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ABSTRACT
Understanding the structure of the Internet graph is a cru-
cial step for building accurate network models and designing
efficient algorithms for Internet applications. Yet, obtaining
its graph structure is a surprisingly difficult task, as edges
cannot be explicitly queried. Instead, empirical studies rely
on traceroutes to build what are essentially single-source,
all-destinations, shortest-path trees. These trees only sam-
ple a fraction of the network’s edges, and a recent paper by
Lakhina et al. found empirically that the resuting sample is
intrinsically biased. For instance, the observed degree distri-
bution under traceroute sampling exhibits a power law even
when the underlying degree distribution is Poisson.

In this paper, we study the bias of traceroute sampling
systematically, and, for a very general class of underlying de-
gree distributions, calculate the likely observed distributions
explicitly. To do this, we use a continuous-time realization
of the process of exposing the BFS tree of a random graph
with a given degree distribution, calculate the expected de-
gree distribution of the tree, and show that it is sharply
concentrated. As example applications of our machinery, we
show how traceroute sampling finds power-law degree dis-
tributions in both δ-regular and Poisson-distributed random
graphs. Thus, our work puts the observations of Lakhina et
al. on a rigorous footing, and extends them to nearly arbi-
trary degree distributions.

Categories and Subject Descriptors: F.2.2, G.2.1

General Terms: Theory

Keywords: Internet mapping, power laws, random graphs
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1. INTRODUCTION
Owing to the great importance of the Internet as a medium

for communication, a large body of recent work has fo-
cused on its topological properties. Perhaps most famously,
Faloutsos et al. [9] exhibited a power-law degree distribution
in the Internet graph at the router level (i.e., the level at
which the Internet Protocol (IP) operates). Similar results
were obtained in [10, 2]. Based on these and other topolog-
ical studies, it is widely believed that the Internet’s degree
distribution has a power-law form with exponent 2 < α < 3,
i.e., the fraction ak of vertices with degree k is proportional
to k−α. These results have motivated both the search for
natural graph growth models that give similar degree distri-
butions (see for instance [8]) and research into the question
of how the topology might affect the performance of Internet
algorithms and mechanisms (for instance [17]).

However, unlike graphs such as the World Wide Web [13]
in which links from each site can be readily observed, the
physical connections between routers on the Internet can-
not be queried directly. Without explicitly knowing which
routers are connected, how can one obtain an accurate map
of the Internet? Internet mapping studies typically address
this issue by sampling the network’s topology using tracer-
outes: packets are sent across the network in such a way
that their paths are annotated with the IP addresses of the
routers that forward them. The union of many such paths
then forms a partial map of the Internet. While actual rout-
ing decisions involve multiple protocols and network layers,
it is a common assumption that the packets follow short-
est paths between their source and destination, and recent
studies show that this is not far from the truth [15].

Most studies, including the one on which [9] is based, infer
the Internet’s topology from the union of traceroutes from
a single root computer to a larger number of (or all) other
computers in the network. If each edge has unit cost plus
a small random term, the union of these shortest paths is a
BFS tree.1 This model of the sampling process is admittedly

1Several studies, including [2, 21], have used traceroutes
from multiple sources. However, the number of sources used
is quite small (to our knowledge, at most 12).



an idealization for several reasons. First of all, most empir-
ical studies only use a subset of the valid IP addresses as
destinations. Secondly, for technical reasons, some routers
may not respond to traceroute queries. Thirdly, a single
router may annotate different traceroutes with different IP
addresses, a problem known as aliasing. These issues are
known to introduce noise into the measured topology [1, 5].

However, as Lakhina et al. [14] recently pointed out, tracer-
oute sampling has a more fundamental bias, one which is
well-captured by the BFS idealization. Specifically, in us-
ing such a sample to represent the network, one tacitly as-
sumes that the sampling process is unbiased with respect
to the parameters under consideration, such as node de-
grees. However, an edge is much more likely to be visi-
ble, i.e., included in the BFS tree, if it is close to the root.
Moreover, since in a random graph, high-degree vertices are
more likely to be encountered early on in the BFS tree, they
are sampled more accurately than low-degree vertices. In-
deed, [14] showed empirically that for Erdős-Rényi random
graphs G(n, p) [7], which have a Poisson degree distribution,
the observed degree distribution under traceroute sampling
follows a power law, and this has been verified analytically
by Clauset and Moore [6]. In other words, the bias intro-
duced by traceroute sampling can make power laws appear
where none existed in the underlying graph! Even when the
underlying graph actually does have a power-law degree dis-
tribution k−α, Petermann and De Los Rios [22] and Clauset
and Moore [6] showed numerically that traceroute sampling
can significantly underestimate its exponent α.

This inherent bias in traceroute sampling (along with the
fact that no alternatives are technologically feasible at this
point) raises the following interesting question: Given the
true degree distribution {ak} of the underlying graph, can
we predict the degree distribution that will be observed after
traceroute sampling? Or, in pure graph-theoretic terms: can
we characterize the degree distribution of a BFS tree for a
random graph with a given degree distribution?

Our answers to these questions quantify precisely the bias
introduced by traceroute sampling, while verifying formally
the empirical observations of Lakhina et al. [14]. In addition,
they can be considered as a significant first step toward a
much more ambitious and ultimately more practical goal
of inferring the true underlying distribution of the Internet
from the biased observation.

Our Results
Our main result in this paper is Theorem 2, which explic-
itly characterizes the observed degree distribution as a func-
tion of the true underlying distribution, to within sharp
concentration. When we say that {ak} is a degree distri-
bution, what we mean precisely is that the graph contains
ak · n nodes of degree k. In proving the result, we restrict
our attention to underlying distributions which are “not too
heavy-tailed,” and in which all nodes have degree at least 3:

Definition 1. A degree distribution {ak} is reasonable
if ak = 0 for k < 3, and there exist constants α > 2 and
C > 0 such that ak < C · k−α for all k.

The requirement that the degree distribution be bounded
by a power law k−α with α > 2 is made mostly for tech-
nical convenience. Among other things, it implies that the
mean degree δ =

P
k kak of the graph is finite (although

the variance is infinite for α ≤ 3). Note that this require-
ment is consistent with the conjectured range 2 ≤ α ≤ 3
for the Internet [9, 10]. The requirement that the minimum
degree be at least 3 implies, through a simple counting ar-
gument, that the graph is w.h.p. connected.2 This is con-
venient since it ensures that the breadth-first tree reaches
the entire graph. However, as we discuss below, this re-
quirement can be relaxed, and in the case of disconnected
graphs such as G(n, p = δ/n), we can indeed analyze the
breadth-first tree built on the giant component.

