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Researchers in computer vision have primarily studied the
1. INTRODUCTION

By considering only the visible surfaces, conventionalproblem of visual reconstruction of environmental structure
that is plainly visible. In this paper, the conventional goals of models avoid the most difficult part of visual reconstruc-
visual reconstruction are generalized to include both visible tion—deducing the topology of 3D scene structure. Con-
and occluded forward facing surfaces. This larger fraction of the ventionally, the topology of the reconstructed scene is trivi-
environment is termed the anterior surfaces. Because multiple ally determined by the assumption that the imaging process
anterior surface neighborhoods project onto a single image maps visible surface neighborhoods to image neighbor-
neighborhood wherever surfaces overlap, surface neighbor- hoods in one-to-one fashion. However, introspection sug-
hoods and image neighborhoods are not guaranteed to be in one-

gests that the human visual system reconstructs a largerto-one correspondence, as conventional ‘‘shape-from’’ methods
fraction of the environment. Imagine a pool ball sitting onassume. The result is that the topology of three-dimensional
the felt surface of a pool table. You would be quite sur-scene structure can no longer be taken for granted, but must
prised if upon picking up the pool ball, you discoveredbe inferred from evidence provided by image contours. In this
that a hole of its exact size and shape lay behind it. Whatpaper, we show that the boundaries of the anterior surfaces

can be represented in viewer-centered coordinates as a labeled can account for this surprise, other than the fact that new
knot-diagram. Where boundaries are not occluded and where information contradicts previously held unconscious infer-
surface reflectance is distinct from that of the background, ences about structure other than the visible surfaces?
boundaries will be marked by image contours. However, where In this paper, the goal of visual reconstruction is general-
boundaries are occluded, or where surface reflectance matches ized to include the fraction of the environmental surfaces
background reflectance, there will be no detectable luminance that are potentially visible (because they are forward fac-
change in the image. Deducing the complete image trace of the

ing) but are possibly occluded by intervening surfaces.boundaries of the anterior surfaces under these circumstances is
Unfortunately, surface neighborhoods and image neigh-called the figural completion problem. The second half of this
borhoods are no longer guaranteed to be in one-to-onepaper describes a computational theory of figural completion.
correspondence. Occlusion confounds the visual mappingIn more concrete terms, the problem of computing a labeled
since multiple surface neighborhoods project onto a singleknot-diagram representing an anterior scene from a set of con-

tour fragments representing image luminance boundaries is image neighborhood wherever surfaces overlap. Conse-
investigated. A working model is demonstrated on a variety of quently, the topology of 3D structure can no longer be
illusory contour displays. The experimental system employs a taken for granted but must instead be inferred from the
two-stage process of completion hypothesis and combinatorial fragmentary evidence provided by image contours. This
optimization. The labeling scheme is enforced by a system of process is termed figural completion.
integer linear inequalities so that the final organization is the
optimal feasible solution of an integer linear program.  1996 2. PAST WORK
Academic Press, Inc.
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2 WILLIAMS AND HANSON

constraints, and inherent ambiguities, leading to a defini-
tion of the function which maps the available input to a
representation sufficient to explain the observed human
competence. Ideally, this function is described indepen-
dently and in advance of an algorithm and representation
level theory [20].

Like us, Nitzberg and Mumford [21] have studied figural
completion in illusory contour figures such as the Kanizsa
triangle (see Fig. 1). They also describe a combinatorial
optimization approach where potential completions are
explicitly represented by curves of least energy. The ob-
jective function they minimize includes terms which imple-

FIG. 1. The Kanizsa triangle.ment a preference for organizations consisting of low-en-
ergy completions bounding regions of uniform brightness.
Unlike us, the surface representation they compute (i.e.,
their computational goal) consists of sets of closed, non- to intervening surfaces). Having a positive component in
self-intersecting plane curves (i.e., Jordan curves) of con- the viewing direction is therefore a necessary but not a
stant depth. Consequently, surfaces with boundaries which sufficient condition for visibility. For this reason, in this
project as self-intersecting curves in the image plane cannot paper, we distinguish between the visible surfaces and the
be represented. anterior surfaces:

