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Abstract

In the last few years, it has become routine to use gene-alaker to reconstruct phy-
logenies, both in terms of edge distances (parsimoniousesegs of operations that trans-
form one end point of the edge into the other) and in terms obgees at internal nodes, on
small, duplication-free genomes. Current gene-order oattoreak down, though, when the
genomes contain more than a few hundred genes, possessopigmambers of duplicated
genes, or create edge lengths in the tree of over one hungezdtimns. We have constructed
a series of heuristics that allow us to overcome these dbstand reconstruct edges distances
and genomes at internal nodes for groups of larger, more lesrgpnomes. We present results
from the analysis of a group of thirteen modepproteobacteria, as well as from simulated
datasets.

1 Introduction

Although phylogeny, the evolutionary relationships bedweelated species or taxa, is a funda-
mental building block in much of biology, it has been sunmgdy difficult to automate the process
of inferring these evolutionary relationships from modéata (usually molecular sequence data).
These relationships include both the evolutionary distawithin a group of species and the ge-
netic form of their common ancestors.

In the last decade, a new form of molecular data has beconilalaiea gene-content and gene-
order data; this new data has proved useful in sheddingdighbese relationships [5, 23, 7, 12].
The order and the orientation in which genes lie on a chromesthanges very slowly, in evolu-
tionary terms, and thus provides a rich source of infornmefiow reconstructing phylogenies.

Until very recently, a major bottleneck has been that athors using this type of data required
that all genomes have identical gene content with no dupbica Because most sets of genomes
found in nature do not meet these requirements, researelibes were limited to very simple
genomes (such as chloroplast organelles) or had to redeteddta by deleting all genes not
present in every genome and then delete all “copies” of eank gut one (e.g., using tegemplar
strategy [19]); the former was frustrating to biologistsnvag to study more complex organisms,
while the latter resulted in data loss and consequent logsafracy in reconstruction [22].

Our group recently developed a method to compute the disthetwveen two nearly arbitrary
genomes [11] and another to reconstruct phylogenies basgdre-content and gene-order in the
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Figure 1. The 13 gamma-proteobacteria and their referehgéogeny. Construction of gene
families and the tree is described in more detail in [10]. €enders were constructed using
whole-genome sequences. Protein-coding sequences waleddinto gene families, and only
families present in at least three genomes were retained.

presence of mildly unequal gene content [22]. In this paperbring together several of these al-
gorithms and heuristics in framework that enables us tongtroct the gene orders of the common
ancestors of the 13 modern bacteria shown in Figure 1 (frd).[IThis is an ancient group of
bacteria, at least 500 millions years old [4]. It is extreyrdiVerse, including endosymbiotic, com-
mensal, and pathogenic species, and most of the speciesdreatly or economically important.
The evolutionary history of the group is also quite compiexjuding high levels of horizontal
gene transfer [9, 18, 20] and in the caseBoichnera aphidicoland Wigglesworthia brevipalpis
massive levels of gene loss. All of this makes reconstraaticthese bacteria’s evolutionary his-
tory both interesting and challenging.

The rest of this paper is organized as follows. Section 2udises the problem in some detail.
Section 3 summarizes prior work on phylogenetic reconsbnérom gene-content and gene-order
data. Section 4 presents our framework for tackling the leralof ancestral genome reconstruc-
tion given a reference phylogeny; it is itself divided intoge subsections, one on each of our three
main tools: median-finding, content determination, andeganstering. Section 5 discusses our
approach to the testing of our framework: given that we haug one dataset and that ancestral
genomes for that dataset are entirely unknown, our testagyof/necessity based on simulations.
Section 6 presents the results of this testing. We concluitieseme remarks about the significance
of our work and the problems remaining to be faced.

2 TheProblem

Our specific problem is the following:

e Given the gene orders of a group of genomes and given a raeeavith these genomes at
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the leaves, find gene orders for the internal nodes of thethigeminimize the sum of all
edge lengths in the tree.

The length of an edge is defined as the minimum number of apesaffrom a defined set of per-
missible operations) needed to transform the genome atrahefeéhe edge into the genome at the
other end. The genomes have no restriction on content ndieonumber of duplicate copies of
individual genes. The permissible operations in our caseraersions, insertions (and duplica-
tions), and deletions; all operations are given the sameica®mputing edge lengths. That we
are restricting rearrangements to inversions only conms frast findings by our groups that the
inversion phylogeny is robust even when other rearrang&mneuch as transpositions, were used
in creating the data [15]. Our assignment of unit costs topdlrations simply reflect insufficient
biological knowledge about the relative frequency of thegserations.

