
Bayesian Network Score Approximation using a

Metagraph Kernel

Benjamin Yackley, Eduardo Corona, and Terran Lane

Abstract

Many interesting problems, including Bayesian network structure-search,
can be cast in terms of finding the optimum value of a function over the
space of graphs. However, this function is often expensive to compute
exactly. We here present a method derived from the study of reproducing-
kernel Hilbert spaces which takes advantage of the regular structure of the
space of all graphs on a fixed number of nodes to obtain approximations
to the desired function quickly and with reasonable accuracy. We then test
this method on both a small testing set and a real-world Bayesian network;
the results suggest that not only is this method reasonably accurate, but
that the BDe score itself varies quadratically over the space of all graphs.

1 Introduction

problem we address in this paper is, broadly speaking, function approximation. Specifically,
the application we present here is that of estimating scores on the space of Bayesian networks
as a first step toward a quick way to obtain a network which is optimal given a set of data.
Usually, the search process requires a full recomputation of the posterior likelihood of the
graph at every step, and is therefore slow. We present a new approach to the problem of
approximating functions such as this one, where the mapping is of an object (the graph, in
this particular case) to a real number (its BDe score). In other words, we have a function
f : Γn → R (where Γn is the set of all directed graphs on n nodes) from which we have a
small number of samples, and we would like to interpolate the rest. The technique hinges
on the set Γn having a structure which can be factored into a Cartesian product, as well as
on the function we approximate being smooth over this structure.

Although Bayesian networks are by definition acyclic, our approximation technique applies
to the general directed-graph case. Because a given directed graph has n2 possible edges,
we can imagine the set of all graphs as itself being a Hamming cube of degree n2 – a

“metagraph” with 2n2

nodes, since each edge can be independently present or absent. We
say that two graphs are connected with an edge in our metagraph if they differ in one and
only one edge. We can similarly identify each graph with a bit string by “unraveling” the
adjacency matrix into a long string of zeros and ones. However, if we know beforehand an
ordering on the nodes of our graph to which all directed graphs must stay consistent (to
enforce acyclicness), then there are only

(

n
2

)

possible edges, and the size of our metagraph

drops to 2(n

2). The same correspondence can then be made between these graphs and bit
strings of length

(

n
2

)

.

Since the eigenvectors of the Laplacian of a graph form a basis for all smooth functions on
the graph, then we can use our known sampled values (which correspond to a mapping from
a subset of nodes on our metagraph to the real numbers) to interpolate the others. Despite
the incredible size of the metagraph, we show that this problem is by no means intractable,
and functions can in fact be approximated in polynomial time. We also demonstrate this
technique both on a small network for which we can exhaustively compute the score of every

1

possible directed acyclic graph, as well as on a larger real-world network. The results show
that the method is accurate, and additionally suggest that the BDe scoring metric used is
quadratic over the metagraph.

2 Spectral Properties of the Hypercube

2.1 The Kronecker Product and Kronecker Sum

The matrix operators known as the Kronecker product and Kronecker sum, denoted ⊗ and
⊕ respectively, play a key role in the derivation of the spectral properties of the hypercube.
Given matrices A ∈ R

i×j and B ∈ R
k×l, A⊗B is the matrix in R

ik×jl such that:

A⊗B =

a11B a12B · · · a1jB
a21B a22B a2jB

...
. . .

aj1B aj2B aijB

The Kronecker sum is defined over a pair of square matrices A ∈ R
m×m and B ∈ R

n×n as
A⊕B = A⊗ In + Im ⊗B, where In denotes an n× n identity matrix[8].

2.2 Cartesian Products of Graphs

The Cartesian product of two graphs G1 and G2, denoted G1 ×G2, is intuitively defined as
the result of replacing every node in G1 with a copy of G2 and connecting corresponding
edges together. More formally, the Cartesian product is the graph such that:

• The vertex set of G1 × G2 is the Cartesian product of the vertex sets of G1 and
G2. In other words, for any vertex v1 in G1 and any vertex v2 in G2, there exists a
vertex (v1, v2) in G1 ×G2.