In order to speak precisely about a random (multi)graph
with a given degree sequence, we will use the configuration
model [3]: for each vertex of degree k, we create k copies, and
then define the edges of the graph according to a uniformly
random matching on these copies. Our main result can then
be stated as follows:

Theorem 2. Let {aj} be a reasonable degree sequence.
Let G be a random multigraph with degree distribution {aj},
and assume that G is connected. Let T be a breadth-first tree
on G, and let Aobs

j be the number of vertices of degree j in
T . Then, there exists a constant ζ > 0 such that with high
probability,

˛̨
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We can use the notion of generating functions [25] to obtain
a more concise expression of all aobs

m+1 as follows: if g(z) =P∞
j=0 ajz

j, then aobs
j is the coefficient of zj in

gobs(z) = z
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The bulk of this paper, namely Sections 2–5, is devoted to
the proof of Theorem 2. In Section 6, we apply our general
result to δ-regular graphs and graphs with Poisson degree
distributions. In both cases, we find that the observed de-
gree distribution follows a power law k−α with exponent
α = 1. In the case of Poisson degree distributions, our work
thus subsumes the work of Clauset and Moore [6].

The proof of this result is based on a process which grad-
ually discovers the BFS tree (see Section 2). By mapping
it to a continuous-time process analogous to Kim’s Pois-
son cloning model [12], we can avoid explicitly tracking the
(rather complicated) state of the FIFO queue that arises in
the process, and in particular the complex relationship be-
tween a vertex’s degree and its position in the queue. This
allows us to calculate the expected degree distribution to
within o(1) in Section 3. In Section 5, we see how these
calculations can be rephrased in terms of generating func-
tions, to yield the alternate formulation of Theorem 2. The

2We say that a sequence of events En occurs with high prob-
ability (w.h.p.) if Prob[En] = 1 − o(1) as n → ∞, and with
overwhelmingly high probability (w.o.h.p.) if Prob[En] =
1− o(n−c) for all c. Note that by the union bound, the con-
junction of a polynomial number of events, each of which
occurs w.o.h.p., occurs w.o.h.p.



concentration part of the result, in Section 4, analyzes a dif-
ferent, and much more coarse-grained, view of the process.
By carefully conditioning on the history of the process, we
can apply a small number of Martingale-style bounds to ob-
tain overall concentration.

2. A CONTINUOUS-TIME PROCESS

2.1 Breadth-First Search
We can think of the breadth-first tree as being built one

vertex at a time by an algorithm that explores the graph.
At each step, every vertex in the graph is labeled explored,
untouched, or pending. A vertex is explored if both it and
its neighbors are in the tree; untouched if it is still outside
the tree; and pending if it is on the boundary of the tree,
i.e., it may still have untouched neighbors. Pending vertices
are kept in a queue Q, so that they are explored in first-in,
first-out order. The process is initialized by labeling the root
vertex pending, and all other vertices untouched. Whenever
a pending vertex is popped from Q and explored, all of its
currently untouched neighbors are appended to Q, and the
connecting edges are visible. On the other hand, edges to
neighbors that are already in the queue are not visible.

For the analysis in this paper, it is convenient to think
of the algorithm as exploring the graph one copy at a time,
instead of one node at a time. The queue will then contain
copies instead of vertices. At each step, the partner v of the
copy u at the head of the queue is exposed, and both of them
are removed from the matching. Also, all of v’s siblings are
added to the queue, unless they were in the queue already.
(We refer to two copies of the same vertex as siblings.) We
will say that an unexposed copy is enqueued if it is in Q,
and untouched if it is not. Thus, a copy is untouched if
its vertex is, and enqueued if its vertex is pending and the
edge incident to it has yet to be explored. Formally, the
breadth-first search then looks as follows:

Algorithm 1 Breadth-First Search at the Copy Level

1: while Q is nonempty do
2: Pop a copy u from the head of Q
3: Expose u’s partner v
4: if v is untouched then
5: Add the edge (u, v) to T
6: Append v’s siblings to Q
7: else
8: Remove v from Q
9: end if

10: end while

An edge will be visible and included in T if, at the time
one of its endpoints reaches the head of the queue, the other
endpoint is still untouched.

2.2 Exposure on the fly
Because G is a uniformly random multigraph conditioned

on its degree sequence, the matching on the copies is uni-
formly random. By the principle of deferred decisions [20],
we can define this matching “on the fly,” choosing u’s part-
ner v uniformly at random from among all the unexposed
copies at the time.

One way to make this random choice is as follows. At
the outset, each copy is given a real-valued index x chosen

uniformly at random from the unit interval [0, 1]. Then, at
each step, u’s partner v is chosen as the unexposed copy
with the the largest index. Thus, it is convenient to think
of the algorithm as taking place in continuous time, where
t decreases from 1 to 0: at time t, the copy at the head of
the queue is matched with the unexposed copy of index t.
Since the indices of v’s siblings are uniformly random, while
conditioned on being less than t, this approach maintains the
following powerful kind of uniform randomness: at time t,
the indices of the unexposed copies, both inside and outside
the queue, are uniformly random in [0, t).

We define the maximum index of a vertex to be the maxi-
mum of all its copies’ indices. At any time t, the untouched
vertices are precisely those whose maximum index is less
than t, and the explored or pending vertices (whose copies
are explored or enqueued) are those whose maximum index
is greater than t. This observation allows us to carry out an
explicit analysis without having to track the (rather compli-
cated) state of the system as a function of time.

At a given time t, let Cunex(t) and Cunto(t) denote the
number of unexposed and untouched copies, and let Vunto,j(t)
denote the number of untouched vertices of degree j; note
that Cunto(t) =

P
j jVunto,j(t). We start by calculating the

expectation of these quantities. The probability that a ver-
tex of degree j has maximum index less than t is exactly tj ;
therefore, E[Vunto,j(t)] = ajt

jn, and

E[Cunto(t)] =
P

j jajt
jn =: cunto(t) · n . (2)

To calculate E[Cunex(t)], recall that the copy at the head
of the queue has a uniformly random index conditioned on
being less than t. Therefore, the process forms a matching
on the list of indices as follows: take the indices in decreasing
order from 1 to 0, and at time t match the index t with a
randomly chosen index less than t. This creates a uniformly
random matching on the δn indices. Now, note that a given
index is still remaining at time t if both it and its partner
are less than t, and since the indices are uniformly random
in [0, 1] the probability of this is t2. Thus, the expected
number of indices remaining at time t is

E[Cunex(t)] = δt2n =: cunex(t) · n . (3)

The following lemma shows that Vunto,j(t), Cunto(t) and
Cunex(t) are concentrated within o(n) of their expectations
throughout the process. Note that we assume here that the
graph G is connected, since otherwise, the process is not
well-defined for all t ∈ [0, 1].

