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Abstract

We use generalized particle trajectories to derive an analytic expression characterizing the
probability distribution of boundary-completion shape. This is essential to the understandz’ng
of the perceptual phenomenon of illusory (subjective) contours. The particles’ dynamics in-
clude Poisson-distributed ensembles of driving forces as well as particle decay. The resulting
field, representing completed surface boundaries, is characterized by the fraction of particles
at x with velocity x. The distributions are projectively covariant in the sense that fields cal-
culated in any lower-dimensional projection correspond to the projections of fields calculated
in any higher dimension. Being analytic, the relationship between velocity, diffusivity, and
decay can be made readily apparent.

1 Introduction

The phenomenon of illusory contours is much studied by visual psychologists and provides
a compelling example of human visual competence not yet demonstrated by computer vi-
sion systems. Recently, a novel theory of illusory contour shape and salience has appeared.
Williams and Jacobs[11] defined the illusory contour shape and salience problem to be the
problem of computing the the shape and relative likelihood (as determined by the prior
probability distribution) of the family of curves which potentially connect (or complete) a
set of contrast edges. Like Mumford[6], they proposed that the probability distribution can
be modeled by a random walk in a space of positions and orientations. This random walk
has the property that maximum likelihood paths are curves of least energy (i.e., the shape
commonly assumed to model the shape of illusory contours[4]). In this paper, we use gener-

alized particle trajectories to derive an analytic expression for this probability distribution,



which Williams and Jacobs call the stochastic completion field. Although the original treat-
ment relied on Monte-Carlo methods to solve the non-linear stochastic differential equation
defining the random walk, there are situations where Monte Carlo methods are inadequate.
Low probability events can be unacceptably noisy for simulation times of practical length.
Fortunately, an analytic solution is available, and this solution, while more general, has the
additional virtues of being simpler and more efficient to compute. Most importantly, the
analytic solution permits an analysis of properties of the distribution not previously possible
(e.g. its expected value and variance). Being analytic, the relationship between velocity, dif-

fusivity, and decay (all components of the original treatment) can be made readily apparent.

2 Prior Work

The earliest theory of illusory contour shape is due to Ullman|[9]. Ullman hypothesized that
the curve used by the human visual system to join two contour fragments is constructed
from two circular arcs. Each circular arc is tangent to its sponsoring contour at one end and
to the other arc at the point of intersection. From the family of possible curves of this form,
the pair which minimizes total bending energy (i.e., E = [ k(s)?ds) models the shape of the
illusory contour. Ullman suggested that illusory contours could be computed in parallel in
a network by means of local operations, but he never tested this idea.

More recently, Guy and Medioni[2] describe a method for computing a vector-field repre-
senting global image structure from local tangent measurements. The key to their approach
is the local summation of a set of global voting patterns representing orientations which are
co-circular to the tangent measurements. Consequently, the vector-field is non-stochastic
(i.e., deterministic), and cannot model the prior distribution of completion shapes.

Heitger and von der Heydt[3] describe a theory of figural completion based upon non-
linear combination of the convolutions of “keypoint” images with a fixed set of oriented
grouping filters. Keypoints are located at negative minima or positive maxima of curvature
(i.e., corners) in a luminance boundary and represent the pair of orientations at likely points

of occlusion. Significantly, they demonstrate their method on both illusory contour figures



like the Kanizsa triangle and on more “realistic” images (e.g. of plants and rocks) with

impressive results.

3 Approach

First picture a set of positions and velocities {x;,%;} in the image plane. These represent
locations where one surface boundary occludes another. Following [3], these will be termed
keypoints. Then consider the set {x(¢) | {x;,%;}} of all parameterized curves which pass
from any x; to any x; (j can be i) with increasing ¢ subject only to the restriction that
whenever x(t) = x, 0ix(t) = x;.! We now ask the question: How can the distribution of
curves which pass through the keypoints with these velocities be characterized? One way is to
consider the trajectories of particles under the influence of random forces. Since both position
and velocity are important, the treatment must go beyond simple diffusion. Consequently,
characterization is more complex. We choose to focus on the fraction of particles at x with
some velocity x (i.e., at each field point we have a distribution of velocities). The result is

a stochastic field of tangents grounded in the set of keypoints {x;, x;}.