• The edge set of G1 × G2 is the set of all edges such that, for any edge (u1, u2) →
(v1, v2) in G1 × G2, either u1 = v1 and u2 → v2 is an edge in G2, or u2 = v2 and
u1 → v1 is an edge in G1.[7]

In particular, the set of hypercube graphs (or, identically, the set of Hamming cubes) can be
derived using the Cartesian product operator. If we denote the graph of an n-dimensional
hypercube as Qn, then Qn+1 = Qn × Q1, where the graph Q1 is a two-node graph with a
single bidirectional edge.

2.3 Spectral Properties of Cartesian Products

The Cartesian product has the property that, if we denote the adjacency matrix of a graph
G as A(G), then A(G1 ×G2) = A(G1) ⊕A(G2). Additionally, if A(G1) has m eigenvectors
φk and corresponding eigenvalues λk (with k = 1...m) while A(G2) has n eigenvectors ψl

with corresponding eigenvalues µl (with l = 1...n), then the full spectral decomposition of
A(G1 × G2) is simple to obtain by the properties of the Kronecker sum; A(G1 × G2) will
have mn eigenvectors, each of them of the form φk ⊗ ψl for every possible φk and ψl in the
original spectra, and each of them having the corresponding eigenvalue λk + µl[2].

It should also be noted that, because hypercubes are all k-regular graphs (in particular,
the hypercube Qn is n-regular), the form of the normalized Laplacian becomes simple. The
usual formula for the normalized Laplacian is:

L̃ = I −D−1/2AD−1/2

However, since the graph is regular, we have D = kI, and so

L̃ = I − (kI)−1/2A(kI)−1/2 = I −
1

k
A.

2

Also note that, because the formula for the combanitorial Laplacian is L = D −A, we also
have L̃ = 1

kL.

The Laplacian also distributes over graph products, as shown in the following theorem.

Theorem 1 Given two simple, undirected graphs G1 = (V1, E1) and G2 = (V2, E2), with
combinatorial Laplacians LG1

and LG2
,the combinatorial Laplacian of the Cartesian product

graph G1 ×G2 is then given by:

LG1×G2
= LG1

⊕ LG2

Proof.

LG1
= DG1

−A(G1)

LG2
= DG2

−A(G2)

Here, DG denotes the degree diagonal matrix of the graph G. Now, by the definition of the
Laplacian,

LG1×G2
= DG1×G2

−A(G1) ⊕A(G2)

However, the degree of any vertex uv in the Cartesian product is deg(u) + deg(v), because
all edges incident to a vertex will either be derived from one of the original graphs or the
other, leading to corresponding nodes in the product graph. So, we have

DG1×G2
= DG1

⊕DG2

Substituting this in, we obtain

LG1×G2
= DG1

⊕DG2
−A(G1) ⊕A(G2)

= DG1
⊗ Im + In ⊗DG2

− A(G1) ⊗ Im − I ⊗A(G2)

= DG1
⊗ Im −A(G1) ⊗ Im + In ⊗DG2

− In ⊗A(G2)

Because the Kronecker product is distributive over addition[8],

LG1×G2
= (DG1

−A(G1)) ⊗ Im + In ⊗ (DG2
−A(G2))

= LG1
⊕ LG2

Additionally, if G1 ×G2 is k-regular,

L̃G1×G2
= L̃G1

⊕ L̃G2
=

1

k
(LG1

⊕ LG2
)

Therefore, since the combanitorial Laplacian operator distributes across a Kronecker sum,
we can easily find the spectra of the Laplacian of an arbitrary hypercube through a recursive
process if we just find the spectrum of the Laplacian of Q1.

2.4 The Spectrum of the Hypercube Qn

First, consider that

A(Q1) =

[

0 1
1 0

]

.