Related algorithm and representation level theories
DEFINITION. Visible surfaces: the locus of environmen-have been advanced by numerous researchers. The major-

tal surface points first incident along the lines of sight.ity of these address only limited aspects of the figural com-
pletion problem, such as the shape of illusory contours [10, DEFINITION. Anterior surfaces: the locus of environ-
11, 28, 30]. Algorithm and representation level theories of mental surface points where the surface normal is defined
significantly broader scope are described by Grossberg and and has a positive component in the viewing direction.
Mingolla [9] and Finkel and Sajda [7]. Both of these theo-
ries consist of descriptions of neural networks with multiple The difference between the visible surfaces and the ante-

rior surfaces is illustrated through a series of figures begin-layers which solve distinct subproblems in cooperative
fashion. For example, Grossberg and Mingolla divide the ning with Fig. 2a. This simple ray-traced image of a sphere

and cone is illuminated by a point source coincident withfigural completion problem into two subsystems which they
term the boundary contour system (BCS) and the feature the location of the viewer, so there are no visible shadows.

Figure 2b depicts a sideview of the same scene with thecontour system (FCS). The former deals with completing
gaps in contours, the latter with completing surfaces illumination unchanged. Because of the location of the

light source, surfaces not visible from the first viewpointwithin boundaries.1

lie in shadow. The outlines of the visible and anterior
3. COMPUTATIONAL GOAL surfaces (with respect to the first viewpoint) appear in

sideview in Figs. 2c and 2d.
The stated goal of all ‘‘shape-from’’ methods is comput- Perhaps it is not surprising that occluded surfaces are

ing the depth and surface orientation of the visible surfaces. ignored by conventional models, after all, surface patches
The visible surfaces are sometimes defined as the locus of which are not visible do not contribute to image brightness.
surface points where the surface normal has a positive However, the most important reason is that the image
component in the viewing direction. This is precisely the irradiance equation [1] presupposes a continuous and in-
subset of the environmental surfaces with orientations that vertible mapping between image neighborhoods and visi-
can be represented as points in gradient space. Of course ble surface neighborhoods. Such a mapping is called a
this definition only accounts for self-occlusion (i.e., the homeomorphism. Under homeomorphism, the visible sur-
nonvisibility of backward facing surface patches) and does faces are embedded in the image plane. This is why it is
not account for nonlocal occlusion (i.e., nonvisibility due possible to speak of the depth and surface orientation

of image point x, y without ambiguity: depth and surface
1 It is useful to compare Grossberg and Mingolla’s algorithm and repre- orientation are assumed to be a function of image coordi-

sentation level theory with the computational theory we describe here. nates. This is also why shape-from methods can operate
While Grossberg and Mingolla describe mechanisms (i.e., the BCS and

on image neighborhoods and reconstruct surface neighbor-FCS), we describe corresponding computational goals (i.e., the labeled
hoods: They are assumed to be in one-to-one correspon-knot-diagram and paneling). For this reason, we believe the two theories

are complementary. dence.
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FIG. 2. Upper left: A simple ray-traced image of a sphere and a cone. This scene is illuminated by a point source coincident with the location
of the viewer, so there are no visible shadows. Upper right: A sideview of the same scene with the illumination unchanged. Because of the location
of the light source, surfaces not visible from the first viewpoint lie in shadow. Lower left: The visible surfaces are defined as the locus of surface
points first incident along lines of sight. Lower right: The anterior surfaces are defined as the locus of surface points where the surface normal is
defined and has a positive component in the viewing direction. The visible surfaces are a subset of the anterior surfaces. Conventional models only
address the problem of reconstructing the visible surfaces.

Although homeomorphism may be an acceptable ap- to be studied without first having to solve the more difficult
problem of deducing the topology of environmentalproximation of the mapping of visible surface neighbor-

hoods onto the image plane, if the goal of visual reconstruc- structure.2

In this paper, it is hypothesized that the goal of earlytion is expanded from reconstruction of the visible surfaces
to reconstruction of the anterior surfaces (for example), visual processing is to compute a viewer-centered represen-

tation of the anterior surfaces, of which the visible surfacesthen the assumption of embedding breaks down. Occlusion
confounds the visual mapping of surface neighborhoods are merely a subset. The assumption of global homeomor-

phism between visible surface neighborhoods and imageto image neighborhoods since multiple surface neighbor-
hoods will project to one image neighborhood wherever neighborhoods (i.e., embedding) is generalized3 to the as-

