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That which is not good for the swarm is not good for the bee either.

Marcus Aurelius, Meditations, book VI verse 54

Abstract

Chord is a distributed hash table (DHT) that requires only O(log n) links per
node and performs searches with latency and message cost O(log n), where n is
the number of peers in the network. Chord assumes all nodes behave according to
protocol. We give a variant of Chord which, for any fixed ε0 > 0, is resilient to
(1/4 − ε0)z Byzantine nodes joining the network over a time period during which
1) there are always at least z total nodes in the network and 2) the number of
correct peers joining and leaving is no more than zk for some tunable parameter
k. We assume there is an omniscient and computationally unbounded adversary
controlling the Byzantine peers and that the IP-addresses of all the Byzantine peers
and the locations where they join the network are carefully selected by this adversary.

Our notion of resilience is rather strong in that we not only guarantee that
searches can be performed but also that we can enforce any set of “proper behav-
ior” such as contributing new material, etc. In comparison to Chord, the resources
required by this new variant are only a polylogarithmic factor greater in communi-
cation, messaging, and linking costs.

1 Introduction

A distributed hash table (DHT) is a structured peer-to-peer network which provides for
scalable and distributed storage and lookup of data items (see e.g. [22, 19, 25]). Because
peer-to-peer networks have little to no admission control, there has been significant
effort in designing DHT’s which are robust to Byzantine faults. When a peer suffers
a Byzantine fault it is assumed to be controlled by an omniscient adversary who uses
that peer to try to disrupt the network. The standard attack model considered is as
follows. There is an instantaneous attack during which each peer in the network suffers
a Byzantine fault independently at random with constant probability (less than 1/2).
We will refer to this type of attack as a random Byzantine attack. Several DHT’s have
been designed which provide robust storage and lookup of data items, even in the face
of a random Byzantine attack [7, 17, 10].

While this past work is encouraging, the random Byzantine attack model is unsatis-
fying. In particular, it seems that a much more likely attack scenario is that an adversary
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will cause a stream of Byzantine peers to join the network and carefully choose the IP-
addresses of these Byzantine peers1 and where they join the network in order to place
them at critical locations in the network. To better address this scenario, we introduce a
new attack model, which we call the Byzantine join attack. Under this attack, (1/4−ε0)z
Byzantine nodes join the network over a time period during which 1) there are always at
least z total nodes in the network and 2) the number of correct peers joining and leaving
is no more than zk for some tunable parameter k. We assume there is a computationally
unbounded adversary controlling the Byzantine peers and that the IP-addresses of all
the Byzantine peers are selected by this adversary. We further assume that the adver-
sary possesses full knowledge of the network topology, protocols, where data is stored,
etc., and that the peers controlled by the adversary can actively collude to disrupt the
network.

1.1 Our Contributions

In this paper, we describe a variant of Chord, S-Chord, which is robust to the Byzantine
join attack. Define a z-good interval to be a time interval during which: 1) the number of
total peers in the network is always at least z; 2) the number of Byzantine peers joining
the network is no more than (1/4 − ε0)z for some ε0 > 0; and 3) the number of correct
peers joining and leaving during this time interval is no more than zk for some tunable
parameter k. Theorem 1 states the main result of this paper.

Theorem 1. During any z-good interval, the following properties hold for S-Chord with
high probability (specifically with probability of error polynomially small in z)

• All functionality of Chord is preserved.

• We can enforce a rule-set for all peers in the network.

• For n peers in the network, the resource costs are as follows:

– O(log n) latency and expected O(log2 n) messages sent per lookup operation.

– Θ(log n) latency and Θ(log3 n) messages sent per peer join operation.

– O(log2 n) links stored at each peer.

In addition to being robust to the Byzantine join attack, S-Chord is also robust to
the random Byzantine attack. Aside from robustness to this new, more realistic attack
model, the other new contributions of S-Chord are as follows.

• S-Chord can enforce a set of rules describing “proper behavior” such as: “For
every 20 search that a peer issues, that peer must service one search request”. In
particular, the consequences of not obeying the rules will be disconnection from
the network. To the best of our knowledge, S-Chord is the first p2p network with
this property.

• S-Chord is based on Chord and thus inherits many of Chord’s good properties.
Moreover, we feel that the general techniques used in this paper can be applied to
a wide-range of other DHT’s.

1i.e. by spoofing
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• S-Chord requires Θ(log2) messages for lookups in expectation. Previous DHT’s
which are robust to the random Byzantine attack require Θ(log3 n) messages. Un-
der the additional assumption of a computationally bounded adversary, we also
show how we can ensure only an expected constant factor increase in the number
of bits sent when sending large messages through the network.

1.2 Related Work

Recent years have witnessed the advent of large scale real-world peer-to-peer applications
such as Gnutella, Napster, Kazaa, Morpheus, BitTorrent, and many others. Several dis-
tributed hash tables (DHTs) have been introduced which are provably robust to random
peer deletions (i.e. fail-stop faults) [19, 25, 20, 22, 12, 1, 9].

We are aware of only three results which deal with the more challenging problem
of designing DHTs which are robust to Byzantine faults. All three of these results are
robust only to the random Byzantine attack described earlier. Fiat and Saia describe
a DHT which uses expander graphs and a butterfly network to achieve robustness to
this attack [7]. Unfortunately, this DHT is not fully dynamic in the sense that it does
not easily allow for significant changes in network size. Naor and Wieder describe a
much simpler DHT which is robust to the random Byzantine attack and is also fully
dynamic [17]. Hildrum and Kubiatowicz describe how to modify two popular DHTs,
Pastry [20] and Tapestry [25], in order to make them robust to the random Byzantine
attack [10]. Their modified DHTs are fully dynamic.2 In all three of these results,
lookups have Θ(log n) latency and require Θ(log3 n) messages. In this paper, we make
use of ideas from all three of these results.

Our DHT makes use of secure multiparty computation in order to choose random
IDs for joining peers by consensus. There is a significant body of work in the area of
secure multiparty computation (see e.g. [23, 8, 3, 5, 2, 4, 21, 18, 11]). Section 4 and
Appendix C describe in detail how we use these results.

The rest of this paper is organized as follows. Section 2 gives a high level overview
of S-Chord. Section 3 describes with the protocol SUCCESSOR which allows peers in
S-Chord to publish and lookup content. Section 4 describes the protocol JOIN which
is used to allow new peers to join the network. Section 5 provides an algorithm that
reduces the message complexity of SUCCESSOR from O(log3 n) worst case to O(log2 n)
in expectation. Section 6 gives an algorithm that allows SUCCESSOR to incur only
an expected constant factor increase in the number of bits sent over what is required
for Chord. This result assumes a computationally bounded adversary. We conclude and
suggest some avenues of future research in Section 7. The Appendix contains all proofs
for these sections as well as other details omitted due to space constraints.

2 Overview

2.1 Chord

We now briefly describe Chord [22].3 For convenience, we will assume that the “key
space” of Chord is scaled so it is in the range (0, 1] and will think of Chord as a circle

2We emphasize here that S-Chord is also fully-dynamic.
3For ease of exposition, our description will defer slightly from that of [22], but will not be fundamen-

tally different.
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with unit circumference, which we will call the unit circle. All of the peers in Chord have
identifiers (or IDs for short) which are points on the unit circle that we call peer points.
Chord provides one basic operation: successor(). For a point k on the unit circle,
successor(k) returns the peer, p, whose peer point minimizes the clockwise distance
between k and p. Typically, k represents a key for some data item and successor(k) is
the peer responsible for storing that data item. Thus, the successor() operation provides
for easy storage and lookups of data items.

We now briefly sketch how Chord implements the operation successor(). We
assume that all peers in the network know some number m which is always greater than
the number of peers in the network4. For a point p on the unit circle and integer i between
0 and log m− 1, let f(p, i) be the point p + 2i/m. For each i between 1 and log m− 1,
each peer p maintains a link to the peer whose peer point is closest clockwise to the point
f(p, i). When a peer p links to a peer p′, the peer p simply stores the IP address of p′. The
number of unique peers that a peer p links to is O(log n). For points p and k on the unit
circle, let next(p, k) be the point in the set {f(p, 0), f(p, 1), f(p, 2), . . . f(p, log m − 1)},
which has closest clockwise distance to k.

We can now describe the successor() operation. Assume that some peer p calls
successor(k) for some key k on the unit circle. If next(p, k) = p, then p already knows
the successor of k: it is simply the closest clockwise peer to p. The search terminates by
returning this peer. If next(p, k) = p′ where p′ 6= p, then p forwards the search request
to p′. The same procedure is repeated until the search terminates.

2.2 Notation

For any two points x and y on the unit circle, let d(x, y) be the distance from x to y
traveling clockwise along the perimeter of the unit circle (i.e. if y ≥ x, then d(x, y) = y−x
else d(x, y) = (1 − x) + y). When referring to intervals or points on the unit circle, all
addition is performed modulo 1. We will call a peer controlled by the adversary faulty
and call a peer not controlled by the adversary (i.e. a peer that follows the protocol)
correct.

2.3 S-Chord

In our protocol, peers do not get to choose their own ID’s. Instead they are assigned, by
our protocol, a random ID between 0 and 1 when they first join the network. Following
convention, for a given peer p, we will frequently use p to refer both to the peer and to
the ID of the peer. The precise meaning should be clear from context.

Central to our protocol is the notion of a swarm. For every point x on the unit
circle, we define the swarm, S(x), to be the set of peers whose ID’s are located within a
clockwise distance of (C ln n)/n of the point x on the unit circle (where C is a constant
depending on our fault-tolerant parameters). For a given peer p, we will use S(p) to
mean the swarm associated with the peer p. All communication that p has with the
DHT first passes through the swarm S(p). Swarms, not peers, are the atomic functional
units of our protocols. We say that a swarm is good if at least a 3/4 fraction of the peers
in it are correct. Due to the fact that our protocol randomly assigns ID’s to peers, we
can guarantee with high probability that over a z-good time interval, all swarms will be
good. Thus, we can say that even though many peers are not correct, all of the swarms

4In practice, m is the number of bits in the ID’s of the nodes.
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will be good. This fact is the basis for the robustness of our DHT.

Overview: We begin by assuming that all peers in the network know the values lnn
and (ln n)/n exactly. Under this assumption, we present protocols for 1) obtaining
content from network and sending messages (Section 3), 2) handling dynamic peer joins
(Section 4) and 3) stabilization to handle peer deletions and the effects of changing
network size on interval tracking (Section A.5). These protocols provide the same basic
functionality of those used in Chord; however, they have been extended to work with
swarms. In Appendix B, we give the required modifications to our protocols for the case
where the peers do not know the values of ln n and (ln n)/n.

