On the assertional logic of the generic double-pointed discriminator variety

M. Spinks (University of Cagliari)

R. J. Bignall (University of Cagliari)

R. Veroff (University of New Mexico)

ADAM 2007

Discriminator varieties

The (*ternary*) *discriminator* on a set A is the function $t: A^3 \rightarrow A$ defined $\forall a, b, c \in A$ by

$$t(a, b, c) := \begin{cases} c \text{ if } a = b \\ a \text{ otherwise.} \end{cases}$$

- A discriminator variety is a variety V for which there exists a term t(x, y, z) that realises the ternary discriminator on every subdirectly irreducible member of V.
- A double-pointed discriminator variety is a discriminator variety with two residually distinct constant terms.
- Discriminator varieties enjoy very strong structural properties.
 - \square Every algebra is \cong a Boolean product of simple algebras.
- Natural examples of discriminator varieties abound.
 - □ Boolean algebras, relation algebras, monadic algebras, n-valued Post algebras etc.

Most natural examples of discriminator varieties in logic are double-pointed.

Double-pointed discriminator logics

- A deductive system is a finitary and structural consequence relation |-.
- A deductive system S is a double-pointed discriminator logic if it is algebraisable in the sense of Blok and Pigozzi and its equivalent quasivariety is a doublepointed discriminator variety.

This means ∃ a class **K** of algebras that is to **S** just what **BA** is to **CPC**.

- Double-pointed discriminator logics abound in the literature and include
 - Classical Propositional Logic (CPC)
 - Modal logics
 - S5, the tetravalent modal logic of Font and Rius
 - Many-valued logics
 - The n-dimensional cylindric logics, the n-valued Łukasiewicz and Post logics
 - Fuzzy logics
 - Basic fuzzy logics with Baaz delta
 - Logics of vagueness and rough approximation theory
 - 3-valued constructive logic with strong negation, Heyting-Wajsberg logic

'Extracting' a logic from a quasivariety

For a quasivariety K with a constant term 1, the 1-assertional logic of K is the deductive system S(K, 1) determined by the equivalence

$$\Gamma \mid -_{S(\mathbf{K}, 1)} \varphi \text{ if and only if } \{ \psi \approx \mathbf{1} : \psi \in \Gamma \} \mid =_{\mathbf{K}} \varphi \approx \mathbf{1}.$$

- For example, CPC is the 1-assertional logic of BA.
- **Theorem** (Czelakowski, Pigozzi). Let Λ be a language type with a constant term **1**.
 - (1) Let **S** be a regularly algebraisable deductive system over Λ . Then **S** is the **1**-assertional logic of a unique relatively **1**-regular quasivariety, namely, its own equivalent quasivariety. In symbols, $\mathbf{S} = S(Alg \text{ Mod}^* \mathbf{S}, \mathbf{1})$.
 - (2) Let **K** be a relatively **1**-regular quasivariety over Λ . Then **K** is the equivalent quasivariety of a unique (Hilbert-style) deductive system, namely, its own assertional logic. In symbols, **K** = Alg Mod* $S(\mathbf{K}, \mathbf{1})$.

So regularly algebraisable logics are coextensive with assertional logics of relatively point regular quasivarieties.

The generic double-pointed discriminator variety

- **Theorem** (McKenzie, B.). Let V be a discriminator variety with discriminator term t(x, y, z). For any algebra **A** ∈ V, the term reduct $\langle A; t^{A} \rangle$ determines the congruences on **A** in the sense that Con **A** = Con $\langle A; t^{A} \rangle$.
- The *generic double-pointed discriminator variety* is the variety \mathbf{GD}_{01} generated by the class of all algebras $\langle A; t, 0, 1 \rangle$ of type $\langle 3, 0, 0 \rangle$, where t is the ternary discriminator on A and 0 and 1 are residually distinct nullary operations.
- Let F be a language type. The expansion of $\mathbf{GD_{01}}$ by F-compatible operations is the variety of all algebras $\mathbf{A} := \langle A; t, 0, 1, f^{\mathbf{A}} \rangle_{f \in F}$ such that $\langle A; t, 0, 1 \rangle \in \mathbf{GD_{01}}$ and Con $\mathbf{A} = \mathrm{Con} \langle A; t, 0, 1 \rangle$.
- Theorem (Burris). A variety V over a language type F is a double-pointed discriminator variety iff it is term equivalent to a subvariety of GD₀₁[F], the expansion of GD₀₁ by F-compatible operations.