4 Treatment

Given a distribution {x;} of trajectories x(t), each constrained to pass through two key-
points, we wish to calculate the fraction of particles at all other points x, with velocity x.
Furthermore, we shall do the calculation in such a way that we shall also be able to deter-
mine joint velocity-velocity distributions, both pair-wise and higher order if necessary. The
expressions will be analytic throughout, and reduce to relatively simple, calculatable forms
in many realistic cases.

Suppose by P(2,3 | 1) we mean the probability that a particle, subject to some dynamics

and various stochastic forces leaves x; with velocity x; at time t;, is at x3 with x3 at ¢3, and

!Normally curves are parameterized in terms of distance s along them. However, then | dx/ds |= 1, and
we lose a degree of freedom (i.e., speed when the curves are particle trajectories). We will need this degree
of freedom.



arrives at x, with x, at 5 such that ¢; <t3 <. If at x; we have a source of such particles

I1(t), then

/_tg’ i P(2,3 | 1)]1(t1)//_t3 P2 | 1) (1)

will be the fraction of those particles from the source arriving at x; with x, at ¢ which are
at x5 with x3 at ¢5. If we weight the arrival times according to J3(¢2), then the fraction going

from 1 (x1,%;1) to 2 (x2,%X3) which are at 3 (x3,X3) is simply:

[Can [ anresnnnw)/ [Cde [T anpe DL L0
Note that since [dxs [dx3P(2,3 | 1) = P(2 | 1), the above fraction is the probability of
(x5,X3), but not the probability of x3 given xs.

From the definition of conditional probabilities, we can write P(2,3 | 1) = P(2 | 3,1)P(3 |
1). Now so long as the dynamics of our particle do not involve interactions with other
particles, P(2 | 3,1) = P(2 | 3) for t; < t3. This is because whatever happened during
11 <t < t3 is summarized by 3. Hence, P(2 | 3,1) does not depend on 1 so long as t; < t3

and we can effect the following factorization:

[ /_tf’ A P(2,3 | DE(0)da(ts) = [ dtaP(2 | 3)J2(t2)/_t3 it P(3 | 1) (1)

t t3

This enables us to pass at once to the case of n keypoints. Trajectories satisfying the velocity
constraints connect the keypoints (including trajectories which begin and end at the same
point). Thus we can write the following expression representing the fraction, f(x,x), of

particles at x with velocity x and which satisfy the constraints, {x;, X;}:

Fx%) = S(x,%)/ / dx / xS (x, %)

where



is the stochastic completion field of Williams and Jacobs[11] and

ta
My % [ xiks) = [ PRt | ik t) L)

My(x,% | x;,%;) = /t dta P(x;, %, 12 | X, %, 13)J(t2)

represent the contributions of each keypoint to what they refer to as the source and sink
fields.

Even if the [; and J; are time-invariant, we may wish to retain them if it should be
necessary to weight the keypoints other than uniformly. As [ dx [ dxC(x,%) does not directly
depend on (x,x) (unless we need the absolute fraction) we can simply take f(x,%) to be
C(x,%) and not worry about over-all factors (i.e., we are only concerned with the relative
fraction). Furthermore, if we do not have exact knowledge of the position and velocity at the
keypoints, {x;,%;}, but instead have distributions p;(x;) over velocity, we need only average

C(x,%) over these distributions to obtain f(x,X).

5 Evaluation

We now turn to the evaluation of P(2 | 1), the heart of M; and M;, where, unlike above, 1

and 2 can be arbitrary points.
P2 1) =< 6(x(t2) — x2)0(x(t2) — %x2) >1,

where the average < ..... >1 is taken over-all trajectories starting at x; with velocity x; at

t;. Expressing the delta function as integrals:

de? . d\? s : s
P(211 _/ —zl<.',~x2/ —1A-Xo R-X(t2) JtAX(t2)
( | ) (27_‘_)(16 (27T)de < e e >q

where d is the dimensionality of the space of interest. Thus, if one can calculate the charac-

teristic functional

q)(kt) =< eifdtkt'xt >



then by letting k; = & 6(t — t3) — A6'(t — t3), the expression for P(2 | 1) will follow at
once. Although more general cases can be treated using these methods, we will focus on

trajectories of the following form:

t
X(t) = —ath(t,tl) X1+ G(t,tl) ).(1 + dt/G(t,t/)F(t/)

ty
where F(t) is an elementary, stochastic force of dimension d. Inserting x(t) and %X(t) into