This is a k-regular graph with k = 1. So,

LQ1
= I −

1

k
A(Q1) =

[

1 −1
−1 1

]

3

Its eigenvectors and eigenvalues can be easily computed; it has the eigenvector
[

1

1

]

with

eigenvalue 0 and the eigenvector
[

1

−1

]

with eigenvalue 2. We can use these to compute the

four eigenvectors of LQ2
, the Laplacian of the 2-dimensional hypercube; LQ2

= LQ1×Q1
=

LQ1
⊕LQ1

, so the four possible Kronecker products are [1 1 1 1]T , [1 1 −1 −1]T , [1 −1 1 −1]T ,
and [1 − 1 − 1 1]T , with corresponding eigenvalues 0, 1, 1, and 2 (renormalized by a factor
of 1

k = 1

2
to take into account that our new hypercube is now degree 2 instead of degree 1;

the combanitorial Laplacian would require no normalization). It should be noted here that
an n-dimensional hypercube graph will have 2n eigenvalues with only n+ 1 distinct values;
they will be the values 2k

n for k = 0...n, each of which will have multiplicity
(

n
k

)

[4].

If we arrange these columns in the proper order as a matrix, a familiar shape emerges:

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

This is, in fact, the Hadamard matrix of order 4, just as placing our original two eigenvectors
side-by-side creates the order-2 Hadamard matrix. In fact, the eigenvectors of the Laplacian
on a hypercube are simply the columns of a Hadamard matrix of the appropriate size; this
can be seen by the recursive definition of the Hadamard matrix in terms of the Kronecker
product:

H2n+1 = H2n ⊗H2

Recall that the eigenvectors of the Kronecker sum of two matrices are themselves all possible
Kronecker products of eigenvectors of those matrices. Since hypercubes can be recursively
constructed using Kronecker sums, the basis for smooth functions on hypercubes (i.e. the
set of eigenvectors of their graph Laplacian) is the Hadamard basis. Consequently, there is
no need to ever compute a full eigenvector explicitly; there is an explicit formula for a given
entry of any Hadamard matrix:

(H2n)ij = (−1)〈bi,bj〉

The notation bx here means “the n-bit binary expansion of x interpreted as a vector of 0s
and 1s”. This is the key to computing our kernel efficiently, not only because it takes very
little time to compute arbitrary elements of eigenvectors, but because we are free to compute
only the elements we need instead of entire eigenvectors at once.

3 The Metagraph Kernel

3.1 The Optimization Framework

Given the above, we now formulate the regression problem that will allow us to approximate

our desired function at arbitrary points. Given a set of k observations {yi}
k
i=1

corresponding

to nodes xi in the metagraph, we wish to find the f̂ which minimizes the squared error
between our estimate and all observed points and also which is a sufficiently smooth function
on the graph to avoid overfitting. In other words,

f̂ = argmin
f̂

{

1

k

k
∑

i=1

∥

∥

∥
f̂(xi) − yi

∥

∥

∥

2

+ cf̂TLmf̂

}

The variable m in this expression controls the type of smoothing; if m = 1, then we are
penalizing first-differences (i.e. the gradient of the function). We will take m = 2 in our ex-
periments, to penalize second-differences (the usual case when using spline interpolation)[6].
This problem can be formulated and solved within the reproducing-kernel Hilbert space
framework[9]; consider the space of functions on our metagraph as the sum of two orthogonal
spaces, one (called Ω0) consisting of functions which are not penalized by our regularization

4

term (which is cf̂Lmf̂), and one (called Ω1) consisting of functions orthogonal to those. In
the case of our hypercube graph, Ω0 turns out to be particularly simple; it consists only of
constant functions (i.e. vectors of the form 1

Td, where 1 is a vector of all ones). Meanwhile,
the space Ω1 is formulated under the RKHS framework as a set of columns of the kernel

matrix (denoted K1). Consequently, we can write f̂ = 1
Td +K1e, and so our formulation

becomes:

f̂ = arg min
f̂

{

1

k

k
∑

i=1

∥

∥(1Td+K1e)(xi) − yi

∥

∥

2
+ ceTK1e

}

The solution to this optimization problem is for our coefficients d and e to be linear estimates
on y, our vector of observed values. In other words, there exist matrices Υd(c,m) and
Υe(c,m), dependent on our smoothing coefficient c and our exponent m, such that:

d̂ = Υd(c,m)y

ê = Υe(c,m)y

f̂ = 1
T d̂+K1ê = Υ(c,m)y

Υ(c,m) = 1
T Υd(c,m) +K1Υe(c,m) is the influence matrix[9] which provides the function

estimate over the entire graph. Because Υ(c,m) is entirely dependent on the two matrices
Υd and Υe as well as our kernel matrix, we can calculate an estimate for any set of nodes
in the graph by explicitly calculating only those rows of Υ which correspond to those nodes
and then simply multiplying that sub-matrix by the vector y. Therefore, if we have an
efficient way to compute arbitrary entries of the kernel matrix K1, we can estimate functions
anywhere in the graph.

