
A High-Level Implementation of Non-Deterministic,
Unrestricted, Independent And-Parallelism

Amadeo Casas1 Manuel Carro2 Manuel V. Hermenegildo1,2

amadeo@cs.unm.edu mcarro@fi.upm.es
herme@{fi.upm.es,cs.unm.edu}

1 Depts. of Comp. Science and Electr. and Comp. Eng., Univ. of New Mexico, USA.
2 School of Comp. Science, Univ. Politécnica de Madrid, Spain and IMDEA-Software.

Abstract. The growing popularity of multicore architectures has re-
newed interest in language-based approaches to the exploitation of par-
allelism. Logic programming has proved an interesting framework to this
end, and there are parallel implementations which have achieved signifi-
cant speedups, but at the cost of a quite sophisticated low-level machin-
ery. This machinery has been found challenging to code and, specially,
to maintain and expand. In this paper, we follow a different approach
which adopts a higher level view by raising some of the core components
of the implementation to the level of the source language. We briefly
present an implementation model for independent and-parallelism which
fully supports non-determinism through backtracking and provides flex-
ible solutions for some of the main problems found in previous and-
parallel implementations. Our proposal is able to optimize the execution
for the case of deterministic programs and to exploit unrestricted and-
parallelism, which allows exposing more parallelism among clause literals
than fork-join-based proposals. We present performance results for an
implementation, including data for benchmarks where and-parallelism is
exploited in non-deterministic programs.

Keywords: And-Parallelism, High-level Implementation, Prolog.

1 Introduction

New multicore technology is challenging developers to create applications that
take full advantage of the power provided by these processors. The path of single-
core microprocessors following Moore’s Law has reached a point where very high
levels of power (and, as a result, heat dissipation) are required to raise clock
speeds. Multicore systems seem to be the main architectural solution path taken
by manufacturers for offering potential increases in performance without running
into these problems. However, applications that are not parallelized, will show
little or no improvement in performance as new generations with more processors
are developed. Thus, much effort is currently being put and progress being made
towards alleviating the hard task of producing parallel programs. This includes
the design of new languages that provide better support for the exploitation

of parallelism, libraries that offer improved support for parallel execution, and
parallelizing compilers, capable of helping in the parallelization process.

In particular, declarative languages, and among them logic programming lan-
guages, have been traditionally considered an interesting alternative for exploit-
ing parallelism. Their high-level nature allows coding in a style that is closer to
the application and thus preserves more of the original parallelism for automatic
parallelizers to uncover. Their separation between control and the declarative
meaning, together with relatively simple semantics, makes logic programming
a formally simpler framework which, however, allows studying and addressing
most of the challenges present in the parallelization of imperative languages [12].

There are two main, classical forms of parallelism in logic programming [10,
9]. Or-parallelism (Aurora [18] and MUSE [2]) refers to the execution of different
branches (matching clauses of a predicate and their continuations) in parallel.
And-parallelism implies executing simultaneously some goals in the resolvent.
This form of parallelism arises naturally in different kinds of applications (in-
dependently of whether there is implicit search or not), such as, e.g., programs
that make use of divide-and-conquer strategies or that process recursive data
structures. Two main forms of and-parallelism have been studied. Independent
and-parallelism (IAP) arises between two goals when the execution of one of
them does not influence the execution of the other. For pure goals a sufficient
(and a-priori) condition for this is the absence of variable sharing at run-time
among these goals. “Dependent” and-parallelism (DAP) is found when the lit-
erals executed in parallel share variables at run-time, and they compete to bind
them. In this paper we will focus on independent and-parallelism.

Systems like &-Prolog [14], DDAS [24] and others have exploited and-para-
llelism, while certain combinations of both and- and or-parallelism have been
exploited by e.g. &ACE [22], AKL [17], and Andorra-I [23]. Many of these sys-
tems adopted similar implementation ideas. This often included a parallelizing
compiler to automatically transform the original program into a semantically-
equivalent parallel version of it and a run-time system to exploit the potential
increase in performance provided by the uncovered parallelism. These systems
have been shown very effective at exploiting parallelism efficiently and obtaining
significant speedups [14, 21]. However, most of them are based on quite complex,
low-level machinery (which included an extension of the WAM instructions, and
new data structures and stack frames in the stack set of each agent), which
makes implementation and maintenance inherently hard.

In [8], we proposed a high-level implementation that raised some of the main
components of the implementation to the source level, and was able to exploit
the flexibility provided by unrestricted and-parallelism (i.e., not limited to fork-
join operations). However, [8] provided a solution which is only valid for the
parallel execution of goals which have exactly one solution each, thus avoiding
some of the hardest implementation problems. While it can be argued that a
large part of application execution is indeed single-solution, on one hand this
cannot always be determined a priori, and on the other there are also cases of
parallelism among non-deterministic goals, and thus a system must offer a com-

plete implementation, capable of coping with parallel non-deterministic goals, in
order to be realistic. Other recent related work includes [19] which proposes a
set of high-level multithreading primitives. This work (as, e.g., also [6]) focuses
more on providing the user with a flexible multithreading interface, rather than
on performance.

