
Secure Algorithms and Data
Structures for Massive

Networks

Joint work with: Amos Fiat(U. Tel Aviv), Valerie
King(U. Vic), Erik Vee (IBM Labs), Vishal
Sanwalani(U. Waterloo), and Maxwell Young(UNM)

Jared Saia

What is Security?

Security: Designing algorithms and data
structures which are provably robust to
attack

 Attack: An adversary controls a constant
fraction of nodes in the network

 Robust: Critical invariants provably
maintained despite efforts of adversary to
disrupt them

Our Adversary

 Controls constant fraction of the nodes in the
network

 Mostly Omniscient

 Computationally unbounded

Scalable Security

 In massive networks, number of nodes, n,
can be millions

 Thus want scalable algorithms:
 Bandwidth: each node can send and process

only polylog n bits
 Latency: polylog n
 Memory: polylog n

Outline

 Motivation
 Our Results, Scalable and Secure:

 Data Structures
 Distributed Hash Table

 Algorithms
 Leader Election, Byzantine Agreement, Global Coin

Toss

 Future Work

Motivation

 Scalability: Peer-to-peer, ad hoc, wireless
networks can have hundreds of thousands of
nodes

 Security: These networks are vulnerable
 No admission control
 Economic, social and political incentives to attack
 Adversary can take over many,many nodes (e.g.

zombienets) and use them maliciously

Motivation

 Why computationally-unbounded adversary?
 Dangerous to assume certain problems are

intractable (e.g. quantum computation can solve
factoring)

 Many real-world adversaries have access to
significant computational and/or human resources
(e.g. governments, companies, zombienets)

 Theoretically interesting

DHTs

 A distributed hash table (DHT) is a structured
peer-to-peer network that provides:
 Content storage and lookup

 Many DHTs: Chord, CAN, Tapestry, Viceroy,
Khorde, Kelips, Kademlia, etc.

 We focus on Chord

Chord

 Each peer in Chord has an
ID which locates it on the unit
circle.
 Each peer maintains links to
peers at geometrically
increasing distances from itself
 Thus, each peer can reach
any other peer in O(log n) hops
while maintaining O(log n) links

Chord
 Successor protocol enables storage and lookup of data

items

 For a point k, successor(k)
returns peer, p, which
minimizes clockwise distance
between k and p.

 If k is the key for a data
item; successor(k) is the peer
that stores that data item.

Introducing: Coyotus Adversarius
An adversary can: spam, hog bandwidth,

delete nodes, etc.

Road Runner NetWiley “the Adversary” Coyote

Chord is Vulnerable
 Chord is robust to random node deletion. But it is not robust

to adversarial attack.

Adversarial peers might:
 not forward requests
 corrupt data
 etc.

Our Goals
Design variant of Chord which is:

 Robust: ensure correctness of successor
protocol even under attack

 Scalable: bandwidth, latency and memory
are polylogarithmic in the network size

S-Chord

 Theorem: S-Chord is robust, whp, for any
time period during which:
 there are always z peers in the network for some

integer z
 there are never more than (1/4-ε)z adversarial

peers in the network for positive ε
 number of peer insertions and deletions is no

more than zk for some tunable parameter k

Our Result
 Robust:

 Correctness of successor protocol guaranteed
 Scalable:

 Resources required by S-Chord are only a
polylogarithmic factor greater than Chord in
bandwidth, latency, and linking costs

 Assumption:
 Every direct link is a private communication

channel

Main Idea: Trustworthy Small Sets
 For point x on the unit circle, define the

swarm, S(x), to be set of peers whose ID's are
located within clockwise distance of Θ((ln n)/n)
from x

Swarm Links
 Whenever a peer p links to a single peer in Chord,

p links to a set of O(logn) peers (a swarm) in S-
Chord

Chord S-Chord

Swarm Goodness Invariant

 Call a swarm good if it contains at least a 3/4
fraction of good peers and Θ(log n) peers total

 Critical invariant maintained by our DHT is
that all swarms are good

 We can use this invariant to implement the
successor protocol robustly, using majority
filtering

Successor
 If All Swarms are good, can robustly implement

Successor with majority filtering
 Takes O(log3n) messages naively

Our improvements:
• Can do in O(log2n)

messages in expectation
• Can also do with O(1) bit

blowup in expectation
using Rabin
fingerprinting and error-
correcting codes

Join Protocol
 Join protocol maintains Swarm Goodness Invariant
 When a peer joins, it must establish its own links and

links of other peers must be updated too
 We assume that a joining peer knows some good peer in

the network

Join Protocol
 Adversary selects IP

addresses so we can’t use
these to determine proper
location for a peer in our DHT

 Thus, when a new peer p
joins the network, it is
assigned an ID by a pre-
existing swarm S in the
network

 S needs a way to come to
consensus on the ID of p.

Selecting a random ID
 Use techniques from secure multiparty

computation to allow a good swarm S to agree on
a random number between 0 and 1

 Can do this even if a computationally unbounded
adversary controls a 1/4 fraction of the peers in
the swarm

 Requires private communication channels
between all peers in the swarm

A Problem
 Random ID selection will insert bad peers at

random locations
 However, adversary can target a swarm and

keep adding peers to the network, discarding
those that land outside the targeted swarm, until
there is a majority of bad peers in that swarm

 Adversary only needs to add O(z) peers before it
will be able to take over some swarm

Solution
 [S ’05] shows that if each joining peer is rotated with two

other peers selected u.a.r. that the bad peers will be
sufficiently scattered so that they can not take over a
swarm (for zk insertions)

 [KS ’04] give an algorithm for selecting a peer u.a.r. from
the set of all peers in a DHT. Algorithm can be run by a
good swarm to come to consensus on two peers
selected u.a.r.

