Part I

Exercises 7.2, 7.3, 7.6, 7.7, 7.8, 7.12, 7.18, 7.22, 7.30, 7.31

Part II

1. Consider the following three examples:

;; Example 1
(define fact
 (lambda (x)
 (letrec
 ((loop
 (lambda (x acc)
 (if (= x 0)
 acc
 (loop (sub1 x) (* x acc))))))
 (loop x 1))))

;; Example 2
(define reverse
 (lambda (x)
 (letrec
 ((loop
 (lambda (x acc)
 (if (null? x)
 acc
 (loop (cdr x) (cons (car x) acc))))))
 (loop x '()))))

;; Example 3
(define iota
 (lambda (x)
 (letrec
 ((loop
 (lambda (x acc)
 (if (= x 0)
 acc
 acc
 (loop (sub1 x) (* x acc)))))))
 (loop x 1)))
The higher-order function *tail-recur* takes the following arguments

- **bpred** - a function of x which returns true if the terminating condition is satisfied and false otherwise
- **xproc** - a function of x which updates x
- **aproc** - a function of x and acc which updates acc
- **acc0** - an initial value for acc

and returns a tail recursive function of x. It can be used to write the function, factorial as follows:

```scheme
> (define fact (tail-recur zero? sub1 * 1))
> (fact 10)
3628800
```

(a) Give a definition for *tail-recur*.

(b) Use *tail-recur* to define *reverse*.

(c) Use *tail-recur* to define *iota*.

2. Write a function, *disjunction2*, which takes two predicates as arguments and returns the predicate which returns #t if either predicate does not return #f. For example:

```scheme
> ((disjunction2 symbol? procedure?) +)
#t
> ((disjunction2 symbol? procedure?) (quote +))
#t
> (filter (disjunction2 even? (lambda (x) (< x 4))) (iota 8))
(1 2 3 4 6 8)
```

3. Now write *disjunction*, which takes an arbitrary number (> 0) of predicates as arguments.

4. A matrix, \[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\], can be represented in Scheme as a list of lists: ((1 2) (3 4)). Without using recursion, write a function, *matrix-map*, which takes a function, f, and a matrix, A, as arguments and returns the matrix, B, consisting of f applied to the elements of A, i.e., \(B_{ij} = f(A_{ij})\).

```scheme
> (matrix-map (lambda (x) (* x x)) '((1 2) (3 4)))
((1 4) (9 16))
```
5. Consider the following definition for fold (called flat-rec in your text):

\[
\text{(define fold}
\quad \lambda (\text{seed proc})
\quad \text{(letrec}
\quad \quad ((\text{pattern}
\quad \quad \lambda (l)\n\quad \quad \quad (\text{if} \ (\text{null?} \ l) \ \text{seed}
\quad \quad \quad \quad (\text{proc} \ (\text{car} \ l)
\quad \quad \quad \quad \quad \quad (\text{pattern} \ (\text{cdr} \ l)))))))
\quad \text{pattern}))
\]

(a) Use fold to write a function delete-duplicates which deletes all duplicate items from a list. For example,

\[
\text{> (delete-duplicates '(a b a b a b a b)) } \quad \{a \ b\}
\text{> (delete-duplicates '(1 2 3 4)) } \quad \{1 \ 2 \ 3 \ 4\}
\]

(b) Use fold to write a function assoc which takes an item and a list of pairs as arguments and returns the first pair in the list with a car car which is equal to item. If there is no such pair then assoc should return false. For example,

\[
\text{> (assoc 'b '((a 1) (b 2))) } \quad \{b \ 2\}
\text{> (assoc 'c '((a 1) (b 2))) } \quad \#f
\]

Part III

Using the functions, apply, select, map, filter, outer-product and iota, and without using recursion, give definitions for the following functions:

1. length - returns the length of a list.
2. sum-of-squares - returns the sum of the squares of its arguments.
3. avg - returns the average of its arguments.
4. avg-odd - returns the average of its odd arguments.
5. *shortest* - returns the shortest of its list arguments.

6. *avg-fact* - returns the average of the factorials of its arguments.

7. *tally* - takes a predicate and a list and returns the number of list elements which satisfy the predicate.

8. *list-ref* - takes a list and an integer, \(n \), and returns the \(n \)-th element of the list.