In this paper, we present a high-level implementation that is able to exploit
unrestricted IAP over non-deterministic parallel goals, while maintaining the
optimizations of previous solutions for non-failing deterministic parallel goals.
Our proposal provides solutions for the trapped-goal and garbage-slot problems,
and is able to cancel the execution of a parallel goal when needed.

2 Decomposing And-Parallelism

Independent and-parallelism has traditionally been expressed using the (re-
stricted, i.e., fork-join) &/2 operator as the lowest-level construct to express
parallelism between goals. However, our intention is to support unrestricted and-
parallelism, which has been shown capable of exploiting more of the parallelism
intrinsic in programs [7]. To this end, we will use more flexible primitives [5]:

– G &> H schedules the goal G for parallel execution and continues with the
code after G &> H. H is a handler which contains (or points to) the state of
goal G, and will be used for communicating the executing state of G between
the publishing and the stealing agent.

– H <& waits for the goal associated with H to finish. After H <& succeeds,
all the bindings that G could possibly generate are ready. Note also that,
assuming goal independence between G and the calls performed while G was
being executed, no binding conflicts will arise.

With the previous definitions, the &/23 operator can be expressed as:

A & B :- A &> H, call(B), H <&. (1)

The particular order of literals in the expression above is for performance, since
when running the common tail-recursive case p:-q&p, the recursive call p should
spawn parallel q’s with no delay. [13]

Also, note that &>/2 and <&/1 are not intended to replace at the language
level the &/2 fork-join operator, due to its expresiveness and conciseness, in case
no extra parallelism can be exploited with them (i.e., we leave the door open
to more optimized implementations of &/2 than what the definition above sug-
gests). The &>/2 and <&/1 primitives are not dependent on any particular archi-
tecture, and were in fact first implemented in a distributed-memory setting [5].
However, as the implementation we propose now addresses shared-memory mul-
tiprocessors, the bindings made by G while executing will be immediately vis-
ible, and goal independence makes it possible to work out a solution with the
no-slowdown property.
3 The meta-call is expanded at compile-time to avoid extra overhead in the execution.

G &> H ideally takes a negligible amount of time to execute, although the
precise moment in which G actually starts depends on the availability of resources
(primarily, free agents or processors). On the other hand, H <& suspends until
the associated goal finitely fails or returns an answer. Actual backtracking is
performed at H <&, and the memory reserved by the handler is released when
G &> H is reached on backtracking. If G &> H is reached on backtracking but
H <& was not reached on forward execution, this means that some of the goals
between these two points has failed without a solution, and the execution of goal
G (whatever its state) is to be cancelled. Section 3 explains further the design
and implementation of these operators.

3 Shared-Memory Implementation of the Execution
Model

Our shared-memory implementation for unrestricted IAP is based on the multi-
sequential, marker model introduced by the &-Prolog run-time system, and
adopted by many and-parallel systems, both for IAP [14, 22] and for DAP [24].
It has some general similarities with that model, such as the concept of agent,
which corresponds to a thread associated to a particular stack set, mostly a
Warren Abstract Machine (WAM) [25, 1], and the ring of stack sets which inter-
connects all the agents in the system. For simplicity, each thread in our model
will be always associated to the same stack set.

However, there exist significant differences between our proposal and the
&-Prolog run-time model, which we will present in the following sections.

3.1 Goal Stacks vs. Goal Lists

In our model, each agent is extended with a goal list, implemented as a doubly-
linked list in C, whose functionality is similar to that of the goal stack in the
&-Prolog run-time model. The goal list entries store pointers to those goals
which have been prepared for parallel execution, and thus agents that are idle
can search for parallel goals to execute by consulting the goal lists of the rest
of the agents. A list is used instead of the traditional stack due to the greater
flexibility needed in order to deal with the unrestricted nature of the &>/2 and
<&/1 operators (instead of, or in addition to &/2): goals can be joined in any order
—not necessarily the inverse to the order in which they were published— and,
in the case of goal cancellation, arbitrary goal entries inside the list may have to
be removed. For instance, the conjunction (g1&g2&. . .&gn) can be executed as

(g1&>H1, g2&>H2, . . . , gn, . . . ,H2<&, H1<&)

as per Equation (1), but in fact any order for the joins would be equally correct.

3.2 Parcall Frames vs. Handlers

Parcall frames in the &-Prolog run-time model are additional (environment)
stack frames used for the coordination and synchronization of the parallel ex-
ecution. In &-Prolog a parcall frame is created as soon as a parallel call is

made, and it has a slot for each of the literals g1,g2 . . . gn in the parallel call
g1&g2&. . .&gn, in order to keep track of the execution of each of these goals.

In most WAM implementations the handling of environments is relatively
brittle and introducing different elements in the environment stack complicates
things. As an alternative to parcall stack frames, our proposal makes use of heap
structures, created by and accessible from source-level code that we call handlers,
as already mentioned in Section 2.4 Each handler is associated to a particular
parallel goal and will be used for synchronization between the publishing agent
and the agent which picks up the goal. Handlers store information such as, e.g.,
a pointer to the actual parallel goal, a pointer to its location in the goal list (to
remove it from there in case the goal is not taken by any other agent), a field
to mark the goal as deterministic or not, the state of the goal execution, and
pointers to both the publishing agent and the executing agent in order to release
their execution when so needed.