Discriminator logics are determined by $S(GD_{01}, 1)$

Proposition. Let **K** be a relatively **1**-regular quasivariety with **1**-assertional logic $\mathbf{S} := S(\mathbf{K}, \mathbf{1})$. For any set of formulas $\Gamma \cup \{\phi\} \subseteq \mathrm{Fm}$, $\Gamma \mid_{-\mathbf{S}} \phi$ iff there exists some finite set of formulas $\{\phi_1, ..., \phi_n\} \subseteq \Gamma$ such that $\forall \mathbf{A} \in \mathbf{K}$ and $\bar{a} \in A^{\omega}$,

$$\varphi^{\mathbf{A}}(\bar{a}) \equiv \mathbf{1}^{\mathbf{A}} \pmod{\Theta_{\mathbf{K}}^{\mathbf{A}}(\{\langle \varphi_i^{\mathbf{A}}(\bar{a}), \mathbf{1}^{\mathbf{A}} \rangle : i = 1, ..., n\}))}.$$

Since every double-pointed discriminator variety is *fully* congruence regular, the proposition applies.

The proposition implies that every deductive system that is algebraisable, and whose equivalent quasivariety is a double-pointed discriminator variety, is completely determined by its discriminator term.

For double-pointed discriminator varieties, this implies the study of logics inherent in such varieties reduces to the study of the 1-assertional logic of \mathbf{GD}_{01} .

Extracting a 'Boolean'-like class using the discriminator

Let A be a set with $1 \in A$. Define operations \land , \lor , \rightarrow , $\Rightarrow \forall a, b \in A$ by

$$a \rightarrow b := \begin{cases} 1 \text{ if } a \neq 1 \\ b \text{ otherwise} \end{cases}$$

$$a \wedge b := \begin{cases} b \text{ if } a = 1\\ a \text{ otherwise} \end{cases}$$

$$a \Rightarrow b := \begin{cases} 1 \text{ if } a = b \\ b \text{ otherwise} \end{cases}$$

$$a \lor b := \begin{cases} 1 \text{ if } a = 1 \\ b \text{ otherwise} \end{cases}$$

The Boolean like operations \land , \lor , \Rightarrow , and \rightarrow can be recovered using t(a, b, c) by

$$a \wedge b := t(a, 1, b), \ a \vee b := t(a, t(a, 1, b), b), \ a \Rightarrow b := t(b, a, 1), \ a \rightarrow b := t(1, a, b).$$

The discriminator can be recovered using \wedge , \vee , \rightarrow , and \Rightarrow by

$$t(a, b, c) := ((a \Rightarrow b) \rightarrow (b \Rightarrow a) \rightarrow c) \land (b \Rightarrow a).$$

 $(SB^{\cup}A)_{F}$ denotes the class of all algebras $\langle A; \wedge, \vee, \Rightarrow, \rightarrow, 0, 1 \rangle$.

An equational description of SB^oA

- An *implication algebra* $\langle A; \Rightarrow, 1 \rangle$ is a $\langle \Rightarrow, 1 \rangle$ -subreduct of a Boolean algebra $\langle A; \cap, \cup, \supset, \sim, 0, 1 \rangle$.
 - □ Implication algebras form the equivalent quasivariety of the {¬}-fragment of CPC.
- An *implicative BCS-algebra* $\langle A; \rightarrow, 1 \rangle$ is a $\langle \rightarrow, 1 \rangle$ -subreduct of a *dually* pseudocomplemented semilattice $\langle A; \cup, ^*, 1 \rangle$, where $a \rightarrow b := a^* \cup b \ \forall a, b \in A$.
 - Implicative BCS-algebras are a 'non-commutative' analogue of implication algebras.
- A double-pointed implicative BCSK-algebra is an algebra

$$\mathbf{A} := \langle A; \Rightarrow, \rightarrow, 0, 1 \rangle$$
 of type $\langle 2, 2, 0, 0 \rangle$ where

- \Box $\langle A; \Rightarrow, 1 \rangle$ is an implication algebra

An equational description of SB^oA

- A *skew lattice* is an algebra $A := \langle A; \land, \lor \rangle$ of type $\langle 2, 2 \rangle$ where

 - Skew lattices arise naturally as bands of idempotents in rings.
- A double-pointed skew Boolean ∪-algebra (SB∪A) is an algebra
 - $\mathbf{A} := \langle A; \wedge, \vee, \Rightarrow, \rightarrow, 0, 1 \rangle$ of type $\langle 2, 2, 2, 2, 0, 0 \rangle$, where
 - \Box $\langle A; \land, \lor \rangle$ is a symmetric skew lattice
 - \Box $\langle A; \Rightarrow, \rightarrow, 0, 1 \rangle$ is a double-pointed implicative BCSK-algebra
 - $\Box \quad \mathbf{A} \mid = \mathbf{X} \vee \mathbf{y} \approx (\mathbf{X} \rightarrow \mathbf{y}) \rightarrow \mathbf{y}.$
- Lemma. The class SB A is a variety.
- Theorem (B., Leech). A ∈ SB[∨]A is subdirectly irreducible iff A ∈ (SB[∨]A)_F.
- **Corollary.** $SB \circ A = \underline{HSP}((SB \circ A)_F).$