2.4 Links Required

In this section, we state the links that each peer is required to maintain in our protocol.
We will often make statements referring to some correct peer p maintaining links to all
peers in an interval [a, b] for a, b ∈ (0, 1]. Assume that this means p maintains links to
all correct peers and those faulty peers of which p is aware. Every peer p maintains links
to all peers in the following intervals.

• Center Interval : Center(p) is the set of peers in the interval [p− (2C ln n)/n, p +
(2C ln n)/n].

• Forward Intervals: For all i between 1 and log m − 1, Forward(p, i) is the set of
peers in the interval [p + 2i/m− (C ln n)/n, p + 2i/m + (C ln n)/n].

• Backward Intervals: For all i between 1 and log m − 1, Backward(p, i) is the set
of peers in the interval [p− 2i/m− (C ln n)/n, p− 2i/m + (C ln n)/n].

Figure 1 illustrates links maintained in Chord and our enhanced DHT. A peer p
keeps track of the links in the Center interval so that 1) p knows all peers in S(p), 2) p
knows all peers p′ such that p ∈ S(p′) and 3) p is able to help compute the SUCCESSOR
algorithm described in Section 3. A peer p, keeps track of the Forward intervals so that
is able to forward on requests for the SUCCESSOR function. While in Chord, requests
for a successor are forwarded to a single peer, in our system, they are forwarded to
an entire swarm. A peer p, keeps track of the Backward intervals so that it is able to
recognize legitimate requests sent during computations of the SUCCESSOR function.
In our protocol, we do not trust a peer to tell us its identifier (i.e. where it is located
on the unit circle). Thus, a peer p specifically requires links to Backward intervals in
order to keep track of the IDs of those peers who may legitimately send p messages. All
messages sent to p from peers which are not in one of p’s Backward intervals are ignored.

Lemma 1. Let p and q be any two peers. Then, the following are true:

• If p ∈ Center(q) then q ∈ Center(p)

• If p ∈ Forward(q, i) for some i between 1 and log m− 1, then q ∈ Backward(p, i)

• If p ∈ Backward(q, i) for some i between 1 and log m− 1, then q ∈ Forward(p, i).

Lemma 2. With high probability, the number of peers any peer links to is Θ(log2 n).
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Figure 1: (a) Links maintained by peer p under Chord. (b) Links maintained by p to
Forward intervals in our DHT. The grey arrows depict links from p to all peers in each
interval shown. Peer p’s links to its Center and Backward intervals are not shown here.

Algorithm 1 SUCCESSOR(p)

1: p sends a request for k to all peers in S(p);
2: S ← set of all peers in S(p);
3: x← identifier of p;
4: while (d(x, k) > (C lnn)/n) do
5: x′ ← next(x, k);
6: All peers in S send the request for k to all peers in S(x′);
7: S′ ← set of all peers in S(x′) that received the above request from a majority of

the peers in S;
8: S ← S′;
9: x← x′;

10: end while
11: The peers in S send back pointers to all the peers in S(k). These pointers are sent

backwards along the same path, in the same manner, to the peer p;

3 Sucessor Protocol

Algorithm 1 gives the pseudocode for our robust SUCCESSOR protocol which is
analogous to the successor operation of Chord. Figure 2 illustrates a run of SUCCESSOR.
For a point k on the unit circle, SUCCESSOR(k) returns pointers to the peers in S(k).
As in Chord, k would typically represent a key for some data item. SUCCESSOR(k)
returns pointers to the set of peers responsible for storing that data item. Thus, the
SUCCESSOR operation provides for redundant storage and lookups of data items.

For a key k and peer p, SUCCESSOR(k) works as follows when called by p. Peer
p initially sends the request for k to all peers in S(p). Let x equal the ID of p and S be
S(p). Until d(x, k) ≤ (C ln n)/n, the following loop repeats: the peers in S forward the
request to all peers in S(x′) where x′ = next(x, k). Let S′ be the set of peers in S(x′)
which receive the request from a majority of peers in S. The loop now repeats with S
set to S′ and x set to x′. When the loop terminates, d(x, k) ≤ (C ln n)/n, so all peers
in the set S have pointers to all peers in S(k). These pointers to peers in S(k) are then
sent backwards along the same path, in the same manner, to the originating peer p.
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x=next(p,k)

p

k

x’=next(x,k)

x+Cln(n)/n
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x

x’ x’+Cln(n)/n

p+Cln(n)/n

k k+Cln(n)/n

(a) (b)

Figure 2: (a) An example of a call to SUCCESSOR(k) by peer p. The dark arrows
represent the path the search traverses.(b) A close-up the messages being sent.

The following lemma is true with high probability over any z-good time interval.

Lemma 3. The following is true provided that all swarms in the DHT are good. For any
key k and peer p, SUCCESSOR(k) always returns pointers to all peers in S(k) when
called by peer p. Moreover, SUCCESSOR has latency O(log n) and requires O(log3 n)
messages.

For a given peer p, message m and an interval I on the unit circle, we define SEND
MESSAGE(m, I) to be an algorithm which allows p to send message m to all peers in
the interval I. If I is of length Θ((ln n)/n), it’s straightforward to see how O(1) calls to
a modified SUCCESSOR algorithm will create a SEND MESSAGE algorithm with
latency O(log n) and message cost O(log3 n) (the detailed pseudocode is omitted). When
writing the JOIN protocol, we will make use of the SEND MESSAGE algorithm.

We now describe conditions under which we can show that all swarms are good.

Lemma 4. Assume that 1) all peer points are distributed uniformly at random on the
unit circle; and 2) the fraction of faulty peers is no more than 1/4− ε. Let k be any fixed
integer and C be sufficiently large but depending only on k, then with probability at least
1− 1/nk, the following statement is true. For any point x on the unit circle, the swarm
S(x) is good.

We now provide a description of how S-Chord allows for the enforcement of a rule
set on all peers in the system, provided that all swarms are good. The desired rule
set must be known in advance by all correct peers. The rule set can be enforced by
having the correct peers in a swarm act in concert to stop any prohibited behavior. For
instance, if a faulty peer p attempts to abuse bandwidth resources by making excessive
calls to SUCCESSOR, the correct peers in S(p) can simply refuse to participate in the
SUCCESSOR calls after a certain pre-defined cut-off point.

4 Peer Joins

Pseudocode for the JOIN algorithm is given in Algorithm 2 and an example run of the
algorithm is illustrated in Figure 3. The JOIN algorithm makes use of an algorithm
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Algorithm 2 JOIN(p)

1: Peer p contacts some correct peer q which notifies S(q) of p’s request to join;
2: All peers in S(q) come to consensus on a random number in (0, 1] to be used as the

ID for p, using the algorithm discussed in Appendix C;
3: All peers in S(q) notify peers in Center(p), using the SEND MESSAGE algorithm,

that p has joined the network;
4: All peers in S(q) get pointers to the peers in Center(p), using O(1) calls to the

SUCCESSOR algorithm. All peers in S(q) send these pointers to p;
5: The peers in Center(p) send data items for all keys k such that p ∈ S(k) and p then

stores copies of these data items;
6: for (i = (log m− 3 log n) to log m) do
7: All peers in S(p) use all-to-all communication with the set P of peers in [p +

2i/m, p + 2i/m + (C ln n)/n] telling them of p’s arrival. All peers in S1 then use
all-to-all communication with the set of peers S2 in [p+2i/m−(C ln n)/n, p+2i/m]
telling them of p’s arrival. In this way, all peers in Forward(p, i) know about p;

8: In an almost identical fashion to Step 7, all peers in S(p) get pointers to the peers
in Forward(p, i). All peers in S(p) then send these pointers to p;

9: All peers in S(p) use all-to-all communication with the set P of peers in [p −
2i/m, p − 2i/m + (C ln n)/n] telling them of p’s arrival. All peers in S3 then use
all-to-all communication with the set of peers S4 in [p−2i/m−(C ln n)/n, p−2i/m]
telling them of p’s arrival. In this way, all peers in Backward(p, i) know about p;

10: In an almost identical fashion to Step 9, all peers in S(p) get pointers to the peers
in Backward(p, i). All peers in S(p) then send these pointers to p;

11: end for

which allows a good swarm to choose a random number in the range (0,1]. The JOIN
algorithm assumes that peer p knows some correct peer q. In the algorithm, p first
contacts peer q with p’s request to join the network. Peer q alerts S(q) to this request
and the peers in S(q) first choose a random ID for p using the algorithm discussed in
Section C. The peers in S(q) then introduce p to the peers of Center(p) (Center(p)
includes the peers in S(p)). All peers in S(p) then find all the peers in p’s Forward and
Backward intervals. In addition, the peers in S(p) introduce p to all peers, p′, in the
network such that p is now in a Center, Forward or Backward interval for p′.

Lemma 5. The JOIN protocol has the following properties with high probability:

• JOIN has Θ(log n) latency and Θ(log3 n) message complexity.

• After JOIN completes, peer p knows all peers in its Center, Forward and Backward
intervals.

• Let q be any peer with the property that p is in a Center, Forward or Backward
interval for q. Then after JOIN completes, q knows about the peer p.

• Assume, before p joins the network, that the fraction of faulty peers is no more than
1/4 − ε and that all peer points are distributed uniformly at random on the unit
circle. Then after p joins the network, all peer points are distributed uniformly at
random on the unit circle.

In Section A.5, we present the STABILIZE protocol that allows peers to maintain
current views of the network. As join operations occur, periodically running STABILIZE
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(A)
q

S(q)

(E)

Forward(p,i)

Backward(p,i)

Center(p)

p

(B)
S(q)

q

Center(p)

p

S 4

S 3

Backward(p,i)(D)

p

S 1
S 2

(C)

Forward(p,i)

p

Figure 3: (A) Peer p contacts q asking to join the network. The peers in S(q) generate
a random number in (0,1] to be used as an identifier for p. (B) All peers in S(q) notify
all peers in Center(p) that p is joining and send to p the identifiers of and pointers to all
peers in Center(p). (C) Peers in S(p) obtain the identifiers of and pointers to the peers
in the ith Forward interval of p. All peers in this Forward interval are informed of p’s
arrival. This process is repeated with all Forward intervals of p. (D) Peers in S(p) obtain
the identifiers of and pointers to the peers in the ith Backward interval of p. All peers in
this Backward interval are informed of p’s arrival. Again, this process is repeated with all
Backward intervals of p. (E) Links established after the join protocol. The light colored
arrows illustrate links between p and the peers in its Forward, Backward, and Center
intervals. There are links between p and the peers in all of its Forward and Backward
intervals although this is not shown in this figure.

keeps a peer p’s pointers to its Forward, Backward, and Center intervals up to date. In the
case of concurrent joins, temporary slowdowns in SUCCESSOR operations may occur
since pointers may be stale or absent. However, the periodic invocation of STABILIZE
will correct out of date pointers and allow for the SUCCESSOR protocol to function
normally.