3.2 Calculating entries of K1

First, we must choose an order r ∈ {1, 2...n}; this can be shown to be parallel to selecting
the degree of a polynomial to perform standard interpolation on the hypercube. The effect
that r will have on our problem will be to select the set of basis functions we consider; the
eigenvectors corresponding to a given eigenvalue 2k

n are the
(

n
k

)

eigenvectors which divide the
space into identically-valued regions which are themselves (n− k)-dimensional hypercubes.
For example, the 3 eigenfunctions on the 3-dimensional hypercube which correspond to the
eigenvalue 2

3
(so k = 1) are those which separate the space into a positive plane and a

negative plane along each of the three axes. Because these eigenfunctions are all equivalent
apart from rotation, there is no reason to choose one to be in our basis over another, and
so we can say that the total number of eigenfunctions we use in our approximation is equal
to

∑r
k=0

(

n
k

)

for our chosen value of r.

All eigenvectors can be identified with a number l corresponding to its position in the
natural-ordered Hadamard matrix; the columns where l is an exact power of 2 are ones that
alternate in identically-sized blocks of +1 and -1, while the others are element-wise products
of the columns correponsing to the ones in l’s binary expansion. Therefore, if we use the
notation |x|1 to mean “the number of ones in the binary expansion of x”, then choosing the
order r is equivalent to choosing a basis of eigenvectors φl such that |l|1 is less than or equal
to r. Therefore, we have:

(K1)ij =
∑

1≤|l|1≤r

(n

2k

)m

HilHjl

Because k is equal to |l|1, and because we already have an explicit form for any Hxy, we
can write

(K1)ij =
1

n

∑

1≤|l|1≤r

(

n

2|l|1

)m

(−1)<bi,l>+<bj ,l>

=
1

n

r
∑

k=1

(n

2k

)m ∑

|l|1=k

(−1)<bi∨̇bj ,l>

5

The ∨̇ symbol here denotes exclusive-or, which is equivalent to addition mod 2 in this
domain. The justification for this is that only the parity of the exponent (odd or even)
matters, and locations in the bit strings bi and bj which are both zero or both one contribute
no change to the overall parity. Notably, this shows that the value of the kernel between
any two bit strings bi and bj is dependent only on bi∨̇bj, the key result which allows us

to compute these values quickly. If we let Sk(bi, bj) =
∑

|l|1=k(−1)<bi∨̇bj ,l>, appendix A

provides a recursive formulation for the computation of Sk(bi, bj) in terms of Sk−1(bi, bj),
which is the method used in the experiments due to its speed and feasability of computation.

4 Experiments

4.1 The 4-node Bayesian Network

The first set of experiments we performed were on a four-node Bayesian Network. We
generated a random “base truth” network and sampled it 1000 times, creating a data set.
We then created an exhaustive set of 26 = 64 directed graphs; there are six possible edges in
a four-node graph, assuming we already have some sort of node ordering that allows us to
orient edges, and so this represented all possibilities. Because we chose the node ordering to
be consistent with our base network, one of these graphs was in fact the correct network. We
then gave each of the set of 64 graphs a log-marginal-likelihood score (i.e. the BDe score)
based on the generated data. As expected, the correct network came out to have the greatest
likelihood. Additionally, it can be shown by the computation of the Rayleigh quotient that
the function is a globally smooth one over the graph topology. We then performed a set of
experiments using the metagraph kernel.

