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Abstract

In the last few years, it has become routine to use gene-orderdata to reconstruct phy-
logenies, both in terms of edge distances (parsimonious sequences of operations that trans-
form one end point of the edge into the other) and in terms of genomes at internal nodes, on
small, duplication-free genomes. Current gene-order methods break down, though, when the
genomes contain more than a few hundred genes, possess high copy numbers of duplicated
genes, or create edge lengths in the tree of over one hundred operations. We have constructed
a series of heuristics that allow us to overcome these obstacles and reconstruct edges distances
and genomes at internal nodes for groups of larger, more complex genomes. We present results
from the analysis of a group of thirteen modernγ-proteobacteria, as well as from simulated
datasets.

1 Introduction

Although phylogeny, the evolutionary relationships between related species or taxa, is a funda-
mental building block in much of biology, it has been surprisingly difficult to automate the process
of inferring these evolutionary relationships from moderndata (usually molecular sequence data).
These relationships include both the evolutionary distances within a group of species and the ge-
netic form of their common ancestors.

In the last decade, a new form of molecular data has become available, gene-content and gene-
order data; this new data has proved useful in shedding lighton these relationships [5, 23, 7, 12].
The order and the orientation in which genes lie on a chromosome changes very slowly, in evolu-
tionary terms, and thus provides a rich source of information for reconstructing phylogenies.

Until very recently, a major bottleneck has been that algorithms using this type of data required
that all genomes have identical gene content with no duplication. Because most sets of genomes
found in nature do not meet these requirements, researcherseither were limited to very simple
genomes (such as chloroplast organelles) or had to reduce their data by deleting all genes not
present in every genome and then delete all “copies” of each gene but one (e.g., using theexemplar
strategy [19]); the former was frustrating to biologists wanting to study more complex organisms,
while the latter resulted in data loss and consequent loss ofaccuracy in reconstruction [22].

Our group recently developed a method to compute the distance between two nearly arbitrary
genomes [11] and another to reconstruct phylogenies based on gene-content and gene-order in the
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Figure 1: The 13 gamma-proteobacteria and their reference phylogeny. Construction of gene
families and the tree is described in more detail in [10]. Gene orders were constructed using
whole-genome sequences. Protein-coding sequences were divided into gene families, and only
families present in at least three genomes were retained.

presence of mildly unequal gene content [22]. In this paper,we bring together several of these al-
gorithms and heuristics in framework that enables us to reconstruct the gene orders of the common
ancestors of the 13 modern bacteria shown in Figure 1 (from [10]). This is an ancient group of
bacteria, at least 500 millions years old [4]. It is extremely diverse, including endosymbiotic, com-
mensal, and pathogenic species, and most of the species are medically or economically important.
The evolutionary history of the group is also quite complex,including high levels of horizontal
gene transfer [9, 18, 20] and in the case ofBuchnera aphidicolaandWigglesworthia brevipalpis
massive levels of gene loss. All of this makes reconstruction of these bacteria’s evolutionary his-
tory both interesting and challenging.

The rest of this paper is organized as follows. Section 2 discusses the problem in some detail.
Section 3 summarizes prior work on phylogenetic reconstruction from gene-content and gene-order
data. Section 4 presents our framework for tackling the problem of ancestral genome reconstruc-
tion given a reference phylogeny; it is itself divided into three subsections, one on each of our three
main tools: median-finding, content determination, and gene clustering. Section 5 discusses our
approach to the testing of our framework: given that we have only one dataset and that ancestral
genomes for that dataset are entirely unknown, our testing was of necessity based on simulations.
Section 6 presents the results of this testing. We conclude with some remarks about the significance
of our work and the problems remaining to be faced.

2 The Problem

Our specific problem is the following:

• Given the gene orders of a group of genomes and given a rooted tree with these genomes at
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the leaves, find gene orders for the internal nodes of the treethat minimize the sum of all
edge lengths in the tree.

The length of an edge is defined as the minimum number of operations (from a defined set of per-
missible operations) needed to transform the genome at one end of the edge into the genome at the
other end. The genomes have no restriction on content nor on the number of duplicate copies of
individual genes. The permissible operations in our case are inversions, insertions (and duplica-
tions), and deletions; all operations are given the same cost in computing edge lengths. That we
are restricting rearrangements to inversions only comes from past findings by our groups that the
inversion phylogeny is robust even when other rearrangements, such as transpositions, were used
in creating the data [15]. Our assignment of unit costs to alloperations simply reflect insufficient
biological knowledge about the relative frequency of theseoperations.