3.3 Markers vs. (Prolog) Choice Points

Markers are used in the &-Prolog run-time model to set boundaries between
different sections in the stack, each of them corresponding to the segment of
execution of a parallel goal. This separation of segments in the stack is used
to provide a solution to the trapped goal problem [15]. Markers are also used
in &-Prolog to implement storage recovery mechanisms during backtracking of
parallel goals, in order to solve the garbage slot problem [15].

Our proposal to avoid the use of new stack frames to implement markers
is the creation instead of normal choice points, and in a simple way by creat-
ing alternatives (through predicates with more than one clause) directly in the
source-level (Prolog) code of the scheduler (see Section 3.4). This is done when-
ever a parallel goal is to be executed, as shown in Figure 1(e). In addition to
that, pointers to the choice points that mark the beginning and the end of the
goal execution will be stored in the handler associated to that goal, in order to
delimit the segment of execution in such a way that those limits can be accessed
during backwards execution. This is also done in part at the source level. Sec-
tion 3.4 provides further explanation of how backwards execution over parallel
goals is performed using these choice points.

3.4 Implementation

Figure 1 presents a sketch of our high-level implementation of the scheduler
for unrestricted IAP. The implementation divides the responsibilities between
different layers. The user-level parallelism primitives &>/2 and <&/1 (and thus
&/2) are at the top of the Prolog level. The algorithms for goal publishing, goal
searching, and forward and backwards execution are implemented in Prolog,
with some support from low-level primitives designed to provide, e.g., locking,
4 A related approach (but in combination with the choice-point stack) was used in

ACE [22].

Goal &> Handler :-
add_goal(Goal,nondet,Handler),
undo(cancellation(Handler)),
release_some_suspended_thread.

(a) Non-deterministic goal publishing.

Handler <& :-
enter_mutex_self,
(

goal_available(Handler) ->
exit_mutex_self,
retrieve_goal(Handler,Goal),
call(Goal)

;
check_if_finished_or_failed(Handler)

).
Handler <& :-

add_goal(Handler),
release_some_suspended_thread,
fail.

(b) Goal join and speculation.

check_if_finished_or_failed(Handler) :-
(

goal_finished(Handler) ->
exit_mutex_self,
sending_event(Handler)

;
(

goal_failed(Handler) ->
exit_mutex_self,
fail

;
suspend,
check_if_finished_or_failed(Handler)

)
).

(c) Checking status of goal execution.

sending_event(_).
sending_event(Handler) :-

enter_mutex_self,
enter_mutex_remote(Handler),
set_goal_tobacktrack(Handler),
add_event(Handler),
release_remote(Handler),
exit_mutex_remote(Handler),
check_if_finished_or_failed(Handler).

(d) Sending event to executing agent.

call_handler(Handler) :-
retrieve_goal(Handler,Goal),
save_init_execution(Handler),
call(Goal),
save_end_execution(Handler),
enter_mutex(Handler),
set_goal_finished(Handler),
release(Handler),
exit_mutex(Handler).

call_handler(Handler) :-
enter_mutex(Handler),
set_goal_failed(Handler),
release(Handler),
metacut_garbage_slots(Handler),
exit_mutex(Handler),
fail.

(e) High-level markers definition.

agent :-
enter_mutex_self,
work,
agent.

agent :- agent.

work :-
(

read_event(Handler) ->
(

more_solutions(Handler) ->
move_execution_top(Handler)

;
move_pointers_down(Handler)

),
exit_mutex_self,
fail

;
(

find_goal(H) ->
exit_mutex_self,
call_handler(H)

;
suspend,
work

)
).

(f) Agent code.

Fig. 1. High-level solution for unrestricted IAP.

untrailing, and management of segments of executions. Primitives related to
forward execution of parallel goals were already presented in [8].

In our implementation, agents are created with a small stack (which can grow
on demand) and they wait for some work to be available. They do not contin-

uously search for new tasks to be performed, in order to avoid active waiting.5

Several high-level primitives are provided for the creation of a particular number
of agents. When an agent is created, it executes the code shown in Figure 1(f),
and during normal execution it will start working on the execution of some goal,
or will sleep because there is no task to perform (yet). An agent searches for new
parallel goals to execute by using a work-stealing scheduling algorithm based on
those in [11, 14].

Figure 1(a) presents the code for the &>/2 primitive, which publishes a goal
for parallel execution. A pointer to the parallel goal is added to the goal list of
the agent, and a signal is sent to one of the agents that are currently waiting
for some task to do. This agent will resume its execution, pick up the goal,
and execute it. The communication and synchronization between both agents
will be performed via the handler created for that goal. In addition, when the
&>/2 primitive is reached in backwards execution, the memory reserved by the
handler is released. Also, if the goal was taken by another agent and the goal
execution was not finished yet, then a signal is sent to the executing agent
to cancel its execution. This is done with the cancellation/1 primitive. This
operation for cancellation avoids performing unnecessary work and increases the
overall performance of the system, as we will show in Section 4. Moreover, in
order to be able to execute this operation in the presence of cuts in the code of
the clause, it is invoked via the undo/1 predicate.