¢ (k;) we find:

ok, = exp(i/dtkt(—ath(t,t1)X1 + G(t,t1)%1))

— exp(i / dtl(—0,0, G(t,1))x1 + 9,G(t,11)%1)) < exp(i / dtp, - F,) >

where py = [, dt(k:G(t,t')) and G(¢,t) = 0. In Appendix A we calculate < exp(z [ dtp; -
F:) > quite generally for F; represented as a collection of forces of various strengths and in
various directions which occur at times governed by Poisson processes at time varying rates.

While we could proceed with that result, it is simplest for our purposes to take the

Gaussian limit of numerous, smaller forces at constant, average rates. The result is

. 1
< eXp(l/dtpt-Ft) >= eXp(—ﬁ/dtpt T - py)

which, when inserted into ®(k;) yields for P(2 | 1):

7o 1 ~

P2]|1) = \/ﬁexp(—§w (P+P) -w)

where w is the 2d vector

w = (x2 — (=0, G, X1 + Gy, X1), X2 — (— 01,04 Gyt X1 + 01, Gryr, X1))

and P is the 2d x 2d (block) matrix,

P—l/hdt Gut V1 (&, 0,60,
= 2 at2G-t2t toty Uty “igt



which is readily inverted.
For our purposes, we can take the response of a free particle Gy v = (¢t — t")u(t — t') and

G and T diagonal. This results in
P2|1)=P2| )P, (2|1)...P,(2]1)

where P.(2 | 1),r = x,y,...w correspond to the factors for each dimension. When, for

example, ty; =ty — 11, 91 = x93 — x1 and x9; = x5 — 21, then:

V3 6 Ty + 24 12
P.(2]1) = - ) AL
211 Ttz P\ T T, (ar p )t i

At this level of simplification, the only remaining dimension-dependent parameter is 7)., the
effective strength of the fluctuation inducing forces.

To introduce more control over the duration of the paths one can multiply P(2 | 1) by a
function of time Q21(t). When, for example, Q21(t21) = exp(—t21/721) then the contribution
of paths of duration much longer than 7, is reduced. This corresponds to letting particles
decay with an average rate of 1/7;. Because this makes longer trajectories exponentially
less likely, both Mumford[6] and Williams and Jacobs[11] employed this mechanism to model
the component of the prior distribution of completion shape dependent on length. Other

temporal filters Q21(t2, 1) serving alternative purposes can be used as needed.

6 Expected Trajectory

In this section, we derive analytic expressions for the expected value and variance of the com-
pletion field. This is done for arbitrary configurations of two keypoints and for trajectories
of specific duration (i.e., for a given t51). In Appendix B, we show how this last restriction
can be relaxed (i.e., we show how the expected value and variance of the completion field can
be estimated by averaging over trajectories of all durations). For the moment, we observe
that the analytic expression for ®(k;) makes it straightforward to determine the expected

trajectory when t,; is known:
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Figure 1: Expected trajectory, < z3 >, for two point configuration: x; = (0,0),%; =

(cos30°,5in30°),x2 = (10,0),%2 = (cos —30°,sin —30°). Total transit time, {y; = { = 12.4 was
computed using steepest descent approximation with 7" = 0.01 (See Appendix B). Dashed lines
show plus/minus standard deviation (i.e., /(Az3)?).

<Xz > = < Xt35(Xt2 — Xg)(S().(tz — XQ) >1 / < 5(Xt2 — Xg)é().(tz — Xz) >1

< }.(3 > = < ).(tg)é(XtQ — XQ)(S().(tQ — ).(2) >1 / < 5(Xt2 — Xg)é().(h — ).(2) >1

This can be achieved in the following way:
o letting k; = ké(t — t2) + kso(t — t3) — A6'(t — t2) — 136'(t — t3) in (k)
e integrating over K and A as in the evaluation of P(2| 1)
e taking —i0/0ks; of the result to get < x3 >

e taking —id/0ls to get < x5 >.?

