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Abstract. Gene rearrangements have successfully been used in phylogenetic re-
construction and comparative genomics, but usually under the assumption that all
genomes have the same gene content and that no gene is duplicated. While these
assumptions allow one to work with organellar genomes, they are too restrictive
when comparing nuclear genomes. The main challenge is how to deal with gene
families, specifically, how to identify orthologs. While searching for orthologies
is a common task in computational biology, it is usually done using sequence data.
We approach that problem using gene rearrangement data, provide an optimiza-
tion framework in which to phrase the problem, and present some preliminary
theoretical results.

1 Introduction

Gene rearrangements have successfully been used in phylogenetic reconstruc-
tion and comparative genomics (see the survey of [13] and the monograph of
[15]), but usually under the assumption that all genomes have the same gene
content and that no gene is duplicated. While these assumptions allow one to
work with organellar genomes [2–7, 11, 18], they are too restrictive when com-
paring nuclear genomes [8], where the main challenge is how to deal with gene
families, specifically, how to identify orthologs. While searching for orthologies
is a common task in computational biology, it is usually done using sequence
data. We approach that problem using gene rearrangement data. Sankoff [14]
first addressed this problem with his introduction of exemplars, in which he sug-
gested identifying a single gene within each family (the exemplar) on the basis
of a parsimonious criterion (using the fewest rearrangements) and discarding
all others. Our group provided an alternate approach in which a correspondence
is established between gene families on the basis of conserved segments [12,
17]; our results suggested that considering all members of a gene family yields
better results than keeping only exemplars, but were limited in that the assign-
ment of orthologs did not take into account any rearrangement structure beyond
conserved segments. In this paper, we remedy this problem by providing an



optimization framework derived from the breakpoint graph (the basic structure
behind the last decade of work in gene rearrangements [10]) in which to phrase
the problem; we give preliminary theoretical results in support of our frame-
work. We are not suggesting that orthology assignment based on rearrangement
data should replace that based on sequence data, but that the two complement
each other—indeed, that we should aim for methods that will eventually take
both types of data into account in the same analysis.

2 Preliminaries

The problem we consider can be phrased as follows: given a set of genes S
and two genomes, G1 and G2, where each genome is represented as a (linear or
circular) sequence of elements of S (an element may occur zero, one, or many
times within the sequence), each with an associated sign (which basically de-
notes which strand the gene lies on), find the shortest edit sequence, that is, the
shortest sequence of evolutionary events that transforms one genome into the
other. Permitted evolutionary events are inversions, which take a subsequence
of genes and reverse it in place (in both order and signs), deletions (each of
which removes a consecutive subsequence of genes), and insertions (including
duplications). A parsimony constraint is also imposed on any editing scenario:
if G1 has a family of k1 genes and G2 a corresponding family of k2 genes, for
k1 ≥ k2, then none of the k2 genes in G2’s family may be deleted in the edit
sequence—instead, we must identify within G1’s family of k1 genes a distinct
ortholog for each of the k2 genes in G2’s family. (In absence of this constraint, of
course, the most parsimonious edit sequence is almost always that which deletes
the entire genome G1 as a single operation, then insert the entire genome G2, an
absurd scenario.) Once that identification has been made, the algorithms of El-
Mabrouk [9] and of our group [8, 12, 17, 18] can complete the work of finding
one ore more parsimonious edit sequences.

In this paper, we assume that genome G2 contains no duplicate genes, al-
though we illustrate how our framework describes the more general case. More-
over, we assume that gene families present in one genome but not the other have
been removed—these families do not affect orthology assignment, which is sim-
ply a mapping between the elements of gene families present in both genomes.
Finally, we assume that the remaining genes have been indexed from 1 to n so as
to turn G2 into the identity permutation 12 . . .n; as is customary, we will prepend
a marker gene 0 and append another marker gene n+1 to both genomes.