In our setting, one insertion may add an arbitrary numbeeokg to a single location and one
deletion may remove a contiguous run of genes from a singédilan, a convention consistent with
biological reality. Gene duplications are treated as spieeid insertions that only insert repeats.
Finally, on each edge a gene can either be inserted or delatédot both; the same holds for
multiple copies of the same gene. Allowing deletion andiiti@e of the same genes on the same
edge would lead to biologically ridiculous results such aketing the entire source genome and
then inserting the entire target genome, in just two openati

Finding internal labels that minimize edge distances olverttee has been addressed by our
group in prior work—this is the main optimization performieglour software suite GRAPPA [1].
However, even the most recent version of GRAPPA [22] is kahito relatively small genomes
(typically of organellar size, with fewer than 200 genesithwnodestly unequal content and just
a few duplications, if any. In stark contrast, the bactegehomes in our dataset contain 3,430
different genes and range in size from 540 to 2,987 genels sgiten containing over 2,300 genes;
moreover, these genomes contain a large number of duplhsatianging from 5% to 45% of the
genome. Thus, in our model, most pairwise genomic distaaesery large: a simple pairwise
comparison along the tree of Figure 1 indicates that somesedfjthe tree must have lengths of
at least 300, lengths that are at least an order of magnitwderlthan any found in prior uses of
GRAPPA. The large genome size, vastly unequal gene cotaege, number of duplications, and
large edge lengths all combine to make this data set orderaghitude more difficult to analyze
than previously analyzed genome sets.

3 Prior Work

A recent review of the current work in phylogenetic recomstion based on gene content and gene
order appears in [16]. Here we simply review the main poielsvant to our work.

A heuristic used for tree-labeling in the GRAPPA softwarekzaye [21] is to initialize internal
labels of the tree by some method. The number of each inteou is pushed on a queue. Then
each number is iteratively popped off the queue, and if a d&llcan be found that reduces the
distance to the node’s three neighbors, the existing labedplaced with the improved label and
the numbers of the node’s neighbors are pushed onto the quabel replacement over the tree
stops when the queue is empty.



GRAPPA computes a new label for a node by finding tiedianof its neighbors. An opti-
mal median of three genomes is defined as a fourth genome fohwie sum of the number of
operations needed to convert it into each of the three gesesmainimized. GRAPPA uses an
algorithm to find optimal inversion medians which runs in stectase exponential time but tends to
finish quickly when the edge lengths are small, on the ord&®ad 40 operations per edge [14, 22].

One approach that has successfully increased the speedalfe@mntent gene-order data has
been to treat groups of genes which occur in the same ordeoragatation in all genomes as a
single genetic unit. This condensation of identical clistd genes avoids wasteful computation
and does not change the final result of most analyses. Thisagipis also used in GRAPPA [13].

A method to find the distance between two genomes with arpiggane content was recently
developed [11]. The method employsdaplication-renamingheuristic that matches multiple
copies of genes between genomes and renames each pair andneaatched copy to a new,
unused gene number. This allows arbitrary genomes to cimavarto duplication-free genomes.
A secondary result of [11] is that, given two genomes withqua gene content and no duplica-
tions, any optimal sequence of inversions, deletions, aseftions to convert one genome into the
other can be rearranged to contain first insertions, thearsions, and finally deletions—a type of
normal formfor the edit sequence. Deletions here are genes unique sothee genome, while
insertions are genes found only in the target genome. Usaduplication-free genomes produced
by the duplication-renaming method of [11], an optimal irs¥en sequence is calculated using a
method that runs in time quadratic in the size of the consegenomes [2, 3]. The number of dele-
tions is calculated by counting the number of Hannenhalizper cycles that contain deletions, as
described in [6]. Finally, the number of insertions is estied by calculating all possible positions
in the source genome to which the inversion sequence coule ingertions, then choosing the
final position for each insertion that minimizes the numidegroups of inserted genes.

In some genomes, especially bacterial or bacteria-deggadmes, genes with similar function
are often located together on one strand of a chromosomee thactional units are callemper-
ons In bacteria, at least, while the order of genes in an operaychange, the gene content of the
operon is much less likely to do so [17]. In gene-order data@eron thus appears as a cluster of
gene numbers, all with the same sign. The cluster will hages#me gene content across genomes,
but its genes may be in different orders.cluster-findingalgorithm has been developed that can
identify these operon-like clusters of genes within equa@itent genomes in linear time [8].