2Setting k3 = 0 = 13 following the differentiations.



The results are (letting ¢;; indicate t; — t;):

<Xz > = Xi(tya(tar 4 2t51)/157) + Xa(ty3ta1/1,7)
+ Xa(tsi(tar + 2023) /1,7) — Xo(tasts1/1y])

<x3 > = 2xy(—tas(tar + 2t31) + t2§)/t£ + X1 (—2t93t31 + t2§)/tﬁ

+ 2Xa(ta1(tar + 2tas) — ta7) /17 — X2(2lastsr — ty7) /1]

Note that the expected value is independent of the strength of the diffusive scattering
T, even though such scattering is essential if the underlying trajectories are to match xq, x;
and X5, X, at t1,15. Significantly, this suggests that the method of [11] is robust to details
of the stochastic process generating the completion fields. Finally, the form of the expected
trajectories suggests that if one were to enforce acceleration X;,X; as additional boundary
conditions (e.g. to represent curvature), then the expected trajectories would involve powers
of t3 as high as the fifth, and could (almost) be written down by analogy.”

In an analogous manner to the calculation of < x3 > and < %3 >, the variance of the

trajectories from these expected values can also be calculated. We find for each component

(Azz)? = < (x3— <a3>)?>
= (T/3)(t2 — 13)*(ts — t1)*/(ta — t1)°

Since the variance, or uncertainty, vanishes as the diffusivity 7' goes to zero, we conclude that
the spread observed in the computed contours is due to variations in < x > with the duration
(t2 — t1) of the trajectories—shorter times yield shorter contours. In order for x; to match
1 and 2, that is, go from x;1,%; at ¢; to x5, X, at ¢3, the particle must experience scattering.
Ordinarily one would expect this to keep Ax > 0 even for T' = 0. Interestingly, this is
evidently not the case—the uncertainty (stochasticity), instead enters from the distribution
in trajectory duration. The variance of each component of the velocity, (Az)?, from its

expected value also shows an unexpected property:

(Aig)Q - T(t%l —|— 3(t23 - t31)2)t23t31/4t§1

3Enforcing only x; at t;, X3 at ¢3 yields < x3 >= z1las/tar + atz1/ta1.
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Figure 2: Variance of velocity from its expected value, (Ad3)?, plotted as a function of time. Note
the local minimum at mid-trajectory.

= T(tg — tl)/16 for t3 = (tg + tl)/Z

In other words, this variance has a local minimum at mid-trajectory, dropping to only one-
eighth the value one would ordinarily have expected (see Figure 2).* As with (Az3)?, (Az3)?

also vanishes with 1" despite the necessity of fluctuations to match the boundary conditions.

7 Comparison w/Monte Carlo Method

In [11] the stochastic completion field was computed for a range of illusory contour figures
from the visual psychology literature. This was accomplished by exploiting the fact that
the stochastic completion field can be computed directly as the product of two vector-field
convolutions. The convolution kernels are defined with respect to random walks beginning
(or ending) at the origin with orientation zero. More specifically, the convolution kernels
represent: 1) the probability that a particle beginning at (0,0, 0) will reach any other position
and orientation in the image plane (i.e., (x,y,8)) before it decays (i.e., the source field); and

2) the probability that a particle beginning at (z,y,8) will reach (0,0,0) before it decays

4By contrast (Azz)? is maximal at mid-trajectory.
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Figure 3: Ehrenstein figure.

(i.e., the sink field). The convolution kernels were computed by a Monte Carlo method based
upon simulation of the random walk for 1.0 x 10° trials on a 256 x 256 grid with 36 fixed
orientations. The probability that a particle beginning at (0,0,0) will reach (z,y,8) before
it decays was approximated by the fraction of simulated trajectories beginning at (0,0,0)
which intersected the region (x + 1.0,y £1.0,0 + 7/72).