Figure 1(b) presents the implementation of the <&/1 operator. First, the
publishing agent needs to check whether the goal was picked up by some other
agent or not. If it was not taken then the publishing agent will remove it from the
goal list and execute it locally (using call/1), and then it will continue executing
scheduler code. If the goal was taken by some other agent then its status will be
checked (i.e., to know whether the goal execution has already finished or failed)
as shown in Figure 1(c). If the goal execution fails then the parallel goal will be
added to the goal list of the publishing agent, so it can be reexecuted by some
other agent. This is a form of speculative execution, since the reexecution of that
literal may not be needed for the actual computation. However, it increases the
actual parallelism in the system. It should be noted that the goal execution will
be cancelled if the corresponding &>/2 is reached in backtracking.

If the goal execution succeeds and <&/1 is reached on backtracking, then
backwards execution needs to be performed over the parallel goal. If the goal
was not taken by some other agent then backwards execution is trivially per-
formed. If it was picked up by some other agent then the publishing agent sends
a signal to the executing agent with a request for a new solution for that goal.
The executing agent will serve the signal as soon as it is able. In order to enable
this communication, each agent has an event queue from which the agent pops
events consisting of pointers to handlers associated to the goals to be backtracked
over. The primitives which perform this communication are add event/1, which
pushes a new pointer to a handler in the event queue of the agent which exe-

5 We took this decision because it gave slightly better speedups in our experiments
and it is in general good usage of a multiuser system.

a
Ha

Hb
b b

a

Agent 1 Agent 2

Ha

Hb

Agent 1 Agent 2

cc

?− a(X) &> Ha, b(Y) &> Hb, c(Z), Hb <&, Ha <&, fail.

b

a

c

Hb <&
Ha <&

a(X) &> Ha, b(Y) &> Hb

Fig. 2. Copying trapped goal onto top of stack.

cuted the associated goal, and read event/1, which either removes the item in
the event queue in order to perform backwards execution over the parallel goal
associated to it, or fails if the event queue is empty. Figure 1(d) presents the
source code which is executed to push the corresponding event to the executing
agent, releasing its execution if it was suspended.

When an agent pops an event, as shown in Figure 1(f), backwards execution
over a parallel goal needs to be performed. If the segment of execution is at the
top of its stack, then the agent will invoke fail/0 and a new solution will be
obtained. However, it might be the case that the segment of execution of the
parallel goal is trapped, i.e., it is currently not at the top of the stack. In this
case, there are two possible scenarios. If the goal is known not to have additional
solutions,6 then the segment where the goal lies does not need to be expanded
and the pointers to the top of the segment in the handler are simply made to
point to the beginning of the segment. The section of the trail corresponding
to that segment is used to undo the bindings. After this the stack and the trail
pointers are restored to their previous values —i.e., they point to the top of the
corresponding stacks.

If there may be more solutions for that goal, then a mechanism is needed
to untrap the segment of execution of the goal. Several solutions have been
proposed to solve this problem. A first approach consists of avoiding it altogether
by carefully selecting goals to be executed so that they cannot cause trapped
goals (which would dramatically reduce the amount of exploited parallelism).
Another solution is to create a new, independent stack set for every goal taken,
which would probably be memory-inefficient or impose an extra overhead in
memory management.

Our proposal is a variant of the solution adopted by several parallel systems
(e.g., &-Prolog, ACE, DASWAM, . . .), which essentially try to continue the goal
execution on top of the stack. However, in our case, and for simplicity, when a
trapped goal is to be backtracked over, its execution segment is copied on top
of the stack, where it can expand freely. The garbage slot created is marked as
such, and can be recovered when everything between this garbage slot and the
top of the stack turns into garbage (or on backtracking). Most implementations
of garbage collectors do not recover dead choice points, and thus the garbage
6 For example, because it did not push any choice point or because it has been marked

as deterministic during compilation, or by the user [4, 16].

collection algorithm needs be changed to work with parallel execution and cross-
agent pointers. Improved garbage collectors could use the pointers to boundaries
of every live segment stored in the handlers.

Figure 1(e) shows how the limits of the segment of execution of the parallel
goal are stored in the handler, so their values can be accessed in backwards exe-
cution, through the save init execution/1 and save end execution/1 prim-
itives, which actually have similar behavior to that of the input markers and
end markers in the &-Prolog model. Note that the choice point created by the
predicate call handler/1 is in fact the input marker of the parallel execution,
but again defined in the source language. Finally, when the goal execution fails,
the metacut garbage slots/1 primitive will pop from the stack those discarded
segments of the stack that are right underneath the segment of execution of the
parallel goal.

Figure 2 shows an example of this solution for the trapped goal and garbage
slot problems. We assume that variables X, Y, and Z are independent. When the
literals a/1 and b/1 are taken and executed by the second agent, the pointers
that define the actual segment of execution of both literals are stored in the cor-
responding handler. Thus, when Ha <& is reached in backtracking, the segment
of execution of literal a/1 is trapped, and it is copied on top of the stack in order
to have enough space to expand and obtain a new solution for the goal a/1. The
handler associated to the literal b/1 will in addition mark the garbage slot left
by the literal a/1, which will be freed when the execution of the literal b/1 fails.