In a recent paper which carries out a similar reconstrucifagene orders for poxviruses [12],
the gene content of internal nodes was decided by assumanghih phylogenetic tree contained
a single point of origin for each gene family in the modern@ees. That point of origin was
assigned to the internal node which minimized the numberss events necessary to achieve the
gene content of the leaf genomes.

4 Designing a Algorithmic Framework

We have brought together algorithms and heuristics fromreetyaof different sources in order
to tackle the general problem of finding internal gene-otdbels for genomes at the level of
complexity that we see in the gamma-proteobacteria. We asdensation of gene clusters in
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order to reduce the size of the genomes; we devised a pracsduilar in spirit to that used by
McLysaghtet al.[12] to predetermine the gene content of every internal padd we developed
a new heuristic to compute the median of three very diffegemomes.

4.1 Medians

At the top-level, we use the queue-based tree-labelingdteLnlescribed in Section 3. Since leaves
contain the only labels guaranteed to be correct, we updsatétie nodes with the longest paths to
their leaf descendants, as shown in Figure 2.

The heart of the top-level heuristic is the task of repegtedimputing the median of three
genomes. Exact median-finding algorithms are limited tatne¢ly small genomes, small edge
lengths in the tree, and few changes in content—and nonesseétproperties holds in our prob-
lem. We have therefore pursued a simple heuristic inspiyedeometry. To find the geometric
median of three points in a plane, we can first find the poinfinzgl between two of the three
points; the median is then one third of the way between thisvaglpoint and the third original
point. In a similar way, we find an approximation for the gemomedian by generating a sequence
of operations, or sorting sequence, that converts one dhtiee genomes into another one. Then
we choose an intermediate genome partway along this s@etiepgence and generate a new sorting
sequence from the intermediate genome to the third genomallyi- we choose as the median a
genome one third of the way along this second sorting seguenc

We have extended the method used by Marbal [11] so that we can now enumerate all
possible positions, orientations, and orderings of geftes each operation. Basically, deleted
genes at the endpoint of an inversion are moved to the otlogroémt if doing so avoids “trapping”
the deleted genes between two consensus genes that arenadpathe target genome. Inserted
genes are moved so as to remain adjacent to one of the twonsussgenes between which they
lay in the target genome. By this extension, we are able t@emgéa the genomes produced by
“running” a portion of the sorting sequence. These interiatedjenomes can then be used for the
geometry-inspired median heuristic just described. Thigistic allows a median to be computed

Figure 2: Ordering of internal nodes by the length of their longeshpat their leaf descendents (i.e.,
subtree height). Each internal node is labeled with itsreebheight. Nodes with lower subtree heights are
updated before those with greather height. Leaves, markbdaw 'L, do not need to be updated. No label
is generated for the root.



in polynomial time.

By handling inserted genes in the way just described, weeswenate the edit distance, which
Marron et al. showed at most doubles the number of operations [11]. Whein original edit
distance method calculates all possible positions in theceogenome to which the inversion se-
guence could move insertions and then chooses the finalqrokit each insertion that minimizes
the number of groups of inserted genes, the method may wstaeate the minimum edit distance,
because the resulting grouping of inserted genes oftenresgimversions simultaneously to join
inserted genes and to split deleted genes, which is notldes$e compared pairwise distances
produced by our overestimation and their underestimabayet an upper bound of the error in-
troduced by the overestimation. The average and maximuerelifces between the overestimate
and underestimate were 11.3% and 24.1%, respectively.

4.2 Gene Content

We predetermine the gene content of every internal nodeeofrde before computing any me-
dian; moreover, once the gene content of an internal nodecigleld, we never change it thereafter.
Since the tree is rooted, we know the direction in which tiroe/fl on each tree edge; thus, since
deletions are far more likely than insertions, we are abl@ke a simple approach. The number
of copies of each gene is considered over the entire treesasetided independently of all other
genes. The number of copies of a genat the internal nodeis set to the maximum number of
copies ofg found in any of the leaves iis subtree if: (i) there are leaves both inside and outside
1's subtree which contain at least one copyypbr (ii) there are leaves containing at least one copy
of g in each half ofi’s subtree. Otherwise the number of copies of ggeimrenodei is set to zero.