4.1.1 Randomly Drawn Observations

First, we partitioned the set of 64 observations randomly into two groups. One, the training
group, ranged in size from 3 to 63 samples, while we called the remainder the testing group.
We then used the training group as the set of observations, and queried the metagraph
kernel to predict the values of the networks in the testing group. We repeated this process 50
times for each of the different sizes of the training group, and the results averaged to obtain
Figure 1. Note that order 3 performs the best overall for large numbers of observations,
overtaking the order-2 approximation at 41 values observed and staying the best until the
end. However, order 1 performs the best for small numbers of observations (perhaps due
to overfitting errors caused by the higher orders) and order 2 performs the best in the
middle. The data suggests that the proper order to which to compute the kernel in order to
obtain the best approximations is a function of both the size of the space and the number
of observations made within that space.

4.1.2 Best/worst-case Observations

Secondly, we performed experiments where the observations were obtained from networks
which were in the neighborhood around the known true maximum, as well as ones from
networks which were as far from it as possible. These results are Figures 2 and 3. Despite
small differences in shape, the results are largely identical, indicating that the distribution
of the samples throughout Γn matters very little.

4.2 The Alarm Network

The Alarm Bayesian network[1] consists of 37 nodes, and has been used in much Bayes-
net-related research[3]. We first generated data according to the true network (sampling it
1000 times), and then generated random directed graphs over the 37 nodes to see if their
scores could be predicted as well as in the smaller four-node case. We then generated two
sets of random directed graphs: a set of 100, and a set of 1000. We made no attempt to
enforce an ordering; although the graphs were all acyclic, we placed no assumption on the
graphs being consistent with the same node-ordering as the original. The scores of these sets
served as our observed data. We then used the kernel to approximate, given the observed

6

0 10 20 30 40 50 60 70
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3 Random samples

Observed Nodes

R
oo

t−
m

ea
n−

sq
ua

re
d

E
rr

or

Order 1
Order 2
Order 3
Order 4
Order 5

(a) Figure 1: Randomly-drawn Samples

0 10 20 30 40 50 60 70
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Observed Nodes

R
oo

t−
m

ea
n−

sq
ua

re
d

E
rr

or

Samples near Maximum

Order 1
Order 2
Order 3
Order 4
Order 5
Order 6

(b) Figure 2: Samples drawn near maximum

0 10 20 30 40 50 60 70
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3 Samples near Minimum

Observed Nodes

R
oo

t−
m

ea
n−

sq
ua

re
d

E
rr

or

Order 1
Order 2
Order 3
Order 4
Order 5
Order 6

(c) Figure 3: Samples drawn near minimum

0 2 4 6 8 10 12 14 16 18 20
500

550

600

650

700

750

800

Order of approximation

R
oo

t−
m

ea
n−

sq
ua

re
d

E
rr

or

Error on approximations of Alarm network data

Mean of sampled scores
100 observations
1000 observations

(d) Figure 4: Samples from ALARM net-
work

data, the score of an additional 100 randomly-generated graphs, with the order of the kernel
varying from 1 to 20. The results, with root-mean-squared error plotted against the order
of the kernel, are shown in Figure 4. Additionally, we calculated a baseline by taking the
mean of the 1000 sampled scores and calling that the estimated score for every graph in our
testing set.

The results show that the metagraph approximation method performs significantly better
than the baseline for low orders of approximation with higher amounts of sampled data.
This makes intuitive sense; the more data there is, the better the approximation should
be, and the higher the order, the greater chance of overfitting. Additionally, the spike at
order 2 suggests that the BDe score itself varies quadratically over the metagraph. To our
knowledge, we are the first to make this observation. In current work, we are analyzing
the BDe in an attempt to analytically validate this empirical observation. If true, this
observation may lead to improved optimization techniques for finding the BDe-maximizing
Bayesian network. Note, however, that, even if true, exact optimization is still unlikely to
be polynomial-time because the quadratic form is almost certainly indefinite and, therefore,
NP-hard to optimize.

5 Conclusion

Functions of graphs to real numbers, such as the posterior likelihood of a Bayesian network
given a set of data, can be approximated to a high degree of accuracy by taking advantage of

7

a hybercubic “metagraph” structure. Because the metagraph is regular, standard techniques
of interpolation can be used in a straightforward way to obtain predictions for the values at
unknown points.