We have computed the stochastic completion field for these same figures using convolution
kernels computed by setting ;1 = 0, 21 =1, y1 =0, y1 = 0, o = z, 9 = cosb, y, = v,

Y2 = sinf and t; =t in the expression for P(2 | 1) = P.(2 | 1)P,(2] 1):

3 6
P(z,y,601]0,0,0) = —saga OXP <_ﬁ (;172 +y? — (z(1 + cos ) + ysin )t + (2 + COSQ)t2/3))

and numerically integrating over the independent variable representing total transit time (i.e.,
t) using Simpson’s method.? Because the original treatment[11] used particles with a finite
half-life, we used a time weighting function Q(¢) of the form exp(—t/7). In contrast with

the Monte Carlo method, where it is difficult to achieve more than three significant digits of

®We have also approximated this integral analytically using the method of steepest descent (see Appendix
B).
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Figure 4: Top: Stochastic completion field for Ehrenstein figure computed using method of
[11] (summed over all orientations). Bottom: The same, but using the filter computed by
numerical integration of analytic expression for P(2 | 1) instead of by Monte Carlo method.



accuracy (and this for the larger probabilities, see Section 8), the probability values computed
by numerical integration of the expression for P(2 | 1) are accurate to six significant digits
(independent of magnitude).

As a first experimental demonstration, consider a source distribution consisting of four
oriented impulses equally spaced around the circumference of a circle. This distribution
is meant to represent an Ehrenstein figure (see Figure 3). The keypoints are located at
endpoints of the four line segments comprising the figure and are oriented normal to the
segments. Figure 4 (top) shows the stochastic completion field computed using the method
of [11]. The magnitudes are summed over the 36 discrete orientations so that the stochastic
completion field can be displayed as a brightness image. Figure 4 (bottom) shows the
stochastic completion field computed using the convolution kernel computed by numerical
integration of the expression for P(2 | 1) instead of by the Monte Carlo method. The gaps in
the completed figure are due to an implementation detail and are unimportant. Otherwise,
there is close agreement between the results produced by each method.

The second demonstration is the well known Kanizsa triangle[5] (see Figure 5 (top)).
The source distribution consisted of a set of oriented impulses representing the orientations
of contours bounding regions of constant brightness at positive maxima of curvature (see
[11]). In general, these are points where it is likely that one surface occludes another. Figure
5 (bottom left) shows the stochastic completion field from [11] (summed over all orienta-
tions). For illustrative purposes, it is superimposed on the brightness gradient magnitude
image. Figure 5 (bottom right) shows the same, but using the filter computed by numerical
integration of the analytic expression for P(2 | 1).

Figure 6 (top) shows the Kanizsa “paisley” stimulus[5], which is a well known example
of the Petter effect. The Petter effect occurs when two surfaces of equal reflectance overlap.
Because the reflectances of the two surfaces are the same, their relative depth cannot be
determined from figural information alone. Even so, there is a strong tendency to see the
broader of the two surfaces in front of the narrower. Figure 7 (top) shows the stochastic

completion field from [11] summed over all orientations and superimposed on the brightness

13



Figure 5: Top: Kanizsa triangle[5]. Bottom Left: Stochastic completion field (summed
over all orientations and superimposed on brightness gradient magnitude image) from [11].
Bottom Right: The same, but using the filter computed by numerical integration of analytic
expression for P(2 | 1) instead of by the Monte Carlo method.
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gradient magnitude image. Figure 7 (bottom) shows the same, but using the filter computed
by numerical integration of the analytic expression for P(2 | 1). It is interesting to note that
the average likelihoods of the shorter completions are several orders of magnitude greater
than the average likelihoods of the longer completions.

Figure 6 (bottom) shows a more complex illusory contour figure, also designed by
Kanizsa[5]. This figure illustrates that whether or not an illusory contour is perceived is
not solely a function of local configurational factors, but also depends on whether or not
the completion can be incorporated in a topologically valid surface organization (see [10]).
Because the diffusion process has no knowledge of the topology of surfaces, the stochastic
completion field from [11] (shown in Figure 8 (top left)) contains potential completions
which are not perceived by human subjects. Potential completions required to complete the
four rectangles are among the most salient, however. Figure 8 (bottom left) shows the loga-
rithm of the stochastic completion field from [11]. In the logarithm image, many additional
completions of significantly lower average likelihood become visible. Included among these
are those required to complete the four black discs and eight black squares perceived by
human subjects. Figure 8 (top right) shows the stochastic completion field computed by
numerical integration of analytic expression for P(2 | 1). Figure 8 (bottom right) shows the
logarithm of the stochastic completion field computed by numerical integration of analytic
expression for P(2 | 1). As in the other cases, there is close agreement between the results

produced by each method.

