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BCK logic

® BCK logic, in symbols BCK, is the deductive system with
language { - } presented by the axioms and inference rules

-9 ->(Q@->1N->(p->1 (B)
p-(Q@-0nN-g-(pP-1 (C)
p - (q-p) (K)
P, P - ql-pex q (MP )

® BCKlogic is regularly algebraisable witness {p - q, g - p}.
- The class of all BCK-algebras is the equivalent quasivariety of BCK.

Forany I Do OFm ,, T |[=ga iff {B=1:BUT} |-pa=1.



Order algebraisability

® Algebraisability is an abstract theory of the generalised
biconditional ~ that associates logics with their 'natural’
algebraic counterparts.

® Question (Pigozzi). Is there a theory of implication as abstract
as the theory of algebraisability, but in which the role of equality
IS replaced by a suitable notion of order?

® CPC and IPC suggest 'yes', since
O |[=cpc Wiff |[=cpe @ - Wiff [=5, ¢ - W=11iff ¢ <.
® BCKlogic suggests 'no':

What plays the role of < in this case?



Orders on BCK-algebras

® A BCK-algebrais an algebra [A; [ OUsatisfying
the identities and quasi-identity:

((xOy) O(xD2) O(zUy)=0
x 0 =x
xOx=0

xOy=0&ylx=00x=y.

- (Hereafter we denote [lby juxtaposition. We also move
schizophenically between algebraic and logical notation.)

® The class BCK of all BCK-algebras is a proper quasivariety.

® For any BCK-algebra A, the relation <° defined L a, b0 A
by ab = 0 is a partial order on A.



The Guzman order and its generalisations

® Theorem (Guzman). For any BCK-algebra A, the relation <
defined O a, b0 Aby a<'biffall{bc:cl A} is a partial order
on A, which is finer than <°.

® |emma. For any BCK-algebra A and a, bin A, a<' biff b(ba) = a.

® Define the groupoid terms xy”, n= 1, by x)® = x and xy*' = (xy¥)y
for k= 1. Also, for any BCK-algebra A, let bA" = {bc" : ¢ 00 A}.

® Two obvious ways to generalise Guzman's order are:

— Tothe family {00":1<n0Ow}, -Tothefamily{<":1<n0 w},
defined UJ a, b [J A by defined UJ a, b J A by

a " biff b(ba)" = a. a<"biff al bA".



The family {

® Proposition. For any BCK-algebra A,

(i)  The relation [12 defined [ a, b [0 A by a [12 b iff b(ba)? =
IS a partial order on A.

(i) Ifall2bthen al b.
(i) If a 12 bthen ac [1? bc.
(iv) 02 a

® Proposition. "= <', while for each integer n> 2, 11" = [12,

So we can put aside 07, n > 2, from further consideration!



® Proposition. For any BCK-algebra A,

The family {<": 1< n

(i) For each integer n= 0, the relation <"defined U a, b A
by a<" biff a  bA"is a partial order on A.

(i) lfa<"bthena<' b, fori=0,1.
(i) If a<" bthen ac <" bc.

(iv) 0<ra.

(v) If a2 bthen a<" bfor any integer n= 0.
(vij a<'biffal'b.

The order structure induced by the family {<": 0 < n U w}
IS generally quite complicated.



Order-theoretic characterisations of BCK-algebras

® A BCK-algebrais
- commutative if x(xy) = y(yx)

— positive implicative if (xy)y = xy
- implicative if x(yx) = x

- n+l-potentif xy™ = xy".

These are the "basic" varieties of BCK-algebras.

® Theorem. A variety V of BCK-algebras is
(1) Commutative iff < =<' forall AOV
2) Positive implicative iff <' = [12forall AOV

)
) n+1-potent iff <" = [12for all A OV
) Implicative iff < =<' = [2forall A O V.

(
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(4



The local deduction theorem in BCK logic

® BCKdoes not have the deduction-detachment theorem (DDT)
— since the equivalent quasivariety of BCK does not have EDPC.

® PBCK has the local deduction-detachment theorem (LDDT):

r,al|-pB iff hDOwstl|-a "B
iff hOwstT=1|=a -"B=1 (%)

— The proof (by induction) does not explain why BCK has the LDDT.