Figure 3 presents a state diagram which shows the different states in which
a parallel goal can be, and graphically represents the and-parallel execution of
goals previously shown in Figure 1. First, a goal is published to be executed in
parallel, by adding a pointer to it in the goal list and releasing the execution
of an agent that is currently idle. When performing the goal join, if the goal is
still available in the goal list it will be executed locally. If the goal was found by
some other agent then it will be executed remotely. That goal execution could
be cancelled if the outcome of the execution is not needed for the actual compu-
tation. If the goal execution is not cancelled then it may succeed, in which case
it may be backtracked over with the communication between agents performed
via pushing and popping events, or fail, in which case the goal will be published
again for parallel execution.

4 Performance Evaluation

We will now present some of the performance results obtained with our high-
level implementation for a selection of both deterministic and non-deterministic
benchmarks, parallelized with unrestricted independent and-parallelism. Our im-
plementation has been made using the Ciao multiparadigm system [3], and all the
benchmarks were automatically parallelized [20] using CiaoPP [16], and starting
from their sequential code. The performance results have been obtained by av-
eraging ten runs on a state-of-the-art multiprocessor, a Sun Fire T2000 with 8

push_goal/3

release_some_suspended_agent/0

Published

Cancelled

set_goal_failed/1

release/1

Failed

Finished

set_goal_finished/1

release/1

execution finishedfail

execution failed

Remotely Executing

call_handler/1

cancellation/1

execution cancelledLocally Executing

call/1

execution failed

execution finished

read event

speculation

goal foundgoal available

Fig. 3. State diagram of a parallel goal.
AIAKL Simplified AKL abstract inter-

preter.
Ann Annotator for and-parallelism.
Boyer Simplified version of Boyer-

Moore theorem prover.
Chat Question parser of Chat-80.
Deriv Symbolic derivation.
FFT Fast Fourier Transform.
Fibonacci Doubly recursive Fibonacci.
Hamming Calculates Hamming num-

bers.
Hanoi Solves Hanoi puzzle.

MMatrix Matrix multip. (50×50).
Numbers Obtains a number from a

list of others.
Palindrome Generates a palindrome of

214 elements.
Progeom Constructs a perfect differ-

ence set of order n.
Queens The n-queens problem.
QueensT Solves the n-queens prob-

lem T times.
QuickSort Sorts a 10,000 element list.
Takeuchi Computes Takeuchi.

Table 1. Benchmarks executed with unrestricted IAP.

cores (4 threads each) and 8 Gb of memory. Although most of the benchmarks
we have executed are quite well known, Table 1 provides a brief description.

Table 2 presents the speedups obtained for some deterministic benchmarks
parallelized using unrestricted IAP. The speedups were obtained with respect to
the execution time that the sequential version of the benchmarks takes on one
processor. Thus, the columns tagged 1 measure the slowdown coming from exe-
cuting a parallel program in a single processor. In addition, rows tagged with the
’&!’ symbol measure the execution of the benchmarks with some optimizations
for the case of deterministic parallel goals, on our previous, determinism-only
model and implementation [8]. Rows tagged with the ’&’ symbol measure the
speedups obtained with all the mechanisms required by the implementation pre-
sented in Section 3. It can be concluded from the results that the difference in
speedups between both parallel versions is of little significance in most cases,
and only in very few cases (for example, Boyer and Fibonacci) the difference
is relevant. Note that determinism can either be annotated by hand or, in many
cases, automatically detected by a sophisticated analyzer [4, 16]. In any case, rea-
sonably good speedups are obtained, despite the fact that the proposal suffers

Benchmark Op.
Number of agents

Seq. 1 2 3 4 5 6 7 8

AIAKL
&! 1.00 0.99 1.82 1.82 1.82 1.83 1.83 1.83 1.82
& 1.00 0.93 1.70 1.71 1.72 1.74 1.75 1.72 1.72

Ann
&! 1.00 0.96 1.84 2.72 3.56 4.38 5.16 5.88 6.64
& 1.00 0.96 1.85 2.72 3.57 4.35 5.14 5.87 6.61

Boyer
&! 1.00 0.92 1.76 2.58 3.16 3.39 4.01 4.31 4.55
& 1.00 0.90 1.21 1.83 2.06 2.26 2.30 2.39 2.56

Deriv
&! 1.00 0.83 1.59 2.38 3.07 3.78 4.49 4.98 5.49
& 1.00 0.84 1.60 2.34 2.99 3.73 4.43 4.56 4.85

FFT
&! 1.00 0.98 1.73 2.06 2.67 2.78 2.95 2.96 3.11
& 1.00 0.98 1.72 1.97 2.65 2.67 2.75 2.93 2.97

Fibonacci
&! 1.00 0.98 1.91 2.84 3.73 4.62 5.51 6.41 7.35
& 1.00 0.98 1.58 2.04 2.53 3.28 4.06 4.61 5.46

Hamming
&! 1.00 0.92 1.04 1.43 1.65 1.65 1.65 1.65 1.65
& 1.00 0.92 1.02 1.41 1.63 1.62 1.62 1.62 1.62

Hanoi
&! 1.00 0.95 1.76 2.47 3.09 3.39 3.65 3.87 4.10
& 1.00 0.96 1.77 1.91 2.84 3.13 3.54 3.76 4.02