sumption of local homeomorphism between anterior sur-surfaces overlap. The problem of inferring the neighbor-
hood structure of some fraction of the environment (rather
than simply taking it for granted) thus appears for the 2 In a recent article, Barrow and Tenenbaum [2] confirm this. They

state that ‘‘[o]ur interest in recovering scene characteristics arose in partfirst time. This is the crux of the perceptual completion
through a belief that it was not possible to segment an image reliably intoproblem, and of perceptual organization problems in gen-
meaningful regions and boundaries on the basis of raw brightness. . . .eral: What are the neighborhoods? This is among the most
However, the baby may have been thrown out with the bath water, and

difficult problems facing the field of computer vision today. should perhaps be rescued: perceptual organization may play a much
Certainly, part of the appeal of the standard model is that larger role. . .’’

3 This seems to be the simplest of the possible generalizations.it allows some aspects of the visual reconstruction problem
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face neighborhoods and image neighborhoods (i.e., immer-
sion). Since the visual mapping is locally singular only
where a surface is tangent to the viewing direction, local
singularities will never occur in images of smooth surfaces
embedded in three-space so that the surfaces are nowhere
tangent. This leads to the following definition:

DEFINITION. Anterior scene: a set of surfaces embed-
ded in three space so that the surface normals everywhere

FIG. 3. A boundary labeling scheme. The image of the surface liesare defined and have a positive component in the view-
to the right when the image of its boundary is traversed in the directioning direction.
of its orientation. Each boundary point is also assigned an integer value
equal to the number of surfaces lying between the boundary and itsBy definition, no singularities can exist in the parallel
projected image (i.e., its depth index). Finally, the depth of the boundaryprojection of an anterior scene onto the image plane. It
of the occluding surface must be less than or equal to the depth of thefollows that the visual mapping can be modeled as an
boundary of the occluded surface.

immersion (see [16] for a discussion of planar surface im-
mersions).

A topological circle embedded in three-space is termed generic views of anterior scenes. These constraints have
a knot. The projection of a knot onto a plane is called a been incorporated into the labeling scheme illustrated in
knot-diagram, and in general, consists of a closed plane- Fig. 3. It can be easily verified that the depth indices of
curve which intersects itself at a finite number of points the different edges in the labeling scheme accurately de-
called crossings. In this paper, knot-diagrams are used to scribe the effect of occlusion on the boundary depth at a
represent the image of surface boundaries in anterior crossing. The labeling scheme can therefore be considered
scenes. Each of the closed plane curves which together necessary in the sense that the image of the boundary of
comprise the projection of the boundary onto the image any anterior scene satisfies the constraints. But does a set
plane can be assigned an orientation which everywhere of closed contours satisfying the labeling scheme always
indicates which side of the curve the image of the surface define an anterior scene? Is the labeling scheme necessary
lies. We adopt the usual convention that the surface lies and sufficient?
to the right as the boundary is traversed in the direction In his recent Ph.D. thesis, Williams [29] shows that this
of its orientation. Additionally, each boundary point can is in fact the case. Specifically, he shows that every knot-
be assigned an integer value equal to the number of sur- diagram satisfying the labeling scheme illustrated in Fig.
faces lying between the point and its projected image (i.e., 3 represents a generic view of an anterior scene. The proof
a depth index). is based upon the existence of a procedure for building a

If the view of the anterior scene is generic, then the combinatorial model (i.e., a paneling [8]) of an anterior
crossings will be the only points of multiplicity two in the scene from a set of closed plane-curves satisfying the label-
projection of the boundary onto the plane: ing scheme (see Fig. 4). We conclude that labeled knot-

diagrams and generic views of anterior scenes are in one-DEFINITION. Generic view: an image of an anterior
to-one correspondence. Consequently, by enforcing thescene where (1) the multiplicity of the image of the bound-
labeling scheme during figural completion, it is possibleary is one everywhere except at a finite number of points
to ensure the topological validity and genericness of thewhere it is two and (2) the number of multiplicity two
reconstructed scene.points is invariant to small changes in the viewing direction.

We observe that the depth index can change only at 4. FIGURAL COMPLETION: A
crossing points in a generic view of an anterior scene. In COMPUTATIONAL THEORY
a knot-diagram, crossings are drawn in a manner which
explicitly indicates the relative depth of the two overlap- In this section, a computational theory of figural comple-

tion is described. In more concrete terms, the problem ofping strands. For our purposes, the upper and lower strands
of the crossing in the knot-diagram will represent the over- computing a labeled knot-diagram representing an anterior

scene from a set of contour fragments representing imagelapping image of the nearer and farther boundaries. The
depth of the farther boundary changes by one as it is luminance boundaries is investigated.