Term equivalence of SB^oA and GD₀₁

- Theorem (B., Leech).
 - (1) Let $\mathbf{A} \in \mathbf{SB} \cup \mathbf{A}$. $\forall a, b, c \in A$, let

$$t(a, b, c) := ((a \Rightarrow b) \rightarrow (b \Rightarrow a) \rightarrow c) \land (b \Rightarrow a).$$

Then $\mathbf{A}^P := \langle A; t, 0, 1 \rangle \in \mathbf{GD}_{01}$.

(2) Let $\mathbf{A} \in \mathbf{GD}_{01}$. $\forall a, b \in A$, let

$$a \wedge b := t(a, 1, b)$$

$$a \lor b := t(a, t(a, 1, b), b)$$

$$a \Rightarrow b := t(b, a, 1)$$

$$a \to b := t(1, a, b).$$

Then $\mathbf{A}^{S} := \langle A; \wedge, \vee, \Rightarrow, \rightarrow, 0, 1 \rangle \in \mathbf{SB}^{\cup} \mathbf{A}$.

- (3) Let $\mathbf{A} \in \mathbf{SB}^{\cup} \mathbf{A}$. Then $(\mathbf{A}^{P})^{S} = \mathbf{A}$.
- (4) Let $\mathbf{A} \in \mathbf{GD}_{01}$. Then $(\mathbf{A}^S)^P = \mathbf{A}$.

Hence \mathbf{GD}_{01} and $\mathbf{SB}^{\vee}\mathbf{A}$ are term equivalent.

The Skew Boolean Propositional Calculus (SBPC)

Connectives

- Binary: $\wedge, \vee, \Rightarrow, \rightarrow$
- Nullary: 0
- Axioms

$$p \Rightarrow (q \Rightarrow p)$$

$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$

$$((p \Rightarrow q) \Rightarrow p) \Rightarrow p$$

$$p \Rightarrow (q \rightarrow p)$$

$$(p \rightarrow (q \rightarrow r)) \Rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

$$((p \rightarrow q) \rightarrow p) \Rightarrow p$$

$$((p \Rightarrow q) \rightarrow p) \Rightarrow p$$

$$((p \Rightarrow q) \rightarrow p) \Rightarrow p$$

$$(p \Rightarrow q) \rightarrow (p \rightarrow q)$$

$$p \to (p \lor q)$$

$$q \Rightarrow (p \lor q)$$

$$(p \to r) \to ((q \to r) \to ((p \lor q) \to r))$$

$$(p \land q) \Rightarrow p$$

$$(p \land q) \to q$$

$$(p \Rightarrow q) \Rightarrow ((p \Rightarrow r) \Rightarrow (p \Rightarrow (q \land r)))$$

$$\mathbf{0} \to p$$

Rule of inference MP_{\rightarrow} : $p, p \rightarrow q \mid_{SBPC} q$

CPC is the axiomatic extension of **SBPC** by the axiom $(p \rightarrow q) \Rightarrow (p \Rightarrow q)$.

Algebraisability of SBPC

Lemma (MP_⇒). For all SBPC-formulas φ, ψ, $φ, φ ⇒ ψ |_{SBPC} ψ$.

Proposition. For any set of **CPC**^{\supset}-formulas $\Gamma \cup \{\phi\}$,

 $\Gamma \mid \neg_{\mathsf{CPC}}^{\neg} \varphi \text{ if and only if } \Gamma[\Rightarrow] \mid \neg_{\mathsf{SBPC}} \varphi[\Rightarrow]$ $\Gamma \mid \neg_{\mathsf{CPC}}^{\neg} \varphi \text{ if and only if } \Gamma[\to] \mid \neg_{\mathsf{SBPC}} \varphi[\to].$

- **Theorem** (Deduction Theorem). For any set of **SBPC**-formulas $\Gamma \cup \{\varphi, \psi\}$, Γ , $\varphi \mid_{\neg SBPC} \psi$ if and only if $\Gamma \mid_{\neg SBPC} \varphi \rightarrow \psi$.
- **Theorem. SBPC** is regularly algebraisable with equivalence formulas $\{p \Rightarrow q, q \Rightarrow p\}$ and defining equation $p \approx p \Rightarrow p$.
- Theorem. SB^oA is the equivalent quasivariety of SBPC.
- **Corollary.** SBPC = $S(GD_{01}, 1)$.

