Quadratic Formula

A guadratic equation is a second order polyno-
mial:

y = ax* + bx+c.
If a=1,b=0, andc= -2, then
y=x—2.
The quadratic formula
—b+vb?2—4ac
X =
2a

gives solutions to the following equation:
ax® + bx+c=0.
The solutions to? — 2 =0 are:



Figure 1: Left:y = x2 — 2. Right:y = X2 + 2.

The Square Root of -1

If a=1,b=0, andc= 2, theny=x?+2. The
quadratic formula gives solutions ¥+ 2 = 0:

+./—-8 +2-2
= =— — +v/-2.

X=7

We can’t take the square root of a negative num-
ber! So we use ammaginary number,, to rep-

resent the/—1:
X=4+v/—-2=+iVv2.



The Square Root of -1 (contd).

Imaginary numbers can be added just like real
numbers:

1+5 =12.
Can they be multiplied?
7i-5i = 352 = 35/—1 = —35
which is real, not imaginary.



Complex Numbers

A complex numberg, has a real park, and an
Imaginary party:
C= X+ V.

A complex number can be decomposed into its
real and imaginary parts:

Re(c) = X
Im(c) =.

Two complex numbers;; andcy, are equal, if
and only if

Re(c;) = Re(cy)
and

Im(cy) = Im(cp).
In other words,

(X+1y) = (u+iv)iff x=uandy =v.



Adding Complex Numbers

Two complex numbers;; andc,, can be added:
Re(c,+C;) = Recy) + Re(cy)
Im(c1+C2) = Im(cy) +Im(cy).

The real parts are added to form the real part
of the sum and the imaginary parts are added
to form the imaginary part of the sum. In other
words, ifc; = X+ yi andc, = u+vi, then

(X+Vi)+ (U+Vi) = (X+U) + (y+V)i.



Euler's Equation

The Taylor series for sixy cosx ande* are:

XX x2 x* xd X8
COSX:a—E—FE—&—FQ—F...
. x}oxd xd x' x®
X0 xt x2 x3 X
e = a—l—ﬂ—l—z—Fg—Fm—F...



Euler’s Equation (contd.)

What is the Taylor series f@*?
- ix)%  (ix)t (i) (ix)®  (ix)*
%0 ilxl i i3 i
“or T T T T
XX xt xR

_xoxzx4 I 3 xO
o 2 a )T\ 3te

= COSX-+ISInX.




Polar to Rectangular

We have just deriveéuler’s eguation:
d® = cosB +isine.
If we multiply both sides of the equation &y
we get:
ad® = acosd +iasin® = x+iy

wherea is amplitude and 6 is phase. The left
side of the equation is a complex numbep
lar form. The right side is a complex number in
rectangular form:

Re(a€®) = acosd = x
Im(a€®) = asinB=y.
The above equations show how we can convert

from polar to rectangular. How do we go from
rectangular to polar?



Rectangular to Polar

To solve for amplitudea, givenx+1y, we use
the fact thatx = acosb andy = asin0 to write
the following equation:

a°cog0 + a’sitd = x> +y?
which can be rearranged to yield

a2 (co$0+sirt Q) =2 +y?
and since cdH + sirf8 = 1, it follows that

a=/X2+Vy2

To solve for phasef, we use the fact that =
acosb andy = asin@ to write the following equa-

tion: .
asine vy

acosd x
which can be directly solved fd:

0 =tan? (3—(’) .

tan@ =




Imaginary

Figure 2: The complex plane.



Multiplication in Rectangular Form

Using the distributive property of multiplica-
tion, and the fact that= +/—1, we can derive
the rules for multiplying two complex numbers
In rectangular form:

(X+1y) - (U41V) = XU+ixv+4iyu—wy
= (XU—WV) +1(Xv+yu).

To summarize, given two complex numbers,
andc,:

Re(c:-C2) = Re(c1)Re(Cz) — Im(cy)Im(cy)
Im(c;-C2) = Re(cy)Im(cy) + Im(ci)Re(cy)
...0r rewriting this in matrix notation:
[ Re(C]_ . CZ) ] _ [ Re(cg) —|m(C2) ] [ Re(C]_) ]
Im(cy-Cp) Im(c;) Re(c) | | Im(cy) |
But this is pretty hard to remember.



Multiplication in Polar Form

Given two complex numbers in polar form:
c1 = a €™
Co = aze'ez.

We start with the rules for multiplying two com-
plex numbers in rectangular form:

[ Re(cl . Cz) ] _ [ Re(Cz) —|m(C2) ] [ Re(cl) ]
Im(cy - Cp) Im(c;) Re(c) Im(cy) |
Now substitutea, cosO, for Re(c;), a;SinG, for
Im(c,), a; cosB; for Re(c; ), anda; sinB4 for Im(cy)
to get:

Re(ci-C2) | | apcosB, —a,sind; | | a;cosH;
Im(cy-C2) | | @SinBy aycoshs a;sinBy |-
Multiplying this out yields:

Re(c; - Cy) = a1a,Cc0s01c0s0, — a3a@,SiNB1SiN0;
Im(cy-C2) = a1@,Cc0501SiNB, + a;a,SiNB1c0sOs.



Multiplication in Polar Form (contd.)

Using the identities:

cog6;+06,) = cosB;cosh, — sinB; Sind,
sin(81+ 0,) = cosB; sinB, + sinB;,cosH,

we see that

Re(c;-Cy) = aja,c090:1+ 05)
Im(cy-C2) = a1@,Sin(01+ 05).

It follows that
2,691 . a,e% — g,a,6 1192

To summarize, we multiply the amplitudes and
sum the phases.



Observation

It is easy to add two complex numbers in rect-
angular form but hard in polar. Conversely it is
easy to multiply two complex numbers in polar
form but hard in rectangular.
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Figure 3: Multiplication of complex numbers.



Square root of a complex number

e A complex number always has two square
roots.

e We find the first square root by taking the
sqguare root of the amplitude, and dividing
the phaseg, by 2.

e The second sguare root has the same ampli-
tude, butis ab/2+ 1t

e Consequently, the square roots a#® are
/ag®/2 and,/ag(®/2+1.



N-th roots of unity

e Question How many square roots does 1 have?
e Answer Two. They are both real.

e Question How many cube roots does 1 have?
e Answer Three. Only one of which is real.

e Question How many fourth roots does 1 have?

e Answer Four. Two are real. Two are imagi-
nary.

Do you see a pattern?
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Figure 4: The square roots a0 are/ae®? and/ae(®/2+1,



Complex conjugate

C = X+1y

C'' = X—1ly
...or, in polar form:
c = aéd®
¢t = ae "

The complex conjugate has the same amplitude,
but the phase is multiplied by minus one.
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TheN-th roots of unity.



Complex conjugate (contd.)

The sum of a conjugate pair:
C+C" = (X+1y)+ (X—1y)
= 2X
= 2R€c)
The product of a conjugate pair:
cc’ = (X+1y)(X—1y)
= Xoiy—iy—i%y?
x2+y2
o a2
...or, in polar form:

cc’ = ae%e'®
426i(0-6)

The amplitude of a complex number is the square

root of the product of the complex number and
Its conjugate:

c| = vcc*.
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Figure 6: Complex conjugate.
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