The natural constraints which apply to this problem areoccluded by the surface defined by the nearer boundary.
The depth of the nearer boundary, of course, remains un- few in number and not nearly sufficient to determine a

unique solution. These constraints have two sources. Thechanged.
The above observations constitute a set of necessary first is the requirement that the organization be a labeled

knot-diagram. This can be termed the topological validityconstraints on the appearance of surface boundaries in
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FIG. 4. (a) A labeled knot-diagram. (b) A network representing difference constraints on the number of surface points which project onto
adjacent regions of the labeled figure. The weights of edges in the network are 1 when traversed in the direction of the arrows and 21 when
traversed in the opposite direction. (c) Paper panels stacked above regions A and B in the plane. Following the identification scheme, all copies of
regions A and B except A(n 1 1) are glued along their adjacent sides. The free side of A(n 1 1) becomes part of the boundary of the surface.
(d) The paneling resulting from the construction. Bold edges remain free and form the boundary. Additional identifications are indicated by x and y.

requirement. Only plane-curves satisfying the labeling contradict the stimulus’’ and ‘‘must contain everything im-
plied by the stimulus.’’ Regarding illusory contour displays,scheme define topologically valid anterior scenes. The sec-

ond source of constraints has been stressed by Irvin Rock Rock hypothesized that the depth of visible boundaries
must be zero and that light surfaces must be visible against[25], and is termed the stimulus conformity requirement.

Rock observed that ‘‘the [perceptual] solution must not dark surfaces and vice versa.
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FIG. 5. Shape ambiguity. (a) A square opaque surface occluding a second surface of indeterminant shape. (b) The shape which properly
functioning human visual systems infer. (c) This completion can be imagined but is not perceived preattentively.

Given only these constraints, the problem of computing to overcome these ambiguities, an additional assumption
must be introduced. Broadly speaking, this assumption is:a labeled knot-diagram from an image of an anterior scene

remains underconstrained in three qualitatively different the shape of a perceptual completion is independent of the
role it plays in the organization. This allows the figuralways. The first kind of ambiguity can be termed shape

ambiguity. The essence of shape ambiguity is illustrated in completion problem to be decomposed into two indepen-
dent subproblems, the first devoted to shape, the secondFig. 5. Figure 5a apparently depicts a square opaque surface

occluding a second surface of indeterminate shape. With- devoted jointly to unit and depth. Many researchers have
proposed that the shape of an illusory contour is describedout ‘‘X-ray’’ vision, this problem cannot be solved in any

absolute sense. Even if smoothness is assumed (with no by the curve of least energy [12, 15, 21, 28]. However,
Witkin and Tenenbaum [31] offer the most convincingreal justification), an infinitude of completion shapes which

can be transformed one into another by smooth deforma- explanation of why this should be so. They point out that
while minimum energy solutions are not significantly moretions in the plane still remain. Yet humans experience a

particular shape, which is depicted in Fig. 5b. The other likely than other interpolating curves, the simple fact that
a smooth low-energy interpolating curve exists is itself acompletion can be imagined but is not perceived preatten-

tively. reliable indicator of a nonaccidental relationship. This has
important implications for the task at hand: the likelihoodUnlike shape ambiguity, the other two forms of ambigu-

ity are combinatorial and therefore finite. The first of these that two contour fragments form consecutive segments of
the same boundary is assumed to be a function of the shapeis unit ambiguity, which is ambiguity in identifying which

contour fragments match which to form boundaries (see of the smooth interpolating curve of least energy joining
them. We hypothesize that the human visual system re-Fig. 6). Second, there is depth ambiguity, which is ambiguity

in the signs of occlusion of different boundary components solves the ambiguity in completion shape somewhat arbi-
trarily, but in doing so, it gains information useful forand their relative depths at crossings (See Fig. 7).

Since the applicable physical constraints are insufficient resolving the unit ambiguity.