In our setting, one insertion may add an arbitrary number of genes to a single location and one
deletion may remove a contiguous run of genes from a single location, a convention consistent with
biological reality. Gene duplications are treated as specialized insertions that only insert repeats.
Finally, on each edge a gene can either be inserted or deleted, but not both; the same holds for
multiple copies of the same gene. Allowing deletion and insertion of the same genes on the same
edge would lead to biologically ridiculous results such as deleting the entire source genome and
then inserting the entire target genome, in just two operations.

Finding internal labels that minimize edge distances over the tree has been addressed by our
group in prior work—this is the main optimization performedby our software suite GRAPPA [1].
However, even the most recent version of GRAPPA [22] is limited to relatively small genomes
(typically of organellar size, with fewer than 200 genes), with modestly unequal content and just
a few duplications, if any. In stark contrast, the bacterialgenomes in our dataset contain 3,430
different genes and range in size from 540 to 2,987 genes, with seven containing over 2,300 genes;
moreover, these genomes contain a large number of duplications, ranging from 5% to 45% of the
genome. Thus, in our model, most pairwise genomic distancesare very large: a simple pairwise
comparison along the tree of Figure 1 indicates that some edges of the tree must have lengths of
at least 300, lengths that are at least an order of magnitude larger than any found in prior uses of
GRAPPA. The large genome size, vastly unequal gene content,large number of duplications, and
large edge lengths all combine to make this data set orders ofmagnitude more difficult to analyze
than previously analyzed genome sets.

3 Prior Work

A recent review of the current work in phylogenetic reconstruction based on gene content and gene
order appears in [16]. Here we simply review the main points relevant to our work.

A heuristic used for tree-labeling in the GRAPPA software package [21] is to initialize internal
labels of the tree by some method. The number of each internalnode is pushed on a queue. Then
each number is iteratively popped off the queue, and if a new label can be found that reduces the
distance to the node’s three neighbors, the existing label is replaced with the improved label and
the numbers of the node’s neighbors are pushed onto the queue. Label replacement over the tree
stops when the queue is empty.
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GRAPPA computes a new label for a node by finding themedianof its neighbors. An opti-
mal median of three genomes is defined as a fourth genome for which the sum of the number of
operations needed to convert it into each of the three genomes is minimized. GRAPPA uses an
algorithm to find optimal inversion medians which runs in worst-case exponential time but tends to
finish quickly when the edge lengths are small, on the order of10 to 40 operations per edge [14, 22].

One approach that has successfully increased the speed of equal-content gene-order data has
been to treat groups of genes which occur in the same order andorientation in all genomes as a
single genetic unit. This condensation of identical clusters of genes avoids wasteful computation
and does not change the final result of most analyses. This approach is also used in GRAPPA [13].

A method to find the distance between two genomes with arbitrary gene content was recently
developed [11]. The method employs aduplication-renamingheuristic that matches multiple
copies of genes between genomes and renames each pair and each unmatched copy to a new,
unused gene number. This allows arbitrary genomes to converted into duplication-free genomes.
A secondary result of [11] is that, given two genomes with unequal gene content and no duplica-
tions, any optimal sequence of inversions, deletions, and insertions to convert one genome into the
other can be rearranged to contain first insertions, then inversions, and finally deletions—a type of
normal formfor the edit sequence. Deletions here are genes unique to thesource genome, while
insertions are genes found only in the target genome. Using the duplication-free genomes produced
by the duplication-renaming method of [11], an optimal inversion sequence is calculated using a
method that runs in time quadratic in the size of the consensus genomes [2, 3]. The number of dele-
tions is calculated by counting the number of Hannenhalli-Pevzner cycles that contain deletions, as
described in [6]. Finally, the number of insertions is estimated by calculating all possible positions
in the source genome to which the inversion sequence could move insertions, then choosing the
final position for each insertion that minimizes the number of groups of inserted genes.

In some genomes, especially bacterial or bacteria-derivedgenomes, genes with similar function
are often located together on one strand of a chromosome; these functional units are calledoper-
ons. In bacteria, at least, while the order of genes in an operon may change, the gene content of the
operon is much less likely to do so [17]. In gene-order data, an operon thus appears as a cluster of
gene numbers, all with the same sign. The cluster will have the same gene content across genomes,
but its genes may be in different orders. Acluster-findingalgorithm has been developed that can
identify these operon-like clusters of genes within equal-content genomes in linear time [8].