SBPC is 'non-Fregean CPC'

- A deductive system **S** is *Fregean* if the relativised *T*-theory interderivability relation -||-s| is a congruence on **Fm**
 - A double-pointed discriminator logic is Fregean iff it is definitionally equivalent to an axiomatic expansion of CPC by extensional logical connectives.

Informally, SBPC is 'CPC – Fregeanness'

- By dropping Fregeanness from CPC,
- Implication bifurcates:
 - ⇔ is identity-as-meaning

 - For any valuation v, $v(\phi \Leftrightarrow \psi) = 1 \text{ iff } v(\phi) = v(\psi)$ $v(\phi \Leftrightarrow \psi) = 1 \text{ iff } v(\phi) \equiv v(\psi)$.

- A and ∨ are commutative in SBPC, but non-commutative in SB∨A. I.e.,
 - $p \wedge q || -_{\mathsf{SBPC}} q \wedge p, \text{ but}$ $p \wedge q = |\not\models_{\mathsf{SB} \cup \mathsf{A}} q \wedge p$
 - $p \lor q || -_{\mathsf{SBPC}} q \lor p, \text{ but}$ $p \lor q = |\not \models_{\mathsf{SB} \cup \mathsf{A}} q \lor p.$

SB^oA-algebras with compatible operations

For an *n*-ary basic operation f of an algebra \mathbf{A} , the *slice* \underline{f}_i of f is the unary operation obtained by assigning fixed values to all but one of the variables, *viz*.

$$\underline{f}(b) := f(a_1, \ldots, a_{i-1}, b, a_{i+1}, \ldots, a_n).$$

Let F be a language type. Let $SB \circ A[F]$ be the variety of algebras with language type $\Lambda[SB \circ A] \cup F$ axiomatised by identities axiomatising $SB \circ A$ together with the identities:

$$(x \Rightarrow y) \rightarrow ((y \Rightarrow x) \rightarrow (\underline{f}_i(x) \Rightarrow \underline{f}_i(y))) \approx \mathbf{1}.$$

 $SB^{\cup}A[F]$ is called the *expansion of* $SB^{\cup}A$ *by* F-compatible operations.

Theorem. A variety **V** over a language type F is a double-pointed discriminator variety iff it is term equivalent to a subvariety of the expansion of $SB^{\cup}A[F]$ by F-compatible operations.

SBPC with compatible operations

For an *n*-ary connective f of **Fm**, the *slice* \underline{f}_i of f is the unary operation obtained by assigning fixed values to all but one of the variables, *viz*.

$$\underline{f}_i(\psi) := f(\varphi_1, \ldots, \varphi_{i-1}, \psi, \varphi_{i+1}, \ldots, \varphi_n).$$

Let F be a language type. Let **SBPC**[F] be the expansion of **SBPC** to the language type Λ [**SBPC**] \cup F obtained by adjoining the axioms

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (\underline{f}(p) \Rightarrow \underline{f}(q)))$$

to an axiomatisation of **SBPC**. **SBPC**[*F*] is called *the expansion of* **SBPC** by *F-extensional connectives*.

■ **Theorem.** A deductive system **S** over a language type *F* is a double-pointed discriminator logic iff it is definitionally equivalent to an axiomatic extension of the expansion of **SBPC** by *F*-extensional connectives.

Example: **S5** as a pointed discriminator logic

Connectives:

- □ Binary: \land , \lor , \Rightarrow , \rightarrow , \cap , \cup , \supset
- □ Unary: ~
- □ Nullary: **0**, **1**

Axioms (SBPC)

$$p \Rightarrow (q \Rightarrow p)$$

$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \Rightarrow q) \Rightarrow (p \Rightarrow r))$$

$$(p \Rightarrow (q \Rightarrow r)) \Rightarrow p$$

$$((p \Rightarrow q) \Rightarrow p) \Rightarrow p$$

$$(p \Rightarrow (q \rightarrow r)) \Rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$$

$$(p \Rightarrow q) \Rightarrow p$$

$$((p \Rightarrow q) \Rightarrow p) \Rightarrow p$$

$$(p \land q) \Rightarrow p$$

$$(p \land q) \Rightarrow p$$

$$(p \land q) \Rightarrow q$$

$$((p \Rightarrow q) \Rightarrow q) \Rightarrow ((p \Rightarrow r) \Rightarrow (p \Rightarrow q) \Rightarrow ($$