FIG. 6. Unit ambiguity. (a) A variation of the Kanizsa triangle. (b) The organization experienced by most observers. (c) The organization Rock
calls the ‘‘literal solution.’’ Although both are topologically valid anterior scenes conforming to the image evidence, they contain different sets of
closed boundaries.
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FIG. 7. Depth ambiguity. (a) A variation of the Kanizsa triangle. (b) The organization experienced by most observers. (c) A second topologically
valid anterior scene conforming to the image evidence. Although each organization contains the same set of closed boundaries, individual boundaries
differ in sign of occlusion and/or relative depth.

4.1. Surface Organization the sign of the brightness gradient. We adopt the conven-
tion that the darker region lies to the right as the boundary

Regardless of whether or not the shape of the curve of
fragment is traversed in the direction of its orientation.

least energy provides inferential leverage useful for resolv-
Ginput is augmented to form Gnonplanar 5 (Vendpoints ,

ing unit ambiguity, significant computational gains are
Efragments < Ecompletions) by adding edges representing po-

achieved simply by committing to a set of completions of
tential completions. As with each element of Efragments, each

fixed plausible shape. Since the image traces of potential
element of Ecompletions is a contour joining two elements

completions are determined solely by the tangents and
of Vendpoints. Finally, a planar graph, Gplanar, is created by

curvatures of the boundary fragments which they join, the
splitting the edges of Gnonplanar wherever two intersect and

locations of points of contour intersection (whether of com-
creating a vertex at that point called a crossing. If Vcrossingspletions or of completions and boundary fragments) are
is the set of crossings, and E9fragments < E9completions is the

independent of a specific surface organization. By commit-
set of edges after the splitting operation, then Gplanar 5

ting to a set of potential completions of fixed shape, the
(Vendpoints < Vcrossings, E9fragments < E9completions). Fig-

problem of constructing a labeled knot-diagram represent-
ure 8 illustrates what Gplanar looks like in the case of the

ing the surfaces in a scene becomes purely combinatorial:
Kanizsa Triangle. Here the endpoints (i.e., Vendpoints) are
drawn as filled circles and the crossings (i.e., Vcrossings) as1. Selecting an optimal subset of unique completions of

fixed shape. nonfilled circles. The boundary fragments (i.e., E9fragments)
are drawn as solid lines and the set of potential completions2. Enforcing the crossing labeling scheme at fixed points

of contour intersection. (i.e., E9completions) as dotted lines.
The problem of maximizing (or minimizing) a linear3. Ensuring that the depth of every contour conforms

to the stimulus. objective function subject to linear inequality (or equality)
contraints is termed a linear program (or LP). An integer

These three tasks can be combined into a single graph
linear program (or ILP) is a linear program where the

labeling problem. We maintain that this graph labeling
solution is further constrained to have integer components.

problem is intrinsic to figural completion, not to a specific
Integer linear programming is a standard and powerful

method of solution, and is therefore an essential part of
formalism for describing combinatorial optimization prob-

the computational theory. To proceed with this character-
lems of all kinds. By writing a fixed number of integer

ization, it will be necessary to define the graph upon which
linear constraints for each vertex and edge in Gplanar, an

the labeling problem operates.
integer linear program equivalent to the graph labeling

We begin with a set of simple closed plane curves which
problem is generated. The optimal labeled subgraph of

define regions of roughly uniform brightness. These closed
Gplanar is a labeled knot-diagram and is termed Gknot. Gknotplane curves are segmented at tangent discontinuities to
defines the surface organization.

create a set of contours which will be called boundary
fragments. The boundary fragments form the edges of a

4.2. Topological Validity
graph, Ginput 5 (Vendpoints , Efragments ). Every vertex (repre-
senting a fragment endpoint) is located at a point in the The first constraint enforced is that every edge (whether

boundary fragment or completion) has one of two orienta-plane, and every edge is a C 1 smooth contour joining two
vertices. Boundary fragments may or may not be oriented. tions (i.e., R and r) and this orientation represents its

sign of occlusion. As always, the convention is that theIf they are oriented, then the direction of the edge indicates
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tions of the boundary fragment through endpoint p (Fig. 9).
Two constraints per endpoint guarantee all of the above:

xp 5 O
j[completions(p)

xj (2)

x9p 5 O
j[completions(p)

x9j . (3)

Recall that as part of the process of constructing Gplanar ,
at every point where one edge crosses another, the edges
are split into four new edges and joined by a crossing
vertex. Call the four edges u, d, l, and r and the crossing
vertex c (Fig. 10). Associated with each of the four edges
are 0–1 valued integers x and x9 representing their signs
of occlusion. Also associated with each edge is a positive
integer variable n representing the boundary depth (i.e.,
the number of surfaces between the edge and the eye or
camera). Certain constraints are immediately apparent.
First of all, the signs of occlusion of edge u and edge d
must be equal. Likewise for edge l and edge r. As simple
equality constraints, they can be enforced by substitution
and need not actually appear in the linear program: xu 5
xd , x9u 5 x9d , xl 5 xr , and x9l 5 x9r .