In a recent paper which carries out a similar reconstructionof gene orders for poxviruses [12],
the gene content of internal nodes was decided by assuming that the phylogenetic tree contained
a single point of origin for each gene family in the modern genomes. That point of origin was
assigned to the internal node which minimized the number of loss events necessary to achieve the
gene content of the leaf genomes.

4 Designing a Algorithmic Framework

We have brought together algorithms and heuristics from a variety of different sources in order
to tackle the general problem of finding internal gene-orderlabels for genomes at the level of
complexity that we see in the gamma-proteobacteria. We use condensation of gene clusters in
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order to reduce the size of the genomes; we devised a procedure similar in spirit to that used by
McLysaghtet al. [12] to predetermine the gene content of every internal node; and we developed
a new heuristic to compute the median of three very differentgenomes.

4.1 Medians

At the top-level, we use the queue-based tree-labeling heuristic described in Section 3. Since leaves
contain the only labels guaranteed to be correct, we update last the nodes with the longest paths to
their leaf descendants, as shown in Figure 2.

The heart of the top-level heuristic is the task of repeatedly computing the median of three
genomes. Exact median-finding algorithms are limited to relatively small genomes, small edge
lengths in the tree, and few changes in content—and none of these properties holds in our prob-
lem. We have therefore pursued a simple heuristic inspired by geometry. To find the geometric
median of three points in a plane, we can first find the point halfway between two of the three
points; the median is then one third of the way between the halfway point and the third original
point. In a similar way, we find an approximation for the genomic median by generating a sequence
of operations, or sorting sequence, that converts one of thethree genomes into another one. Then
we choose an intermediate genome partway along this sortingsequence and generate a new sorting
sequence from the intermediate genome to the third genome. Finally, we choose as the median a
genome one third of the way along this second sorting sequence.

We have extended the method used by Marronet al. [11] so that we can now enumerate all
possible positions, orientations, and orderings of genes after each operation. Basically, deleted
genes at the endpoint of an inversion are moved to the other endpoint if doing so avoids “trapping”
the deleted genes between two consensus genes that are adjacent in the target genome. Inserted
genes are moved so as to remain adjacent to one of the two consensus genes between which they
lay in the target genome. By this extension, we are able to generate the genomes produced by
“running” a portion of the sorting sequence. These intermediate genomes can then be used for the
geometry-inspired median heuristic just described. This heuristic allows a median to be computed
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Figure 2: Ordering of internal nodes by the length of their longest path to their leaf descendents (i.e.,
subtree height). Each internal node is labeled with its subtree height. Nodes with lower subtree heights are
updated before those with greather height. Leaves, marked with an ’L’, do not need to be updated. No label
is generated for the root.
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in polynomial time.
By handling inserted genes in the way just described, we overestimate the edit distance, which

Marron et al. showed at most doubles the number of operations [11]. When their original edit
distance method calculates all possible positions in the source genome to which the inversion se-
quence could move insertions and then chooses the final position for each insertion that minimizes
the number of groups of inserted genes, the method may underestimate the minimum edit distance,
because the resulting grouping of inserted genes often requires inversions simultaneously to join
inserted genes and to split deleted genes, which is not possible. We compared pairwise distances
produced by our overestimation and their underestimation to get an upper bound of the error in-
troduced by the overestimation. The average and maximum differences between the overestimate
and underestimate were 11.3% and 24.1%, respectively.

4.2 Gene Content

We predetermine the gene content of every internal node of the tree before computing any me-
dian; moreover, once the gene content of an internal node is decided, we never change it thereafter.
Since the tree is rooted, we know the direction in which time flows on each tree edge; thus, since
deletions are far more likely than insertions, we are able totake a simple approach. The number
of copies of each gene is considered over the entire tree and is decided independently of all other
genes. The number of copies of a geneg at the internal nodei is set to the maximum number of
copies ofg found in any of the leaves ini’s subtree if: (i) there are leaves both inside and outside
i’s subtree which contain at least one copy ofg; or (ii) there are leaves containing at least one copy
of g in each half ofi’s subtree. Otherwise the number of copies of geneg in nodei is set to zero.