6 Future Work

Although this technique allows for quick and accurate prediction of function values on the
metagraph, it offers no hints (as of yet) as to where the maximum of the function might
be. This could, for instance, allow one to generate a Bayesian network which is likely to be
close to optimal, and if true optimality is required, that approximate graph could be used
as a starting point for a stepwise method such as MCMC. Even without a direct way to
find such an optimum, though, it may be worth using this approximation technique inside
an MCMC search instead of the usual exact-score computation in order to quickly converge
on a something close to the desired optimum.

Also, many other problems have a similar flavor. In fact, this technique should be able
to be used unchanged on any problem which involves the computation of a real-valued
function over bit strings. For other objects, however, the structure is not necessarily a
hypercube. For example, one may desire an approximation to a function of permutations
of some number of elements to real numbers. The set of permutations of a given number
of elements, denoted Sn, has a similarly regular structure (which can be seen as a graph in
which two permutations are connected if a single swap leads from one to the other), but not
a hypercubic one. The structure-search problem on Bayes Nets can also be cast as a search
over orderings of nodes alone[5], so a way to approximate a function over permutations
would be useful there as well.

Other domains have this ability to be turned into regular graphs – the integers mod n with
edges between numbers that differ by 1 form a loop, for example. It should be possible to
apply a similar trick to obtain function approximations not only on these domains, but on
arbitrary Cartesian products of them. So, for instance, remembering that the directions of
the edges of Bayesian network are completely specified given an ordering on the nodes, the
network structure search problem on n nodes can be recast as a function approximation
over the set Sn×Q(n

2). Many problems can be cast into the metagraph framework; we have

only just scratched the surface here.

References

[1] I. Beinlich, H.J. Suermondt, R. Chavez, G. Cooper, et al. The ALARM monitoring
system: A case study with two probabilistic inference techniques for belief networks.
Proceedings of the Second European Conference on Artificial Intelligence in Medicine,
256, 1989.

[2] D.S. Bernstein. Matrix Mathematics: Theory, Facts, and Formulas with Application to
Linear Systems Theory. Princeton University Press, 2005.

[3] D.M. Chickering, D. Heckerman, and C. Meek. A Bayesian approach to learning Bayesian
networks with local structure. UAI’97, pages 80–89, 1997.

[4] Fan R. K. Chung. Spectral Graph Theory. Conference Board of the Mathematical
Sciences. AMS, 1997.

[5] N. Friedman and D. Koller. Being Bayesian about network structure. Machine Learning,
50(1-2):95–125, 2003.

[6] Chong Gu. Smoothing Splines ANOVA Models. Springer Verlag, 2002.

[7] G. Sabidussi. Graph multiplication. Mathematische Zeitschrift, 72(1):446–457, 1959.

[8] Kathrin Schacke. On the kronecker product. Master’s thesis, University of Waterloo,
2004.

[9] Grace Wahba. Spline Models for Observational Data. CBMS-NSF Regional Conference
Series in Applied Mathematics. SCIAM, 1990.

8

Appendix A: Recursive Formula for Sk(bi, bj)

1. (k=1) For k = 1, we add (−1)〈bi∨̇bj ,l〉 for each l such that only one entry is 1. There
are N such bit vectors, and we can label the vector with a 1 in the pth coordinate
as l

(1)
p . Let dH(bi, bj) denote the Hamming distance between bi and bj . S1 then

becomes:

S1 =
N∑

p=1

(−1)〈bi∨̇bj ,l(1)p 〉

=
N∑

p=1

(−1)(bi∨̇bj)(p)

= (−1)0(n− dH(bi, bj)) + (−1)1(dH(bi, bj))
= N − 2dH(bi, bj) (1)

That is, S1(bi, bj) is the difference between the coordinates at which bi and bj are
the same (N − dH) and those where they differ (dH). As a consequence, it can take
values between N and −N .