HanoiDL
&! 1.00 0.73 1.44 2.08 2.77 3.37 4.04 4.58 5.19
& 1.00 0.74 1.43 1.89 1.87 2.73 3.07 3.59 3.87

MMatrix
&! 1.00 0.77 1.51 2.31 3.02 3.76 4.52 5.21 5.72
& 1.00 0.77 1.48 2.16 2.88 3.51 4.05 4.57 4.96

Palindrome
&! 1.00 0.95 1.77 2.36 2.95 3.33 3.62 3.94 4.15
& 1.00 0.96 1.78 2.14 2.56 3.11 3.30 3.74 3.90

QuickSort
&! 1.00 0.97 1.74 2.26 2.91 3.16 3.39 3.49 3.54
& 1.00 0.97 1.71 2.17 2.43 2.60 2.93 3.06 3.19

QuickSortDL
&! 1.00 0.95 1.69 2.30 2.81 3.10 3.25 3.47 3.60
& 1.00 0.95 1.68 2.14 2.39 2.56 2.92 2.94 3.19

Takeuchi
&! 1.00 0.86 1.17 2.24 2.97 3.29 3.75 4.28 5.69
& 1.00 0.86 0.89 1.69 2.23 3.00 3.34 3.36 4.29

Table 2. Speedups obtained for deterministic unrestricted IAP benchmarks.

Benchmark
Number of agents

Seq. 1 2 3 4 5 6 7 8

Chat 1.00 2.31 4.49 5.42 6.91 9.79 9.95 11.10 17.29

Numbers 1.00 1.84 1.79 1.79 1.79 1.79 1.79 1.78 1.78

Progeom 1.00 0.99 0.96 0.97 0.98 0.98 0.98 0.98 0.98

Queens 1.00 0.99 0.94 0.94 0.94 0.94 0.94 0.94 0.94

QueensT 1.00 0.99 1.90 2.41 3.18 4.71 4.61 4.58 4.57

Table 3. Speedups obtained for non-deterministic unrestricted IAP benchmarks.

from the overhead added by the source-level coded scheduler etc., but which, in
return, offers other advantages such as significantly reduced development (and
maintenance) time, more flexibility, simpler and faster experimentation, etc.

Table 3 presents the speedups obtained for some non-deterministic bench-
marks executed in parallel. Some of them do not achieve any speedup when

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(a) Boyer

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(b) FFT

 0

 5

 10

 15

 20

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(c) Fibonacci

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30

S
pe

ed
up

Number of agents

1st

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

(d) QuickSort

Fig. 4. Speedups for some selected benchmarks with stack set expansion.

executed in parallel due to the very fine granularity of the parallel goals in
these benchmarks and the high-level nature of our implementation However,
super-linear speedups can be achieved in some other benchmarks, thanks to the
implementation of goal cancellation.

A particular fact that limits the performance results is the expansion of the
stack set of an agent when space allocated to them is about to be exhausted.
Stack sets are initially created with a relatively small size, and they dynamically
grow as needed, taking the approach of a naive user who lets the system run
and adjust itself, instead of the traditional one of creating the stack sets with a
particular size which is large enough. Due to the work-stealing strategy adopted,
and the shared-memory nature of our implementation, there are cross-agent
pointers. The approach we have taken to ensure a correct stack set expansion is
to suspend the execution of all the agents. The stack set which is short on space
is then expanded and the pointers pointing to that stack set (from any agent)
are updated. The execution of the agents finally resumes.7

That scheme indeed affects the performance of the execution. Figure 4 presents
the speedups obtained when executing some selected benchmarks with 2, 4, 8, 16
and 32 agents, ten consecutive times. By joining together the points correspond-
ing to the n-th execution with a given number of processors, we can construct a

7 We acknowledge that a smarter algorithm could be implemented, but this topic is
out of the scope of this paper and a subject for further work.

Benchmark
Queens, 2 agents Queens, 4 agents Queens, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 11,810 171,858 9 290 11,810 171,858 9 290 11,810 171,858 9 290

Taken
x 6,649 97,798 9 290 6,860 99,373 9 290 6,476 96,056 9 290
σ 9.35 45.04 0.00 0.00 16.15 65.02 0.00 0.00 13.49 59.04 0.00 0.00

LBack
x 858 14,319 0.00 0.00 618 10,905 0.00 0.00 755 12,786 0.00 0.00
σ 1.03 1.25 0.00 0.00 14.93 99.89 0.00 0.00 5.79 23.59 0.00 0.00

RBack
Top

x 1,838 29,725 2 234 2,345 38,420 2 234 2,208 36,261 2 234
σ 0.46 2.14 0.00 0.00 15.14 98.66 0.00 0.00 6.34 26.53 0.00 0.00

Tp
x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Behavior of Queens(8) with different number of agents.
Benchmark

Progeom, 2 agents Progeom, 4 agents Progeom, 8 agents
No Gr No Gr No Gr

1 N 1 N 1 N 1 N 1 N 1 N

G &> H 215 154,260 1 60 215 154,260 1 60 215 154,260 1 60

Taken
x 100 72,375 0 1 91 65,643 0 1 55 75,113 0 1
σ 1.85 248.69 0.00 0.80 1.36 414.68 0.00 0.70 3.49 192.25 0.00 0.78