Lemma 3. Let {aj} be a reasonable degree distribution,
and assume that G is connected. Then, for any constants
β < min( 1

2
, α−2

2
) and ε > 0, the following hold simultane-

ously for all t ∈ [0, 1] and for all j < n, w.o.h.p.:˛̨̨
Vunto,j(t)− ajt

j · n
˛̨̨
< n1/2+ε

|Cunex(t)− cunex(t) · n| < n1/2+ε

|Cunto(t)− cunto(t) · n| < n1−β ,

where cunto(t) and cunex(t) are given by (2), (3).

Note that this concentration becomes weaker as α → 2,
since then β → 0.

Proof. Our proof is based on the following form of the
Hoeffding Bound [11, 16]:



Theorem 4 (Theorem 3 from [16]). If X1, . . . , Xk are
independent, non-negative random variables with Xi ≤ bi for
all i, and X =

P
i Xi, then for any ∆ ≥ 0:

Prob[|X − E[X]| ≥ ∆] ≤ 2e−2∆2/
P

i b2i .

First, Vunto,j(t) is a binomial random variable distributed
as Bin(ajn, tj). By applying Theorem 4 to ajn variables
bounded by 1, the probability that Vunto,j(t) differs by ∆ =

n1/2+ε from its expectation is at most 2e−2n2ε/aj ≤ e−n2ε

.
Thus, at each individual time t and for each j, the stated
bound on Vunto,j(t) holds w.o.h.p.

We wish to show that this bound holds w.o.h.p. for all j
and all t, i.e., that the probability that it is violated for any
t and any j is o(n−c) for all c. Notice that the space of all
times t is infinite, so we cannot take a simple union bound.
Instead, we divide the interval [0, 1] into sufficiently small
discrete subintervals, and take a union bound of those. Let
m =

P
j jajn = δn be the total number of copies, where δ

is the mean degree (recall that δ is finite, because {aj} is
reasonable). We divide the unit interval [0, 1] into mb in-
tervals of size m−b, where b will be set below. By a union
bound over the

`
m
2

´
pairs of copies, with probability at least

1 − m2−b, each interval contains the index of at most one
copy, and therefore at most one event of the queue process.
Conditioning on this event, Vunto,j(t) changes by at most
1 during each interval, so if Vunto,j(t) is close to its expec-
tation at the boundaries of each interval, it is close to its
expectation for all t ∈ [0, 1]. In addition, we take a union
bound over all j. The probability that the stated bound is
violated for any j in any interval is then at most

n
“
mb e−n2ε

+ m2−b
”

= O(n3−b) ,

which is o(n−c) if b > c + 3.
For the concentration of Cunex(t), we notice that unex-

posed copies come in matched pairs, both of which have
index less than t. Therefore, Cunex(t) is twice a binomial
random variable distributed as Bin(

P
j jajn/2, t2). Apply-

ing Theorem 4 with ∆ = n1/2+ε gives the result for fixed
t, and taking a union bound over t as in the previous para-
graph shows the concentration of Cunex(t).

To prove concentration of Cunto(t) for fixed t, we let Xi

be the number of copies of node i that are untouched at
time t. Then, Cunto(t) =

P
i Xi, and the denominator in

the exponent for the bound of Theorem 4 is

X
i

b2
i =

X
j

j2ajn < Cn
X

j

j2−α <

8<: O(n4−α) α < 3
O(n log n) α = 3
O(n) α > 3

Hence, by Theorem 4, whenever β < min( 1
2
, α−2

2
), we ob-

tain that |Cunto(t)− E[Cunto(t)]| ≤ n1−β w.o.h.p. A union
bound over t as before completes the proof.

3. EXPECTED DEGREE DISTRIBUTION
In this section, we begin the proof of Theorem 2 by ana-

lyzing the continuous-time process defined in Section 2, and
calculating the expected degree distribution of the tree T .

By linearity of expectation, the expected number of ver-
tices of degree j in T is the sum, over all vertices v, of the
probability that j of v’s edges are visible. Consider a given
vertex v of degree i. It is touched when its copy with max-
imum index is matched to the head of the queue, at which

time its i − 1 other copies join the tail of the queue. If
m of these give rise to visible edges, then v’s degree in T
will be m + 1, namely these m outgoing edges plus the edge
connecting v back toward the root of the tree.

Let ρi,m denote the probability of this event, i.e., that a
vertex of degree i has m copies that give rise to visible edges.
Then the expected degree distribution is given by

E
h
Aobs

m+1

i
= n

X
i

aiρi,m . (4)

Moreover, let ρi,m(t) denote the probability of this event
given that v has maximum index t. Then, since t is the
maximum of i independent uniform variables in [0, 1], its
probability distribution is dti/dt = iti−1, and we have

ρi,m =

Z 1

0

iti−1ρi,m(t) dt . (5)

Our goal is then to calculate ρi,m(t).
Let us start by calculating the probability Pvis(t) that, if

v has index t, a given copy of v other than the copy with
index t—that is, a given copy which is added to the queue
at time t—gives rise to a visible edge. Call this copy u,
and call its partner w. According to Algorithm 1, the edge
(u, w) is visible if and only if (1) u makes it to the head of
the queue without being matched first, and (2) when it does,
w is still untouched. But (1) is equivalent to saying that w
is untouched at time t, since if w is already in the queue
at time t, it is ahead of u, and u will be matched before it
reaches the head of the queue. Similarly, (2) is equivalent
to saying that all of w’s siblings’ partners are untouched at
time t, since if any of these are already in the queue at time
t, and thus ahead of u, then w’s vertex will be touched, and
w enqueued, by the time u reaches the head of the queue.