2. (k given k-1) Now, we find a recursive formula for Sk in terms of Sk−1. The main
reasoning behind this formula is that for each l(k−1) such that

∣∣l(k−1)
∣∣
2

= k − 1 we
can generate (N − k + 1) different vectors with k 1s (flipping one of the 0 bits in
l(k−1)). In turn each l(k) can come from k different vectors l(k−1) (flipping one of the
1 bits on l(k)). Using this, we can obtain the parity of

〈
bi∨̇bj , l

(k)
〉

from the parity
of
〈
bi∨̇bj , l

(k−1)
〉

for any of the l(k−1) that can generate l(k). Here is an example
with N = 6 and k = 3 that we use to provide motivation for the validity of this
formula:

bi∨̇bj 1 0 1 0 1 1 〈bi∨̇bj , l〉 Parity
l(2) 1 1 0 0 0 0 1 1
l
(3)
1 1 1 1 0 0 0 2 0
l
(3)
2 1 1 0 1 0 0 1 1
l
(3)
3 1 1 0 0 1 0 2 0
l
(3)
4 1 1 0 0 0 1 2 0

The first two coordinates are fixed by l(2), and {l(3)i }4i=1 are generated by flipping
each of the 4 remaining zeros. We can see that parity changes if and only if bi∨̇bj

has a 1 on the coordinate in which we have added an extra 1 (l
(3)
1 , l

(3)
3 and l

(3)
4

in this example) and it will remain the same if it has a 0. Therefore, there are
dH(bi, bj)−

〈
bi∨̇bj , l

(k−1)
〉

vectors for which parity changes (number of 1s in bi∨̇bj

minus those that are in positions fixed by l(2), in this case, 4 − 1 = 3) and (N −
k + 1)− (dH(bi, bj)−

〈
bi∨̇bj , l

(k−1)
〉
) vectors for which parity stays the same. Then,

Sk =
∑
|l(k)|2=k

(−1)〈bi∨̇bj ,l(k)〉

=
1
k

∑
|l(k−1)|2=k−1

[(N − k + 1)− 2(dH(bi, bj)−
〈
bi∨̇bj , l

(k−1)
〉

)](−1)〈bi∨̇bj ,l(k−1)〉 (2)

=
[

(N − k + 1)− 2dH(bi, bj)
k

]
Sk−1 +

2
k

∑
|l(k−1)|2=k−1

〈
bi∨̇bj , l

(k−1)
〉

(−1)〈bi∨̇bj ,l(k−1)〉

To simplify this last expression, we note that if s =
〈
bi∨̇bj , l

(k−1)
〉
, that means that

there are s coordinates of bi∨̇bj that are 1s and (k− 1)− s coordinates that are 0s

which correspond to the k − 1 coordinates which are 1s in l(k−1). For a particular
value of s, we can choose any set of s 1s and (k − 1) − s zeros, out of a bit vector

1

that has dH ones and N − dH zeros. This is the classic combinatorics problem that
leads to the hypergeometric probability distribution, and so we now know that:

Sk =
[

(N − k + 1)− 2dH(bi, bj)
k

]
Sk−1 +

2
k

min(k−1,dH(bi,bj))∑
s=0

s(−1)s

(
dH(bi, bj)

s

)(
N − dH(bi, bj)

(k − 1)− s

)
=

[
(N − k + 1)− 2dH(bi, bj)

k

]
Sk−1 +

2
k

(
N

dH(bi, bj)

)
Es[s(−1)s] (3)

Where s ∼ Hypergeometric(N, dH(bi, bj), k − 1).

Because our kernel is defined as a weighted sum of Sk, from k = 1 to r, we have thus shown
that calculating any entry (K1)ij depends exclusively on dH(bi, bj). Since there are only
N + 1 values for the Hamming distance, we can store these beforehand and compute the
entries that we need from this kernel in a very efficient way, using the recursive formula for
Sk(bi, bj) = Sk(dH(bi, bj)). The recursive structure of this formula and the use of efficient
routines for the hypergeometric distribution allows us to compute the entries of our kernel
in polynomial time, depending only N and the order r that is chosen. This is then critical
to be able to perform function estimation under the RKHS framework, which evaluates this
kernel (which is generated by the Hypercube graph Laplacian) on arbitrary training and
testing sets of observations in the hypercube.

2

	nips08
	appendix_metagraph