FIG. 8. What Gplanar 5 (Vendpoints < Vcrossings, E9fragments < A second observation is that if u and l (and by implica-
E9completions) looks like for the Kanizsa Triangle. The endpoints (i.e., Vend- tion d and r) are instantiated, then the surface which u
points) are drawn in filled circles and the crossings, (i.e., Vcrossings) as non- bounds (call it Su) is either above or below the surface
filled circles. The boundary fragments (i.e., E9fragments) are drawn as solid

which l bounds (call it Sl ). This is independent of thelines and the set of potential completions (i.e., E9completions) as dotted lines.
specific signs of occlusion of u or l. When one considers
that only the sign of occlusion of the uppermost surface
has any effect on the relative depths of the four edges (i.e.,
nu, nd , nl, and nr), it becomes clear that crossing c cansurface lies to the right as its boundary is traversed in the

direction of its orientation.4 The two possible orientations be in one of four principal states. The specific state is
determined by which of u, d, l, or r is being occluded byof a boundary fragment with respect to one of its endpoints,

p, are represented as 0–1 valued integers xp and x9p . If p the uppermost surface. When Sl is above Su, and the sign
of occlusion of l is r R l (i.e., x9l 5 1), then the crossing isand q are opposite endpoints of a single boundary frag-

ment, then the direction from endpoint q to endpoint p is in the up state (denoted by l). If edge l ’s sign of occlusion
is l R r (i.e., xl 5 1) then the crossing is in the down staterepresented by xp (i.e., x9q) and the direction from endpoint

p to endpoint q is x9p (i.e., xq ). Using this representation, (denoted by k). When Su is above Sl the crossing is either
in the left (j) state or the right (;) state, depending onthe necessary constraint is the following integer linear in-

equality, enforced at every endpoint, p [ Vendpoints: whether the sign of occlusion of u is u R d (i.e., x9u 5 1)
or d R u (i.e., xu 5 1).

The four states are represented in the linear programxp 1 x9p # 1. (1)
with four 0–1 valued variables xl

c , xk
c , xj

c , and x;
c . Crossing

c is in the up state exactly when xl
c 5 1 and xk

c 5 xj
c 5

Since the image projections of surface boundaries are x;
c 5 0. The other three states are represented similarly.

closed plane-curves, all instantiated edges must form graph Having established a representation, it is now possible to
cycles in Gknot. It follows that there must be a unique describe the first constraint enforced at every crossing. It
completion through each endpoint. Furthermore, the sign ensures that one of the four crossing states will be true if
of occlusion of the completion must be unique and compat- both u and l are instantiated. For every c [ Vcrossing (with
ible with the sign of occlusion of the sponsoring boundary adjacent edges, u, d, l, and r) enforce the following:
fragments. Let completions(p) be the potential comple-

xu 1 x9u 1 xl 1 x9l # xl
c 1 xk

c 1 xj
c 1 x;

c 1 1. (4)
4 Note that the direction of the sign of occlusion is distinct from the

direction of the sign of contrast. When u and l are instantiated, the left side of the inequal-
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FIG. 9. (a) Potential completions at endpoint p of graph Gplanar; (b, c, and d) unique continuation in the case where xp 5 1; (e, f, and g) unique
continuation in the case where x9p 5 1.

ity equals two, so that at least one of xl
c , xk

c , xj
c , and x;

c For example, crossing c can only be in the left state
(i.e., xj

c 5 1) when edge u’s sign of occlusion is u R dmust equal one. Another constraint makes the four states
mutually exclusive: (i.e., x9u 5 1).