This value can be calculated inO(NG) time, whereN is the number of nodes in the tree and
G is the number of distinct genes in all the leaves, as follows.First, for each node in the tree,
we determine the maximum number of copies of each gene from among the leaves of that node’s
subtree, using a single depth-first traversal. Next, we perform a second depth-first traversal to set
the actual number of copies of each gene at each internal node. If either of the root’s children
returns a value of zero, then we set the root’s actual number to zero as well. For each internal
node other than the root, if its parent’s actual number of copies is zero and at least one of its
two children’s subtree maximums is zero, then we set the number of copies for the gene to zero.
Otherwise we set the number of copies to the node’s subtree maximum for the gene. This approach
is similar to that taken in the study of the gene order evolution of poxviruses [12].

A consequence of this approach to determining gene content is that internal nodes possess at
least as many copies of a gene as the majority consensus of their neighbors’ gene contents. An
internal node will always possess a copy of a gene if two or more of its neighbors possess the gene
copy. (We consider the two children of the root to be neighbors.) In addition, if the median is the
nearest common ancestor of all genomes possessing the gene,it may well have more copies of the
gene than its parent and one of its children, as in the case of the black node in Figure 3. The gene
content of intermediate genomes along sorting sequences (as used in the determination of medians)
will be a union of the gene contents of each of the starting genomes, because the sorting sequence of
operations that we use always involves first insertions, then inversions, and finally deletions. There-
fore, when calculating medians from sorting sequences, there are three cases in which the number
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Figure 3: The number next to each node is the number of copies of a particular gene in that node. The
black node has two copies, for example.

of copies of a gene are not the same between the intermediate genome, the median genome, and the
median’s parent, as shown in Figure 4. In the first case (Fig. 4a), the intermediate genome has the
same number of copies as the median, but fewer than the parent. An example is the black node’s
right child in Figure 3. Here each copy in the parent that is not match by the duplication-renaming
algorithm to a copy in the intermediate genome will be excluded from the median genome. The
second case (Fig. 4b) only arises when the median genome is the nearest common ancestor of all
genomes containing the gene in question, as with the black node in Figure 3. Here, genomes along
the intermediate sequence have the same number of copies as the median and the parent of the me-
dian contains zero copies of the gene. This case is easy to handle, since a genome generated by run-
ning part of the sorting sequence from the intermediate genome to the parent will contain the same
number of copies as the median. Finally, the situation in Figure 4c can only arise when the right
child of the median is the nearest common ancestor of all genomes containing the gene. The parent
of the black node in Figure 3 fits this case. This case is also trivial to deal with, since all copies of
the gene in the intermediate genome can be simply discarded.The genomes in the sorting sequence
from the intermediate genome to the parent will then automatically contain zero copies of the gene.

Biologically, this process of finding which duplicates to include in the median corresponds to
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Figure 4:Three cases where the median genome and its neighbors have different numbers of copies of a
gene. Each node is labeled with its number of copies. Solid lines are tree edges. A dashed line between two
siblings represents the sorting sequence for that pair and the node drawn halfway along is a median of the
two siblings. A dotted line represents the first third of the sorting sequence from the intermediate genome
to the parent, stopping at the median.
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matching orthologous duplicates of each gene between genomes and to discard unmatched paral-
ogous duplicates. Since the original nucleotide sequencesare abstracted away before the analysis
begins, this ortholog matching is decided entirely on the basis of which other genes are located
next to the different homologs. Fortunately, orthologs andparalogs that can be distinguished by a
nucleotide-based analysis are assigned different gene numbers before our analysis begins. There-
fore, our method represents a reasonable way to integrate both nucleotide and gene-order data in
differentiating orthologous and paralogous homologs of genes.

4.3 Cluster Condensation

To use computational methods to extract information from larger and more complex biological data
sets, we need fast algorithms with fast implementations. Faster processing generally means that a
more thorough analysis can be performed and thus that results of higher quality can be obtained.
In our case, the limiting factor is the size of the genomes (their number is also an issue, but a much
smaller one). We thus developed a technique to identify and condense gene clusters in unequal
genomes in order to reduce the size of the genomes.