8 Advantages of the Analytic Expression

Although the prohibitive amount of time required to compute the convolution kernel rep-
resenting the source field by Monte Carlo methods was the original reason for turning to
analytical methods, another important reason is a desire for increased accuracy. Recall that
the method of Williams and Jacobs[11] exploits the fact that the completion field can be ex-
pressed as the product of source and sink fields, each of which is computable by convolution.

Unfortunately, the product operation can amplify errors found in either of the constituent

15



Figure 6: Top: Kanizsa’s “paisley” stimulus[5]. Bottom: A complex stimulus, also due to

Kanizsal5].
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Figure 7: Top: Stochastic completion field for Kanizsa “paisley” stimulus[5] (summed over all
orientations and superimposed on brightness gradient magnitude image) from [11]. Bottom:
The same, but using the filter computed by numerical integration of analytic expression for

P(2 ] 1) instead of by the Monte Carlo method.
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Figure 8: Top Left: Stochastic completion field (summed over all orientations and superim-
posed on brightness gradient magnitude image) from [11]. Top Right: The same, but using
the filter computed by numerical integration of analytic expression for P(2 | 1) instead of by
the Monte Carlo method. Bottom Left: Logarithm of stochastic completion field (summed
over all orientations) from [11]. Bottom Right: The same, but using the filter computed
by numerical integration of analytic expression for P(2 | 1) instead of by the Monte Carlo
method. 18



fields. Due to the nature of Monte Carlo simulation, lower probabilities are estimated less
accurately, and to increase the accuracy by a factor of two, four times as many trajectories
must be simulated. The somewhat paradoxical result is that probability estimates in the
largest magnitude region of the completion field (i.e., the region surrounding the expected
value) can be significantly in error when the magnitude of the corresponding region of the
source (or sink) field is too small. Furthermore, because the rate at which the probability
magnitude of the source field drops off is a function of the variance of the distribution (i.e.,
the strength of the diffusive scattering), Monte Carlo methods are limited to characterizing
fairly broad distributions. With the analytic solution, the accuracy of the probability esti-
mates are percentage-wise independent of their absolute magnitude. Consequently, one can
work with sharper distributions, yet achieve greater overall accuracy.

We now turn to estimating the actual errors in the Monte Carlo calculations. For a source
at the origin with orientation in the direction of the positive x-axis (i.e., (0,0,0)) the source
field can be estimated by a Monte-Carlo method in which Brownian particles “diffuse” in the
plane, each along its own path.® The fields for all other sources and sinks can be obtained
from this by appropriate rotations and translations. If NV is the number of paths computed
and 1y is the number of paths through the region (v + dx /2,y + dy/2,0 + d6/2) (i.e, cell
(z,y,0)), then nge/N for each x is the probability along a line perpendicular to the z-axis

characterizing the source field:

Nzyo

N = P(z,y,010,0,0)dydd = Pdydf

. . 1/2 .
As the root mean square (rms) fluctuations in n,ys equal n,,, / , the relative error, e of ngy

-1/2

N 1/2/7%1/9). Thus, if too few paths pass through a cell, the estimate of the

iIsn

probability can be in serious error. Solving for e we find

e = (NPdydf)=/?

SHere we assume constant speed so that only the angle @ is stochastic. If the speed were also a random
variable, the error would be increased.
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Not only is the number of paths we can simulate in a fixed time limited, but so is the
resolution of the sampling grid. To determine e, the relative error, we first observe that

vl
2

S ll‘

where t; is the total computer time allocatable, ¢, is the computation time required to
simulate each discrete time step in the Monte-Carlo runs, dz is the cell width in = and

I, is the spatial extent of the field in z.” Next, taking the probability distribution to be

approximately Gaussian, we have

exp(—(y — y)?/2Ay?%) dy exp(—(0 — 0)%/2A0%) db
(2m)1/2 Ay (2m)1/2 Af

where y and 0 are the mean values and Ay and A# the rms deviations of y and 8, respectively.®

Pdydf =

This is a very useful form, for it lets us estimate the probability in terms of standard devia-
tions from the mean and element size relative to rms deviation.