 Combining these two results allows us to maintain the
Swarm Goodness Invariant w.h.p for zk peer joins.

Join Protocol

 The JOIN algorithm assumes that peer p knows some
correct peer q

 p first contacts peer q with a request to join the network.

 q alerts S(q) to this request and the peers in S(q) choose
a random ID for p using secure computation

 Two peers, p1 and p2, are then selected uniformly at
random and then p, p1 and p2 are rotated

All swarms are good - Pf Intuition

 Good peers are “well spread” on the unit
circle since their lifetimes are independent of
locations

 Whenever a new peer is added, there is a
small random perturbation of the peer
locations on the unit circle

 This ensures that the bad peers are also well
spread on the circle

 Thus every swarm has a majority of good
peers

Handling different estimates
 So far we have assumed that all peers know ln n and (ln

n)/n exactly – this is clearly unrealistic

 However, using standard techniques, we can ensure that
each peer has high and low estimates of these quantities

 Using these estimates, the protocols remain essentially
the same and all previous results hold.

DHT Conclusion

 S-Chord provably preserves functionality of
Chord even in the face of massive adversarial
attack.

 For n peers in the network, the resource costs
are :
 O(log n) latency and expected Θ(log2n)

messages per lookup
 Θ(log n) latency and Θ(log3n) messages per

peer join operation
 O(log2n) links stored at each peer

Outline

 Motivation
 Our Results, Scalable and Secure:

 Data Structures
 Distributed Hash Table

 Algorithms
 Leader Election, Byzantine Agreement, Global Coin

Toss
 Future Work

Leader Election

 In the leader election problem, there are n
processors, 1/3 of which are bad

 Bad processors are controlled by an
adversary which selects them before game
starts

 Goal: Design algorithm which ensures a good
processor is elected with constant probability

Leader Election

 Communication occurs in rounds, bad
processors get to see messages of all good
players before they send their messages

 Every processor has a unique ID - the ID of
the sender of a message is explicitly known
by the receiver

 Each processor has access to private
random bits which are not known to the
adversary or the other processors

Our Goal

 Previous results: can solve this problem in
small number of rounds but require that each
processor send and process a number of bits
which is linear in n

 Our goal: an algorithm which is scalable:
each good processor sends and processes a
number of bits which is at most
polylogarithmic in n (exponential decrease)

Our Result

 Assume there are n processors and strictly less than 1/3
are bad. Our algorithm elects, with constant probability,
a leader from the set of good processors such that:
 Exactly one good processor considers itself the leader
 A 1-o(1) fraction of the good processors know this

leader
 Every good processor sends and processes only a

polylogarithmic number of bits
 The number of rounds required is polylogarithmic in n

Sampling

 Result: almost all (1-o(1) fraction) of the good
processor know the leader

 Using sampling, we can bootstrap this to
ensure that w.h.p, all good processors know
the leader

 However can only do this if
 Have private communication channels
 Restrict number of messages bad nodes can send

Techniques Used

 Our algorithm makes use of a “tournament”
graph which has expander-like properties.

 Each bottom node of this graph corresponds
to a small set of randomly chosen processors

 Processors advance up the graph as they
win local elections

Techniques Used

 Q: How to ensure that the winner of some
lower election knows its competitors at the
next higher election?

 A: Idea: Use watcher sets: sets of nodes that
watch an election but don’t participate.

 Hard part: setting up these watcher sets so
that most of them can’t be taken over by the
adversary.

Extensions

 We can easily extend our result to elect with
a set of O(logn) processors such that with
high probability, a majority of these peers are
good

 This allows us to securely compute several
other problems w.h.p. e.g., majority vote,
Byzantine agreement, etc.

Conclusion

 We’ve described provable secure and
scalable
 Data Structures: Distributed Hash Table(DHT)
 Algorithms: Leader Election, Byzantine

Agreement, Global Coin Toss
 Our algorithms are robust against a

computationally unbounded, omniscient
adversary that controls a constant fraction of
the network

Future Work

 Robustification: Can we take other
algorithms and make them robust without
blowing up number of messages by too
much?
 E.g. Worm detection, Collaborative Filtering,

Auctions, Voting Protocols, Spectral
Decomposition

 Practical Applications: Can we simplify the
algorithms enough so they can be
successfully deployed on real networks?

That’s all folks!

Related Work

 Several results deal with Byzantine attacks on p2p networks.
 Common model: single attack where each peer independently has

probability p<1/2 of becoming Byzantine. [FS ’02, NW ‘03,HK ‘04]
 Problem: more likely scenario is many Byzantine peers joining the

network over time
 Awerbuch and Scheideler [AS ‘04] design a secure distributed

naming service which is robust to multiple Byzantine attacks
 Problem: requires every peer to rejoin the network after O(logn) time

steps
 Their system is not a DHT (it is a distributed naming service)

Join Protocol
 All peers in S(p) find all the peers in p's Forward and

Backward intervals

 In addition, the peers in S(p) introduce p to all peers, p',
in the network such that p is now in a Center, Forward or
Backward interval for p'

 In a similar fashion p1, p2 are rotated into their new
positions and their new Center, Forward, and Backward
intervals are established

 JOIN protocol requires O(log n) latency and O(log3n)
messages

Join Protocol

P2P Future Work

 We conjecture that these techniques can be extended to a number of
other ring-based DHTs that have a finger-function f which satisfies |
f(x) - f(x+δ)| ≤ δ for all positive δ and any point x on the unit circle

 Can these protocols or heuristics based on them be used in a
practical p2p system? How can the protocols be simplified?

 Can we improve upon the message complexity for the robust
successor protocol? Is it possible to either get less than O(log2n)
expected messages or prove that this is not possible?

