
Quadratic Formula

A quadratic equation is a second order polyno-
mial:

y = ax2+bx+ c.

If a = 1, b = 0, andc = −2, then

y = x2−2.

The quadratic formula
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−b±

√
b2−4ac

2a
gives solutions to the following equation:

ax2+bx+ c = 0.

The solutions tox2−2 = 0 are:
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Figure 1: Left:y = x2−2. Right:y = x2 +2.

The Square Root of -1

If a = 1, b = 0, andc = 2, theny = x2+2. The
quadratic formula gives solutions tox2+2 = 0:

x =
±
√
−8

2
=
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√
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√
−2.

We can’t take the square root of a negative num-
ber! So we use animaginary number,i, to rep-
resent the

√
−1:

x = ±
√
−2 = ±i

√
2.



The Square Root of -1 (contd).

Imaginary numbers can be added just like real
numbers:

7i+5i = 12i.

Can they be multiplied?

7i ·5i = 35i2 = 35
√
−1

2
= −35

which is real, not imaginary.



Complex Numbers

A complex number,c, has a real part,x, and an
imaginary part,y:

c = x+ yi.

A complex number can be decomposed into its
real and imaginary parts:

Re(c) = x
Im(c) = y.

Two complex numbers,c1 andc2, are equal, if
and only if

Re(c1) = Re(c2)

and
Im(c1) = Im(c2).

In other words,

(x+ iy) = (u+ iv) iff x = u andy = v.



Adding Complex Numbers

Two complex numbers,c1 andc2, can be added:

Re(c1+ c2) = Re(c1)+Re(c2)

Im(c1+ c2) = Im(c1)+ Im(c2).

The real parts are added to form the real part
of the sum and the imaginary parts are added
to form the imaginary part of the sum. In other
words, ifc1 = x+ yi andc2 = u+ vi, then

(x+ yi)+(u+ vi) = (x+u)+(y+ v)i.



Euler’s Equation

The Taylor series for sinx, cosx andex are:
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Euler’s Equation (contd.)

What is the Taylor series foreix?
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Polar to Rectangular

We have just derivedEuler’s equation:

eiθ = cosθ+ isinθ.

If we multiply both sides of the equation bya
we get:

aeiθ = acosθ+ iasinθ = x+ iy

wherea is amplitude andθ is phase. The left
side of the equation is a complex number inpo-
lar form. The right side is a complex number in
rectangular form:

Re(aeiθ) = acosθ = x
Im(aeiθ) = asinθ = y.

The above equations show how we can convert
from polar to rectangular. How do we go from
rectangular to polar?



Rectangular to Polar

To solve for amplitude,a, givenx + iy, we use
the fact thatx = acosθ andy = asinθ to write
the following equation:

a2cos2θ+a2sin2θ = x2+ y2

which can be rearranged to yield

a2
(

cos2θ+sin2θ
)

= x2+ y2

and since cos2θ+sin2θ = 1, it follows that

a =
√

x2+ y2.

To solve for phase,θ, we use the fact thatx =
acosθ andy = asinθ to write the following equa-
tion:

tanθ =
asinθ
acosθ

=
y
x

which can be directly solved forθ:

θ = tan−1
(y

x

)

.
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Figure 2: The complex plane.



Multiplication in Rectangular Form

Using the distributive property of multiplica-
tion, and the fact thati =

√
−1, we can derive

the rules for multiplying two complex numbers
in rectangular form:

(x+ iy) · (u+ iv) = xu+ ixv+ iyu− yv
= (xu− yv)+ i(xv+ yu).

To summarize, given two complex numbers,c1

andc2:

Re(c1 · c2) = Re(c1)Re(c2)− Im(c1)Im(c2)

Im(c1 · c2) = Re(c1)Im(c2)+ Im(c1)Re(c2)

...or rewriting this in matrix notation:
[

Re(c1 · c2)
Im(c1 · c2)

]

=

[

Re(c2) −Im(c2)
Im(c2) Re(c2)

][

Re(c1)
Im(c1)

]

.

But this is pretty hard to remember.



Multiplication in Polar Form

Given two complex numbers in polar form:

c1 = a1eiθ1

c2 = a2eiθ2.

We start with the rules for multiplying two com-
plex numbers in rectangular form:
[

Re(c1 · c2)
Im(c1 · c2)

]

=

[

Re(c2) −Im(c2)
Im(c2) Re(c2)

][

Re(c1)
Im(c1)

]

.

Now substitutea2cosθ2 for Re(c2), a2sinθ2 for
Im(c2), a1cosθ1 for Re(c1), anda1sinθ1 for Im(c1)
to get:
[

Re(c1 · c2)
Im(c1 · c2)

]

=

[

a2cosθ2 −a2sinθ2

a2sinθ2 a2cosθ2

][

a1cosθ1

a1sinθ1

]

.

Multiplying this out yields:

Re(c1 · c2) = a1a2cosθ1cosθ2−a1a2sinθ1sinθ2

Im(c1 · c2) = a1a2cosθ1sinθ2+a1a2sinθ1cosθ2.



Multiplication in Polar Form (contd.)

Using the identities:

cos(θ1+θ2) = cosθ1cosθ2−sinθ1sinθ2

sin(θ1+θ2) = cosθ1sinθ2+sinθ1cosθ2

we see that

Re(c1 · c2) = a1a2cos(θ1+θ2)

Im(c1 · c2) = a1a2sin(θ1+θ2).

It follows that

a1eiθ1 ·a2eiθ2 = a1a2ei(θ1+θ2).

To summarize, we multiply the amplitudes and
sum the phases.



Observation

It is easy to add two complex numbers in rect-
angular form but hard in polar. Conversely it is
easy to multiply two complex numbers in polar
form but hard in rectangular.
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Figure 3: Multiplication of complex numbers.



Square root of a complex number

• A complex number always has two square
roots.

• We find the first square root by taking the
square root of the amplitude,a, and dividing
the phase,θ, by 2.

• The second square root has the same ampli-
tude, but is atθ/2+π.

• Consequently, the square roots ofaeiθ are√
aeiθ/2 and

√
aei(θ/2+π).



N-th roots of unity

• Question How many square roots does 1 have?

• Answer Two. They are both real.

• Question How many cube roots does 1 have?

• Answer Three. Only one of which is real.

• Question How many fourth roots does 1 have?

• Answer Four. Two are real. Two are imagi-
nary.

Do you see a pattern?
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Figure 4: The square roots ofaeiθ are
√

aeθ/2 and
√

ae(θ/2+π).



Complex conjugate

c = x+ iy
c∗ = x− iy

...or, in polar form:

c = aeiθ

c∗ = ae−iθ

The complex conjugate has the same amplitude,
but the phase is multiplied by minus one.
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Figure 5: TheN-th roots of unity.



Complex conjugate (contd.)

The sum of a conjugate pair:

c+ c∗ = (x+ iy)+(x− iy)
= 2x
= 2Re(c)

The product of a conjugate pair:

cc∗ = (x+ iy)(x− iy)
= x2+ iy− iy− i2y2

= x2+ y2

= a2

...or, in polar form:

cc∗ = aeiθae−iθ

= a2ei(θ−θ)

= a2

The amplitude of a complex number is the square
root of the product of the complex number and
its conjugate:

|c| =
√

cc∗.
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Figure 6: Complex conjugate.