The edit distance can be affected in two ways by the orthology assignment.
A good choice of orthologies can reduce the required number of deletions (or
duplications)—this is the main focus of the cover-based method [12, 17]. It can
also reduce the number of required inversions by grouping them properly: this



is the focus of this paper. We rely on the fact that every gene in a one-member
family of G1 must be assigned to its corresponding gene in G2 and that these
singleton genes must all be sorted through inversions: because we know how
to sort by inversions [1, 10], the presence of singleton genes creates a structural
contex in which to study orthology assignment.

3 Background and Definitions

3.1 The Breakpoint Graph

The basic structure describing a pair of genomes with no duplicates and equal
gene content is the breakpoint graph (really a multigraph)—for a careful and
readable description of its construction, see [16]. In our case, however, gene
families in G1 need not be singletons, so we need to extend the construction.
Let B(G1) = (V,E) denote the breakpoint graph for G1 and G2 (because of our
conventions, G2 is known once G1 is). As in the regular breakpoint graph, each
singleton gene g in G1 becomes a pair of vertices, g− and g+ (the “negative”
and “positive” terminals), joined by an edge; we leave out the gene families
with multiple members, since only the singletons have a well-defined structure,
but we now need to accommodate gaps left in the sequence where duplicate
genes exist in G1. We add a desire edge (in the charming terminology of [16]—
also known elsewhere as a gray edge) (a−

i ,b+
j ), for each member i and j of gene

families a and b, respectively, whenever a and b differ by one in the indexing
(i.e., are neighbors in G2). We add a reality edge (ap

,bq) if a is the element to the
left of b in G1 and either p = q if a and b have different parities (in G1 naturally)
or p 6= q if a and b have the same parity. Figure 1 illustrates the construction.
Note that the figure shows a circular ordering, in which the added sentinels are
considered adjacent to each other.
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Fig. 1. (a) The original genome G1. (b) Its associated graph B(G1) after removing gene families
with duplicates (3 and 9). Desire edges are shown in gray, reality edges in black.



The inversion distance equals the number of genes minus the number of cy-
cles in the breakpoint graph, plus some corrective factors (hurdles and a fortress)
[10]. Researchers have found that hurdles are very rare in real data, so we focus
on selecting an orthology assignment that maximizes the number of cycles.

3.2 The Consequences of An Assignment

We call each gene in a multigene family of G1 a candidate, since it is one of the
choices for an orthology assignment to the unique corresponding gene in G2.
For each candidate d, denote by β+(d) the positive terminal of the next smaller
element in B(G1) and by β−(d) the negative terminal of the next larger element;
we call these nodes the bookends of d. Choosing a candidate imposes an addi-
tional constraint on B(G1), which we now proceed to examine. The following
simple lemma underlies many of our results.

Lemma 1. When a candidate d is chosen, the only edges affected are the reality
edge that spans it and the edge between its bookends.

Proof. As shown in Figure 2, when d is added to the breakpoint graph, the real-
ity edge that spans it gets split, creating two new endpoints dβ+ and dβ− . The de-
sire edge that links the bookends of d also gets split, to meet each of dβ+ and dβ− .
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Fig. 2. (a) A subgraph of B(G1) before adding d. (b) The two choices after adding d. Dotted lines
indicate a path (and therefore a cycle).

3.3 The Cycle Splitting Problem

As observed above, we can formulate the orthology assignment problem as an
optimization problem within the context of the breakpoint graph B(G1): choose
an assignment of orthologs (one from each multigene family in G1) such that
the number of cycles in the augmented breakpoint graph (B(G1) to which the
chosen candidates have been added) has the largest possible number of cycles.
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Fig. 3. The breakpoint graphs for the two candidates for gene 9.

Consider component 2 from Figure 1, namely (6,9,8,−10,−7,9,11). There
are two occurrences of gene 9 and we must choose which one to call ortholo-
gous with gene 9 in G2. Figure 3 shows the two breakpoint graphs. Note that the
graph on left, where the candidate lies between 6 and 8, has one more cycle than
the graph on the right, where the candidate lies between 7 and 11; thus the first
candidate is a better choice. The choice of candidate is advantageously viewed
on breakpoint graph inscribed in a circle as shown in Figure 4. Now overlay
the two choices into a single graph, as shown in Figure 4(b). Two curved lines
meet on the perimeter between 10− and 8+, denoting the two choices. The solid
line indicates that choosing the candidate between 6 and 8 gives rise to desire
edges that do not cross in the inscribed representation. The dashed line indicates
that the other candidate gives rise to crossing desire edges. Each line meets the
perimeter at one end between the two terminals of the candidate and at the other
end between its bookends. Figure 5(a) illustrates a more general instance with
three multigene families, while Figure 5(b) shows how this representation can
be used for the general many-to-many case.