But (*) encourages us to look at term reducts
of BCK-algebras of the form [A; -7, 1L



BCS-algebras

® A BCS-algebrais an algebra [A; —, OUsatisfying the identities
and quasi-identity:

(X=-y)-z=(x-2) -y
x=-y)-z=(x-2 -(y-2.

- We denote the class of all BCS-algebra by BCS.

® Theorem. A quasivariety of BCK-algebras satisfies (E,) iff

every algebra A 0V has a BCS-algebra term reduct
[A; —, OLlwhere a— b := ab" for all g, b I A.



1-assertional logics

® For a quasivariety K in a signature A\ with a constant term 1,
the 1-assertional logic of K, in symbols S(K, 1), is the
consequence relation |-g, ,, : O (A) x A given by

[ =gk o iff T=1]5 a=1.
® Proposition. S(BCS, 1) = IPC-.

® Corollary. Let K be a quasivariety of BCK-algebras.
Then S(K, 1) has the DDT iff S(K-, 1) is IPC-.
- Here K- denotes the class of all [ 7, 1&term reducts
of members of K.

Question: What is the connection with the LDDT?



Implicative BCS-algebras

® An implicative BCS-algebra is an algebra [A; \, Osatisfying the
identities and quasi-identity:
x\x=0
(x\y\z=(x\2)\y
(x\y\z=(x\2)\(y\2
x\(y\x) = x.

- We denote the class of all implicative BCS-algebra by iBCS.

Implicative BCS-algebras are fundamental
to the study of binary discriminator varieties.



Implicative BCS-algebras

® Theorem. Let A be a BCS-algebra. Then A has an
implicative BCS-algebra term reduct [A; \, O[] where

a\b:=a-((a-(a-b)) - (b-a)) forall a, b0 A.

® Corollary (Guzman). Let A be a positive implicative BCK-
algebra. Then A has an implicative BCK-algebra term reduct
[A;\, 0Clwhere a\b:=a-((a—(a- b)) - (b- a)) for all
a, b 0 A.

® Corollary. Every n+1-potent BCK-algebra A has an
implicative BCS-algebra term reduct, where [A;\, 0Ll where
a\b:=a-((a-(a-b))-(b-a))foralla, b0 Aand
a—-b:=abforall a, b A.



An order on implicative BCS-algebras

® Proposition. For any implicative BCS-algebra A, let <<
be the relation defined O a, b Aby a<< biff b a = a, where
cld:=c\(c\d) Uc, dIA. Then

() << is a partial order on A.

(i) lfa<<bthenalc<<blc.

(i) lfa<<bthenclb<<cla.

(iv) 0<<a.

(v) Foreach al A, the principal <<-order ideal (g] is a

Boolean lattice.

Thus subclasses of BCK can have additional order structure.



Equationally definable partial orders

® |et Abe analgebraand E:={p(x, y) =q{x, y) : iU [} be a set
of equations such that the binary relation < defined on A by

a<b iff pA(a, b) =qg*(a, b) il

Is a partial ordering. < is called an equationally defined order
for A.

® |f E defines an order < on every algebra A in a class K then <
is called an equationally defined order for K.

® Forexample, x Iy = xis an equationally defined order for lattices.



Locally Boolean classes

® An algebra A is said to be locally Boolean with respect to an
equationally defined order < for A if for each a U A, the principal
order ideal {b < a: b 0 A} is a Boolean lattice.

® A quasivariety K is called locally Boolean if there exists an
equationally definable partial order < for K, such that each
A O K is locally Boolean with respect to <.

® Proposition. Every variety of n+1-potent BCK-algebras V is
locally Boolean with respect to the implicative BCS-algebra
ordering << definable on the members of V.

® Corollary. Every finite BCK-algebra is locally Boolean.



These terms are horrible!)

