Secure Algorithms and Data
Structures for Massive
Networks

Jared Saia

Joint work with: Amos Fiat(U. Tel Aviv), Valerie
King(U. Vic), Erik Vee (IBM Labs), Vishal
Sanwalani(U. Waterloo), and Maxwell Young(UNM)

What is Security?

Security: Designing algorithms and data
structures which are provably robust to
attack

Attack. An adversary controls a constant
fraction of nodes in the network

Robust: Critical invariants provably
maintained despite efforts of adversary to
disrupt them

Our Adversary

Controls constant fraction of the nodes in the
network

Mostly Omniscient

Computationally unbounded

Scalable Security

In massive networks, number of nodes, n,
can be millions

Thus want scalable algorithms:

o Bandwidth: each node can send and process
only polylog n bits

o Latency: polylog n
2 Memory: polylog n

Outline

Motivation

Our Results, Scalable and Secure:

o Data Structures
Distributed Hash Table

o Algorithms

Leader Election, Byzantine Agreement, Global Coin
Toss

Future Work

Motivation

Scalabllity: Peer-to-peer, ad hoc, wireless
networks can have hundreds of thousands of
nodes

Security: These networks are vulnerable
2 No admission control
o Economic, social and political incentives to attack

o Adversary can take over many,many nodes (e.qg.
zombienets) and use them maliciously

Motivation

Why computationally-unbounded adversary?

o Dangerous to assume certain problems are
intractable (e.g. quantum computation can solve
factoring)

o Many real-world adversaries have access to
significant computational and/or human resources
(e.g. governments, companies, zombienets)

o Theoretically interesting

DHT's

A distributed hash table (DHT) is a structured
peer-to-peer network that provides:

o Content storage and lookup

Many DHTs: Chord, CAN, Tapestry, Viceroy,
Khorde, Kelips, Kademlia, etc.

We focus on Chord

Chord

ID which locates it on the unit
circle.

Each peer maintains links to @
peers at geometrically @
increasing distances from itself

Thus, each peer can reach @

any other peer in O(log n) hops

while maintaining O(log n) links @

Each peer in Chord has an ’@ ﬁ

Chord

Successor protocol enables storage and lookup of data
items

For a point k, successor(k)
returns peer, p, which
minimizes clockwise distance
between k and p.

If k is the key for a data
item; successor(k) is the peer
that stores that data item.

Introducing: Coyotus Adversarius

An adversary can: spam, hog bandwidth,
delete nodes, etc.

Wiley “the Adversary” Coyote Road Runner Net

Chord 1s Vulnerable

Chord is robust to random node deletion. But it is not robust
to adversarial attack.

Adversarial peers might:
not forward requests %
corrupt data
etc.
K

Our Goals

Design variant of Chord which is:

Robust: ensure correctness of successor
protocol even under attack

Scalable: bandwidth, latency and memory
are polylogarithmic in the network size

S-Chord

Theorem: S-Chord is robust, whp, for any
time period during which:

o there are always z peers in the network for some
integer z

o there are never more than (1/4-¢)z adversarial
peers in the network for positive ¢

o number of peer insertions and deletions is no
more than z* for some tunable parameter k

Our Result
Robust:

0 Correctness of successor protocol guaranteed

Scalable:

0 Resources required by S-Chord are only a
polylogarithmic factor greater than Chord in
bandwidth, latency, and linking costs

Assumption:

o Every direct link is a private communication
channel

Main Idea: Trustworthy Small Sets

For point x on the unit circle, define the
swarm, S(x), to be set of peers whose ID's are
located within clockwise distance of ©((/n n)/n)

from x

Swarm Links

Whenever a peer p links to a single peer in Chord,
p links to a set of O(logn) peers (a swarm) in S-
Chord

. st o0 o

Chord S-Chord

Swarm Goodness Invariant

Call a swarm good if it contains at least a 3/4
fraction of good peers and O(log n) peers total