For simplicity let us evaluate the above probability for (y —7) = k,Ay and (0 —0) = kyAf
for typical values of k,, kg, that is, k,, kg standard deviations from the means y, 8. Then the
relative error in the source field where y = y & k,Ay and 0 = 0 £ kg A0 is

e = (N(2m) ™" exp(—k?/2)(dy/Ay) exp(—k2/2)(d6/20))

Even for relatively large cells such that dy/Ay = 1/2 = df/A8, for k, = 3 and ky = 2
one finds that the relative error, e = 0.12 or 12 percent. The tradeoffs are quite apparent.
Increasing the scattering will reduce the Monte-Carlo error by spreading the particles out
and softening their distributions, but this will make the illusory contours more difficult to
localize. Decreasing the scattering to sharpen the source field will render it more noisy in the
regions most important for the formation of the completion fields. Because the completion

field is the product of source and sink fields, the relative error of the completion field is the

“Typically t; ~ 3 hours, t; ~ 40us, dz = 1 (reference length), and [,=256 (=28). Thus a path takes
about 10ms to execute, and N = 10° paths take about 3 hours.

8Here y and Ay are functions of z, and § and Af are functions of z and y. The variances depend upon
how much diffusion scattering is employed in the Monte Carlo simulation.
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sum of the relative errors in each. It is not uncommon (e.g., the Ehrenstein figure), for the
expected value of the completion field to be several standard deviations distant from the
expected values of the source and sink fields. Unless the completion field in this region is

sufficiently sharp, the illusory contour cannot be correctly localized.

9 Conclusion

In this paper, we have derived an analytic expression for the stochastic completion field. This
expression is both simpler and more efficient to compute than the previously used Monte
Carlo method. Most importantly, the analytic expression permits an analysis of properties of
the stochastic completion field not previously possible, including expected value and variance.
Significantly, the expected value of the distribution was shown to be independent of the
strength of the diffusive scattering (i.e., T'), depending instead on the variation in transit time
(i.e., ta1). This suggests that the method of Williams and Jacobs[11] is robust with respect
to the choice of this parameter. Finally, stochastic completion fields for a several illusory
contour figures from the literature were computed using convolution kernels generated by
both the Monte Carlo method and by numerical integration of the analytic expression. The
results in each case are virtually indistinguishable, suggesting that the distribution has been

correctly characterized.

Appendix A

Although the calculation of < exp(¢ [ dtp:F;) > for nonstationary F; was carried out
some time ago[7, 8], for the sake of completeness, and since the prior context was rather
different (and again yet more general), we rederive it here. The key conceptual idea for
stationary processes was due to Feynman[l1].

If the occurrences in time of Poisson processes of mean local rates Ry (t) are {tx,} (where

the ty, are independent) then expressing F(¢) as

F(1) = 0,302 filt — fi)
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leads for Ay, = [ dt;Ri(tx) at once to

. Ny
—/\k)\Nk dt R.(t ezfdtpt~fk(t—tk)
< exp(1 /dt )-Fy) >= HkZNk L Nklk (f kR ( k))\k

This follows, since in F(¢), Ny and the {t,} are stochastic, the N, being distributed accord-
ing to a Poisson distribution of mean Ay and ?; can occur at random uniformly relative to

Ry (tx) over any interval of interest. Carrying out the indicated sum and product we obtain:

< expli [ dt p(t)-Fo) >= exp( [ drEpRu(r)(expli [ dipe- it = 7)) = 1))

Clearly this is as far as we need to go—this will give us ®(k;) and then P(2 | 1), as well as all
higher-order correlation functions. However, expanding the exponent to second order in the
above expression makes the characteristic functional Gaussian and enables all component
integrals to be carried out explicitly. This corresponds to the limit of numerous, small
random fluctuations. Should this be inadequate, one can return to the above expression.