It is important to note that the four principal crossing
states stand for specific differences in relative depth acrossxl

c 1 xk
c 1 xj

c 1 x;
c # 1. (5)

the crossing vertex. The following constraints define the
crossing states as relative depths:The specific signs of occlusion which are preconditions

for each of the four states appear on the right sides of the
nu 2 nd 5 xl

c 2 xk
c (10)inequalities which follow:

nl 2 nr 5 xj
c 2 x;

c . (11)
xl

c # x9l (6)
4.3. Stimulus Conformity

xk
c # xl (7)

Topological validity is a necessary but not a sufficient
xj

c # x9u (8) condition for feasiblity of Gknot. For a solution to be feasi-
ble, it must also conform to the image evidence. Mostx;

c # xu. (9)
importantly, since input boundary fragments are visible in
the image (i.e., they correspond to luminance boundaries),
it is necessary that their depth indices in Gknot equal zero
(i.e., for every visible boundary fragment f [ E9fragments , we
require that nf 5 0).

Also important, if a completion is instantiated, and its
boundary depth equals zero (indicating that it should be
visible) then the absence of a corresponding luminance
boundary should be explainable. In Rock’s [25] words,
‘‘the solution must not contradict the stimulus.’’ Following
Rock, we hypothesize that illusory contours occur only
in those situations where the missing section of surface
boundary presumably projects to the image plane with
little or no brightness change.

A ‘‘pacman’’ from the Kanizsa triangle can be used to
illustrate the visibility constraints which are written in the
three possible cases (see Fig. 11). First, because contour i

FIG. 10. Four principal crossing states. is a visible boundary fragment, its depth is constrained to
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4.4.1. Unit Preference. In any given surface organiza-
tion, some subset of completions is instantiated while a
complementary set remains uninstantiated. One of the mo-
tivations for using curves of least energy to represent po-
tential completions is a presumed relationship between the
shape of the curve of least energy and the likelihood that
two contour fragments have a common nonaccidental ori-
gin (i.e., the likelihood that they form consecutive segments
of a single boundary). It is assumed that shape and comple-
tion likelihood are related through an unspecified probabil-
ity density function.5FIG. 11. A ‘‘pacman’’ from the Kanizsa triangle is used to illustrate

the visibility constraints which are written in the three possible cases. First, The instantiation of a completion is, in effect, an asser-
because contour i is a visible boundary fragment, its depth is constrained to tion that its origin is nonaccidental. Since a completion is
be zero (i.e., ni 5 0). Second, because contour j (with the sign of occlusion instantiated if and only if xi 1 x9i 5 1, the probability that
indicated) represents the completion of a white surface against a white

completion i’s origin is nonaccidental can be written asbackground, no constraint is placed on its depth. Finally, contour k (again
Pr(xi 1 x9i 5 1). Although we will see very shortly thatwith the sign of occlusion indicated) represents the potential completion

of the disc. Since the brightnesses are consistent with a dark surface the converse does not hold, let us assume (for the moment)
against a light background, its depth is constrained to be greater than that the converse is also true. That is, failure to instantiate
zero (i.e., xk # nk). a completion is tantamount to an assertion that its origin

is accidental. The probability that completion i’s origin is
accidental then becomes 1 2 Pr(xi 1 x9i 5 1). Finally, let
us also assume that whether a completion’s origin is acci-

be zero (i.e., ni 5 0). Second, because contour j (with the dental or nonaccidental is independent of whether any
sign of occlusion indicated) represents the completion of other completion’s origin is accidental or nonaccidental.
a white surface against a white background, no constraint That is, for any two completions, i and j :
is placed on its depth. Finally, contour k (again with the
sign of occlusion indicated) represents the potential com-
pletion of the disc. Since the brightnesses are consistent Pr(xi 1 x9i 5 1 u xj 1 x9j 5 1) 5 Pr(xi 1 x9i 5 1).
with a dark surface against a light background, its depth
is constrained to be greater than zero (i.e., xk # nk ).