LBack
x 1 738 0 29 3 2,131 0 29 9 364 0 29
σ 0.46 52.03 0.00 0.80 1.10 83.78 0.00 0.70 0.80 26.82 0.00 0.78

RBack
Top

x 10 6,530 0 1 8 5,131 0 1 2 6,907 0 1
σ 0.57 52.08 0.00 0.80 1.10 84.26 0.00 0.70 0.80 27.02 0.00 0.78

Tp
x 0 0 0 0 0 0 0 0 0 0 0 0
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 5. Behavior of Progeom(5) with different number of agents.

profile of how the speedup evolves as the system executes several times the same
programs. It can be observed that the first executions do suffer from stack expan-
sions. However, after several executions, the stack set of each agents reaches an
appropriate size, reducing the number of expansions, and thus the performance
results stabilize. Note also that, for the case of more than 8 agents, the limita-
tions in the hardware of the multiprocessor machine8 used also affect the actual
performance of the execution. I.e., these machines are not as “parallel” as, e.g.,
early shared-memory multiprocessors, such as the Sequent Balance or Symmetry
machines, where early parallel logic programming systems were benchmarked.

Tables 4, 5 and 6 present some data from the execution of some of the
benchmarks which exploit and-parallelism on non-deterministic programs. They
present the data from executions with 2, 4, and 8 agents, using or not granularity
control (resp., Gr and No), and for the cases in which only one solution (1) or all
solutions (N) are requested. The first row in the table (G &> H) contains the num-
ber of parallel goals published. The second row (Taken) presents the number of
parallel goals that were picked up by some other agent (x is always the average of
the results in ten runs and σ is the standard deviation). The third row (LBack)
represents the number of times that backtracking over parallel goals took place
locally (because the goal was not picked up by some other agent).9 The fourth

8 Mainly, the availability of a reduced number of integer units and a single FP unit.
9 The backtracking measured for Fibonacci in Table 6 corresponds to the stack un-

winding performed when failing after the execution is finished.

Benchmark
Fibonacci, 2 agents Fibonacci, 4 agents Fibonacci, 8 agents

No Gr No Gr No Gr
1 N 1 N 1 N 1 N 1 N 1 N

G &> H 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596 121,392 121,392 1,596 1,596

Taken
x 1 1 1 1 5 5 5 5 37 37 31 31
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

LBack
x 121,391 121,391 1,595 1,595 121,387 121,387 1,591 1,591 121,355 121,355 1,565 1,565
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3.97 3.97 2.39 2.39

RBack
Top

x 1 1 1 1 5 5 5 5 18 18 16 16
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.40 2.40 0.98 0.98

Tp
x 0 0 0 0 0 0 0 0 19 19 15 15
σ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.86 2.86 1.68 1.68

Table 6. Behavior of Fibonacci(25) with different number of agents.

row (RBack) shows the number of times that a parallel goal was backtracked
over remotely. In this case, Top counts how many times remote backtracking was
performed at the top of the stack, and Tp is the number of times backtracking
over a trapped goal was necessary. A relevant conclusion extracted from these
results is that, while the amount of remote backtracking is quite high, the num-
ber of trapped goals is surprisingly low. Therefore the overhead associated with
copying trapped segments to the top of the stack should not be very high in
comparison with the rest of the execution.

We expect to see a similar behavior in most non-deterministic parallel pro-
grams where parallel goals are of fine granularity or very likely to fail: these
two behaviors make the piling up of segments corresponding to the execution of
loosely related parallel goals in the same stack relatively uncommon, which in-
deed reduces the chances to suffer from trapped goal and garbage slot problems.

5 Conclusions

We have presented a high-level implementation of unrestricted, independent and-
parallelism that can execute both deterministic and non-deterministic programs
in parallel. This implementation is able to tame the complex machinery required
by previous solutions by raising many of the main components of the implemen-
tation to the source level, making the system easier to code, maintain, and ex-
pand. We have evaluated our solution with representative benchmarks, some of
which perform backtracking over non-deterministic parallel goals, and provided
performance data from actual parallel executions. In several cases, super-linear
speedups were obtained thanks to the backtracking model implemented.

We believe that the performance results may be improved by, once the basic
components of the system are further stabilized, lowering again their implemen-
tation (at least in the parts which are flagged as bottlenecks), if the benefits
surpass the added complexity and reduced flexibility. Performance could also be
improved by exploiting the fact that smarter schedulers are, in principle, easier
to write than with other approaches.

References

1. Hassan Ait-Kaci. Warren’s Abstract Machine, A Tutorial Reconstruction. MIT
Press, 1991.

2. K. A. M. Ali and R. Karlsson. The Muse Or-Parallel Prolog Model and its Perfor-
mance. In 1990 North American Conference on Logic Programming, pages 757–776.
MIT Press, October 1990.

3. F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-Garćıa, and G. Puebla
(Eds.). The Ciao System. Ref. Manual (v1.13). Technical report, C. S. School
(UPM), 2006. Available at http://www.ciaohome.org.