5 Θ(log2 n) Expected Messages For SUCCESSOR

In this section, we show how to improve SUCCESSOR so that it sends only Θ(log2 n)
messages in expectation. We assume that all peers have a hash function h1 which maps
peer identifiers to the positive integers. We make the random oracle assumption about
h1 i.e. for any input, all outputs are equally likely. We assume that the number of peers
in any swarm is Θ(log n) and at least C log n for some fixed constant C. We also assume
that all swarms have at least a 3/4 fraction of correct peers.
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Algorithm 3 Message Sending Protocol

1: Each peer x ∈ Sj−1 sends a message to peer y ∈ Sj iff

h1(x) = h1(y) mod log n

2: Each peer y ∈ Sj accepts a message from peer x ∈ Sj−1 iff

h1(x) = h1(y) mod log n

3: Each peer y ∈ Sj, upon receiving messages from at least 2/3-rds of the peers that
it would accept from, does majority filtering on all the messages received to decide
which message if any to propagate to the next swarm.

Our algorithm for reducing message cost when sending from swarm Sj−1 to swarm
Sj is given in Algorithm 3. It assumes that swarm Sj−1 wants to send a message to a
swarm Sj (For ease of exposition, for a real number r, we will write r instead of dre. It
should be clear from context which is meant.). This algorithm is used in steps 6 and 7 of
the SUCCESSOR pseudocode given in Algorithm 1. The proof of the following Lemma
is given in Appendix A.6.

Lemma 6. For C sufficiently large but depending only on k′, the following is true with
probability at least 1− 1/nk′

:

• All calls to SUCCESSOR succeed.

• All calls to SUCCESSOR send Θ(log2 n) messages in expectation.

6 Expected Constant Factor Increase in Number of Bits

In this section we assume that peer p is trying to transmit a message m along the path
p, S1, S2, S3, . . . , Sl where Si, i = 1, . . . , l are swarms. We assume that the adversary is
polynomially bounded and that all swarms have at least a 3/4 fraction of correct peers.

Let |m| be the number of bits in the message m. Peer p first encodes m into log n
pieces e0, e1, . . . , eln−1 with the following properties: 1) each piece has O(|m|/ log n) bits
and 2) m can be reconstructed from any 1/16-th fraction of the pieces. Any standard
erasure code, such as tornado codes [14], can be used to create pieces with these two
properties.

Peer p next creates fingerprints f1, f2, . . . , flog n−1 of all these pieces using a 1-way
hash function, h2 known by all the peers. For all i = 1, . . . , log n−1, fi = h2(ei). Each of
the fingerprints has log2 n bits. This ensures that the probability that a random string
maps to a fixed fingerprint is 1/nlog n. Thus it will take the adversary superpolynomial
time to find a string which maps to one of the fingerprints.

Peer p sends all of the fingerprints to all of the peers in S1. Then for all j = 2, . . . , l,
all peers in Sj−1 send all of the fingerprints to all the peers in Sj and peers in Sj accept
a fingerprint if and only if it was received from a majority of peers in Sj−1. This
guarantees that all peers in the swarms S1, S2, . . . , Sl know all of the fingerprints. We
will thus assume, in the protocol, described in this section, that a peer accepts a string
s as some piece ej iff h2(s) = fj.
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Algorithm 4 Sending from Sj−1 to Sj

1: Each peer in Sj−1 sends the fingerprints f0, f1, . . . , fln n−1 to each peer in Sj.
2: The peers accept only those fingerprints that they receive from a majority of the

peers in Sj−1. In the remainder of the algorithm, a peer in Sj only accepts a string
s as some piece ej if h2(s) = fj. .

3: while TRUE do
4: Peers in Sj−1 come to consensus on a random integer r in {0, 1, . . . log n−1} using

the protocol describe in Section C.
5: Let P = {x ∈ Sj|h1(x) = r}. All peers in Sj−1 send all of the pieces they currently

hold to all peers in the set P .
6: All peers in P reconstruct the message m from the pieces received. From the

message m, they then recompute the pieces e0, e1, . . . , elog n−1.
7: For each i = 1, . . . , log n− 1, all peers in P send piece ei to all peers x ∈ Sj such

that h1(x) = i mod log n.
8: The peers in Sj come to consensus about whether they want a resend as follows:

1. Each peer x ∈ Sj does the following. If h1(x) = i mod log n and x received
piece ei, x writes all peers in Sj that it received its piece.

2. Every peer x ∈ Sj does the following. If x received messages indicating that
at least (3/4)|Sj | peers received their pieces, it tentatively sets an individual
“resend” bit to 0 otherwise it sets this bit to 1.

3. All peers in Y do Byzantine agreement to come to consensus on the “resend”
bit values set in the previous step.

9: The peers in Sj send to the peers in Sj−1 the results of this consensus i.e. either
that they want a resend or that they do not want a resend.

10: If the peers in Sj−1 receive responses from more than 1/4 of the peers in Sj that
they do not want a resend, the algorithm terminates.

11: end while

The first step of our protocol is simple. Peer p sends piece ei to peer x ∈ S1 iff
h1(x) = i mod log n. The general protocol where Sj−1 sends to Sj for all j = 2, . . . , l is
given as Algorithm 4 and illustrated in Figure 4. This protocol makes use of a Byzantine
agreement protocol and the protocol for coming to consensus on a random number
discussed in Section C. The proof of the following Lemma is given in Appendix A.7.

Lemma 7. For any fixed k, for C sufficiently large but depending only on k, the following
is true with probability 1− 1/nk, if we run Algorithm 4 with SEND MESSAGE:

• All calls to SEND MESSAGE succeed.

• All calls to SEND MESSAGE have latency O(log n) in expectation.

• All calls to SEND MESSAGE require O(log4 n) messages to be sent in expecta-
tion.

• All calls to SEND MESSAGE require O(|m| log n + log5 n) bits to be sent in
expectation.
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Pieces Sent

j−1 Sj

Sj−1 Sj

Sj−1 Sj

Sj−1 Sj

(A) Fingerprints Sent

(D) Confirmation SentPieces Sent(C)

(B)

S

Figure 4: (A) All peers in Sj−1 send fingerprints to all peers in Sj. Peers in Sj majority
filter on these fingerprints. (B) All peers in Sj−1 send all pieces of the message to those
peers in Sj belonging to the set P described in Algorithm 4 (in this figure, P consists
of only one peer). (C) The peer in P reconstructs the message, recomputes the pieces,
and sends these pieces to the peers in Sj. (D) Peers in Sj come to a consensus and
communicate with Sj−1 as to whether or not they wish Sj−1 to resend.

7 Conclusion

In this paper, we have introduced the Byzantine join attack, an attack model under which
an omniscient adversary causes a large number of Byzantine peers to join a network.
We assume that the adversary carefully chooses the IP-addresses of these peers and
where they join the network in order to try to place them at critical locations. We
have described, S-Chord, a variant of Chord that is provably robust to the Byzantine
join attack. S-Chord also allows us to enforce a rule set on the peers in the network
and thereby prevent undesirable behavior. In comparison to Chord’s successor, this
robustness is gained at the cost of an expected log n factor increase in the number of
messages per SUCCESSOR operation and a log n factor increase in the number of links
stored per peer. We have also shown that if we make the additional assumption of a
computationally bounded adversary and message sizes are large, SUCCESSOR can be
implemented with only an expected constant factor increase in the number of bits sent
over what is required by Chord.

There are several problems that deserve future attention. First, can some of the
techniques of this paper be adapted to be used in a practical peer-to-peer system? Sec-
ond, it seems likely that Ω(log2 n) is a lower bound on the message complexity in the
Byzantine model; however, can we prove this? Finally, can the methods we have pre-
sented also be applied to make other DHTs, such as CAN and Tapestry, resilient to
Byzantine join attack?
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A Appendix

A.1 Proof of Main Theorem

Theorem 1. During any z-good interval, with high probability (specifically with failure
probability polynomially small in z), the following properties hold:

• All functionality of Chord is preserved.

• We can enforce a rule-set for all peers in the network.

• For n peers in the network, the resource costs are as follows:

– O(log n) latency and expected O(log2 n) messages sent per lookup operation.

– Θ(log n) latency and Θ(log3 n) messages sent per peer join operation.

– O(log2 n) links stored at each peer.

Proof. Consider any z-good interval and let l = zk be the number of insertion and
deletion events during this interval. We first show that, with high probability, all swarms
are good during the entire z-good interval. Let ξi be the event that some swarm is bad
immediately after the i-th insertion or deletion event. Then we know that:

Pr(∪l
i=1ξi) = Pr(∪l

i=1(ξi| ∩
i−1
j=1 ξ̄j));

≤
l

∑

i=1

Pr(ξi| ∩
i−1
j=1 ξ̄j).

We now seek to bound Pr(ξi| ∩
i−1
j=1 ξ̄j) for any i. This is the probability that some

swarm becomes bad after the i-th insertion or deletion event given that all swarms were
good before this event. If all swarms were good before the i-th insertion or deletion
event, then by Lemma 5 all peers that were inserted into the network from the start
of the z-good interval until immediately after this i-th event, were inserted at random
locations on the unit circle. Assuming that deletions of correct peers are not dependent
on the locations of the correct peers on the unit circle, this implies that the correct peers
are all distributed uniformly at random on the unit circle immediately after the i-th
insertion or deletion event.

Now note that in the worst case, none of the Byzantine peers leave the network
during the z-good interval. So we can assume that there are at most (1/4−ε0)z Byzantine
peers distributed uniformly at random on the unit circle and at least z total peers
distributed uniformly at random on the unit circle. Thus, by Lemma 4, after the i-th
insertion or deletion event, all swarms are good with probability 1− 1/nk′

for any fixed
constant k′. Since n ≥ z, this implies that Pr(ξi| ∩

i−1
j=1 ξ̄j) ≤ 1/zk. Plugging this into the

above, we have

l
∑

i=1

Pr(ξi| ∩
i−1
j=1 ξ̄j) ≤

l
∑

i=1

1/zk′

;

= zk/zk′

;

= zk−k′

.

15



Thus for k′ chosen sufficiently large but depending only on k, this probability can
be made arbitrarily small. Provided that all swarms are good for the entire z-good
interval, we can enforce a rule-set for all peers in the network. Moreover, Lemma 3
implies that all calls to successor will succeed and will have resource costs given in the
theorem statement. The resource costs for the join operation follow immediately from
Lemma 5.

A.2 Proofs for Section 2: Linkage Structure

Lemma 1. Let p and q be any two peers. Then, the following are true.

• If p ∈ Center(q) then q ∈ Center(p)

• If p ∈ Forward(q, i) for some i between 1 and log m− 1, then q ∈ Backward(p, i)

• If p ∈ Backward(q, i) for some i between 1 and log m− 1, then q ∈ Forward(p, i).