Given the number of untouched and unexposed copies
Cunto(t) and Cunex(t) at the time t when u joins the queue,
the probability that its uniformly random partner w is un-
touched is Punto(t) = Cunto(t)/Cunex(t). Conditioning on
this event, the probability that w belongs to a vertex with
degree k is Punto,k(t) = kVunto,k(t)/Cunto(t). We require
that the partners of w’s k − 1 siblings are also untouched.
If we ignore the fact that we are choosing untouched copies
without replacement (and that one untouched copy has al-
ready been taken for w), and if we assume that v, its neigh-
bors, and its neighbors’ neighbors form a tree (i.e., that v
does not occur in a triangle or 4-cycle, and that neither it
nor its neighbors have any multiple edges), then the proba-
bility that these k−1 copies are all untouched is Punto(t)

k−1.
This gives

Pvis(t) = Punto(t)
X

k

Punto,k(t) Punto(t)
k−1

=
X

k

Punto,k(t) Punto(t)
k. (6)

Since Vunto,k(t), Cunto(t) and Cunex(t) are concentrated
according to Lemma 3, substituting their expectations then
gives a good approximation for Pvis(t), namely

pvis(t) =
X

k

kaktk

cunto(t)

„
cunto(t)

cunex(t)

«k

. (7)

Then, if we neglect the possibility of self-loops and parallel
edges involving u and its siblings, and again ignore the fact



that we are choosing without replacement (i.e., that pro-
cessing each sibling changes Cunto, Cunex, and Pvis slightly)
the events that each of u’s siblings give rise to a visible edge
are independent, and the number m of visible edges is ap-
proximately binomially distributed as Bin(i− 1, pvis(t)).

We wish to confirm this analysis by showing that w.h.p. v,
its neighbors, and its neighbors’ neighbors form a tree. It is
easy to show this for graphs with bounded degree; however,
for power-law degree distributions ak ∼ k−α, it is somewhat
delicate, especially for α close to 2. The following lemmas
show that there are very few vertices of very high degree,
and then show that the above is w.h.p. true of v if v has
sufficiently low degree. We then show that we can think of
all the copies involved as chosen with replacement. Recall
that the mean degree δ =

P
j jaj is finite, and let β <

min( 1
2
, (α−2)

2
) as in Lemma 3.

Lemma 5. The probability that a random copy belongs to
a vertex of degree greater than k is o(k−2β).

Proof. This probability isP
j>k jajP

j jaj
<

C

δ

X
j>k

j1−α <
C

δ(2− α)
k−(α−2) = o(k−2β) .

Lemma 6. There are constants γ > η > 0 such that if v
is a vertex of degree i < nη, then the probability that v or
its neighbors have a self-loop or multiple edge, or that v is
part of a triangle or a cycle of length 4, is o(n−γ). Thus, v,
its neighbors, and its neighbors’ neighbors form a tree with
probability 1− o(n−γ).

Proof. First, we employ Lemma 5 to condition on the
event that none of v’s neighbors have degree greater than
nλ, where λ (and η) will be determined below. By a union
bound over these i < nη neighbors, this holds with probabil-
ity 1− o(nη−2λβ). (Unfortunately, we cannot also condition
on v’s neighbors’ neighbors having degree at most nλ with-
out breaking this union bound.)

Now, if we choose two copies independently and uniformly
at random, the probability that they are both copies of a
given vertex of degree j < nλ is j(j − 1)/(δn)2 < n2λ−2,
and the probability that they are both copies of any such
vertex is at most n2λ−1. Moreover, the probability that two
random copies are siblings, regardless of the degree of their
vertex, is

Psib =

P
j j(j − 1)ajn“P

j jajn
”2 <

1

δ2n

X
j

j2aj = o(n−2β) .

Taking a union bound over all pairs of copies of v, the
probability that v has a multiple edge, i.e., that two of its
copies are matched to copies of the same neighboring ver-
tex, is at most i2n2λ−1 = O(n2η+2λ−1), and the probability
that v contains a self-loop, i.e., that two of its copies are
matched, is O(i2/(δn)) = O(n2η−1). For each of v’s neigh-
bors, the probability of parallel edges involving it is at most
n2λPsib = o(n2λ−2β), and the probability of a self-loop is
O(n2λ/(δn)) = O(n2λ−1). Taking a union bound over all
of v’s neighbors, the probability that any of them have a
self-loop or multiple edge is o(nη+2λ−2β).

To determine the expected number of triangles containing
v, we notice that any such triangle contains two copies each

from v and two of its neighbors, and edges between the
appropriate pairs. A given pair of copies is connected with
probability O(1/(δn)), so the expected number is

O
“
n2 n2η(n2λ)2/(δn)3

”
= O(n2η+4λ−1) .

Similarly, each 4-cycle involves two copies each of v and
two of its neighbors, such that one copy from each of the
neighbors is matched with one copy of v, and the other two
copies are matched with copies of the same node. Thus, the
expected number of 4-cycles involving v is

O
“
n2 n2η(n2λ)2Psib/(δn)2

”
= o(n2η+4λ−2β) .

Collecting all these events, the probability that the state-
ment of the lemma is violated is

o(n−γ) where γ = −max(η − 2λβ, 2η + 4λ− 2β) .

If we set η = β2/6 and λ = β/4, then γ = β2/3.

The next lemma shows that, conditioning on the event
of Lemma 6, the copies discussed in our analysis above can
be thought of as chosen with replacement, as long as we
are not too close to the end of the process where untouched
copies become rare. Therefore, the number of visible edges
is binomially distributed.

Lemma 7. Let η, γ be defined as in Lemma 6. There ex-
ists a constant θ > 0 such that for t ∈ [n−θ, 1] and i < n−η,

|ρi,m(t)− Prob[Bin(i− 1, Pvis(t)) = m]| < n−γ .

Proof. Let dmin be the minimum degree of the graph, i.e.,
the smallest j such that aj > 0. Note that dmin ≥ 3, and
set θ = β/(2dmin) < 1/12. For t ≥ n−θ, we have that

E[Cunex(t)] = δt2n = Ω(n1−β/dmin), and this bound holds
w.o.h.p. by Lemma 3.