Our approach is similar to the one used in equal-content genomes, but is more general. The
condensation technique used in GRAPPA only condenses identical subsequences of genes—that
is, the genes appear in exactly the same order in all genomes under consideration. Our method
allows the condensation of clusters that can have internal reordering of genes (as long as they stay
on the same strand) and also handles the difficult cases that arise out of unequal gene content (such
as an insertion in the middle of a cluster).

To identify clusters, we first use the duplication-renamingtechnique of Marronet al. to cre-
ate duplication-free genomes. After renaming, we remove any genes are not present in all of the
genomes under examination. This step creates a group of genomes with equal gene content. We
then use the cluster-finding algorithm of Heber and Stoye [8]to find equivalent clusters of genes
within the equal-content genomes. Once clusters are identified, each one is condensed out of the
original genomes and replaced with a single marker (as if it were a single gene).

In a set of genomes with unequal gene content, there can be genes inside a cluster that are not
present in the corresponding equal-content genomes. We deal with these genes in two ways. If
every occurrence of that gene is located inside the cluster in each of the genomes that possesses
the gene, then the gene is condensed along with the rest of thecluster. Otherwise, the extra gene
is moved to one side of the cluster, and the cluster is then condensed. When a median genome
is computed, a median for each cluster is also computed, and each cluster’s marker in the median
genome is eventually replaced with the cluster’s median. Atthis point, if any extra genes that were
moved to the side of the cluster are still beside the cluster,the genes are move back inside the
cluster to a position similar to the one they originally occupied.

4.4 Putting It All Together

Ancestral genome reconstructions are performed using these three main components. Initialization
of the internal nodes of the tree is done from the leaves up by taking either the midpoint or one of
the two endpoints (along an edit sequence) of an internal node’s two children and discarding any
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genes not allowed by the median gene content. This method accounts for all three of the cases in
Figure 4 and produces labels with the desired gene content. New medians are computed locally
node by node in a postorder traversal of the tree, so as to propagate information from the leaves
towards the root. Whenever a median is found that reduces thelocal score at a node, it immediately
replaces the previous label at that node; that node and all its neighbors are then marked for further
update.

5 Testing

We used our label reconstruction method on the bacterial dataset as well as on simulated datasets.
With simulated datasets, we know the true labels for the internal nodes as well as the exact evolu-
tionary events along each edge, so that we can test the accuracy of the reconstruction—whereas the
reconstruction for the biological dataset only provides uswith a conjecture. The goal of our experi-
ments was to generate datasets roughly comparable to our biological dataset so that our experimen-
tal results would enable us to predict a range of accuracy forthe results on the biological dataset.

The simulated data was created using the same tree as for the bacterial dataset; edge lengths
were assigned to the tree based on our best estimate of the edge lengths for the bacterial genomes.
To keep the data consistent, edge lengths were interpreted as the number of operations per gene
rather than as an absolute number, which allows us to use the same value for genomes of different
sizes. The tree was labeled by first constructing a root genome, then transforming it along each
edge with the prescribed number of operations. The allowed operations are insertions, deletions,
and inversions. In moving from the root to the leaves, a particular gene can only be inserted along
one edge of the tree—multiple insertions, even along separate paths, are not allowed. Once all
nodes have thus been assigned genomes, the leaf genomes are used in our reconstruction proce-
dure and the results of the reconstruction, in terms of gene content and gene order at each internal
node, compared with the “true” tree, i.e., the tree generated in the simulation.

We also tested the cluster condensation on triples among thebacterial genomes that lay close
to each other on the tree. The number of genes in the three genomes that formed clusters was
measured.

6 Results

Reconstruction of ancestral genomes for the bacterial genomes took around 24 hours. The midpoint-
initialization proved quite strong: the only genomes to be updated in the subsequent local improve-
ment procedure were the two children of the root. (These two genome, nodes 1 and 3 in Figure 5,
are the most likely to be updated since they are the only neighboring genomes in which one neigh-
bor was not used to create the other.) When we used endpoint-initialization, three internal nodes
were updated (nodes 1, 5 and 7 in Figure 5), and the score of theentire tree was 2.8% lower than
the score when using midpoint-initialization. This findingmay indicate that the initialization is
very good, but it may also reflect the large numbers of local optima in the search space—a simi-
lar finding was reported for the simpler GRAPPA [13]. It should be noted that, when calculating
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Figure 5: The bacterial tree, indicating the numbering of the edges and internal nodes used in
Figures 7 and 6.