Proof. If p ∈ Center(q), then p ∈ [q − (2C ln n)/n, q + (2C ln n)/n] which implies that
q ∈ Center(p). If p ∈ Forward(q, i) for some i between 1 and log m − 1, then p ∈ [q +
2i/m−(C ln n)/n, q+2i/m+(C ln n)/n]. This implies that q ∈ [p−2i/m−(C ln n)/n, p−
2i/m + (C ln n)/n]. Thus q ∈ Backward(p, i). A similar argument shows that if p ∈
Backward(q, i) for some i between 1 and log m− 1, then q ∈ Forward(p, i).

Lemma 2. With high probability, the number of peers any peer links to is Θ(log2 n).

Proof. With high probability, when n peers are distributed uniformly at random on the
unit circle, the shortest arc length between two peers is Θ(1/n2) [13]. Thus with high
probability, the number of actual forward and backward intervals each peer must keep
track of is actually only Θ(log n) (i.e. not Θ(log m)). By standard Chernoff bounds, we
can show that with high probability, the total number of peers falling in any Center,
Forward or Backward interval is Θ(log n). The lemma then follows directly.

A.3 Proofs for Section 3: SUCCESSOR and Swarm Goodness

Lemma 3. For any key k and peer p, SUCCESSOR(k) always returns pointers to all
peers in S(k) when called by peer p. Moreover, SUCCESSOR has latency O(log n) and
requires O(log3 n) messages.

Proof. We first show that all peers in our network have the links required to follow
the SUCCESSOR protocol. First note that all peers in S(x) must be able to send
the request to all peers in S(next(x, k)). In other words, for any i between 1 and
log m− 1, all peers in the interval [x, x + (C ln n)/n] must know all peers in the interval
[x + 2i/m, x + 2i/m + (C ln n)/n]. This requirement is satisfied since each peer tracks
Forward intervals and so knows, for all i between 1 and log m−1, all peers in the interval
[p + 2i/m − (C ln n)/n, p + 2i/m + (C ln n)/n]. Note also that all peers in the interval
[next(x, k), next(x, k)+(C ln n)/n] need to know all peers in the interval [x, x+(C ln n)/n]
(so that they can majority filter). This requirement is satisfied since each peer tracks
Backwards intervals and so knows, for all i between 1 and log m − 1, all peers in the
interval [p − 2i/m − (C ln n)/n, p − 2i/m + (C ln n)/n]. Finally, we note that the while
loop of this protocol terminates when d(x, k) ≤ (C ln n)/n. At this point, all peers in
S(x) are expected to know all peers in S(k). In other words, all peers in the interval
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[x, x+(C ln n)/n] are expected to know all peers in the interval [k, k +(C ln n)/n] where
k ≤ x + (C ln n)/n. Note also that all peers in the interval [k, k + (C ln n)/n] are
expected to know all peers in the interval [x, x + (C ln n)/n]. These requirements are
satisfied since each peer tracks a Center interval and so knows all peers in the interval
[p− (2C lnn)/n, p + (2C ln n)/n].

We now show that SUCCESSOR(k) always returns pointers to all peers in S(k)
when called by any peer p. Initially, p sends the request for k to S(p). By Lemma 4,
S(p) is good with high probability. Thus, in the first iteration of the while loop, all
peers in S(x′) will receive the request for k from a majority of peers in S(p). A simple
inductive argument then shows that in any iteration of the while loop, all peers in S(x′)
will receive the request for k from a majority of the peers in S. This implies that when
d(x, k) ≤ (C ln n)/n, a majority of the peers in S(x) will be good and have the request
for k. These peers will then retrieve pointers to all the peers in S(k). The proof that
these pointers arrive safely back to the peer p follows from a symmetric argument.

We now show that the latency is O(log n). Note that, by construction of the next
function, each iteration of the while loop reduces the distance between x and k by at least
a factor of two. The loop terminates when the distance between x and k is no more than
(C ln n)/n. In the worst case, this distance initially is 1. Thus, if we let i be the number
of iterations, we require that 1/2i ≤ (C lnn)/n. This requires that i ≥ log n−C log ln n,
so the number of iterations and thus the latency is always O(log n). In each iteration
of the while loop, all peers in the set S forward the request for k to all peers in the set
S(x′). Both S and S(x′) are of size O(log n), so the number of messages sent in each
iteration is O(log2 n). Since there are O(log n) iterations, the total number of messages
sent is O(log3 n)

We now present the lemmas and proofs related to showing swarm-goodness.

Lemma 8. For any positive integer k and positive ε, for C sufficiently large but depend-
ing only on k and ε, with probability at least 1 − 1/nk the following statement is true.
For any interval I of length (C ln n)/n, I contains at least (1− ε)C ln n peers.

Proof. Let ξ be the event that some interval of length I contains less than (1− ε)C lnn
peers. If such an interval exists, there must also be an interval I ′ with the same properties
and the additional property that I ′ is open on its counterclockwise end starting at some
peer point p. Thus, to bound the probability of ξ, we need only consider the existence
of such an interval.

Consider a fixed peer p and let Ip be an interval which is open on its counter-
clockwise end starting at some peer point p and which has length (C ln n)/n. Let Xp

be a random variable giving the number of peers in Ip. By linearity of expectation,
E(Xp) = ((n − 1)/n)(C ln n), which implies that (1/2)C ln n ≤ E(Xp) ≤ C ln n. Using
Chernoff bounds, we can say that for all δ > 0:

Pr[Xp < (1− δ)E(Xp)] < e−
δ2E(Xp)

3 .

Setting δ = 1− (n/(n− 1))(1 − ε), we get:

Pr[Xp < (1− ε)C ln n] ≤ e−
δ2E(Xp)

3 ;

≤ e−
ε2(C ln n)

6 .
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Where the last line follows since E(Xp) ≥ (1/2)(C ln n) and for n large, δ2 ≥ ε2.
Now if we do a union bound over all peers p, we get that:

Pr(ξ) ≤ ne−
ε2(C ln n)

6 ;

≤ eln n− ε2(C ln n)
6 ;

≤ 1/nk.

Where the last line follows provided that C is sufficiently large.

Lemma 9. For any fixed integer k and fixed ε, such that 0 < ε < 4ε0, for C sufficiently
large but depending only on k, ε and ε0, with probability at least 1 − 1/nk the following
statement is true. For any interval I of length (C ln n)/n, I contains no more than
1/4(1 − ε)C ln n faulty peers.

Proof. Let ξ be the event that there is some interval I with length (C ln n)/n such that
the number of faulty peers falling in I is greater than 1/4(1−ε)C ln n. If such an interval
exists, there must also be an interval I ′ such that I ′ is of length (C ln n)/n, the number of
faulty peers falling in I is more than 1/4(1− ε)C ln n and the counterclockwise endpoint
of I ′ is the peer point for some faulty peer p. Thus, to bound the probability of ξ, we
need only consider those intervals whose counterclockwise endpoint is the peer point for
some faulty peer.

Consider a fixed faulty peer p and the interval Ip which starts at p’s peer point and
has length (C ln n)/n. Let Xp be a random variable giving the number of faulty peers
falling in Ip. By linearity of expectation, we can say that E(Xp) ≤ 1+ (1/4− ε0)(C ln n)
and E(Xp) ≥ (1/4 − ε0)(C ln n). To use Chernoff bounds, we first want to choose a δ
such that Pr(Xp ≥ 1/4(1 − ε)C ln n) ≤ Pr(Xp ≥ (1 + δ)E(Xp)). This requires that
(1 + δ)E(Xp) ≤ 1/4(1 − ε)C lnn which requires that:

δ ≤
1/4(1 − ε)C ln n

E(Xp)
− 1;

≤
1/4(1 − ε)C ln n

(1/4 − ε0)C ln n
− 1;

≤
1/4 − ε/4

1/4 − ε0
− 1.

Set δ = 1/4−ε/4
1/4−ε0

−1. Then since ε < 4ε0, we know that δ > 0. Hence using Chernoff
bounds, we can say that:

Pr(Xp ≥ 1/4(1 − ε)C ln n) ≤ Pr(Xp ≥ (1 + δ)E(Xp));

< e−
δ2E(Xp)

3 ;

≤ e−
δ2(1/4−ε0)(C ln n)

3 .

Where the second line follows due to Chernoff bounds. Now if we do a union bound
over all peers p, we get that :
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Pr(ξ) ≤ ne−
δ2(1/4−ε0)(C ln n)

3 ;

≤ eln n−
δ2(1/4−ε0)(C ln n)

3 ;

≤ 1/nk.

Where the last line follows provided that C is sufficiently large but dependent only
on k, ε and ε0.

Lemma 4. For any fixed integer k, for C sufficiently large but depending only on k,
with probability at least 1−1/nk, the following statement is true. For any point x on the
unit circle, the swarm S(x) is good.

Proof. Let ε be fixed such that 0 < ε < 4ε0 and let k be any positive integer, then for
C chosen sufficiently large but depending only on ε and k, with probability 1 − 1/nk,
the following statement is true by Lemma 8 and Lemma 9. For any interval I of length
(C ln n)/n, the number of peers in I is at least (1 − ε)C ln n and the number of faulty
peers in I is no more than 1/4(1 − ε)C ln n. But these two facts imply that there is no
more than a 1/4 fraction of faulty peers in I. Since a swarm is simply all the peers in
an interval of length (C ln n)/n, this implies that for any point x on the unit circle, the
swarm S(x) is good.

A.4 Proof for Section 4: JOIN

Lemma 5. The JOIN protocol has the following properties with high probability:

• JOIN has Θ(log n) latency and Θ(log3 n) message complexity.

• After JOIN completes, peer p knows all peers in its Center, Forward and Backward
intervals.

• Let q be any peer with the property that p is in a Center, Forward or Backward
interval for q. Then after JOIN completes, q knows about the peer p.

• Assume, before p joins the network, that the fraction of faulty peers is no more than
1/4 − ε and that all peer points are distributed uniformly at random on the unit
circle. Then after p joins the network, all peer points are distributed uniformly at
random on the unit circle.

Proof. The peers of S(q) generate an identifier for peer p using the protocol discussed in
Appendix C. This incurs Θ(log n) latency and requires Θ(log3 n) messages to be sent.

