Be,i) ≥ B/2 



Bipartite Graph



Bipartite Graph

processors iterations

edge between 
each proc p and 
each iter i with 

weight = dvtn of 
p in iter i



Bipartite Graph
|R| = cn

c2nt

� �/2 weightBe Ie

|L| = n

processors iterations

edge between 
each proc p and 
each iter i with 

weight = dvtn of 
p in iter i



cumdev(p)

cumdev(p) starts at 0

In each epoch, for every proc p in Be, cumdev(p) += 
“deviation of each processor p in direction of Be, 
summed over all iterations Ie ”

We blacklist any proc p when cumdev(p) exceeds 
n1.5(ln n)



Algorithm



Algorithm

Run an epoch (cn iterations of modified Ben-Or)

If the epoch fails, find sets Be and Ie

Increase cumdev scores for every proc in Be by 
amount they contributed to dev in each iter in Ie  

Blacklist blacklist any proc p when cumdev(p) 
exceeds n1.5(ln n)

(We also blacklist any proc which has highly 
unlikely dev in any iteration  (> c’n.5 log n))



cumdev facts 

Let X be the sum of cumdev(p) for all procs p

Fact 1: X is upper bounded by ~n2.5(ln n)

Fact 2: X increases by (B/2)c2n ~ n2 in every epoch

Thus there are ~n.5(ln n) epochs



Lemma 12

Lemma 12: Assume the number of blacklisted procs 
is ≤t.  Then in every non-terminating epoch e, there 
is a set of c2n iterations Ie and a set of ≤t processors 
Be , such that for all i in Ie:

idev(Be,i) ≥ B/2 



Lemma 14

Lemma 14: The number of blacklisted good procs 
is no more than t (whp).
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Let GOOD be the set of good procs, BAD be set of 
bad procs; cumdev(S,e) = amount added to 
cumdev for all procs in S in epoch e
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Sketch of Lemma 14
Let GOOD be the set of good procs, BAD be set of 
bad procs; cumdev(S,e) = amount added to 
cumdev for all procs in S in epoch e

Fact 2: X increases by (B/2)c2n in every epoch 

Thus: cumdev(BAD⋂Be,e) ≥ (3 B/10)c2n

Lemma 13: Whp, for any epoch e, 
cumdev(GOOD,e) ≤ (B/5)c2n



Sketch of Lemma 14

cumdev(GOOD,e) increases by ≤ (2 B/10)c2n

cumdev(BAD⋂Be,e) increases by ≥ (3 B/10)c2n

You can see where this is going!



Proof of Lemma 13

Let G = GOOD⋂Be

Fix a set G, a set Ie and a mapping, d, from 
iterations in Ie to {-1,+1}

Let Y = sum of coins generated by G in iterations Ie 

in directions given by d
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Proof of Lemma 13
Lemma 13: Whp, for any epoch e, 
cumdev(GOOD,e) ≤ (B/5)c2n

Let G = GOOD⋂Be

Fix a set G, a set Ie and a mapping, d, from 
iterations in Ie to {-1,+1}

Let Y = sum of coins generated by G in iterations Ie 

in directions given by d

We use Y to bound amount added to cumdev(G)
in epoch e
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Union Bound

Pr(⇠)  (ce/c2)
c2n2n2c2ne�.026c2n2/t

 e11c2n�(.026c2n2/t)

 e�⌦(n) Setting n/t � 500



Union Bound

Pr(⇠)  (ce/c2)
c2n2n2c2ne�.026c2n2/t

 e11c2n�(.026c2n2/t)

 e�⌦(n) Setting n/t � 500

Another union bound over the polynomial 
number of epochs and (views of) all good procs 
completes the proof.



Conclusion

First expected polynomial time algorithm for 
traditional Byzantine agreement 

Previous best algorithm (Ben-or’s) was expected 
exponential time

New technique: design of algorithms that force 
attackers into statistically deviant behavior that is 
detectable



Open Problems
Can we improve resilience (currently we must 
have t ≤ n/500)

Our algorithm requires exponential computation.  
Can we reduce this to polynomial computation?  

Computational problem is similar to finding a 
hidden high-weight subgraph

Can we improve other randomized algorithms by 
forcing bad procs into detectably deviant 
behavior?
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