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We study the topological and geographic structure of the national road networks of the United
States, England and Denmark. By transforming these networks into their dual representation, where
roads are vertices and an edge connects two vertices if the corresponding roads ever intersect, we
show that they exhibit both topological and geographic scale invariance. That is, we empirically
show that the degree distribution of the dual is well-characterized by a power law with exponent
2.0 < α < 2.5, and that journeys, regardless of their length, have a largely identical structure. To
explain these properties, we introduce and analyze a simple fractal model of road placement that
reproduces the observed structure, and suggests a connection between the scaling exponent α and
the fractal dimensions governing the placement of roads and intersections.

I. INTRODUCTION

The study of complex networks has received much at-
tention from the physics community and beyond in the
recent past [1–3]. This interest has primarily sprung from
the near ubiquity of networks in both the natural and
manmade world. Canonical examples of complex net-
works include the Internet [4], the World Wide Web [5],
social contacts [6], scientific citation [7, 8] and gene and
protein interactions [9, 10]. Most of these studies have
focused on topological quantities like the degree distri-
bution, diameter and clustering coefficient. More often
than not, it has been found that networks exhibit a de-
gree distribution in which the fraction of vertices with
degree k has the form of a power law, P (k) ∼ k−α, where
2 < α < 3.

While virtual networks like the World Wide Web, or
interaction networks like that of proteins, may be consid-
ered purely in terms of their topology, physical networks
have additional geographic properties. For example, the
length of a path between two vertices may be either the
number of edges to cross or the sum of the lengths of those
edges; notably, the shortest path in one sense need not be
the shortest path in the other sense. In some cases, the
interaction of a network’s topology with its underlying
geography has been studied previously through models
of evolving networks or optimizing resource costs [11–13].

Here, we focus on the presence of hierarchy and scale
invariance in physical networks as illustrated by the na-
tionwide road networks of the United States, England
and Denmark. To reveal their topological organization,
we employ the dual model of the road network, in which
a vertex represents a contiguous road of a given name,
and two vertices are joined if their corresponding roads
ever intersect. This graph transformation has been used
previously to study the topological structure of urban
roads [14–17]. This should not to be confused with the
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dual of a planar graph, in which faces become vertices
and vice versa.

By representing the road network in this manner, we
are able to show empirically that the degree distribution
has a heavy tail, and is well-characterized by a power law
with an exponent 2.0 < α < 2.5. Rosvall et al., showed
that urban networks also have heavy tails in the dual
degree distribution, although not unequivocally with a
power-law form [16]. Additionally, we find the structure
of journeys on the physical network is scale invariant, i.e.,
the structure of a journey is similar regardless of its scale.
To explain these properties, we introduce and analyze
a simple fractal model for the hierarchical placement of
roads on the unit square. We show that the recursive
nature of this model generates the scale invariant journey
structure, and suggests a simple relationship between the
scaling exponent of the dual degree distribution α and the
fractal dimensions governing the placement of roads.

II. PRIMAL AND DUAL MODELS

The natural representation of a road network is a col-
lection of road segments, in which each segment termi-
nates at an intersection; this is called the primal rep-
resentation. However, this representation gives us little
opportunity to consider scale-free properties or heavy-
tailed degree distributions: almost all vertices have de-
gree k = 4, and the average degree of a planar network
is at most 〈k〉 < 6. However, this representation vio-
lates the intuitive notion that an intersection is where
two roads cross, not where four roads begin. Nor does
it well represent the way we tell each other how to nav-
igate the road network [22], e.g., “stay on Main Street
for 10.3 miles, ignoring all cross-streets, until you reach
Baker Street, then turn left.” If we use the dual rep-
resentation, however, such a set of directions reduces to
a short path through the network where each transition
from one road to another corresponds to a single step.

In order to transform the primal road network, we must
define which road segments naturally belong together. In
previous studies of road networks, segments have been
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grouped by their street name [15, 16], line of sight by
a driver [18], or by using a threshold on the angle of
incidence of segments at an intersection [14]. Here, we
use the method of taking a single road to be the collection
of road segments that bear the same street name.

III. SAMPLING METHODOLOGY

We sample the national road networks of the United
States, England and Denmark by querying a commercial
service, provided by Mapquest.com. This service pro-
vides driving directions, i.e., a path through the dual
graph, when given a pair of source and destination ad-
dresses. If only partial information is provided, e.g., the
postal code or city name, the service defaults to a unique
address near that location’s center. For a pair of ad-
dresses, the service then returns a driving directions as
a list of road names, the respective distances a driver
should travel on each one, and instructions as to how to
get from one road to another, e.g., “turn left onto” or
“continue on”.