The SUCCESSOR protocol is then called O(1) times by S(q) to obtain pointers to
all peers in Center(p) and to inform all peers in Center(p) of p’s entry into the network;
this accounts for the O(log n) latency. Each peer p′ in S(p) maintains links to all peers in
Forward(p, i) = [p′ + 2i/m− (C ln n)/n, p′ + 2i/m + (C ln n)/n]. Therefore, all peers in
S(p) can both obtain pointers to the set S1 of peers in [p + 2i/m, p + 2i/m + (C ln n)/n]
as well as directly notify these peers of p’s existence using all-to-all communication.
Via its Backward interval links, each peer p′′ in S1 has pointers to the set S2 of peers
in [p + 2i/m − (C ln n)/n, p + 2i/m]. In this way, the peers in S1 can easily obtain the
pointers to the peers in S2 and notify them of p’s existence using all-to-all communication.
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Therefore, obtaining pointers for Forward(p, i) and alerting the peers of Forward(p, i)
of p’s existence requires O(1) latency and O(log2 n) messages. The same argument and
complexity analysis applies to method by which p’s Backward intervals are obtained and
notified of p’s existence. This procedure is used for all O(log n) Forward and Backward
intervals of p; therefore, the total cost of updating all such intervals is O(log n) latency
and O(log3 n) messages.

After step 4 of JOIN , p knows all peers in Center(p). As stated previously, with
high probability, the shortest arc length between two peers is Θ(1/n2). Thus with high
probability, there are no peers in the interval [p, p + 1/n3]. In other words, the interval
Forward(p, i) for i equal to log m − 3 log n contains a superset of all the peers in any
interval Forward(p, i) for i < log m−3 log n. A similar argument holds for the backward
intervals of peer p. Thus, after executing the for loop of the join protocol, p will know
all peers in its Center, Forward and Backward intervals.

Let q be any peer with the property that p is in a Center, Forward or Backward
interval for q. Then by Lemma 1, q must be in a Center, Forward or Backward interval
for p. Thus, step 3, step 7, or step 9 of the algorithm will notify q of p’s existence.

Assume, before p joins the network, that the fraction of faulty peers is no more
than 1/4 − ε and that all peer points are distributed uniformly at random on the unit
circle. Then by Lemma 4, w.h.p., all swarms are good and in particular, S(p′) is good.
Thus in step 1 of JOIN , the peer p will be assigned a random ID and so after p joins the
network, all peer points will be distributed uniformly at random on the unit circle.

A.5 The STABILIZE Protocol

Algorithm 5 gives the pseudocode for the STABILIZE algorithm. This algorithm per-
forms similar functionality to the stabilize function in Chord. In particular, STABILIZE
keeps a peer’s pointers up to date in the face of peer failures and changes in the size
of the network. Every peer runs STABILIZE periodically. When a peer p invokes
STABILIZE, it first determines whether its estimate of (ln n)/n has changed since the
last stabilization procedure. If this estimate has not increased (i.e. the network size has
not decreased), then p’s Center, Forward and Backward intervals have not increased in
size. Links to those peers who belonged, prior to stabilization, in p’s Center, Forward or
Backward intervals but now lie outside the new, possibly shorter, intervals are deleted.
If p’s estimate of (ln n)/n has increased (i.e. the network size has decreased), then p
must increase the length of its Center, Forward and Backward intervals. It does this
by calling SUCCESSOR repeatedly in order to find the peers which fall in these new,
larger intervals.

Lemma 10. STABILIZE has the following properties with high probability.

• It has latency O(log n) and requires O(log4 n) messages (this can be reduced to
O(log3 n) messages in expectation by using Algorithm 5);

• After a peer p calls it, p knows all peers in its Center, Forward and Backward
intervals.

Proof. Peer p has O(log n) Center, Forwards and Backwards intervals and each of these
intervals is of length O((log n)/n). Thus, there are Θ(log n) calls to the SUCCESSOR
function in step 3 of STABILIZE. Each of these calls has O(log n) latency and requires
O(log3 n) messages (or O(log2 n) messages in expectation using Algorithm 3 ).
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Algorithm 5 STABILIZE(p)

1: if ((ln n)/n has not increased) then
2: Peer p updates the length of its Center, Forward and Backward intervals (these

intervals will be lengthened);
3: Peer p finds all the new peers in these lengthened intervals by repeatedly calling

the SUCCESSOR algorithm;
4: else
5: Peer p updates the length of its Center, Forward and Backward intervals (these

intervals will be shortened or remain the same);
6: Peer p removes those peers with identifiers that no longer fall into these new

intervals;
7: end if

The fact that p knows all peers in its Center, Forward and Backward intervals after
calling STABILIZE follows directly from Lemma 3.

A.6 Proofs for Section 5: Θ(log2 n) Expected Messages For SUCCES-

SOR

Lemma 11. The expected number of messages sent by correct peers in Algorithm 3 is
Θ(log n)

Proof. For any peer x ∈ Sj−1, let Mx be a random variable giving the number of messages
sent by x. Note that E(Mx) = |Sj |/ log n. Let M be the sum over all correct peers x of
Mx. Then by linearity of expectation,

E(M) ≤ |Sj−1| · |Sj |/ log n = Θ(log n)

For a message m, for any swarm S to which m is sent by the above protocol, let
G(S,m) be the set of correct peers in S that receive m (after majority filtering over the
accepted messages).

Lemma 12. For any fixed k and fixed ε > 0, for C sufficiently large but depending only
on ε and k, the following is true with probability 1/nk. If |G(Sj−1,m)| ≥ (2/3+ ε)|Sj−1|,
then |G(Sj ,m)| ≥ (3/4− ε)|Sj |.

Proof. We will show this lemma by showing that there is a set Y ′ ⊆ Sj, |Y
′| ≥ (1−ε)|Sj|,

such that for each peer y′ ∈ Y ′, more than a 2/3-rd’s fraction of the peers that y′ accepts
messages from are peers in G. Since at least 3/4 of the peers in Sj are correct, this
implies that |G(Sj ,m)| ≥ (3/4 − ε)|Sj |.

Let B be the set of integers between 0 and log n− 1. We will refer to elements of
B as bins and for a peer x ∈ Sj−1 and i ∈ B, we will say that x falls in bin i if h1(x) = i
mod log n. We will say that a bin is bad if the number of peers in G which fall in the
bin is no more than a 2/3-fraction of the number of peers in Sj−1 that fall in the bin.
We first show that, for any fixed ε′ > 0, for C sufficiently large, with high probability,
no more than an ε′ fraction of the bins are bad.

Fix B′ ⊆ B where |B′| = ε′ log n. Let N(G,B′) be a random variable giving the
number of peers in G that fall in a bin in B′. Let N(Sj−1, B

′) be a random variable giving
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the number of peers in Sj−1 that fall in a bin in B′. For all bins in B′ to be bad, it must be
the case that N(G,B′) ≤ (2/3)N(Sj−1, B

′). Note that E(N(G,B′)) = C(2/3+ ε)ε′ log n
and E(N(Sj−1, B

′)) = Cε′ log n. A simple application of Chernoff bounds gives that
for any fixed δ > 0 and fixed k > 0, for C sufficiently large, with probability at least
1− 1/nk+2:

N(G,B′) ≥ (1− δ)C(2/3 + ε)ε′ log n;

and

N(Sj−1, B
′) ≤ (1 + δ)Cε′ log n.

This implies that

N(G,B′)/(N(Sj−1, B
′)) ≥

(1− δ)(2/3 + ε)

1 + δ
;

> 2/3.

where the last line follows provided that δ is sufficiently small.
For any B′ ⊆ B, |B′| = ε′ log n, let ξ(B′) be the event that all bins in Y ′ are bad.

We’ve shown that for any k > 0, for C sufficiently large, Pr(ξ(Y ′)) ≤ 1/nk+2. Now let
ξ1 =

⋃

B′⊆B,|B′|=ε′ log n ξ(Y ′). Then by a simple union bound:

Pr(ξ1) ≤

(

log n

ε′ log n

)

1/nk+2

≤ 2log n(1/nk+2)

≤ 1/nk+1

Now say that any peer y ∈ Sj is uninformed if it falls in a bad bin. Let U(Sj) be a
random variable giving the number of uninformed peers in Sj. Let ξ2 be the event that
U(Sj) > ε|Sj |. We will now upperbound Pr(ξ2|ξ̄1). Assume that event ξ1 does not occur.
Then E(U(Sj)) ≤ ε′|Sj |. Moreover, since U(Sj) is the sum of |Sj| independent indicator
random variables (one for each peer in Sj), we can apply Chernoff bounds. They imply
that, for any fixed δ > 0 and fixed k > 0, for C sufficiently large, with probability at
least 1− 1/nk+1:

U(Sj) ≤ (1 + δ)ε′|Sj|.

Choosing δ and ε′ such that (1+ δ)ε′ = ε gives that Pr(ξ2|ξ̄1) ≤ 1/nk+1. Now note
that:

Pr(ξ2) ≤ Pr(ξ1 ∪ (ξ2|ξ̄1));

≤ 1/nk+1 + 1/nk+1;

≤ 1/nk;

where the last line follows for n sufficiently large.

The following lemma gives the robustness of Algorithm 3 over all ordered pairs of
swarms.
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Lemma 13. For C sufficiently but depending only on k′, the following is true with prob-
ability at least 1− 1/nk′

. For any ordered pair of swarms Sj−1 and Sj, if G(Sj−1,m) ≥
(17/24)|Sj−1|, then G(Sj ,m) ≥ (17/24)|Sj |.

Proof. Let Sj−1 and Sj be fixed, let ε be 1/24 and k = k′+2 in Lemma 12. Then we have
that for C sufficiently large, with probability 1/nk′+2, if |G(Sj−1,m)| ≥ (17/24)|Sj−1|
then |G(Sj ,m)| ≥ (17/24)|Sj |. The number of ordered pairs of swarms is n2. Thus, a
union bound establishes the result for any ordered pair with probability 1/nk′

.

Lemma 6. For C sufficiently large but depending only on k′, then the following is true
with probability at least 1− 1/nk′

:

• All calls to SUCCESSOR succeed.

• All calls to SUCCESSOR send Θ(log2 n) messages in expectation.

Proof. Consider some arbitrary call to SUCCESSOR described by the sequence:
p, S1, S2, S3, . . . , Sl. Here p sends the request r to swarm S1 = S(p), S1 sends the request
to S2 via Algorithm 3, S2 sends the request to S3 via Algorithm 3 and so on. Since p
sends the request r to all peers in S1, G(S1, r) ≥ (3/4)|S1|. Lemma 13 and induction
give that G(Sl, r) ≥ (17/24)|Sl |. Thus (17/24)|Sl | peers in Sl receive the request r and
fetch the appropriate data item, d. Thus G(Sl, d) ≥ (17/24)|Sl |. The data item is now
sent back along the path Sl, Sl−1, Sl−2, . . . , S1, p. Again by Lemma 13 and induction we
can see that G(S1, d) ≥ (17/24)S1. This implies that when p does majority filtering
on the messages it receives from S1, that it will receive the correct message d. Finally,
note that since l = O(log n), by Lemma 11, the expected number of messages sent is
Θ(log2 n).