This value can be calculated (N G) time, whereN is the number of nodes in the tree and
G is the number of distinct genes in all the leaves, as followisst, for each node in the tree,
we determine the maximum number of copies of each gene froomgre leaves of that node’s
subtree, using a single depth-first traversal. Next, weoperfa second depth-first traversal to set
the actual number of copies of each gene at each internal nba@&her of the root’s children
returns a value of zero, then we set the root’s actual nuntbeerto as well. For each internal
node other than the root, if its parent’s actual number ofieops zero and at least one of its
two children’s subtree maximums is zero, then we set the eummbcopies for the gene to zero.
Otherwise we set the number of copies to the node’s subtrgemen for the gene. This approach
is similar to that taken in the study of the gene order evotutf poxviruses [12].

A consequence of this approach to determining gene corgehat internal nodes possess at
least as many copies of a gene as the majority consensusiohéighbors’ gene contents. An
internal node will always possess a copy of a gene if two orenebits neighbors possess the gene
copy. (We consider the two children of the root to be neighdn addition, if the median is the
nearest common ancestor of all genomes possessing thetgeag,well have more copies of the
gene than its parent and one of its children, as in the caseeddlack node in Figure 3. The gene
content of intermediate genomes along sorting sequenseséa in the determination of medians)
will be a union of the gene contents of each of the startinggess, because the sorting sequence of
operations that we use always involves first insertions) imnersions, and finally deletions. There-
fore, when calculating medians from sorting sequencesg e three cases in which the number
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Figure 3: The number next to each node is the number of copies of a plartigene in that node. The
black node has two copies, for example.

of copies of a gene are not the same between the intermediadese, the median genome, and the
median’s parent, as shown in Figure 4. In the first case (Fip.the intermediate genome has the
same number of copies as the median, but fewer than the pamemxample is the black node’s
right child in Figure 3. Here each copy in the parent that ismatch by the duplication-renaming
algorithm to a copy in the intermediate genome will be exetlffom the median genome. The
second case (Fig. 4b) only arises when the median genome ieetlrest common ancestor of all
genomes containing the gene in question, as with the blad& imoFigure 3. Here, genomes along
the intermediate sequence have the same number of coplesmetian and the parent of the me-
dian contains zero copies of the gene. This case is easy tiiehaimce a genome generated by run-
ning part of the sorting sequence from the intermediate igperto the parent will contain the same
number of copies as the median. Finally, the situation iufégic can only arise when the right
child of the median is the nearest common ancestor of allgesaontaining the gene. The parent
of the black node in Figure 3 fits this case. This case is aigaltto deal with, since all copies of
the gene in the intermediate genome can be simply discafdedgenomes in the sorting sequence
from the intermediate genome to the parent will then autaally contain zero copies of the gene.
Biologically, this process of finding which duplicates talwde in the median corresponds to

Figure 4:Three cases where the median genome and its neighbors ffi@rerdinumbers of copies of a
gene. Each node is labeled with its number of copies. Solaslare tree edges. A dashed line between two
siblings represents the sorting sequence for that pairtenddade drawn halfway along is a median of the
two siblings. A dotted line represents the first third of teting sequence from the intermediate genome
to the parent, stopping at the median.



matching orthologous duplicates of each gene between gemhand to discard unmatched paral-
ogous duplicates. Since the original nucleotide sequesreeabstracted away before the analysis
begins, this ortholog matching is decided entirely on th&af which other genes are located

next to the different homologs. Fortunately, orthologs parhlogs that can be distinguished by a
nucleotide-based analysis are assigned different genéensrbefore our analysis begins. There-
fore, our method represents a reasonable way to integr#tenibcleotide and gene-order data in

differentiating orthologous and paralogous homologs okege

4.3 Cluster Condensation

To use computational methods to extract information fragdaand more complex biological data
sets, we need fast algorithms with fast implementationstefgrocessing generally means that a
more thorough analysis can be performed and thus that sesfufigher quality can be obtained.
In our case, the limiting factor is the size of the genomesithumber is also an issue, but a much
smaller one). We thus developed a technique to identify amdlense gene clusters in unequal
genomes in order to reduce the size of the genomes.

Our approach is similar to the one used in equal-contentrgespbut is more general. The
condensation technique used in GRAPPA only condensesddeatibsequences of genes—that
is, the genes appear in exactly the same order in all genonmes gonsideration. Our method
allows the condensation of clusters that can have inteematiering of genes (as long as they stay
on the same strand) and also handles the difficult casesribaiait of unequal gene content (such
as an insertion in the middle of a cluster).