Critical invariant maintained by our DHT is
that all swarms are good

We can use this invariant to implement the
successor protocol robustly, using majority
filtering

Successor

If All Swarms are good, can robustly implement
Successor with majority filtering

Takes O(log3n) messages naively

Our improvements: /

e Candoin O(log?n) p
messages in expectation

e Can also do with O(1) bit
blowup in expectation
using Rabin
fingerprinting and error- k-
correcting codes

Join Protocol

Join protocol maintains Swarm Goodness Invariant

When a peer joins, it must establish its own links and
links of other peers must be updated too

We assume that a joining peer knows some good peer in
the network

Join Protocol

Adversary selects IP
addresses so we can't use
these to determine proper
location for a peer in our DHT

Thus, when a new peer p
joins the network, it is
assigned an ID by a pre-
existing swarm S in the
network

S needs a way to come to
consensus on the ID of p.

o
©
©

Selecting a random 1D

Use techniques from secure multiparty
computation to allow a good swarm S to agree on
a random number between 0 and 1

Can do this even if a computationally unbounded
adversary controls a 1/4 fraction of the peers in

the swarm

Requires private communication channels
between all peers in the swarm

A Problem

Random ID selection will insert bad peers at
random locations

However, adversary can target a swarm and
keep adding peers to the network, discarding
those that land outside the targeted swarm, until
there is a majority of bad peers in that swarm

Adversary only needs to add O(z) peers before it
will be able to take over some swarm

Solution

[S '05] shows that if each joining peer is rotated with two
other peers selected u.a.r. that the bad peers will be
sufficiently scattered so that they can not take over a

swarm (for z¥ insertions)

[KS '04] give an algorithm for selecting a peer u.a.r. from
the set of all peers in a DHT. Algorithm can be run by a
good swarm to come to consensus on two peers
selected u.a.r.

Combining these two results allows us to maintain the
Swarm Goodness Invariant w.h.p for zX peer joins.

Join Protocol

The JOIN algorithm assumes that peer p knows some
correct peer g

p first contacts peer g with a request to join the network.

q alerts S(q) to this request and the peers in S(q) choose
a random ID for p using secure computation

Two peers, p, and p,, are then selected uniformly at
random and then p, p, and p,are rotated

All swarms are good - Pt Intuition

Good peers are “well spread” on the unit
circle since their lifetimes are independent of
locations

Whenever a new peer is added, there is a
small random perturbation of the peer
locations on the unit circle

This ensures that the bad peers are also well
spread on the circle

Thus every swarm has a majority of good
peers

Handling ditferent estimates

So far we have assumed that all peers know In n and (In
n)/n exactly — this is clearly unrealistic

However, using standard techniques, we can ensure that
each peer has high and low estimates of these quantities

Using these estimates, the protocols remain essentially
the same and all previous results hold.

DHT Conclusion

S-Chord provably preserves functionality of
Chord even in the face of massive adversarial
attack.

For n peers in the network, the resource costs
are :

0 O(log n) latency and expected ©(log?n)
messages per lookup

0 O(log n) latency and ©(log3n) messages per
peer join operation

0 O(log2n) links stored at each peer

Outline

Motivation

Our Results, Scalable and Secure:

o Data Structures
Distributed Hash Table

o Algorithms

Leader Election, Byzantine Agreement, Global Coin
Toss

Future Work

Leader Election

In the leader election problem, there are n
processors, 1/3 of which are bad

Bad processors are controlled by an
adversary which selects them before game
starts

Goal: Design algorithm which ensures a good
processor is elected with constant probability

Leader Election

Communication occurs in rounds, bad
processors get to see messages of all good
players before they send their messages

Every processor has a unique ID - the ID of
the sender of a message is explicitly known
by the receiver

Each processor has access to private
random bits which are not known to the
adversary or the other processors

Our Goal

Previous results: can solve this problem in
small number of rounds but require that each
processor send and process a number of bits
which is linear in n