We constructed samples of each nation’s respective
road network by taking the union of the paths returned
for a large number source-destination pairs. For the
United States, we selected 200 000 uniformly random
pairs of postal codes, while for England and Denmark,
we used 25 000 uniformly random pairs of city names.

Notably, our sampled networks are biased according
to population distribution (postal codes in the United
States are distributed roughly according to popula-
tion [23]). On the other hand, by focusing only on travel
between postal codes for the United States, and between
cities in England and Denmark, we restrict ourselves to
studying the structure of long journeys. Naturally, we
expect short-range travel to represent the majority of
real journeys, e.g., trips to the office, the grocery store,
etc. Finally, while most details of the algorithm that
Mapquest uses to generate its driving directions are con-
cealed on account of it being proprietary, we note that
any algorithm that minimizes travel time, as opposed to
geographical distance, will creates a bias toward traveling
on major roads and highways.

IV. JOURNEY STRUCTURE

Intuitively, a road network is composed of a hierar-
chy of roads with different importance. For instance,
a road atlas will classify roads according to their speed
limit and capacity into minor and major local streets,
regional roads, and finally highways. Assuming that a
driver wishes to reach her destination as quickly as possi-
ble, we may model the structure of an arbitrary journey
as follows. Our driver begins at the local street where
her point of origin is located, and moves to progressively
larger and faster roads, i.e., she moves up the hierar-
chy, until she reaches the fastest single road between her

source and destination. On this road, she covers as much
distance as possiblew, and then descends to progressively
smaller roads until she reaches the local street of her des-
tination.

Thus, we expect that the largest steps of a journey will
cover a significant fraction of the total distance, and that
the length of a step will increase as a driver moves up the
hierarchy in the beginning of the journey, and decrease
as she descends it at the journey’s end. Empirically, we
find that this assumption reflects the structure of jour-
neys through our sampled networks. For the purposes of
comparison, we classify journeys into three groups based
on their length: short, medium and long.

To more precisely compare the journey structure be-
tween trips of different lengths, we define a journey’s
profile in the following way. We take the largest step
of the journey, in terms of distance traveled, the three
largest steps (in order of appearance) that precede it,
and the three largest steps (again, in order of appear-
ance) that follow it. Thus we ignore the many small steps
that are scattered throughout the journey, e.g., taking a
regional highway off-ramp to merge onto a national high-
way. While this definition of a journey profile is some-
what arbitrary, it allows us to focus on the journey’s
large-scale structure.

Figure 1 illustrates the average profile for journeys
on each of the three national road networks for short,
medium and long journeys. The unimodal shape of these
profiles clearly supports the hierarchical model we de-
scribe above. Additionally, their approximate collapse
across journeys of different lengths indicates that the
structure of the journey profile is invariant with respect
to the scale of the journey.

In Table I, we show data for the five largest steps of
these journeys; these steps alone typically account for
85% or more of the total length of the journey, and in
the United States, the largest step typically covers about
40% of the entire distance, the second largest covers 20%,
the third largest covers 12%, etc. Moreover, for each j
from 1 to 5, the fraction of the journey covered by the
jth largest step appears to be constant. This suggests a
simple linear relationship of the form

sj = Aj ` , (1)

where sj is the jth largest step, ` is the total path length
and Aj is some constant. Figure 2 shows the average step
size for each of the five largest steps against the total path
length for each of our three networks. We fit our data to a
power-law with the form sj = Aj `αj , bootstrapped via
least-squares (we ignore the longest journeys, since we
expect finite-size effects to appear as ` approaches the
diameter of the country). We observe that this power
law fits the data quite well; moreover, we have αj ≈ 1,
suggesting that the linear form of (1) is correct.
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FIG. 1: (Color online) The average journey profiles for the United States, England and Denmark. Profiles are composed of the
largest step (centered) and the three (in order of appearance) largest steps which precede and follow it.
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FIG. 2: (Color online) The scale invariant hypothesis predicts that sj ≈ Aj ` for constants Aj , and thus that αj ≈ 1. This is
consistent with our power-law fits, in which we estimate αj using a bootstrap resampling method. Journeys on the very largest
scales were excluded in order to avoid finite-size effects.

