1. Define a function `myTakeWhile` which takes a predicate and a list as arguments and returns the prefix of the list satisfying the predicate. For example,

 *Main> myTakeWhile (/= ' ') "This is practice."
 "This"

2. Define a function `mySpan` which takes a predicate and a list as arguments and returns a pair of lists where the first element of the pair is the portion of the list which the function `myTakeWhile` would return and the second element is the remainder of the list. For example,

 *Main> mySpan (/= ' ') "This is practice."
 ["This"," is practice."]

3. The function `combinations3` takes a list as its argument and returns a list of length three lists representing all possible subsets of size three. For example,

 *Main> :t combinations3
 combinations3 :: (Ord a) => [a] -> [[a]]
 *Main> combinations3 "ABCDE"
 ["ABC","ABD","ABE","ACD","ACE","ADE","BCD","BCE","BDE","CDE"]

 Write `combinations3` using a list-comprehension.

4. The function `runLengthEncode` takes a list as its argument and returns a list of pairs of values and run lengths. See

 http://en.wikipedia.org/wiki/Run_length_encoding

 For example,

 *Main> runLengthEncode [4,2,2,1,1,1,4,4,4,4]
 [(4,1),(2,2),(1,4),(4,4)]
 *Main> runLengthEncode "foo"
 [('f',1),('o',2)]

 Write `runLengthEncode`. Hint: Divide and conquer. Ask yourself: What helper functions would make this problem trivial and then write those. Make use of higher-order functions when appropriate. This is the key to modular design and you will complete your homework faster as a bonus.
5. The function *runLengthDecode* takes a list of pairs of values and run lengths and returns a list of values. For example,

*Main> runLengthDecode [(4,1),(2,2),(1,4),(4,4)]
[4,2,2,1,1,1,4,4,4,4]

Write *runLengthDecode*.

6. Define a function *splitText* which takes a string of text as its argument and a predicate, and returns a list of strings with values that fail the predicate removed. For example,

*Main> splitText (/= ' ') "This is practice."
("This","is","practice.")

7. Without using explicit recursion, define a function *encipher* which takes two lists of equal length and a third list. It uses the first two lists to define a substitution cipher which it uses to encipher the third list. For example,

*Main> encipher ['A'..'Z'] ['a'..'z'] "THIS"
"this"

8. The Goldbach conjecture states that any even number greater than two can be written as the sum of two prime numbers. Using list comprehensions, write a function *goldbach*, which when given an even number *n*, returns a list of all pairs of primes which sum to *n*. Note: You will have to write a function which tests an integer for primality and this should be written as a list comprehension also. For example,

*Main> goldbach 6
[(3,3)]
*Main> :t goldbach
Int -> [(Int,Int)]

9. The function *increasing* takes a list of enumerable elements as its argument and returns *True* if the list is sorted in increasing order and *False* otherwise.

*Main> increasing "ABCD"
True
*Main> increasing [100,99..1]
False

Write *increasing* using list comprehensions.

10. The function *select* takes a predicate and two lists as arguments and returns a list composed of elements from the second list in those positions where the predicate, when applied to the element in the corresponding positions of the first list, returns *True*.

Write \textit{select} using list comprehensions.

11. The function \textit{combinations} takes an integer \(k\) and a list of elements of typeclass \textit{Ord} as its arguments and returns a list of length \(k\) lists representing all possible subsets of size \(k\). For example,

\begin{verbatim}
*Main> :t combinations
combinations :: (Ord a) => Int -> [a] -> [[a]]
*Main> combinations 3 "ABCDE"
["ABC","ABD","ABE","ACD","ACE","ADE","BCD","BCE","BDE","CDE"]
\end{verbatim}

Write \textit{combinations}. Hint: Don’t use list-comprehensions. Do use \textit{increasing}. Write \textit{combinations1}. Use \textit{combinations1} and \textit{map} to write \textit{combinations2}. Now use \textit{combinations2} and \textit{map} to write \textit{combinations3}. Abstract the pattern.

12. Addition and multiplication of complex numbers are defined as follows:

\[
(x + iy) + (u + iv) = (x + u) + (y + v)i \\
(x + iy) \times (u + iv) = (xu - yv) + (xv + yu)i
\]

A \textit{complex integer} is a complex number with integer real and imaginary parts. Define a data type for complex integers called \textit{ComplexInteger} with selector functions \textit{real} and \textit{imaginary} which return the real and imaginary parts. Give minimum instance declarations for the \textit{Eq}, \textit{Show}, and \textit{Num} type classes. For example,

\begin{verbatim}
*Main> real (ComplexInteger 1 2)
1
*Main> imaginary (ComplexInteger 2 3)
3
*Main> (ComplexInteger 1 2) == (ComplexInteger 3 4)
False
*Main> (ComplexInteger 1 2)
1+2i
*Main> (ComplexInteger 1 2) * (ComplexInteger 3 4)
-5+10i
\end{verbatim}