Our goal: an algorithm which is scalable:
each good processor sends and processes a
number of bits which is at most
polylogarithmic in n (exponential decrease)

Our Result

Assume there are n processors and strictly less than 1/3
are bad. Our algorithm elects, with constant probability,
a leader from the set of good processors such that:

o Exactly one good processor considers itself the leader

o A 1-0(1) fraction of the good processors know this
leader

o Every good processor sends and processes only a
polylogarithmic number of bits

o The number of rounds required is polylogarithmic in n

Sampling

Result: almost all (1-0(1) fraction) of the good
processor know the leader

Using sampling, we can bootstrap this to
ensure that w.h.p, all good processors know
the leader

However can only do this if
o Have private communication channels
0 Restrict number of messages bad nodes can send

Techniques Used

Our algorithm makes use of a “tournament”
graph which has expander-like properties.

Each bottom node of this graph corresponds
to a small set of randomly chosen processors

Processors advance up the graph as they
win local elections

Techniques Used

Q: How to ensure that the winner of some
lower election knows its competitors at the
next higher election?

A: ldea: Use watcher sets: sets of nodes that
waftch an election but don’t participate.

Hard part: setting up these watcher sets so
that most of them can’t be taken over by the
adversary.

Extensions

We can easily extend our result to elect with
a set of O(logn) processors such that with
high probability, a majority of these peers are
good

This allows us to securely compute several
other problems w.h.p. e.g., majority vote,
Byzantine agreement, etc.

Conclusion

We've described provable secure and

scalable

o Data Structures: Distributed Hash Table(DHT)

o Algorithms: Leader Election, Byzantine
Agreement, Global Coin Toss

Our algorithms are robust against a

computationally unbounded, omniscient

adversary that controls a constant fraction of
the network

Future Work

Robustification: Can we take other
algorithms and make them robust without
blowing up number of messages by too
much??

o E.g. Worm detection, Collaborative Filtering,
Auctions, Voting Protocols, Spectral
Decomposition

Practical Applications: Can we simplify the

algorithms enough so they can be

successfully deployed on real networks?

That’s all folks!

Related Work

Several results deal with Byzantine attacks on p2p networks.
Common model: single attack where each peer independently has

probability p<1/2 of becoming Byzantine. [FS '02, NW ‘03,HK ‘04]

o Problem: more likely scenario is many Byzantine peers joining the
network over time

Awerbuch and Scheideler [AS ‘04] design a secure distributed
naming service which is robust to multiple Byzantine attacks

o Problem: requires every peer to rejoin the network after O(logn) time
steps

o Their system is not a DHT (it is a distributed naming service)

Join Protocol

All peers in S(p) find all the peers in p's Forward and
Backward intervals

In addition, the peers in S(p) introduce p to all peers, p',
in the network such that p is now in a Center, Forward or
Backward interval for p’

In a similar fashion p,, p, are rotated into their new
positions and their new Center, Forward, and Backward
intervals are established

JOIN protocol requires O(log n) latency and O(log®n)
messages

Join Protocol

(A) (B)

A S, _
3 Backward(p,i)
L\

(D) < (E)

\? P

S(a) % /

Center(p) /\ /\
pid
/ /
Forward(p,i)

A B . P,
ackward(p,i)
([]

Y 4
' F
\ L (F)
0'-.\/‘ -“ . *
P
' \ k pid ' p1

A ~ o ¢ Center(p)

Forward(p,i)

P2P Future Work

We conjecture that these techniques can be extended to a number of
other ring-based DHTs that have a finger-function f which satisfies |
f(x) - f(x+0)| < 0 for all positive d and any point x on the unit circle

Can these protocols or heuristics based on them be used in a
practical p2p system? How can the protocols be simplified?

Can we improve upon the message complexity for the robust
successor protocol? Is it possible to either get less than O(log?n)
expected messages or prove that this is not possible?