Conditioning on v’s neighbors having degree at most nλ

as in Lemma 6, the number of visible edges of v is deter-
mined by a total of at most nη+λ copies. These are cho-
sen without replacement from the unexposed copies. If we
instead choose them with replacement, the probability of
a collision in which some copy is chosen twice is at most
(nη+λ)2/Cunex(t) = O(n2η+2λ+β/dmin−1) = o(n−1/2). This
can be absorbed into the probability o(n−γ) that the state-
ment of Lemma 6 does not hold. If there are no collisions,
then we can assume the copies are chosen with replacement,
and each of v’s i− 1 outgoing edges is independently visible
with probability Pvis(t), as defined in (6).

It is a simple technical matter, which we relegate to the
full version of this paper, to show that Bin(i− 1, Pvis(t)) is
very close to Bin(i− 1, pvis(t)), establishing the following:

Lemma 8. Let {aj} be a reasonable degree distribution
and assume that G is connected. There are constants θ, κ,
η, µ > 0, such that for all t ∈ [n−θ, 1− n−κ] and all i < nη,
for sufficiently large n,

|ρi,m(t)− Prob[Bin(i− 1, pvis(t)) = m]| < n−µ ,

where pvis(t) is defined in (7).



Finally, combining Lemma 8 with (4), (5), and (7), if

aobs
m+1 =

X
i

ai

"Z 1

0

iti−1

 
i− 1

m

!

pvis(t)
m (1− pvis(t))

i−1−m dt

#
, (8)

where, combining (7) with (2) and (3),

pvis(t) =
1P

j jajtj

X
k

kaktk

 P
j jajt

j

δt2

!k

,

then we have the following lemma.

Lemma 9. Let {ai} be a reasonable degree sequence and
assume that G is connected. There is a constant ζ > 0 such
that for sufficiently large n, for all j < n˛̨̨

E
h
Aobs

j

i
− aobs

j n
˛̨̨
< n1−ζ .

Proof. There are three sources of error in our estimate
of E

ˆ
Aobs

j

˜
for each j. These are the error n−µ in ρi,m(t)

given by Lemma 8, and the fact that two types of vertices
are not covered by that lemma: those with degree greater
than nη, and those which join the queue at some time t /∈
[n−θ, 1 − n−κ]. The total error is then at most n1−µ plus
the number of vertices of either of these types. The number
of vertices of degree greater than nη is at most

n
X

j>nη

aj < Cn
X

j>nη

j−α = O(n1−(α−1)η) .

The number of vertices that join the queue at a time t /∈
[n−θ, 1 − n−κ] is at most the number of copies whose in-
dex is outside this interval. This is binomially distributed
with mean n1−θ + n1−κ, and by the Chernoff bound, this
is w.o.h.p. less than n1−ζ for sufficiently large n for any
ζ < min(θ, κ). The (exponentially small) probability that
this bound is violated can be absorbed into n1−ζ as well.
Setting ζ < min(µ, (α− 1)η, θ, κ) completes the proof.

4. CONCENTRATION
In this section, we prove that the number Aobs

j of nodes
of observed degree j is tightly concentrated around its ex-
pectation E

ˆ
Aobs

j

˜
. Specifically, we prove

Theorem 10. There is a constant ρ > 0 such that, with
overwhelmingly high probability, the following holds simulta-
neously for all j:˛̨̨

Aobs
j − E

h
Aobs

j

i˛̨̨
≤ O(n1−ρ) .

Proof. In order to prove concentration, the style of analy-
sis in the previous section will not be sufficient. Intuitively,
the reason is that changing a single edge in the graph can
have a dramatic impact on the resulting BFS tree, and thus
on the observed degree of a large number of vertices. As a
result, it seems unlikely that Aobs

j can be decomposed into a
large number of small contributions such that their sum can
easily be shown to be concentrated. In particular, this rules
out the direct application both of Chernoff-style bounds and
of martingale-based inequalities.

There is, however, a sense in which martingale bounds
will prove helpful. The key is to decompose the evolution of

Aobs
j into a small number of “bulk moves,” and prove con-

centration for each one of them. Concretely, assume that the
BFS tree has already been exposed up to a certain distance
r from the root, and that we know the number of copies in
the queue, as well as the number of untouched copies at that
point. Since all these copies will be matched uniformly at
random, one can use an edge-switching martingale bound
to prove that the degree distributions of nodes at distance
r + 1 from the root will be sharply concentrated. In fact,
this concentration argument applies to the observed degrees
of the neighbors of any “batch” of copies that comprise the
queue Q(t) at some time t.

We will implicitly divide the copies in the graph into such
“batches” by specifying a set of a priori fixed points in time
at which we examine the system. That is, we will approxi-
mate Aobs

j by the sum of the observed degrees of the neigh-
bors of Q(t) over these time steps. We will show that each
of the terms in the sum is sharply concentrated around its
expectation, and then prove that the true expectation of
Aobs

j is not very far from the expectation of the sum that we
consider. For the latter part, it is crucial that most vertices
be counted exactly once in the sum; this will follow readily
from the concentration given by Lemma 3.

To make the above outline precise, we let Q(t) := |Q(t)|
be the number of copies in the queue at time t, and let

q(t) := E[Q(t)] = (cunex(t)− cunto(t)) · n

be its expected size. We define a sequence of r ≤ log2 n
times at which we observe the queue and its neighbors. We
start with t1 = 1. For each i, we let ti+1 ≥ 0 be maximal
such that

cunex(ti)− cunex(ti+1) ≥ q(ti)/n + 2n−β ,

where β is defined as in Lemma 3. Depending (determinis-
tically) on the properties of the real-valued functions cunex

and cunto, there may be an i < log2 n such that ti+1 does
not exist, namely when cunex(ti) < 2n−β . If so, we let r be
that i; otherwise, we let r = log2 n.

For each degree j, let Bj(i) denote the number of vertices
adjacent to Q(ti) whose observed degree is j. Lemma 11 be-
low shows that each Bj(i) is sharply concentrated. However,
we want to prove concentration for the overall quantity Aobs

j .
Using a union bound over all i = 1, . . . , r and summing up
the corresponding Bj(i) will give us concentration for Aobs

j ,
assuming that (1) not too many times ti are considered, (2)
nodes are not double-counted for multiple i, and (3) almost
all nodes are considered in some batch i.

For the first point, recall that we explicitly chose r =
O(log2 n). For the second, observe that whenever

Cunex(ti)− Cunex(ti+1) ≥ q(ti) + 2n1−β ≥ Q(ti)

for all times i, then all of the Q(ti) are disjoint. Each of
these bounds holds w.o.h.p. by Lemma 3, and by the union
bound, w.o.h.p. they hold simultaneously.

