CS 357: Declarative Programming
Homework 6

. The function bits2num takes a string of 0’s and 1’s and returns the binary number represented
by that string. For example,

*Main> bits2num "1011000"
88

. The function num2bits takes an integer and returns a string representing that number in
binary. For example,

*Main> num2bits 87783
"010101011011100211"

. The variance of a list of numbers of length 7 is the average squared difference between each
number and the numbers’ mean: Y7, (x; — ¥)?/n where ¥ is the numbers’ mean: Y7, x;/n.
Without using explicit recursion, give a definition of a function, variance, which works as
follows:

*Main> variance [1..10]
8.25

. Define a function difference which, when given two sets xs and ys (represented as lists)
returns the set consisting of all elements of xs not found in ys. Note: This definition is
asymmetrical. For example,

*Main> difference "ABCD" "AD"
" BC "

. Recall that the function combinations takes a list of elements of typeclass Ord and an integer
k as its arguments and returns a list of ( " ) length £k lists representing all possible subsets of
size k. The function splits is similar, except that, given a list of elements of length #, it returns
alistof Y/~ }( " ) pairs of lists. The first component of the pair represents a combination of
length k. The second component represents the complementary combination of length n — k.
Two combinations are complementary when their union is equal to the original list. For

example,

*Main> :t splits
splits :: (Ord a) => [a] —-> [([al, [al])]
*Main> splits "abc"

[("C", "ab") , ("b","acll) , ("bC", "a") , ("a"’ "bC") , ("aC", "b") , ("ab","C"

)]



Write splits.

. The function argmin takes a function f and a list xs as arguments and returns the element of
the list x such that f applied to x has minimum value. For example,

*Main> :t argmin

argmin :: (Ord a) => (t -> a) -> [t] —> t
*Main> argmin length ["ABC","EF","GHIJ", "K"]
"K"

*Main>

Write argmin.

. The function bogus takes a list of pairs of source alphabet probabilities and values and returns
a coding tree which can be used with the functions, encode and decode, for encoding and
decoding Huffman coding trees defined in class. The bogus coding algorithm is very simple:
it splits its list argument into two subsets where the sum of the probabilities in each subset
are as nearly equal as possible. It then uses the first subset to recursively build the left half of
the bogus coding tree and the second subset to recursively build the right half of the bogus
coding tree. For example,

*Main> :t bogus

bogus :: (Ord t) => [ (Double, t)] —-> Htree t

*Main> let xs = [(0.30,’e"), (0.14,’h"), (0.1,"1"), (0.16,"70"),
(0.05,'p"), (0.23,7t"), (0.02,"w")]

*Main> concatMap (encode (bogus xs)) "hello"

"10100100100011"

*Main> decode (bogus xs) "10100100100011"

"hello"

Hint: I found the functions splits and argmin to be very helpful. I also found that the
function merge (defined in class) is just as good at combining bogus coding trees as it is
Huffman coding trees. Indeed, given all of the above, my definition of bogus is just two
short lines of code.

. The function church takes an integer n as its argument and returns a function which composes
any unary function n times. For example,

*Main> :t church

church :: Int -> (¢ => ¢c) -> ¢ —> ¢
*Main> (church 4) tail "ABCDEFGH"
"EFGH"

Write church using foldr.



9.

10.

Using the definition of BTree given in class, write a function trees which takes a list of leaf
values as its argument and returns a list of all binary trees with the given leaves. For example,

*Main> :t trees

trees :: (Ord t) => [t] —> [Btree t]

*Main> (trees "ABCDE") !! 114

Fork (Leaf E) (Fork (Fork (Leaf A) (Fork (Leaf C)
(Leaf B))) (Leaf D))

*Main> length (trees [0..4])

1680

Hint: Define trees using a list-comprehension, recursion, and the function splits.

A DNA molecule is a sequence of four bases which are conventionally represented using
the characters "A’, ’G’, ’C’, and "T’. Genomes represented by DNA molecules are subject to
four different types of point mutations:

insertions - A base is inserted between two adjacent points in a genome.
deletions - A point is deleted from a genome.
substitutions - A base at a point is replaced with another base.

transpositions - The bases at two adjacent points are exchanged.

Give definitions for Haskell functions insertions, deletions, substitutions and transpositions
which take a genome represented as a string and return a list of all genomes produced by
single point point mutations of the specifed kind. For example.

*Main> insertions "GC"

insertions "GC"

[ ||AGC" , " GAC " , " GCA" , " GGC" ’ " GGC " , " GCG" , ||CGC" , " GCC" , " GCC" ,
"TGC n , "GTC" , n GCT n ]

*Main> deletions "AGCT"

[ "GCT" , "ACT" , "AGT" , "AGC" ]

*Main> substitutions "ACT"

[ "ACT" , "AAT" , "ACA" , "GCT" , "AGT" , "ACG" , n"CceT" , "ACT" , U Nelohl ,
"TCT" , "ATT" , "ACT n ]

*Main> transpositions "GATC"

[ "AGTC" , n GTAC " , " GACT" ]