Example: **S5** as a pointed discriminator logic

Axioms (CPC)

$$p \supset (q \supset p)$$

$$(p \supset (q \supset r)) \supset ((p \supset q) \supset (p \supset r))$$

$$(\sim q \supset \sim p) \supset (p \supset q)$$

$$p \supset (p \cup q)$$

$$q \supset (p \cup q)$$

$$(p \supset r) \supset ((q \supset r) \supset ((p \cup q) \supset r))$$

$$(p \cap q) \supset p$$

$$(p \cap q) \supset q$$

$$(p \supset q) \supset ((p \supset r) \supset (p \supset (q \cap r)))$$

$$\mathbf{0} \supset p$$

$$p \supset \mathbf{1}$$

Axioms (Compatibility)

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (\sim p \Rightarrow \sim q))$$

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (r \cap q) \Rightarrow (r \cap p)))$$

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (q \cap r) \Rightarrow (p \cap r)))$$

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (r \cup q) \Rightarrow (r \cup p)))$$

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (q \cup r) \Rightarrow (p \cup r)))$$

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (r \supset q) \Rightarrow (r \supset p)))$$

$$(p \Rightarrow q) \rightarrow ((q \Rightarrow p) \rightarrow (q \supset r) \Rightarrow (p \supset r)))$$

Axioms (Link)

$$((p \supset q) \supset q) \Rightarrow ((q \supset p) \supset p)$$
$$(p \supset q) \Rightarrow (p \rightarrow q)$$

Rule of inference

$$\mathsf{MP}_{\rightarrow} : p, p \rightarrow q \mid_{-\mathsf{S5}} q$$

Term equivalence of monadic and super-Boolean algebras

- A super-Boolean algebra is an algebra $\langle A; \cap, \cup, \supset, \wedge, \vee, \Rightarrow, \rightarrow, \sim, 0, 1 \rangle$ where
 - \Box $\langle A; \cap, \cup, \supset, \sim, 0, 1 \rangle$ is a Boolean algebra

 - □ The Boolean algebra operations are compatible with $\langle A; \land, \lor, \Rightarrow, \rightarrow, 0, 1 \rangle$.

Theorem.

- (1) Let **A** be a super-Boolean algebra. $\forall a, b \in A$, let $\square a := (a \to 0) \Rightarrow 0$. Then $\mathbf{A}^M := \langle A; \cap, \cup, \supset, \sim, \square, 0, 1 \rangle$ is a monadic algebra.
- (2) Let **A** be a monadic algebra. $\forall a, b \in A$, let

$$a \wedge b := a \cap (\square a \supset b)$$
 $a \Rightarrow b := \square(a \equiv b) \cup b$
 $a \vee b := \square(\square a \supset b) \supset b$ $a \Rightarrow b := \square(a \equiv b) \cup b$

Then $\mathbf{A}^S := \langle A; \cap, \cup, \supset, \wedge, \vee, \Rightarrow, \rightarrow, \sim, 0, 1 \rangle$ is a super-Boolean algebra.

- (3) Let **A** be a super-Boolean algebra. Then $(\mathbf{A}^{M})^{S} = \mathbf{A}$.
- (4) Let **A** be a monadic algebra. Then $(\mathbf{A}^S)^M = \mathbf{A}$.

Hence the varieties of monadic and super-Boolean algebras are term equivalent.

An alternative explanation for term equivalence

- For a class **K** of algebras over a language type Λ , let **K**^t denote the class obtained from **K** by adjoining a new ternary function symbol t(x, y, z) to Λ such that the realisation of t on any $\mathbf{A} \in \mathbf{K}$ is the ternary discriminator.
- Proposition (Burris, McKenzie, Valeriote). MA = HSP(BA^t).

Concluding Remarks

Every double-pointed discriminator variety **V** over a language type F with **1** has an associated assertional logic $S(\mathbf{GD}_{01}[F]^+, \mathbf{1}) \equiv \mathbf{SBPC}[F]^+$, such that

Alg Mod*
$$S(GD_{01}[F]^+, 1) \equiv Alg Mod* SBPC[F]^+ \equiv V.$$

- The deductive system S(GD₀₁, 1) qua SBPC has a coherent meaning. Informally, SBPC is CPC minus the Fregean property.
- The main *novelty* of the work is the axiomatisation of $S(\mathbf{GD_{01}}, \mathbf{1})$ qua **SBPC**.
- The main technical insight of the work is that even in the restricted setting of regularly algebraisable logics with the uniterm DDT, the relationship between

identity-as-meaning \Leftrightarrow and the biconditional \leftrightarrow

is quite complicated. This warrants further investigation.