medians, only four different midpoints in the child-to-child sorting sequence are used; from each
of these midpoints, only three midpoints in the sorting sequence from the intermediate genome to
the parent are tested. Thus we only perform a very shallow search and could easily miss a better
solution. Interestingly, though, when we did a slightly more thorough search with ten midpoints
from child to child and four midpoints from intermediate to parent, using endpoint-initialization,
the tree score was slightly worse than in the shallower analysis (less than 1%). The running time
was 85 hours, but the same three internal nodes were updated.Still, this represents a very small
part of the possible search space; the reason for this very restricted range is that the heuristic of
Marronet al. [11], used to match and rename duplicate copies of genes, runs very slowly, consum-
ing over 90% of the computing time. (This heuristic is thus also an obvious target for algorithmic
engineering; a faster implementation will enable us to conduct a broader search.)

We simulated 100 labelings of the tree with a root genome sizeof 200 genes for each of five
scenarios: inversion only, no deletions, no insertions, low levels of insertion and deletion, and
high levels of insertion and deletion. Endpoint-initialization was used in all scenarios. The leaf
genomes produced in our simulations ranged in size from 70 genes to 400 genes. We compared the
predicted gene content of the internal nodes with the actualgene content. As expected (due to our
restriction on generation), the predicted gene content always matched, except when a gene copy
that was present at an internal node was lost in all leaves. Failure to detect this kind of missing
gene is unavoidable in a gene-order analysis since the deletion from all leaves means that no his-
torical record is left to attest the presence of that gene in ancestral genomes. When we compared
the number of operations over all edges in reconstructed trees versus the original simulated tree,
the score for the tree was suboptimal, as illustrated in Table 1. These suboptimal results are to be
expected, and in fact the rather tight distribution in overestimating the score for the tree indicates
that the error is not a random process, but a result of some aspect of our reconstruction method,
one that may lend itself to reverse mapping.

We compared edge lengths in the reconstructed trees with those in the true trees by calcuating
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Table 1: Error Percentage in Tree Scores

Avg error Min error Max error
Inversion only 63.2% 57.3% 67.4%
No deletions 62.6% 54.8% 70.7%
No insertions 45.2% 37.6% 54.3%
Low insertion/deletion 56.4% 46.7% 64.8%
High insertion/deletion 34.9% 25.1% 46.4%

the ratio of the lengths for each edge (Figure 6). A perfect reconstruction would give a ratio of
1.0. Edges further from leaves have average ratios further from 1.0 and also have higher variances.
About half of the 23 edges are within a factor of two of the trueedge length, and another quarter
are within a factor of four.

We also calculated the number of operations needed to convert the reconstructed genome labels
at internal nodes into the corresponding labels from the true tree. Distances are normalized by
dividing by the size of the tree tree genome. For this graph, aperfect reconstruction would give
edit distances of zero. Here again, internal nodes closer toleaves are much closer to the true
ancestral gene orders.

We tested the cluster condensation on triples of closely-related bacterial genomes. The number
of genes that fell into clusters, and thus the number of genesthat could be condensed away, is a
lower bound on the clustering potential in the actual tree, because the neighbors of an internal node
should be more closely related than three leaves in the tree.Condensation would remove the same
number of genes from each genome, so the maximum possible condensation is determined by the
smallest of the three genomes considered. In the cases we examined, it was possible to condense
away on average 21% of the size of the smallest genome (ranging from 13% to 31%). This was a
relatively encouraging result. Unfortunately, the cluster condensation is heavily dependent on the
heuristic that matches and renames duplicate gene copies. As long as the code for the renaming
procedure is such a bottleneck in the larger analysis, the benefits of working with smaller genomes
will be lost due to the time necessary to condense the genomesdown to the smaller size.

7 Conclusions

We have successfully produced a framework under which we areable to compute ancestral gene
orders for modern bacteria. The number of operations over the tree is suboptimal, but not unrea-
sonable. Reconstructed edges and internal labels which arecloser to the modern genomes are much
more accurate than those further in the tree from “known” data. We also have shown that, under
certain simplifying assumptions, we are able to recover consistently the gene content of the ances-
tral genomes of simulated genomes. The size and complexity of the genomes mean that only a very
shallow search of the space of possible ancestral genomes ispossible: our results are undoubtedly
heavily impacted by that problem, but we have pushed the sizeboundary for phylogenetic analysis
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with gene orders by an order of magnitude.
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