This leaves the third point. Here, we first bound the num-
ber of nodes that remain unexposed after time tr. If the
construction terminated prematurely (i.e., r < log2 n), then
the fact that cunex(0) = 0 implies that cunto(tr) < 2n−β ,
so by Lemma 3, at most O(n1−β) copies remain unexposed
w.o.h.p. On the other hand, when r = log2 n, we can use
the fact that the diameter of a random graph is bounded by
log2 n with probability at least 1 − n−1/2, which we prove
in the full paper using techniques of Bollobás and Chung



[4]. Even if Cunto(tr) were Ω(n) in the remaining case,

since this occurs with probability at most n−1/2, we have
cunto(tr) · n = O(n1/2) = O(n1−β) since β < 1/2.

Let E denote the event that
˛̨
Vunto,j(ti)− ajt

j
in
˛̨
≤ n1/2+ε

and |Q(ti)− q(ti)| ≤ 2n1−β hold simultaneously for all i.
By Lemma 3, E occurs w.o.h.p. In that case, we know that
(1) all of the sets Q(ti) are disjoint, and (2) the union of all

the Q(ti) excludes at most 2r · n1−β + O(n1−β) = Õ(n1−β)

copies total (where Õ includes polylog(n) factors). Thus,˛̨
Aobs

j −
Pr

i=1 Bj(i)
˛̨
= Õ(n1−β) w.o.h.p., which implies that˛̨

E
ˆ
Aobs

j

˜
−
Pr

i=1 E[Bj(i)]
˛̨

= Õ(n1−β), since this difference
is deterministically bounded above by n.

By Lemma 11 below and a union bound over all i, there
is a τ > 0 such that w.o.h.p. |Bj(i)− E[Bj(i)]| = O(n1−τ )
holds simultaneously for all i = 1, . . . , r and all j. Hence, by
a union bound with the event E , and the triangle inequality,
the following holds w.o.h.p.:˛̨̨

Aobs
j − E

h
Aobs

j

i˛̨̨
≤

˛̨̨̨
˛Aobs

j −
rX

i=1

Bj(i)

˛̨̨̨
˛

+

rX
i=1

|Bj(i)− E[Bj(i)]|

+

˛̨̨̨
˛EhAobs

j

i
−

rX
i=1

E[Bj(i)]

˛̨̨̨
˛

= Õ(n1−β) + Õ(n1−τ )

= O(n1−ρ) .

for any ρ < min(β, τ), completing the proof of Theorem 10.

The concentration for one “batch” of nodes at time ti is
captured by the following lemma.

Lemma 11. There is a constant τ > 0 such that, for any
fixed i, w.o.h.p., |Bj(i)− E[Bj(i)]| = O(n1−τ ) holds simul-
taneously for all j.

Proof. As explained above, the idea for the proof is to
apply an edge-exposure Martingale-style argument to the
nodes that are adjacent to Q(ti). We use the following con-
centration inequality for random variables on matchings due
to Wormald [26, Theorem 2.19]. A switching consists of re-
placing two edges {p1, p2}, {p3, p4} by {p1, p3}, {p2, p4}.

Theorem 12. [26] Let Xk be a random variable defined
on uniformly random configurations M, M ′ of k copies, such
that, whenever M and M ′ differ by only one switching,˛̨

Xk(M)−Xk(M ′)
˛̨
≤ c

for some constant c. Then, for any r > 0,

Prob[|Xk − E[Xk]| ≥ ∆] < 2e−∆2/(kc2) .

For fixed values q and b = b1, . . . , bn, let Eq,b denote the
event that Q(ti) = q and Vunto,j(ti) = bj for all j. Condi-
tioned on Eq,b, the matching on the q +

P
j jbj copies is

uniformly random. Since any switching changes the value of
Bj(i) by at most 2, Theorem 12 implies that

|Bj(i)− E[Bj(i) | Eq,b]| ≤ n1/2+ε (9)

holds w.o.h.p. for any ε > 0. If we knew the queue size q
and the number bj of untouched nodes of degree j exactly,
then we could apply Theorem 12 directly.

In reality, we will certainly not know the precise values of
q and b. Therefore, we need to analyze the effect that devi-
ations of these quantities will have on our tail bounds. We
do this by showing in Lemma 13 below that the conditional
expectations E[Bj(i) | Eq,b] are close to the actual expecta-
tions E[Bj(i)]. It follows that concentration around the con-
ditional expectation implies concentration around the actual
expectation. Specifically, write

Iq :=
h
q(ti)− 2n1−β , q(ti) + 2n1−β

i
for the interval of possible queue lengths under considera-
tion, and, for some 0 < ε < 1/2, write

Ib
j :=

h
ajt

j
in− n1/2+ε, ajt

j
in + n1/2+ε

i
for the interval of possible numbers of untouched vertices
of degree j, as well as Ib := Ib

1 × · · · × Ib
n for the range of

all possible combinations of numbers of untouched vertices.
Now, let E≤ be the event that Q(ti) ∈ Iq and Vunto,j(ti) ∈ Ib

j

for all j. Notice that E≤ occurs w.o.h.p. by Lemma 3.
Lemma 13 ensures that whenever q ∈ Iq and b ∈ Ib, then

the conditional expectation is close to the true expectation,
i.e., for some τ > 0,

|E[Bj(i) | Eq,b]− E[Bj(i)]| = O(n1−τ ) .

Thus, for all such q and b, combining this with (9) and the
triangle inequality gives |Bj(i)− E[Bj(i)]| = O(n1−τ ), so
the latter occurs w.o.h.p. Finally, a union bound with the
event E≤ and over all j completes the proof.

The final missing step is a bound relating the conditional
expectation of Bj(i) with its true expectation. Intuitively,
since all relevant parameters are sharply concentrated, one
would expect that the conditional expectation for any of the
likely values is close to the true expectation. Making this
notion precise turns out to be surprisingly cumbersome.

Lemma 13. There is a constant τ > 0 such that, for any
q ∈ Iq and b ∈ Ib, we have

|E[Bj(i) | Eq,b]− E[Bj(i)]| = O(n1−τ ) .

Proof. We first compare the conditional expectations for
two “scenarios” of queue lengths and untouched vertices
when the scenarios are close. We will see that the condi-
tional expectations in those two scenarios will be close; from
that, we can then conclude that any conditional expectation
is close to the true expectation.