Expanding we find:
< exp(é /dt ) Fy) >= exp(— /dtl/dtgptl “H(t1,t5) - ps,)
and
H(ty,ty) = /dTE Ry (7)fi(ty — 7)fk(t2 — 7)

If the Ry(t) are independent of 7, i.e., stationary, then H(¢y,¢2) = H(¢y — ¢1).” The elemen-
tary, independent, driving forces fj(¢) are usually taken to be of such short duration that we

can write

1
H(tl,tg) = EZkRk(tl)fkfk(S(tl — tg)

Finally, for Ry stationary

1
H(tl,tg) - §T(5(t1 - tg)

®The term linear in p; is usually taken to vanish, for, if it did not, it would represent a net average force
on the system, which if present could be alternatively included directly in the expressions for x; and x;.
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and

. 1
< eXp(Z / dtp; - F; >= exp(_5 / dtp, - T - pt))

This should be adequate for many cases of interest.

Appendix B

Since the integral over time P'(2 | 1) = [P(2 | 1) dty is so well behaved, it can
be approximated analytically using the method of steepest descent. We wish to find ¢

maximizing the following:
—6(a/t21 - b/tgl + C/gtgl)
where
a = (vg+@5,/12)/Tx + (v5 +95,/12)/T,
b = 2($21'U$/Tx + y?lvy/Ty)
¢ = 3(I31/Tz + ygl/Ty)
Ve = ($1 + 1'2)/2
vy, = (h+92)/2
The above is maximized at

b—Vb% —ac

a

{ =
yielding the approximate value for P'(2 | 1) of
P'(2]1) ~ (2ri3/12(c — bi ))7P(2 | 1)

where t9; = 1 in P(2]1). This holds so long as b* > ac and 0 < { < tmaw. F02 < acort <0
or t > t,,.. then we set P'(2 ] 1) = 0. Finally, we note that by letting 5 = i, ts1 =t and
ty3 =t —t in the expressions for < x5 >, < X3 >, (Az3)? and (A#3)? presented in Section 5,

that we can find approximations for these values averaged over trajectories of all durations.

23



Acknowledgments The authors wish to thank Ingemar Cox for helpful conversa-

tions which sparked our interest in this problem.

References

[1]

[2]

[10]

[11]

Feynman, R.P. and A.R. Hibbs, Quantum Mechanics and Path Integrals New York; McGraw
Hill, 1965.

Guy, G. and G. Medioni, Inferring Global Perceptual Contours from Local Features, Proc. of
the DARPA Image Understanding Workshop, Washington, DC, pp. 881-892, 1993.

Heitger, R. and von der Heydt, R., A computational model of neural contour processing,
figure-ground and illusory contours, Proc. of 4th Intl. Conf. on Compuler Vision, Berlin,
Germany, 1993.

Horn, B.K.P., The Curve of Least Energy, MIT AI Lab Memo No. 612, MIT, Cambridge,
Mass.,1981.

Kanizsa, G., Organization in Vision, Praeger, New York, 1979.

Mumford, D., Elastica and Computer Vision, Algebraic Geomelry and Its Applicalions,
Springer-Verlag, New York, 1994.

Thornber, K.K., Treatment of Microscopic Fluctuations in Noise Theory, BSTJ 53, pp. 1041-
1078, 1974.

Thornber, K.K., A New Approach for Treating Fluctuations in Noise Theory, J. Appl. Phys.
46, pp. 2781-2787, 1975.

Ullman, S., Filling-in the Gaps: The Shape of Subjective Contours and a Model for Their
Generation, Biological Cybernetics 21, pp. 1-6, 1976.

Williams, L.R., and A.R. Hanson, Perceptual Completion of Occluded Surfaces, Proc. of
IEFEFE Computer Vision and Pattern Recognition, Seattle, WA, 1994.

Williams, L.R., and D.W. Jacobs, Stochastic Completion Fields: A Neural Model of [llusory
Contour Shape and Salience, Proc. of the 5th Intl. Conf. on Compuler Vision, Cambridge,
Mass., 1995.

24