V. DEGREE DISTRIBUTION

Other studies of road networks have found that the
degree distribution of the dual graph, i.e., the number of
intersections in which a single road is involved, is heavy-
tailed, although not necessarily a power law [15, 16]. We
find similarly heavy-tailed distributions at the national
level, shown in Figure 3, although with apparent finite-
size cutoffs related to the respective geographic scales. A
power law model of these distributions is most convincing
for the United States, where the power law is quite clean
for almost three decades. For England and Denmark the
situation is less clear (England in particular shows strong
curvature on the log-log plot). We conjecture that this
is because the English and Danish networks have fewer
levels of hierarchy than their American counterpart, and
that the formation of road networks, when conducted at
a sufficiently large scale, leads to scale-free structure.

We fit these distributions using the maximum like-
lihood estimator for the one-parameter power law, as
in [19]. For the United States, England and Denmark,
we find scaling exponents of α = 2.4, 2.1 and 2.4, respec-
tively. We do not propose that α has a universal value;
in fact, in the next section we describe a toy model which

can give rise to a variety of exponents, depending on the
fractal dimensions describing the roads and their inter-
sections.

VI. A SIMPLE FRACTAL MODEL

In this section we introduce and analyze a simple frac-
tal model for the placement of roads on the unit square
that reproduces both the observed hierarchical and scale
invariant structure of journeys. As we will see, the key
quantities of the model are the fractal or Hausdorff di-
mensions dp and di that, in turn, describe the distri-
bution of road intersections in two dimensions, and the
distribution of intersections along a single road.

Unlike previous models of physical networks [11–13],
our model assumes no optimization or resource constraint
satisfaction mechanism. Rather, we simply assume the
fractal structure is given, and analyze the resulting im-
plications for journey structure and the dual degree dis-
tribution. We leave for future work the exploration of
mechanisms that may in turn generate a fractal place-
ment of roads.

To create a road network according to our model, we
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Network Distance Largest Step 2nd Largest Step 3rd Largest Step 4th Largest Step 5th Largest Step Sum

0 - 400 0.486 ± 0.184 0.212 ± 0.087 0.112 ± 0.057 0.066 ± 0.040 0.042 ± 0.030 0.917

United States 400 - 1600 mi 0.411 ± 0.161 0.209 ± 0.074 0.126 ± 0.051 0.081 ± 0.039 0.053 ± 0.030 0.880

1600+ 0.391 ± 0.139 0.212 ± 0.067 0.128 ± 0.048 0.079 ± 0.035 0.053 ± 0.027 0.862

0 - 100 0.432 ± 0.168 0.201 ± 0.075 0.117 ± 0.051 0.074 ± 0.037 0.048 ± 0.028 0.873

England 100 - 300 mi 0.397 ± 0.172 0.184 ± 0.066 0.111 ± 0.042 0.076 ± 0.032 0.055 ± 0.027 0.823

300+ 0.347 ± 0.106 0.179 ± 0.065 0.110 ± 0.028 0.076 ± 0.017 0.056 ± 0.017 0.768

0 - 65 0.499 ± 0.183 0.199 ± 0.083 0.110 ± 0.056 0.067 ± 0.039 0.043 ± 0.028 0.918

Denmark 65 - 250 km 0.562 ± 0.179 0.199 ± 0.095 0.089 ± 0.054 0.049 ± 0.033 0.031 ± 0.025 0.931

250+ 0.463 ± 0.069 0.295 ± 0.114 0.103 ± 0.042 0.050 ± 0.010 0.027 ± 0.020 0.938

TABLE I: The average fraction Aj = sj/` of the total length covered by each of the five largest steps with standard deviations.
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FIG. 3: (Color online) The cumulative degree distributions P (K ≥ k) of the dual model for the United States, England, and
Denmark. We show fits based on a maximum likelihood estimate of a power law model P (k) ∼ k−α, where α = 2.4, 2.1 and
2.4, respectively.

first divide the unit square into n2 squares of equal size
for some fixed integer n by placing 2(n − 1) roads. We
then choose some subset of these n2 squares and subdi-
vide them as we did the original square. Repeating this
process recursively for as many levels as desired yields a
road network with fractal structure. For instance, with
n = 3, subdividing all but the center square gives the
Sierpinski carpet [20], and in Figure 4 we show a net-
work resulting from subdividing five of the nine squares.