(Aside

IO! —~ —~ SN—" o~
O*y*)*y*X ),*X *y(.,\n)* *X *X *VJ..\A)
EX X2 XS 2S2XX
e(X((X(()* S— N N N X
x T~ x > ~— —

Au.,*X)**\n/* *X* V..*X***XX
3/ \X)X X). Sk « L A~~~ x

— X ~ O X y(yX()y(y
2(yy( >N x ~ x ~ X x ~ —
N ~— X ()(X(* X — N— —
hVuu* y..\ﬁ/ > —«x )\,\X/V..* x

— % ¥ — % * —~ T X —~ * —_
O))X))/V|A\)* ()*yNA\)y
C*X *X (*X *X Iu\*X )\VJ/(*X /u\/u\*X*

—_— —_— ¥ — — * —
% *X *X *X *X *X )*X W*X *X .v\n)w*x *W
.- yy/\yy*yy* ~ > > >™—=
)((((()(X N~—" X —_ N —
— = ~— — y( x ()y(*
0O x x ¥ x x ¥ x = ~x > K x o~
6))X))X)* ))*X X)\.y/
I X >N X > X X X X o7 X«
+= X * x * * x * - ¥ * /I\* * w
e SN X SIX XIS X X E XX
k* * - X * - X x * * —_ = X X*
o X V..X/l\V..XV,.V,.V,.(V,./l\\/

~— ~— % — — — ~— ~—— ~— X ~— ~— ~—
N O =~ — ~— S— = N N~ S~—" X
p —~ X ~— y* x X
~— ¥ * — ¥ *x —~ ¥ * * — % X —~

A~ N N~~~ % —_ % —_
DlyynyXylu\Xylu\XV,.(X

* * * * * * * ~— X * ~— X * ~— %

AN N AN N N N~ —~~ —~ —~~ —~ —~

EyyXYYXY*X
X ox % % % ¥ x ¥ X% x * X
X X DX X X > X o > X — > X — >

This is the definition of x [ y for 3-potent BCK-algebras!



Right ideal commutative BCK-algebras

® [et Abe aBCK-algebra. The principal right ideal
generated by a J A is the set {ab: b L1 A}.

{ab: b [0 A} is always a subalgebra of A.

® Aisright ideal commutative if the Guzman ordering <' and
the BCK-ordering <° coincide on the principal right ideal aA for
each a [0 A. Examples include:
- All commutative BCK-algebras.
— All positive implicative BCK-algebras.
— All [ OEsubreducts of hoops.

® Theorem. The class of all right ideal commutative BCK-
algebras is a relative subvariety of BCK, but it is not
equationally definable.



Thetermsj, n=z1

® For n=1, define the terms

j—1(X= y) =X
jzn(Xs Y) = }/(}/(jgn_1(X, }/)))
Jone1 (X, ¥) = X(X(, (X, ¥)))-
® Consider the identity
1% Y) = ]y, X). (Jn)

(TTlhA iIAAR+F IR 71N AAKAre i~ MCAvrmialrh!la MAARAIFIAA 7 T )



Some conjectures....

® Conjecture. Let A be a right ideal commutative BCK-algebra.
If A |=(E,) forn=>1,then A|=(J,).

e Forany nz1,definethetermx [y =/ (X, ).

® Conjecture. Let A be an n+1-potent right ideal commutative
BCK-algebra. Then [A; <'[lis a meet semilattice with 0 and
Ha bUOA glb{a b} =alrb.

® Forany n=1,definethetermx\"y =x—(x ["y).

® Conjecture. Let A be an n+1-potent right ideal commutative
BCK-algebra. Then the term reduct [A; [, \", OLis a locally
pseudocomplemented meet semilattice.



...and a guestion

® Question. Which subclasses of BCK-algebras are completely
determined by the family of ordering relations {<": 0 < nJ w} U
{07}?

® The answer is unknown, but any such class K should be a
(proper) subclass of some class of n+1-potent right ideal
commutative BCK-algebras. For any A I K, the BCK operation
would then be recovered from the order structure on A by setting

ab = (al' b)-,qy

O a, b0 A, where (a [*' b)-,,; denotes the pseudocomplement
of (a [F*' b) in the principal <'-order ideal
(a [T b.



Some concluding remarks...

® Otter plays an indispensible role in this study, because of the
complexity of the terms in question.

® Although the language of BCK-algebras is very restrictive, Otter
does not manage the complexity of the terms as well as | would
like. What can be done to improve this?

® The proofs are all inductive, and are obtained by hand on
disassembling Otter proofs for individual cases. Can we get
Otter to efficiently prove things by induction?

® |t would be of great assistance in this study if Otter could prove
theorems over restricted domains (for example, of 4 or 5
elements). Can this be implemented?