A.7 Proofs for Section 6: Expected Constant Factor Increase in Num-

ber of Bits

Lemma 14. For any fixed k, for C sufficiently large but depending only on k, the
following is true with probability at least 1 − 1/nk. For all swarms S, if |G(S)| ≥ |S|/2
and all peers in S send their pieces to some peer x, then x will be able to reconstruct the
message m.

Proof. We first fix a swarm S and calculate the probability that the statement of
the lemma is not true. For any set of correct peers, X, let U(X) = {i|h1(x) = i
mod log n, for some peer x ∈ X}. Let S′ be some fixed subset of correct peers in S such
that |S′| ≥ |S|/2 and all peers in S′ have their pieces. Let P ′ be some fixed subset of the
set of log n pieces ({e0, e1, . . . , elog n−1}), such that |P ′| > (15/16) log n. Let ξ(S′, P ′) be
the probability that no peer in X ′ has a piece in P ′. This is equivalent to a balls and
bins problem where there are |S′| balls and log n bins and we are asking the probability
that none of the |S′| balls fall in a fixed set of |P ′| of the bins. Thus,

Pr(ξ(X ′, P ′)) ≤ (1/16)|S
′|

Pr(ξ(X ′, P ′)) ≤ 1/22|S|

Now let ξ(S) be the event that for any subsets S′ and P ′, the event ξ(S′, P ′) occurs.
Then we have:
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Pr(ξ(S)) = Pr(
⋃

S′,P ′

ξ(S′, P ′))

≤
∑

S′,P ′

Pr(ξ(S′, P ′))

=

(

|S|

|S|/2

)(

log n

(15/16) log n

)

1/22|S|

≤ 2|S|2log n(1/22|S|)

≤ 1/2|S|−log n

≤ 1/nC−1.

Where the last line follows since |S| ≥ C log n. Now, a simple union bound over all
n of the swarms then gives that the probability that the statement in the lemma fails for
any swarm is no more than 1/nC−2. Choosing C sufficiently large makes this probability
no more than 1/nk for any k.

We will refer to one iteration of the loop in Algorithm 4 as a round.

Lemma 15. For any fixed k, for C sufficiently large but depending only on k, the
following is true with probability 1 − 1/nk for all pairs of swarms, Sj−1 and Sj. If
|G(Sj−1)| ≥ 1/2|Sj−1| before Algorithm 4 starts, then |G(Sj−1)| ≥ 1/2|Sj | after termina-
tion. Further, if all peers in Sj−1 know all of the fingerprints before Algorithm 4 starts,
then all peers in Sj will know all the fingerprints after termination. Algorithm 4 will:

• Terminate in O(1) rounds in expectation;

• Require correct peers to send O(log3 n) messages in expectation;

• Require correct peers to send O(|m|+ log4 n) bits to be sent in expectation.

Proof. Since swarm Sj−1 is good and the peers in Sj do majority filtering in Step 2, we
know that if all peers in Sj−1 know all of the fingerprints before Algorithm 4 starts, then
all peers in Sj will know all the fingerprints after termination.

If |G(Sj−1)| ≥ 1/2|Sj−1|, then by Lemma 14, all peers in the set P which are
sent the message pieces in Step 5 will be able to reconstruct the message m. Since 3/4
of the peers in Sj are correct, the probability that no peer in P is correct is no more
than (1 − 1/ log n)(3/4)C log n ≤ e−(3/4)C . Thus with constant probability, some peer in
the set P is correct. If this is the case, then all peers in Sj will receive their correct
piece of the message. This implies that the algorithm will terminate in that round with
|G(Sj)| ≥ 1/2|Sj |. This implies that Algorithm 4 will terminate in an expected constant
number of rounds.

We next establish correctness. Consider the situation where no peer in P is correct.
There are then two possible cases. First is the case less than 1/2|Sj | peers in Sj are sent
their pieces in Step 5. In this case, no peer in Step 2 will receive at least (3/4)|Sj |
messages saying that pieces were received. Thus all correct peers will set their resend
bits to 1 in this step and so the consensus will be to request a resend. This implies that
the algorithm will continue for another round. The second case is that faulty peers in
P send pieces to at least 1/2|Sj | peers in Sj . If this is the case, then it’s safe for the
algorithm to terminate.

24



We now compute the resource costs. Previous to the first round, the fingerprints
are sent which requires O(log2 n) messages and O(log4 n) bits. The expected size of the
set P is O(1). Thus, in each round of the algorithm, the total number of messages sent
is O(log2 n) and the expected total number of bits sent is O(|m|+ log3 n). The expected
resource costs of the entire algorithm then follow directly from the fact that there are
O(1) rounds in expectation.

For any swarm S, we will now let G(S) = {x ∈ S|h1(x) = i mod log n and x is correct
and has piece ei}.

Lemma 7. For any fixed k, for C sufficiently large but depending only on k, the follow-
ing is true with probability 1− 1/nk, if we run Algorithm 4 with SEND MESSAGE:

• All calls to SEND MESSAGE succeed.

• All calls to SEND MESSAGE have latency O(log n) in expectation.

• All calls to SEND MESSAGE require O(log4 n) messages to be sent in expecta-
tion.

• All calls to SEND MESSAGE require O(|m| log n + log5 n) bits to be sent in
expectation.

Proof. Consider a message m which is sent along a path described by the sequence:
p, S1, S2, S3, . . . , Sl, q. Here peer p sends all pieces of m and fingerprints of these pieces
to S1 = S(p), S2 sends the pieces and fingerprints to S2 via Algorithm 4, S2 sends the
pieces and fingerprints to S3 via Algorithm 4 and so on until finally all peers in swarm Sl

sends all their pieces and fingerprints to peer q. Since, |G(S1)| ≥ 1/2|S1|, Lemma 15 and
induction give that |G(Sl)| ≥ 1/2|Sj | and that all peers in Sl have all the fingerprints of
these pieces. This implies that when peers in Sl send their pieces and fingerprints to q,
q will have enough information to reconstruct the message m.

B Handling Different Estimates of ln n and (lnn)/n

Throughout the previous sections, we have simplified our protocols by assuming that
peers know the values ln n and (ln n)/n exactly. We now show how to remove this as-
sumption. In particular, we describe how a peer in the enhanced network successfully
obtains estimates of ln n and (ln n)/n and uses these values in the protocols SUCCES-
SOR, JOIN, and STABILIZE. Furthermore, we describe how Algorithm 3 and Algorithm
4 can be modified to work when each peer has an estimate of log n.

B.1 Estimates tp, lp and hp

In our DHT, every peer maintains an estimate tp of ln n, a low estimate lp of (ln n)/n,
and a high estimate hp of (ln n)/n. In this section we show how a peer can 1) obtain tp
and 2) obtain good low and high estimates of (ln n)/n, lp and hp. Many of the techniques
we use in this section are similar to those in [13].
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B.1.1 Obtaining tp

Without Byzantine faults, a good estimate of ln n can be obtained by the methods
described in [15, 13, 24]. We demonstrate that this method still provides a good estimate
even under our adversarial model. Let nhbr(p) denote the closest clockwise peer to p of
which p is aware5.

Lemma 16. Let p be a peer in the enhanced DHT and let the fraction of Byzantine peers
in the network be fT . Then, with high probability:

(1/2) ln n− 0.144 ≤ ln 1
d(p,nhbr(p)) ≤ 3 ln n

Proof. Let p be a peer in the enhanced DHT and let the fraction of Byzantine peers in
the network be fT . If p is aware of all Byzantine peers, then by [13], for sufficiently large
n, then we have:

(1/2) ln n ≤ ln( 1
d(p,nhbr(p)) ≤ (3 ln n)

Conversely, if p is aware of none of the Byzantine peers, then:

(1/2) ln ((1− fT )n) ≤ ln( 1
d(p,nhbr(p)) ≤ 3 ln ((1− fT )n))

Taking the smallest lower bound and the largest upper bound, we have that:

(1/2) ln (1− fT ) + (1/2) ln n ≤ ln( 1
d(p,nhbr(p)) ≤ 3 ln n

Since fT ≤ 1/4 we have:

(1/2) ln n− 0.144 ≤ ln( 1
d(p,nhbr(p)) ≤ 3 ln n

In order to achieve an estimate of ln n, each peer p sets tp = ln( 1
d(p,nhbr(p)).

B.1.2 Obtaining lp and hp

Here we show how a peer p can obtain low and high estimates, lp and hp, of (ln n)/n. Let
len(I) denote the length of an interval I on the unit circle. The following lemma is due
to King and Saia [13]; the proof requires some modifications to account for Byzantine
behavior and is presented here for completeness.

Lemma 17. Let α1, α2, ε be positive constants with α1 < α2 and 0 ≤ ε ≤ 1. Let C be a
positive constant depending only on α1, α2, ε and k. Then for n sufficiently large, with
probability 1− n−k, the following is true:

• Let I be an interval anchored at some peer p on the circumference of the unit circle.
If the number of correct peers I contains is greater than (Cα1) log n and the number
of total peers I contains is less than (Cα2) log n. Then, C(1 − ε)α1(log n/n) ≤
len(I) ≤ C(1 + ε)α2(log n/n).

5A faulty peer q may actually be the closest clockwise neighbor of p. However, q may trick p into
believing q is dead; consequently, p would not keep a link to q.
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Proof. Fix some peer point p, where p is a correct peer, on the unit circle. Let Is be the
interval starting at p and extending clockwise for a distance of C(1−ε)α1(log n/n). Let Il

be the interval starting at p and extending clockwise for a distance of C(1+ε)α2(log n/n).
We will now show that with high probability, Is contains less than or equal to Cα1 log n
other correct peer points and Il contains greater than or equal to Cα2 log n other correct
peer points6.

Let Xs be a random variable giving the number of correct peer points other than
p that fall into the interval Is. Note that a single correct peer point falls in the interval
Is with probability C(1− ε)α1(log n)/n, so by linearity of expectation:

E(Xs) = C(1− ε)α1((1 − fT )n− 1) log n/n

Chernoff [16] bounds tell us that for any δ such that 0 ≤ δ ≤ 1:

P (Xs > (1 + δ)E(Xs)) < e−
δ2E(Xs)

3

Setting δ = ε/(1 − ε) ensures that:

(1 + δ)E(Xs) = Cα1(log n)((1 − fT )n− 1)/n

≤ Cα1 log n

Therefore:

P (Xs > Cα1 log n) < e
−1

Cε2α1((1−fT )n−1) log n

3n(1−ε)

≤ e
−

Cε2α1 log n
12(1−ε)

≤ e−
Cε2α1 log n

12

where the second line follows if we assume that n ≥ 2 (since then ((1−fT )n−1)/n ≥ 1/4
since fT ≤ 1/4) and the third line follows from our assumption that 0 ≤ ε ≤ 1.