To identify clusters, we first use the duplication-renami@chnique of Marroret al. to cre-
ate duplication-free genomes. After renaming, we remoyeg@mes are not present in all of the
genomes under examination. This step creates a group ofgeEnwith equal gene content. We
then use the cluster-finding algorithm of Heber and Stoyed8ind equivalent clusters of genes
within the equal-content genomes. Once clusters are fiEhteach one is condensed out of the
original genomes and replaced with a single marker (as iereva single gene).

In a set of genomes with unequal gene content, there can les geside a cluster that are not
present in the corresponding equal-content genomes. Wenitbahese genes in two ways. If
every occurrence of that gene is located inside the clusteach of the genomes that possesses
the gene, then the gene is condensed along with the rest ofusker. Otherwise, the extra gene
is moved to one side of the cluster, and the cluster is thedamsed. When a median genome
is computed, a median for each cluster is also computed, actd@uster’'s marker in the median
genome is eventually replaced with the cluster's mediarthi&tpoint, if any extra genes that were
moved to the side of the cluster are still beside the clusiter,genes are move back inside the
cluster to a position similar to the one they originally ogigad.

4.4 Putting It All Together

Ancestral genome reconstructions are performed using these main components. Initialization
of the internal nodes of the tree is done from the leaves upking either the midpoint or one of
the two endpoints (along an edit sequence) of an interna¢’ad@o children and discarding any

8



genes not allowed by the median gene content. This methaiatxfor all three of the cases in
Figure 4 and produces labels with the desired gene contesw Nedians are computed locally
node by node in a postorder traversal of the tree, so as t@agabd@ information from the leaves
towards the root. Whenever a median is found that reducds¢hEscore at a node, it immediately
replaces the previous label at that node; that node and alkighbors are then marked for further
update.

5 Testing

We used our label reconstruction method on the bacteriabdaas well as on simulated datasets.
With simulated datasets, we know the true labels for themalenodes as well as the exact evolu-
tionary events along each edge, so that we can test the agairthe reconstruction—whereas the
reconstruction for the biological dataset only providewiik a conjecture. The goal of our experi-
ments was to generate datasets roughly comparable to dogigial dataset so that our experimen-
tal results would enable us to predict a range of accuracthtoresults on the biological dataset.

The simulated data was created using the same tree as foadteribl dataset; edge lengths
were assigned to the tree based on our best estimate of thdeztghs for the bacterial genomes.
To keep the data consistent, edge lengths were interpretdteanumber of operations per gene
rather than as an absolute number, which allows us to usathe galue for genomes of different
sizes. The tree was labeled by first constructing a root gendimen transforming it along each
edge with the prescribed number of operations. The allovpedations are insertions, deletions,
and inversions. In moving from the root to the leaves, a paldr gene can only be inserted along
one edge of the tree—multiple insertions, even along sép@aths, are not allowed. Once all
nodes have thus been assigned genomes, the leaf genome®drne our reconstruction proce-
dure and the results of the reconstruction, in terms of genéeat and gene order at each internal
node, compared with the “true” tree, i.e., the tree gendriatéhe simulation.

We also tested the cluster condensation on triples amonigatterial genomes that lay close
to each other on the tree. The number of genes in the threergenthat formed clusters was
measured.

6 Results

Reconstruction of ancestral genomes for the bacteriallgestook around 24 hours. The midpoint-
initialization proved quite strong: the only genomes to pdated in the subsequent local improve-
ment procedure were the two children of the root. (These vge, nodes 1 and 3 in Figure 5,
are the most likely to be updated since they are the only beigihg genomes in which one neigh-
bor was not used to create the other.) When we used endpdtiatization, three internal nodes
were updated (nodes 1, 5 and 7 in Figure 5), and the score ehtire tree was 2.8% lower than
the score when using midpoint-initialization. This findin@y indicate that the initialization is
very good, but it may also reflect the large numbers of locéhwgin the search space—a simi-
lar finding was reported for the simpler GRAPPA [13]. It sitbbe noted that, when calculating
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Figure 5: The bacterial tree, indicating the numbering @& ¢#uges and internal nodes used in
Figures 7 and 6.

medians, only four different midpoints in the child-to4dchsorting sequence are used; from each
of these midpoints, only three midpoints in the sorting segpe from the intermediate genome to
the parent are tested. Thus we only perform a very shallovesead could easily miss a better
solution. Interestingly, though, when we did a slightly mdinorough search with ten midpoints
from child to child and four midpoints from intermediate tarpnt, using endpoint-initialization,
the tree score was slightly worse than in the shallower amajess than 1%). The running time
was 85 hours, but the same three internal nodes were updatididthis represents a very small
part of the possible search space; the reason for this vetgated range is that the heuristic of
Marronet al. [11], used to match and rename duplicate copies of genesyary slowly, consum-
ing over 90% of the computing time. (This heuristic is thusoan obvious target for algorithmic
engineering; a faster implementation will enable us to cahd broader search.)