4. F. Bueno, P. López-Garćıa, G. Puebla, and M. Hermenegildo. A Tutorial on Pro-
gram Development and Optimization using the Ciao Preprocessor. Technical Re-
port CLIP2/06, Technical University of Madrid (UPM), Facultad de Informática,
28660 Boadilla del Monte, Madrid, Spain, January 2006.

5. D. Cabeza and M. Hermenegildo. Implementing Distributed Concurrent Constraint
Execution in the CIAO System. In Proc. of the AGP’96 Joint Conference on
Declarative Programming, pages 67–78, July 1996.

6. M. Carro and M. Hermenegildo. Concurrency in Prolog Using Threads and a
Shared Database. In 1999 International Conference on Logic Programming, pages
320–334. MIT Press, Cambridge, MA, USA, November 1999.

7. A. Casas, M. Carro, and M. Hermenegildo. Annotation Algorithms for Unre-
stricted Independent And-Parallelism in Logic Programs. In 17th International
Symposium on Logic-based Program Synthesis and Transformation (LOPSTR’07),
number 4915 in LNCS, pages 138–153, The Technical University of Denmark, Au-
gust 2007. Springer-Verlag.

8. A. Casas, M. Carro, and M. Hermenegildo. Towards a High-Level Implementation
of Execution Primitives for Non-restricted, Independent And-parallelism. In D.S.
Warren and P. Hudak, editors, 10th International Symposium on Practical As-
pects of Declarative Languages (PADL’08), volume 4902 of LNCS, pages 230–247.
Springer-Verlag, January 2008.

9. J. S. Conery. The And/Or Process Model for Parallel Interpretation of Logic Pro-
grams. PhD thesis, The University of California At Irvine, 1983. Technical Report
204.

10. G. Gupta, E. Pontelli, K. Ali, M. Carlsson, and M. Hermenegildo. Parallel Execu-
tion of Prolog Programs: a Survey. ACM Transactions on Programming Languages
and Systems, 23(4):472–602, July 2001.

11. M. Hermenegildo. An Abstract Machine for Restricted AND-parallel Execution
of Logic Programs. In Third International Conference on Logic Programming,
number 225 in Lecture Notes in Computer Science, pages 25–40. Imperial College,
Springer-Verlag, July 1986.

12. M. Hermenegildo. Parallelizing Irregular and Pointer-Based Computations Auto-
matically: Perspectives from Logic and Constraint Programming. Parallel Com-
puting, 26(13–14):1685–1708, December 2000.

13. M. Hermenegildo and M. Carro. Relating Data–Parallelism and (And–) Parallelism
in Logic Programs. The Computer Languages Journal, 22(2/3):143–163, July 1996.

14. M. Hermenegildo and K. Greene. The &-Prolog System: Exploiting Independent
And-Parallelism. New Generation Computing, 9(3,4):233–257, 1991.

15. M. Hermenegildo and R. I. Nasr. Efficient Management of Backtracking in AND-
parallelism. In Third International Conference on Logic Programming, number 225
in LNCS, pages 40–55. Imperial College, Springer-Verlag, July 1986.

16. M. Hermenegildo, G. Puebla, F. Bueno, and P. López Garćıa. Integrated Program
Debugging, Verification, and Optimization Using Abstract Interpretation (and The
Ciao System Preprocessor). Science of Computer Programming, 58(1–2):115–140,
October 2005.

17. Sverker Janson. AKL. A Multiparadigm Programming Language. PhD thesis,
Uppsala University, 1994.

18. E. Lusk et al. The Aurora Or-Parallel Prolog System. New Generation Computing,
7(2,3), 1990.

19. P. Moura, P. Crocker, and P. Nunes. High-level multi-threading programming in
logtalk. In D.S. Warren and P. Hudak, editors, 10th International Symposium
on Practical Aspects of Declarative Languages (PADL’08), volume 4902 of LNCS,
pages 265–281. Springer-Verlag, January 2008.

20. K. Muthukumar, F. Bueno, M. Garćıa de la Banda, and M. Hermenegildo. Au-
tomatic Compile-time Parallelization of Logic Programs for Restricted, Goal-
level, Independent And-parallelism. Journal of Logic Programming, 38(2):165–218,
February 1999.

21. E. Pontelli and G. Gupta. Efficient Backtracking in And-Parallel Implementa-
tions of Non-Deterministic Languages. In Proc. of the International Conference on
Parallel Processing, pages 338–345, 1998.

22. E. Pontelli, G. Gupta, and M. Hermenegildo. &ACE: A High-Performance Parallel
Prolog System. In International Parallel Processing Symposium, pages 564–572.
IEEE Computer Society Technical Committee on Parallel Processing, IEEE Com-
puter Society, April 1995.

23. Vı́tor Manuel de Morais Santos-Costa. Compile-Time Analysis for the Parallel Ex-
ecution of Logic Programs in Andorra-I. PhD thesis, University of Bristol, August
1993.

24. K. Shen. Overview of DASWAM: Exploitation of Dependent And-parallelism.
Journal of Logic Programming, 29(1–3):245–293, November 1996.

25. D.H.D. Warren. An Abstract Prolog Instruction Set. TR 309, SRI International,
1983.