Note that the solid and dashed lines we have introduced really represent or-
thology assignments, or operations; we will call an operation represented by
a solid line a straight operation (because it does not introduce crossings) and
one represented by a dashed line a cross operation. The collection of all lines
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Fig. 4. (a) The graphs of Figure 3 inscribed in a circle. (b) The result of overlaying the two graphs
from part (a).
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Fig. 5. (a) An instance of the many-to-one cycle splitting problem. (b) An instance of the many-
to-many cycle splitting problem.

that share an endpoint represents all members of the gene family in G1, so we
also call it a family and call its common endpoint (between the bookends) the
family home. We can now state the constraints for the optimization problem: (i)
each family home is a distinct point on the circle; (ii) the family home is not the
endpoint of any operation not in that family; and (iii) the other endpoint (on the
circle) of each operation is unique to that operation.

The many-to-many variation gives rise to multiple homes per family. Each
home in the same family must connect to all of the same endpoints. The prob-
lem thus becomes picking as many operations as there are homes per family
such that the cycle count is maximized. The only additional complication is that
applying an operation removes that operation from consideration in all other
homes for its family. See Figure 5(b) for an example instance as well as the
effect of applying an operation.

Straight and cross operations display a form of duality, one that allows us to
restrict our attention to just straight operations.

Theorem 1. Applying a cross operation c converts all operations that intersect
c (call the set of such operations I) to their complement—crosses are replaced
by straights and straights by crosses. Furthermore, for any two operations in I,
if they intersected before applying c, then they no longer do after applying c,
and vice versa.

Figure 6 sketches the main elements of the omitted proof.

4 Theoretical Results

4.1 Buried Operations

An operation makes no contribution to the cycle count of a a complete assign-
ment whenever the two new desire edges it creates lie on the same cycle. Be-
cause of their appearance in our inscribed graph representation, we call such
operations buried—see Figure 7. Since the two desire edges occur on the same
cycle, they “bury” the chosen operation in the cycle.
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Fig. 6. The visual argument for Theorem 1.
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Fig. 7. (a) A new configuration; (b) a buried edge for that configuration; and (c) the visual ap-
pearance of the buried edge, inside two segments of the same cycle.

Theorem 2. If an orthology assignment creates a total of k buried edges, then
the number of cycles is bounded by n−b+1.

Proof. The number of cycles cannot exceed n+1, since each operation can give
rise to at most one new cycle. Consider the effect on the breakpoint graph of
choosing a buried operation. A single desire edge d is replaced with two desire
edges d ′

1 and d′
2, and a single reality edge r is replaced with two reality edges r ′1

and r′2. Without loss of generality assume that d ′
1 connects to r′1 and d′

2 connects
to r′2. d′

1 and d′
2 each inherit one of the original endpoints of d. Similarly, r ′1 and

r′2 each inherit one of the original endpoints of r. By assumption d ′
1 and d′

2 lie
on the same cycle, so that so do all of the original endpoints of d and r. Thus all
of the newly created edges must lie on a cycle that already existed.

4.2 Chains and Stars

We have discovered two operation patterns that, while they need not contain
buried operations, nevertherless impose sharp bounds on the number of cycles.
A k-chain is an assignment in which k operations form a chain, that is, each cho-
sen operation overlaps two of the other k, its predecessor and successor around
the circle. Figure 8(a,b) illustrates a k-chain.
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Fig. 8. (a) A 4-chain; (b) a 5-chain; (c) a 3-star; (d) a 4-star.

Proposition 1.

– A k-chain has no buried operations.
– In a k-chain with k odd, the cycle count is 2.
– In a k-chain with k even, the cycle count is 3.