Observe that in this model the road intersections are
distributed as a fractal both over the original unit square
and along a given road. For instance, in the Sierpin-
ski carpet, at each level of construction the total num-
ber of intersections in the plane increases by a factor
of 8, while the number of intersections along a given
road triples; this construction thus yields a fractal di-
mension dp = log3 8 for the distribution in the plane, and
di = log3 3 = 1 for the distribution along a given road.
Similarly, for the scheme illustrated in Figure 4, at each
level the number of intersections increases by a factor
of 5 and the number of intersections along a given road
doubles, giving dp = log3 5 and di = log3 2.

We show, by a simple counting argument, that the scal-
ing exponent of such a network’s dual degree distribution

is related to the fractal dimensions in the following way,

α = 1 +
dp

di
. (2)

After x levels of subdivision, the number of roads at level
x is proportional to the number of squares at that level,
and so grows exponentially with x as r(x) ∼ ndpx. Sim-
ilarly, for a road added at level x, the number of inter-
sections along its length is exponential in the number
of subsequent subdivisions, and so its degree grows as
c(x) ∼ ndi(m−x) ∼ n−dix, where m is the total number
of levels of subdivision.

The cumulative degree distribution of this model can
be calculated as follows. The number of roads with de-
gree greater than k is given by

P (K > k) =
∑

x : c(x)>k

r(x)

∼

m∑

x=m−(1/di) logn k

ndpx

∼ k−dp/di .

So, differentiating this cumulative distribution gives the
degree distribution P (k) ∼ k−α, with α given by Eq. (2).
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FIG. 4: A version of our fractal model for road placement
(see text). Line-thickness indicates greater road capacity and
speed limits. The Sierpinski carpet corresponds to recursively
subdividing all squares except square 5.

The values of α for variations on n = 3 subdivision
schema are given in Table II.

Further, by placing roads hierarchically through the
subdivision process, journeys that seek to minimize travel
time will necessarily utilize this same hierarchical struc-
ture. For instance, if the source and destination are in
different subsquares, then the shortest path in the dual
model will use one of the roads at level x = 1; this is also
recursively true at each step of the journey. Thus, the
jth largest step will cover an average fraction Aj of the
journey, while scales as Aj ∼ n−j. Indeed, looking at the
data for the United States (Figure 1), it appears that Aj

decreases roughly exponentially with j.

The fact that our simple fractal model reproduces the
scale invariant journey structure, and can similarly pro-
duce the correct functional form of the dual degree dis-
tribution, suggests that the roads in our real world net-
works may be organized in a similar fractal structure. It
would be interesting to use the geographic distribution of
population and road intersections to estimate the fractal
dimensions dp and di for various countries, and compare
the value of α predicted by Eq. (2) to the measured value.
We leave this as a direction for future work.

Schema dp di α

all log
3
9 log

3
3 3.00

all but center log
3
8 log

3
3 2.89

odds log
3
5 log

3
2 3.32

corners log
3
4 log

3
2 3.00

TABLE II: Fractal dimensions for the distribution of intersec-
tions in the plane dp, the distribution of intersections along
a single road di, and the power-law exponent α for different
subdivision schemes given by Eq. 2 for n = 3 (see text).

VII. CONCLUSION

We studied the national road networks of the United
States, England and Denmark through their dual rep-
resentation, using the driving directions provided by a
popular commercial service. We show that the dual de-
gree distributions have heavy tails, like those of urban
road networks [16], and are well modeled by power laws
of the form P (k) ∼ k−α, with 2.0 < α < 2.5 (Fig. 3), like
many other real world networks [1–3].

We further show that journeys on these networks fol-
lows a scale invariant structure, in which a driver rises up
through the road hierarchy, i.e., from local to regional to
national roads where the speed limit and capacity grows
with each step, and then descends in reverse order as she
approaches her destination. This scale invariance is ex-
hibited by the fact that journeys have similar structure
regardless of their total length.

To explain the observed structure in the road net-
works, we introduced and analyzed a simple fractal model
of road placement. This model recovers the scale-free
structure of journeys in the network and the power-law
dual degree distribution. It also suggests a fundamen-
tal relationship between the exponent α and the fractal
dimensions describing the distribution of road intersec-
tions in the plane and along a single road. Although
our model assumes that road placement is not a function
of resource-bound optimization as in [12, 13], it would
be interesting to adapt it in such a way as to generate
more statistically realistic road networks. Arguably, bio-
logical transportation networks, e.g., the circulatory sys-
tem, also have a fractal structure [21], and a comparative
study of these and our road networks would be interest-
ing.
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