1. The \(f \) operator takes a function, \(f \), as its argument and returns the antiderivative of the function: \(f \xrightarrow{f} \int f(t)dt \). Prove that the \(f \) operator is:

 (a) Linear.
 (b) Shift-invariant.

2. Prove that \(\sin(x) = \frac{e^{ix} - e^{-ix}}{2j} \).

3. The impulse response function of a linear, shift-invariant system is:
 \[
 h(t) = \frac{\sin(\pi t)}{\pi t}
 \]
 and its input is:
 \[
 x(t) = \cos(4\pi t) + \cos(\pi t/2).
 \]
 What is its output?

4. The impulse response function of a linear, shift-invariant system is:
 \[
 h(t) = e^{-\frac{\pi t^2}{2}}
 \]
 and its input is:
 \[
 x(t) = e^{j2\pi s_0 t}.
 \]
 What is its output?

5. The sine Gabor function is the product of a sine and a Gaussian, \(f(t) = e^{-\pi t^2} \sin(2\pi s_0 t) \). Give an expression for \(F(s) \), the Fourier transform of \(f(t) \).

6. The function, \(f(t) \), is defined as:
 \[
 f(t) = \begin{cases}
 1 & \text{if } |at - b| \leq \frac{1}{2} \\
 0 & \text{otherwise}.
 \end{cases}
 \]
 Give an expression for \(F(s) \), the Fourier transform of \(f(t) \).
7. The transfer function of a linear shift invariant system is $H(s) = 1/s$. The impulse response function, $h(t)$, is $\mathcal{F}^{-1}\{H(s)\}$. Give an expression for $g(t)$ where:

$$g(t) = \int_{-\infty}^{\infty} e^{j2\pi s_0 \tau} h(t - \tau) \, d\tau.$$

8. Compute the Fourier transform of $f(t) = -2\pi t e^{-\pi t^2} \cos(2\pi s_0 t)$. Hint: What is $\frac{d(e^{-\pi t^2})}{dt}$?