A k-star is an assignment in which k operations form a clique (each overlaps
every other). Figure 8(c,d) illustrates a k-star.

Proposition 2.

– In a k-star with k even, every operation is buried and the cycle count is 1.
– In a k-star with k odd, no operation is buried and the cycle count is 2.

We conjecture that these two patterns, along with buried operations, describe
all operations that reduce the upper bounds on the number of cycles. Figure 9
shows examples of combining k-stars and k-chains.

b)a)

Fig. 9. (a) A 3-star and two 4-chains. (b) Four 3-stars.

4.3 Reduced Forms

Clearly, a successive assignment procedure could reach a state in which no op-
eration remains that could split a cycle. We call such a state a reduced form
of the instance. In a reduced form, an instance is composed of multiple cycles
linked by the operations from the remaining families. This structure lends itself
naturally to a graph representation; an analysis of this graph reveals conditions
under which optimality can be verified.
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Fig. 10. (a) An instance of the cycle splitting problem. The operations without a family home
(bold) are those that we apply to obtain a reduced form. (b) The resulting reduced instance. Black
edges are those chosen to produce an optimal solution to the reduced instance.

Theorem 3. After applying a maximal nonoverlapping set of operations M, re-
maining operations can only (by themselves) join two cycles.

Proof. The application of a set of k nonoverlapping operations always yields
k new cycles, each defined either by two contiguous operations or by a single
operation and the original circle. Since M is maximal, every remaining opera-
tion from every family overlaps an element of M. Application of any m ∈ M,
therefore, must span two of the new cycles, joining them into one.

Figure 10(b) shows the reduced instance induced by applying each of the opera-
tions shown in bold in Figure 10(a). We are left with a reduced form that can be
viewed as a graph on the cycles created so far and in which each adjacency list
is strictly ordered (because exactly one operation from a family will remain).

We can now take advantage of graph properties such as planarity, circuits,
and connected components in our analysis. Because of the ordered nature of the
edges on the vertices planarity is somewhat specialized in our case. Nonplanar
edges can occur in simpler situations than in general graphs, as shown in Fig-
ure 11(b). Circuits play a vital role on these graphs. In particular, we are inter-
ested in circuits that are subcircuits of no other, i.e., minimal circuits. Provided
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Fig. 11. (a) The effect of applying an operation on a reduced form. (b) A reduced form. The
dotted and dashed lines trace the cycle created by applying the operations shown. (c) Adding a
nonplanar edge to the reduced form from (b) joins the cycles.
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Fig. 12. An optimal solution to the reduced instance in Figure 10 embedded as (a) the original
instance and (b) its reduced form.

there is no nonplanar edge in a reduced instance, the properties of a solution
directly dictate the number of cycles produced. As shown in Figure 11, each
connected component produces a cycle around its outer hull. Each minimal cir-
cuit yields another cycle to its inside. Figure 11(c) shows how nonplanar edges
can join these two cycles.

Theorem 4. The number of cycles produced by a solution S to a planar reduced
instance with m minimal circuits and c connected components is R(S) = m+ c.

Proof. This certainly holds for a reduced instance with no operations. Assume
R(S) = m+c for a solution where |S|= k. We look at the effect of adding another
edge.

1. If that edge links two previously disconnected components, then the cycles
around the hulls of these components will get merged, removing a cycle and
a connected component.

2. If that edge links two connected components, then a minimal circuit will be
created. Since the edge added is planar, we know that the same cycle runs
past both endpoints of the operations and thus the operation will split it.

It remains to relate results on reduced forms back to the original inscribed
breakpoint graph formulation, a process illustrated in Figure 12.

5 Conclusion

We have described a graph-theoretical framework in which to represent and
reason about orthology assignments and their effect on the number of cycles
present in the resulting breakpoint graph. We have given some foundational re-
sults about this framework, including several that point us directly to to algorith-
mic strategies for optimizing this assignment. We believe that this framework
will lead to a characterization of the orthology assignment problem as well as
to the development of practical algorithm solutions.
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