We simulated 100 labelings of the tree with a root genomeaiZ00 genes for each of five
scenarios: inversion only, no deletions, no insertiong, llevels of insertion and deletion, and
high levels of insertion and deletion. Endpoint-initi@iion was used in all scenarios. The leaf
genomes produced in our simulations ranged in size from A@g® 400 genes. We compared the
predicted gene content of the internal nodes with the agieraé content. As expected (due to our
restriction on generation), the predicted gene conterdydwnatched, except when a gene copy
that was present at an internal node was lost in all leaveur&do detect this kind of missing
gene is unavoidable in a gene-order analysis since thdaefedm all leaves means that no his-
torical record is left to attest the presence of that geneaestral genomes. When we compared
the number of operations over all edges in reconstructes tversus the original simulated tree,
the score for the tree was suboptimal, as illustrated in€TablThese suboptimal results are to be
expected, and in fact the rather tight distribution in ogéreating the score for the tree indicates
that the error is not a random process, but a result of somecaepour reconstruction method,
one that may lend itself to reverse mapping.

We compared edge lengths in the reconstructed trees wisie ihdhe true trees by calcuating
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Table 1: Error Percentage in Tree Scores

Avg error | Min error | Max error

Inversion only 63.2% 57.3% 67.4%
No deletions 62.6% 54.8% 70.7%
No insertions 45.2% 37.6% 54.3%

Low insertion/deletion| 56.4% 46.7% 64.8%
High insertion/deletion 34.9% 25.1% 46.4%

the ratio of the lengths for each edge (Figure 6). A perfecbomstruction would give a ratio of
1.0. Edges further from leaves have average ratios furtber 1.0 and also have higher variances.
About half of the 23 edges are within a factor of two of the tegge length, and another quarter
are within a factor of four.

We also calculated the number of operations needed to ddheaeconstructed genome labels
at internal nodes into the corresponding labels from the tree. Distances are normalized by
dividing by the size of the tree tree genome. For this gragberéect reconstruction would give
edit distances of zero. Here again, internal nodes closégawes are much closer to the true
ancestral gene orders.

We tested the cluster condensation on triples of closdatae bacterial genomes. The number
of genes that fell into clusters, and thus the number of gérascould be condensed away, is a
lower bound on the clustering potential in the actual treeaise the neighbors of an internal node
should be more closely related than three leaves in the @@edensation would remove the same
number of genes from each genome, so the maximum possibdersation is determined by the
smallest of the three genomes considered. In the cases wered it was possible to condense
away on average 21% of the size of the smallest genome (igfigim 13% to 31%). This was a
relatively encouraging result. Unfortunately, the clustendensation is heavily dependent on the
heuristic that matches and renames duplicate gene copgekng as the code for the renaming
procedure is such a bottleneck in the larger analysis, theflie of working with smaller genomes
will be lost due to the time necessary to condense the gendaves to the smaller size.

7 Conclusions

We have successfully produced a framework under which walaleeto compute ancestral gene
orders for modern bacteria. The number of operations owetrée is suboptimal, but not unrea-
sonable. Reconstructed edges and internal labels whidhoser to the modern genomes are much
more accurate than those further in the tree from “knownadaVe also have shown that, under
certain simplifying assumptions, we are able to recovesstantly the gene content of the ances-
tral genomes of simulated genomes. The size and completitg @enomes mean that only a very
shallow search of the space of possible ancestral genorpessgble: our results are undoubtedly
heavily impacted by that problem, but we have pushed thexsimadary for phylogenetic analysis
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Figure 6:The average ratio between the reconstructed edge lengtthamdrresponding true edge length

for each edge in the tree. Error bars are standard devidiidge numbers are as shown in Figure 5.
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Avg. Normalized Edit Distance from Reconstructed Label to True Label
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Figure 7: The average normalized edit distance from each reconsttuabel to the true label for each
internal node of the tree. Error bars are standard deviakiarnal node numbers are as shown in Figure 5.
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with gene orders by an order of magnitude.
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