Given q, q′ and b,b′, such that |q − q′| ≤ 4n1−β , and˛̨
bj − b′j

˛̨
≤ 2n1/2+ε for each j, we let q̂ = min(q, q′) and

b̂j = min(bj , b
′
j), and define the events E := Eq,b, E ′ := Eq′,b′ ,

and Ê := Eq̂,b̂. Now, we claim that, for some τ > 0,˛̨̨
E[Vunto,j(ti) | E ]− E

h
Vunto,j(ti) | Ê

i˛̨̨
= O(n1−τ )

for all j, and similarly for E ′. By the triangle inequality, this
immediately implies that˛̨

E[Vunto,j(ti) | E ]− E
ˆ
Vunto,j(ti) | E ′

˜˛̨
= O(n1−τ ) .



To prove the claim, imagine that in the (q,b) instance,
we color an arbitrary, but fixed, set of q− q̂ of copies in the
queue black, as well as the copies of an arbitrary set of bj−b̂j

vertices for each degree j. To expose the matching, we first
expose all the neighbors of black copies, and color them blue,
and then choose a uniform matching among the remaining
(white, say) copies. The number of blue copies obeys some
distribution Dq,b, but in any case, it never exceeds the total
number of black copies. Since q, q′ ∈ Iq and b,b′ ∈ Ib, for
any ν > 0, this total number is at most

(q − q̂) +
X

j

j · (bj − b̂j)

≤ 4n1−β + 2n1/2+ε
X

j≤nν

j + 2
X

j>nν

j · ajn

= 4n1−β + O(n1/2+ε+2ν) + O(n1−(α−2)ν)

= O(n1−τ ) ,

for any τ < min(β, 1/2− ε− 2ν, (α− 2)ν). Note that τ > 0
as long as 1/2 − ε − 2ν > 0; recall that we took ε < 1/2 in
the previous lemma, so we can choose any ν < (1/2− ε)/2.

Now, in the (q̂, b̂) instance, we can generate a uniformly
random matching as follows: we choose a number k accord-
ing to Dq,b, choose k copies uniformly at random and color
them blue, and determine a uniformly random matching
among the blue copies only. Then, we match up the re-
maining white copies uniformly at random. We will call a
node black if at least one of its copies is black, blue if at
least one of its copies is blue, and white otherwise.

Since the set of nodes that are not black is deterministi-
cally the same in both instances, and the probability dis-
tribution of blue nodes is the same in both, the expected
number of white nodes that end up with visible degree j is
the same in both experiments. Hence, the expected total
number of nodes with observed degree j can only differ by
the number of blue or black nodes. Even if the degrees of
those nodes were chosen adversarially, the difference cannot
be more than O(n1−τ ), since this is a deterministic upper
bound on the number of black or blue copies, and hence on
the number of black or blue nodes. By summing up over
the entire probability space, this now proves the claim for E
and Ê , and thus also for E and E ′.

We know that if q, q′ ∈ Iq and b,b′ ∈ Ib, then they always
satisfy the necessary conditions, and hence the conditional
expectations are within O(n1−τ ). Summing up over all q ∈
Iq and b ∈ Ib therefore shows that

|E[Bj(i) | Eq,b]− E[Bj(i) | E≤]| = O(n1−τ ) .

Finally, because E≤ has overwhelmingly high probability,
and Bj(i) is bounded by n, we obtain that, for all c,

|E[Bj(i) | E≤]− E[Bj(i)]| = O(n−c) ,

and the triangle inequality completes the proof.

5. GENERATING FUNCTIONS
In this section, we use the formalism of generating func-

tions [25] to express the results of Section 3 more succinctly,
and complete the proof of Theorem 2. Given the generating
function of the degree sequence of the underlying graph

g(z) =
X

i

aiz
i ,

our goal is to obtain the generating function for the expected
degree sequence of the breadth-first tree as approximated by
Lemma 9,

gobs(z) =
X

i

aobs
i zi .

Using the generating function formalism, we can write

cunto(t) = tg′(t), δ = g′(1), cunex(t) = t2g′(1) ,

and from (7) we have

pvis(t) =
X

k

kaktk

tg′(t)

„
g′(t)

tg′(1)

«k

=
1

tg′(t)

X
k

kak

„
g′(t)

g′(1)

«k

=
1

tg′(1)
g′
„

g′(t)

g′(1)

«
. (10)

Then, combining (7) and (8), the generating function for the
observed degree sequence is given by

gobs(z) =
X
m

aobs
m+1 zm+1

= z
X

i

ai

i−1X
m=0

zm

"Z 1

0

iti−1

 
i− 1

m

!

pvis(t)
m (1− pvis(t))

i−1−m dt

#

= z
X

i

ai

"Z 1

0

iti−1
i−1X
m=0

 
i− 1

m

!

(zpvis(t))
m (1− pvis(t))

i−1−m dt

#

= z
X

i

ai

Z 1

0

iti−1 (1− (1− z)pvis(t))
i−1 dt

= z

Z 1

0

X
i

aii · [t (1− (1− z)pvis(t))]
i−1 dt

= z

Z 1

0

g′[t (1− (1− z)pvis(t))] dt

= z

Z 1

0

g′
»
t− 1− z

g′(1)
g′
„

g′(t)

g′(1)

«–
dt .

which completes the proof of Theorem 2.

Our definition of “reasonable” degree sequences implies
that the graph is w.h.p. connected, so that every copy is
eventually added to the queue. For other degree sequences,
Molloy and Reed [18, 19] established that w.h.p. there is a
unique giant component if

P
j aj(j

2 − 2j) > 0, and calcu-

lated its size within o(n). We omit the details, but gobs(z) is
then given by an integral from t0 to 1, where t0 is the time at
which the giant component has w.h.p. been completely ex-
posed; this is the time at which cunto(t) = cunex(t), namely
the largest root less than 1 of the equationX

j

jajt
j = t2

X
j

jaj . (11)



6. EXAMPLES

6.1 Regular graphs
Random regular graphs present a particularly attractive

application of the machinery developed here, as the gen-
erating function for a δ-regular degree sequence is simply
g(z) = zδ. From (1), we derive the generating function for
the observed degree sequence:

gobs(z) = zδ ·
Z 1

0

tδ−1(1− (1− z)tδ(δ−2))δ−1dt . (12)

This integral can be expressed in terms of the hypergeomet-
ric function 2F1 [23]. In general, for all a > −1 and b > 0,
we haveZ 1

0

ta(1− xtb)−c dt =
1

a + 1
2F1

„
a + 1

b
, c;

a + b + 1

b
; x

«
.

where

2F1(s, t; u; z) =

∞X
i=0

Γ(s + i)

Γ(s)

Γ(t + i)

Γ(t)

Γ(u)

Γ(u + i)

zi

i!
.