Now let Xl be a random variable giving the number of correct peer points other
than p that fall in the interval Il. A single correct peer point falls in the interval Xl with
probability C(1 + ε)α2(log n/n), so by linearity of expectation:

E(Xl) = C(1 + ε)α2((1− fT )n− 1) log n/n

Chernoff bounds tell us that for any δ, 0 ≤ δ ≤ 1:

P (Xl < (1− δ)E(Xl)) < e−
δ2E(Xl)

2

We want to choose δ such that (1−δ)E(Xl) ≥ Cα2 log n. Assume that ((1−fT )n−1)/n ≥
γ for some value γ < 1. Then we know that E(Xl) ≥ Cγ(1 + ε)α2 log n. Thus to ensure
that (1 − δ)E(Xl) ≥ Cα2 log n, it suffices if (1 − δ) ≥ 1

γ(1+ε) . In other words, we

need δ ≤ 1 − 1
γ(1+ε) . To use Chernoff bounds, we have the additional constraint that

0 ≤ δ ≤ 1. Therefore, it must be the case that 1
γ(1+ε) < 1. Choosing γ = 1+ε/2

1+ε satisfies

6We are counting correct peers since p may be unaware of some or all of the Byzantine peers and,
therefore, cannot count them to obtain an estimate of (lnn)/n.
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all of these constraints and requires that δ ≤ ε
2+ε . Setting δ = ε

2+ε (and assuming that

n > (1+ε)
ε/2−fT (1−ε)), we have that:

P (Xl < Cα2 log n) < e
−

Cα2((1−fT )n−1)ε2(1+ε) log n

2n(2+ε)2

≤ e
−

Cα2ε2(1+ε) log n

8(2+ε)2

≤ e−
Cα2ε2 log n

72

where the second line follows if we assume that n ≥ 2 (since ((1 − fT )n − 1)/n ≥ 1/4)
and the third line follows by our assumption that 0 ≤ ε ≤ 1.

Now for the peer p, consider any anchored interval I that has p as its anchor point.
Say that I is small if it has length less than or equal to C(1− ε)α1(log n/n), and large if
it has length greater than or equal to C(1 + ε)α2(log n/n). The bad event for p is that
either 1) I is small and I contains greater than Cα2 log n correct peer points other than
p. Let ξp be the bad event for the peer p. Then, by a simple union bound, we can say
that:

P (ξp) ≤ e−
Cε2α1 log n

12 + e−
Cα2ε2 log n

72

≤ 2e−
Cε2α1 log n

72

Now let ξ be the event that for any peer p, there exists an interval I anchored at p such
that 1) I is small and I contains greater than Cα1 log n correct peer points other than
p or 2) I is large and I contains less than Cα2 log n peer points other than p. In other
words, ξ is the event that the statement of the lemma fails. Again by a simple union
bound, we can say that:

P (ξ) ≤ 2ne−
Cε2α1 log n

72

= 2ne−
Cε2α1 ln n

72 ln 2

= 2n1− Cε2α
72 ln 2

The last equation can be made arbitrarily small for C chosen large enough.

Lemma 18. Let C be a sufficiently large positive constant depending only on k, ε, and
ε0. With probability at least 1− n−k, every peer p can obtain low and high estimates of
(ln n)/n, lp and hp, such that:

• (C ln n)/n ≤ lp ≤ hp.

• For any two peers p and q, lq ≤ hp and lp ≤ hq.

• Each interval I with len(I) ≥ (C ln n) contains no more than 1/4(1−ε)C ln n faulty
peers.

Proof. From Lemma 17, p can obtain an estimate estp of (ln n)/n such that (C1 ln n)/n ≤
estp ≤ (C2 lnn)/n for constants 1 ≤ C1 ≤ C2. Let C be a positive constant as in Lemma 4
(depending on k, ε, and ε0) so that an interval I with len(I) = (C ln n)/n is of sufficient
length to guarantee, whp, that no more than 1/4(1 − ε)C ln n of the peers contained
within are faulty. Now p can set lp = C/C1estp and hp = CC2/C1estp which satisfies
the claims.
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B.2 Links Required

In this section, we reaffirm certain invariants about the links each peer maintains in our
protocol. We redefine the swarm intervals as:

• S(x) = [x, x + hx] for any point x.

• Forward(p, i) = [p + 2i

m − hp, p + 2i

m + hp] for any peer p.

• Backward(p, i) = [p− 2i

m − lp, p−
2i

m + lp] for any peer p.

• Center(p) = [p− 2hp, p + 2hp] for any peer p.

Lemma 19. Let x be a point on the unit circle. Then, with probability at least 1−n−k,
S(x) contains no more than an 1/4(1 − ε)-fraction of faulty peers; that is, S(x) is good.

Proof. This follows from the new definition of a swarm and an almost identical argument
to what is provided by Lemma 8, Lemma 9, and Lemma 4.

Lemma 20. This is the analog to Lemma 1. Let p and q be any two correct peers. Then,
the following are true:

• p maintains links to all peers in the interval [p − 2C ln n/n, p + 2C ln n/n]

• If p is in the interval [q + 2i/m − C ln n/n, q + 2i/m + C ln n/n] for some fixed i
where 1 ≤ i ≤ log m− 1, then:

– q is in the interval [p− 2i/m− C ln n/n, p− 2i/m + C ln n/n]

– q maintains a link to p and vice versa.

• If p is in the interval [q − 2i/m − C ln n/n, q − 2i/m + C ln n/n] for some fixed i
where 1 ≤ i ≤ log m− 1, then:

– q is in the interval [p + 2i/m− C ln n/n, p + 2i/m + C ln n/n]

– q maintains a link to p and vice versa.

Proof. Note that (C ln n)/n ≤ lp ≤ hp and the same for lq and hq. Therefore, this follows
directly from the new definitions of Center, Forward, and Backward intervals of p and
q.

Lemma 21. With high probability, the number of peers any peer links to is Θ(log2n)

Proof. This proof is virtually identical to Lemma 2.

B.3 Successor Protocol

The pseudocode for SUCCESSOR using estimates of lp and hp is given in Algorithm 6.
A crucial point about SUCCESSOR, as well as JOIN and STABILIZE, is that not all
correct peers in a swarm may choose to partake in the protocol due to differing estimates
of (ln n)/n. However, we can always guarantee, with high probability, that all correct
peers in some sub-interval of the swarm, of length greater than or equal to (C ln n)/n, are
acting as the protocol directs. This guarantee is what allows our protocols to function
successfully.
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If peer p desires the content associated with key k, it uses its high estimate to alert
those peers in [p, p+hp] of its request. Each peer q receiving the alert decides whether it
belongs to S(p) by determining whether p lies in a counterclockwise interval of length lq
from q. If so, q forwards the request as originally described to the interval [x−hp, x+hp]
where x = next(p, k). A peer q along the path traversed by SUCCESSOR only forwards
the request once it has received it from a majority of peers in one of its backward
intervals now defined using lp. A peer q who receives the same request from a majority
of peers in one of its backward intervals, forwards the request to the interval defined by
x′ = next(x, k) using hq; that is, the interval [x′, x′ + hq]. The SUCCESSOR operation
ends once d(x, k) ≤ lp at which point the set of all identifiers to all peers in S(k) are sent
back to p along the search path.

Algorithm 6 SUCCESSOR(k)

1: p sends a request for k to all peers in [p, p + hp];
2: S ← set of all peers in [p, p + hp];
3: x← identifier of p;
4: Every peer q which received the request for k from a majority of peers in [x, x + lq]

do the following:
5: if (d(x, k) ≤ lq) then
6: q sends back all identifiers in S(k) to all peers that sent q the request (these

identifiers are recursively sent back along the same path to p).
7: else
8: x← next(x, k);
9: q sends request for k to all peers in [x, x + hq];

10: end if

Lemma 22. Peers possess the required links to correctly perform SUCCESSOR(k) for
any key k ∈ (0, 1] and any peer p initiating the request.

Proof. Here we show that all peers in the network possess the links required to carry out
the SUCCESSOR protocol; in Lemma 23, we will show correctness.

The initial step in the protocol requires p be able to alert its swarm S(p) to
p’s request. This requirement is satisfied because p maintains links to all peers in
Center(p) = [p − 2hp, p + 2hp] and so p maintains links to all peers in [p, p + hp]. Each
peer q in the interval [p, p + hp] must then be able to decide whether it belongs to S(p).
Since q also maintains links to all peers in Center(q), q can determine whether or not
p lies in the interval [q − ql, q]. If so, q agrees that it belongs to S(p) and forwards the
request; otherwise, q ignores the request.

By the protocol, every peer q in S(x) must be able to send the request to all
peers in S(next(x, k)) = [next(x, k), next(x, k) + hq]. In other words, for any i between
1 and log m − 1, all peers in [x, x + hq] must maintain links to the set F of all peers
in [x + 2i/m, x + 2i/m + hq]. However, each peer q maintains Forward intervals and,
therefore, knows the set F ′ of peers in [q + 2i/m − hq, q + 2i + hq]. Since F ⊆ F ′, all
necessary forward links exist for q.

For the purposes of majority filtering on incoming requests, each peer q in the
interval [next(x, k), next(x, k) + hq] needs to know the set B of all peers in the interval
[x, x+(C ln n)/n]. However, each peer q tracks Backward intervals and, therefore, knows
the set B′ of peers in [x − 2i/m − lq, x − 2i/m + lq]. Since B ⊆ B′, all peers have the
required backward links.
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Finally, the while loop of this protocol terminates when d(x, k) ≤ lp. Assume this
happens once the request is received by peers in S(x). Each peer q′ in S(x) needs to
know all peers in S(k) = [k, k + lq]. This requirement is satisfied since each peer q tracks
a Center interval and, therefore, knows all peers in the interval [x− 2hq, x + 2hq]. Since
hq ≥ C ln n/n, q knows all the peers in [k, k + lq]. Therefore, all peers have the required
links to terminate SUCCESSOR and return the identifiers of S(k).

Lemma 23. For any key k and peer p, SUCCESSOR(k) always returns pointers to
all peers in S(k) when called by p. Moreover, SUCCESSOR has latency O(log n) and
requires O(log3 n) messages.

Proof. We first argue the correctness of SUCCESSOR by showing that at each hop,
all peers within a subinterval of size at least (C ln n)/n are partaking in the protocol.
Initially, p sends the request for k to all peers in S(p) = [p, p+hp]. Since hp ≥ (C ln n)/n,
Lemma 4 guarantees with high probability that S(p) is good. Every peer q ∈ S(p)
uses its estimate ql to determine whether it belongs to S(p). Therefore, all good peers
in the interval [p, p + (C ln n)/n] receive the request and will forward it to peers in
S(x′, k) = [x′, x′ + hq] where x′ = next(p, k). Again, by the definition of high estimates,
all peers in the interval [x′, x′ + (C ln n)/n] will receive the forwarded request.