In (12), a = δ − 1, b = δ(δ − 2), and c = 1− δ (note a > −1
and b > 0 since δ > 2) giving

gobs(z) = z · 2F1

„
1

δ − 2
, 1− δ; 1 +

1

δ − 2
; 1− z

«
. (13)

Another useful identity is that for any negative integer q,

2F1(p, q; r; x)

=
Γ(r) Γ(r − p− q)

Γ(r − p) Γ(r − q)
2F1(p, q; p + q + 1− r; 1− x) .

Here, q = c = 1 − δ, and δ is an integer greater than 2.
Thus, (13) becomes

gobs(z) = z ·
Γ(1 + 1

δ−2
) Γ(δ)

Γ(δ + 1
δ−2

)
· 2F1

„
1

δ − 2
, 1− δ; 1− δ; z

«

= z · Γ(δ)

Γ(δ + 1
δ−2

) (δ − 2)

∞X
m=0

Γ

„
m +

1

δ − 2

«
zm

m!
.

The expected observed degree sequence is then given by

aobs
m+1 =

Γ(δ) Γ(m + 1
δ−2

)

Γ(δ + 1
δ−2

) (δ − 2) m!
.

To explore the asymptotic behavior of aobs
m+1, note that

Γ(m) < Γ(m + ε) < Γ(m) mε

for all m ≥ 2 and all 0 < ε < 1. Therefore, for m ≥ 2, we
can bound aobs

m+1 as follows:

m−1

δ1/(δ−2) (δ − 2)
< aobs

m+1 <
m−1+1/(δ−2)

δ − 2
.

For any fixed δ, this gives a power-law degree sequence, and
in the limit of large δ, one observes aobs

m+1 ∼ m−1. Thus,
even regular graphs appear to have a power-law degree dis-
tribution (with exponent α → 1 in the limit δ →∞) under
traceroute sampling!

6.2 Poisson degree distributions
Clauset and Moore [6] used the method of differential

equations to show that a breadth-first tree in the giant com-
ponent of G(n, p = δ/n) has a power-law degree distribution,
am+1 ∼ m−1 for m . δ. Here, we recover this result as a
special case of our analysis. Recall that w.h.p. the degree
distribution of G(n, p = δ/n) is within o(1) of a Poisson
degree sequence with mean δ. The generating function is
then g(z) = e−δ(1−z), and the generating function for the
observed degree sequence is

gobs(z) = zδ ·
Z 1

t0

e−δ(1−t)e−δ(1−z)e−δ(1−e−δ(1−t))
dt

= z

Z 1−t0

0

e−δ(1−z)e−δy

dy . (14)

In the second integral we transform variables by taking y =
1− e−δ(1−t). Here, t0 is the time at which we have exposed
the giant component, i.e., when cunex(t) = cunto(t); since

cunex(t) = δt2 and cunex(t) = δte−δ(1−t), t0 is the smallest

positive root of t = e−δ(1−t).
This integral can be expressed in terms of the exponen-

tial integral function Ei(z) [24] and the incomplete Gamma
function Γ(a, z), which are defined as

Ei(z) = −
Z ∞

−z

e−x

x
dx

Γ(a, z) =

Z ∞

z

xa−1e−x dx .

Then, with the integralZ q

p

eaeby

dy =
1

b

“
Ei
h
aeqb

i
− Ei

h
aepb

i”
and the Taylor series

Ei(−δ(1− z)) = Ei(−δ)−
∞X

k=1

Γ(k, δ)

Γ(k)

zk

k
,

taking a = −δ(1− z) and b = −δ as in (14) gives

gobs(z) ≈ z

δ

“
Ei
h
− δ(1− z)

i
− Ei

h
−δe−δ(1−t0)(1− z)

i”
=

∞X
m=0

zm+1

δm!

“
Γ(m, δe−δ(1−t0))− Γ(m, δ)

”
. (15)

Thus, the coefficients of the observed degree sequence are

aobs
m+1 =

1

δm!

Z δ

δe−δ(1−t0)
e−xxm−1 dx . (16)

Now, t0 approaches e−δ in the limit of large δ, and for m . δ,
the integral of (16) coincides almost exactly with the full
Gamma function Γ(m) since it contains the peak of the in-
tegrand. Specifically, in [6] Clauset and Moore showed that
if m < δ − δκ for some κ > 1/2, then

aobs
m+1 = (1− o(1))

Γ(m)

δm!
∼ 1

δm
,

giving an observed degree sequence of power-law form m−1

up to m ∼ δ and confirming the experimental result of
Lakhina et al. [14].



7. CONCLUSIONS
Having established rigorously that single-source tracer-

oute sampling is biased, thus formally verifying the empiri-
cal observations of Lahkina et al. [14], and having calculated
the precise nature of that bias for a broad class of random
graphs, there are several natural questions we may now ask.

Petermann and De Los Rios [22] and Clauset and Moore [6]
both demonstrated experimentally that when the graph does
have a power-law degree distribution, traceroute sampling
can significantly underestimate the exponent α. Although a
characterization of this phenomenon is beyond the scope of
this paper, it is a natural application of our machinery.

However, a more intriguing question is the following: can
we invert Theorem 2, and derive g(z) from gobs(z)? In other
words, can we undo the bias of traceroute sampling, and in-
fer the most likely underlying distribution given the observed
distribution? Unfortunately, it is not even clear whether the
mapping from g(z) to gobs(z) is invertible, and the complex-
ity of our expression for gobs(z) makes such an inversion ap-
pear quite difficult. We leave this question for future work.

Finally, although several studies claim that using addi-
tional sources in mapping the Internet has only a small
marginal utility [2, 21], Clauset and Moore [6] showed em-
pirically that in power-law random graphs, the number of
sources required to compensate for the bias in traceroute
sampling grows linearly with the mean degree of the net-
work. However, a rigorous analysis of multiple sources seems
quite difficult, since the events that a given edge appears
in BFS trees with different roots are highly correlated. We
leave the generalization of our results to traceroute sampling
with multiple sources for future work.
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