Consequently, at each forwarding of the request in Figure 6, each peer q′ in the
interval [x′, x′ + hq] will receive the request from a majority of peers in a sub-interval of
Backward(q, i) of size at least (C ln n)/n for some i. Again, each peer q′ in [x′, x′ + hq]
will decide if it belongs to S(x′) and, by Lemma 4, the majority of such peers will be
correct. Each peer q′ will then majority filter on the request and forward it to the next
interval [next(x′, k), next(x′, k)+hq′ ] which is again at greater than or equal to (C ln n)/n
in length ; therefore, correctness is ensured inductively.

The argument showing that SUCCESSOR(k) always returns pointers to all peers
in S(k) upon termination of the while loop is almost identical to that given in Lemma 3
and we do not repeat it here. For the same reason, a proof that the latency is O(logn)
is also omitted from this extended abstract.

As before, an almost identical algorithm can be used to implement the SEND MESSAGE()
protocol.

B.4 Join

Algorithm 7 provides the new pseudocode for the JOIN protocol. No longer can a swarm
S(p) use an exact value (C ln n)/n in establishing the size of the Forward, Backward,
and Center intervals of the joining peer p. Instead, S(p) must calculate lp and hp and use
those values to establish interval sizes. Moreover, it is inaccurate to speak of all peers in
S(p) performing operations since high estimates of peers may differ and, consequently,
correct peers may not operate on the same intervals (via sending messages to them or
receiving messages from them). Instead, we will show that, with high probability, at least
all correct peers in an interval of size (C ln n)/n are performing the operations needed to
facilitate p’s entry into the network. Let Sq denote the set of peers in [q, q + (C ln n)/n]
and Sp denote the set of peers in [p, p + (C ln n)/n].

Lemma 24. The JOIN protocol has the following properties with high probability:

• JOIN has Θ(log n) latency and Θ(log3 n) message complexity.
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Algorithm 7 JOIN(p)

1: Peer p contacts some correct peer q which notifies Sq of p’s request to join;
2: Peer q initiates a secure computation with peers in Sq of a random number in (0, 1]

using the algorithm discussed in Section C;
3: All peers in Sq get pointers to the peers in Center(p), using O(1) calls to the

SUCCESSOR algorithm. All peers in Sq send these pointers to p;
4: All peers in Sq calcululate tp, lp and hp. Sq then notifies the peers in Center(p) =

[p − 2hp, p + 2hp], using the SEND MESSAGE algorithm, that p has joined the
network - note that p’s estimation is used;

5: The peers in Center(p) send data items for all keys k such that p ∈ S(k) and p then
stores copies of these data items;

6: for i = (log m− 3tp) to log m do
7: Each peer p′ in Sp tells all peers in the set S1 of peers in [p + 2i/m, p + 2i/m + hq]

of p’s arrival. Each peer p′′ in S1 then tells all peers in the set of peers S2 in
[p + 2i/m − hq′ , p + 2i/m] of p’s arrival. In this way, all peers in Forward(p, i)
know about p;

8: In an almost identical fashion to Step 7, all peers in Sp get pointers to the peers
in Forward(p, i). All peers in Sp then send these pointers to p;

9: Each peer p′ in Sp tells all peers in the set S3 of peers in [p− 2i/m, p− 2i/m + hq]
of p’s arrival. Each peers p′′ in S4 then tells each peer in the set S4 of peers in
[p − 2i/m − hq′ , p − 2i/m] of p’s arrival. In this way, all peers in Backward(p, i)
know about p;

10: In an almost identical fashion to Step 9, all peers in Sp get pointers to the peers
in Backward(p, i). All peers in Sp then send these pointers to p;

11: end for

• After JOIN completes, peer p knows all peers in its Center, Forward and Backward
intervals.

• Let q be any peer in a subinterval [p− (2C ln n)/n, p+(2C ln n)/n] of Center(p), a

subinterval [p+ 2i

m−(C ln n)/n, p+ 2i

m+(C ln n)/n] of Forward(p, i), or a subinterval

[p − 2i

m − (C ln n)/n, p− 2i

m + (C ln n)/n] of Backward(p, i) for 1 ≤ i ≤ log m− 1.
Then after JOIN completes, q knows about the peer p.

• Assume, before p joins the network, that the fraction of faulty peers is no more than
1/4 − ε and that all peer points are distributed uniformly at random on the unit
circle. Then after p joins the network, all peer points are distributed uniformly at
random on the unit circle.

Proof. The arguments for the first, second, and fourth claims are virtually identical to
those given in the proof given for Lemma 5 and we do not repeat them here. Statement
3, follows due to the fact that Sq alerts Center(p) using hp ≥ (C ln n)/n, that Sp alerts
its Forward and Backward intervals using hp, and Lemma 20.

B.5 Stabilize

The new STABILIZE protocol given as Algorithm 8 changes only slightly from the
pseudocode given in Algorithm 5. Instead of knowing whether (ln n)/n has changed
in size, peer p must recalculate lp and determine whether this value has changed. If
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lp has decreased in value, then p infers that the network has decreased in size. Then,
the Forward, Backward, and Center intervals of p need to be expanded via calls to
SUCCESSOR. If lp is unchanged or has increased in value, then p infers that the net-
work has grown. In this case, STABILIZE is less costly since the Forward, Backward,
and Center intervals of p need to shrink. This is accomplished by simply removing links
to those peers that no longer belong to these updated intervals.

Algorithm 8 STABILIZE(p)

1: if (p’s estimate of lp has not increased) then
2: Peer p updates the length of its Center, Forward and Backward intervals {these

intervals will be lengthened};
3: Peer p finds all the new peers in these lengthened intervals by repeatedly calling

the SUCCESSOR algorithm;
4: else
5: Peer p updates the length of its Center, Forward and Backward intervals (these

intervals will be shortened or remain the same);
6: Peer p removes those peers with identifiers that no longer fall into these new

intervals;
7: end if

Lemma 25. STABILIZE has the following properties with high probability.

• It has latency O(log n) and requires O(log4 n) messages (this can be reduced to
O(log3 n) messages in expectation by using Algorithm 5);

• After a peer p calls it, p knows all peers in its Center, Forward and Backward
intervals.

Proof. This is virtually identical to the proof given for Lemma 10.

B.6 Obtaining an Additive Factor Approximation to log n

Previous work [13] shows how, with high probability, each peer in a DHT can estimate
log n to within an arbitrarily close constant factor. We now reaffirm this result for our
DHT.

Lemma 26. Let C0 be a positive constant. In our enhanced DHT, with high probability,
any peer, p, can obtain an estimate up of log n such that:

log n ≤ up ≤ log n + C0

Proof. By Lemma 16, p can obtain a value tp such that:

(1/2) ln n− 0.144 ≤ tp ≤ 3 ln n.

By Lemma 17, p can use this value tp, to obtain an estimate estp of (ln n)/n such that
for constants 1 ≤ C1 ≤ C2:

(C1 ln n)/n ≤ estp ≤ (C2 ln n/n).

The following is then true:

( 1
2

ln n−0.144)

(C2 ln n)/n ≤
tp

estp
≤ 3 ln n

(C1 ln n)/n
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This implies that:

log n−C1 ≤ log
tp

estp
≤ log n + C2

Thus

log n ≤ log
tp

estp
+ C1 ≤ log n + C1 + C2.

B.7 Different Estimates of log n for Algorithm 3

We now discuss how to modify the algorithm to handle different estimates of log n. By
Lemma 26, for any two peers p and p′:

log n ≤ lp ≤ up′ ≤ log n + C0.

We then change the first two bullets of our algorithm as follows:

• Each peer x ∈ Sj−1 sends a message to peer y ∈ Sj iff

h1(x) = h1(y) mod lx

• Each peer y ∈ Sj accepts a message from peer x ∈ Sj−1 iff

h1(x) = h1(y) mod uy

Showing the modified algorithm is correct requires only minor modifications of the
proof of Lemma 12. Let B again be the set of bins from 0 to log n−1. It is straightforward
to show that, with high probability, an arbitrarily small fraction of the bins in B are
“bad”. Then, with high probability, an arbitrarily large fraction of the peers in Sj fall
in bins in B which are good. We finally note that the algorithm is robust to minor
inconsistencies in the views the peers have as to which peers are in the swarms Sj−1 and
Sj.

B.8 Different Estimates of log n for Algorithm 4

We now discuss how to modify the Algorithm 4 to handle different estimates of log n.
As before, we will assume that each peer p has an estimate with the following property
for fixed constant C0.

log n ≤ lp ≤ log n + C0.

The algorithm is then modified as follows. The peer p which starts sending the
message m encodes m into lp pieces and creates fingerprints for all of these pieces. When
it sends the fingerprints to the swarm S1, it also sends the number lp to all peers in S1.
The peers in S1 then use this number lp as their estimate of log n. When the peers in S1

send the fingerprints to peers in S2, all peers in S1 also send the number lp to all peers
in S2. In this way, we maintain the invariant that all peers in the swarms m is sent to
know and use the estimate, lp, calculated by p.

We finally note that this algorithm is robust to minor inconsistencies in the views
the peers have as to which peers are in the swarms Sj−1 and Sj.
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C Assigning Random Identifiers

In this section, we describe how all correct peers in a good swarm can come to consensus
on a random number in (0, 1]. Our algorithm for doing this makes use of results in the
area of secure multiparty computation for asynchronous networks which we now describe.

A secure multiparty computation protocol allows a set of s players, t of which are
adversarially controlled, to compute the value of an agreed upon multi-variate function
F , while keeping their local inputs private (see e.g. [6]). In the case of an asynchronous
network, the inputs to the computation come from an arbitrary core subset C of the set
of players where |C| ≥ s− t; for the purpose of computing the function, the inputs of all
players not in C are assumed to be some default value (say 0). There are several results
showing how to achieve secure multiparty computation in an asynchronous network
provided that t ≤ s/4 (see e.g. [2, 21, 18]).

Using these results, it is straightforward to see how all peers in a good swarm
can come to consensus on a random number in (0, 1]. Each peer first chooses as input
a random number in (0, 1]. The peers then use the secure computation algorithm to
compute the sum, σ, of the inputs from the set C. Each peer then accepts σ mod 1 as
the random number chosen. Since at least one player in C must be a correct peer, σ
mod 1 must be a random number in (0, 1].

Srinathan and Rangan [21] give the most resource efficient secure multiparty com-
putation protocol of which we are aware for this problem. In the case where there are
Θ(log n) peers, no more than 1/4 of which are faulty, we can compute a random number
using Θ(log3 n) messages, with Θ(log n) latency using their protocol.
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