Because every completion either is or is not instantiated,

4.4. Preference
the likelihood of a given surface organization (assuming
that all completion’s origins are independent) becomes

By committing to a set of potential completions of fixed
shape, the surface organization problem was reduced to a

Punit 5 p
i[Ecompletions

Pr(xi 1 x9i 5 1)(xi1x9i)
graph labeling problem. However, the integer linear con-
straints defining the labeling problem only guarantee that

(1 2 Pr(xi 1 x9i 5 1))(12xi2x9i).the surface organization is topologically valid and conforms
to the image evidence. Each of the integer points within
the feasible region of the integer linear program can be

This function is, in turn, a monotonically increasing func-viewed as a ‘‘prediction’’ about the actual state of the
tion of the sum of the logarithms of the likelihoods, soworld. Usually, there will be more than one such integer
that maximizing the sum of the logarithms is equivalentpoint. If the goal of the computation is to choose the
to maximizing the original function. The sum of the log-organization which is most likely to be correct (i.e., veridi-
likelihoods has the advantage of being linear in the un-cality), then it is important that the predictions be equally
knowns, which is essential if the objective function is tospecific. In our analysis, 0–1 valued expressions are inter-
be part of a linear program. Since any completion, i, ispreted as events. If two points in the feasible region are to
instantiated if and only if xi 1 x9i 5 1, the logarithm of thebe compared, then each must be interpreted as a prediction
likelihood that a specific subset of completions will beover the same set of events (i.e., 0–1 valued expressions).
instantiated isFollowing Lowe [19], we propose that the prediction con-

sist of an assignment to each element of the set of potential
completions, the label ‘‘accidental’’ or ‘‘nonaccidental.’’ 5 For the purpose of the experimental implementation, specific shape
Since the set of potential completions is of fixed size, these features and probability densities were chosen. These are described in

the next section.predictions are equally specific.
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FIG. 12. (a) One corner of a ‘‘pacman.’’ (b) Rock’s ‘‘literal solution.’’ The spatial coincidence represented by completions j and k is attributed
to chance, so that the degree of surprise (i.e., Sliteral) is 2ln(1 2 Pr(xj 1 x9j 5 1)) 2 ln(1 2 Pr(xk 1 x9k 5 1)). (c) The ‘‘illusory contour solution’’
offers a single explanation for all of the completions, even though the corner is not instantiated. The degree of surprise (i.e., Sillusory) is therefore zero.

no spatial coincidence is attributed to chance, the degreeQunit 5 O
i[Ecompletions

ln(Pr(xi 1 x9i 5 1))(xi 1 x9i )
of surprise, Sillusory , is actually zero.

Obviously, the first term of objective function Qunit does1 ln(1 2 Pr(xi 1 x9i 5 1))(1 2 xi 2 x9i ).
not evaluate to Sliteral and Sillusory as required. However, if
all corners which are not orientation discontinuities are

Unfortunately, this analysis does not adequately account assumed to be artifacts of occlusion, then the desired effect
for the phenomenon of illusory contours. Let us again can be achieved by assigning corners zero weight in the
consider the example from Fig. 6, this time for the purpose objective function:
of determining the different degrees of surprise implied
by the two unit organizations. Figures 12b and 12c show

Q9unit 5 O
i[Ecompletions2Ecorners

ln(Pr(xi 1 x9i 5 1))(xi 1 x9i )magnified views of one neighborhood (i.e., the area within
the circle in Fig. 12a) in the two unit organizations. In

1 ln(1 2 Pr(xi 1 x9i 5 1))(1 2 xi 2 x9i ).the ‘‘literal’’ solution (i.e., Fig. 12b) the only completion
instantiated is the ‘‘corner,’’ i. Since the other two comple-

We hypothesize that where contrast stimuli are involved,tions (i.e., j and k) are not instantiated, the spatial coinci-
there is an assumption that corners occur for two reasons,dence they represent is attributed to chance, and the ‘‘de-
neither of which is accidental. The probability that cornergree of surprise,’’ Sliteral is equal to
i’s origin is accidental is therefore zero, not Pr(1 2 xi 2
x9i ).

Sliteral 5 2ln(1 2 Pr(xj 1 x9j 5 1))
4.4.2. Depth Preference. Neither Qunit nor Q9unit in-2 ln(1 2 Pr(xk 1 x9k 5 1)).

corporate all of the factors which contribute to preference
in human vision. Both partition the feasible region into

Now compare this to the ‘‘illusory contour solution,’’ equivalent classes such that two integer points are in the
where only completions j and k are instantiated (Fig. 12c). same equivalence class if and only if they contain the same
If we assume that because completion i is not instantiated set of potential completions (i.e., they represent the same
that the spatial coincidence it represents is attributed to unit organization). As demonstrated in Fig. 7, a given unit
chance,6 then the degree of surprise equals 2ln(1 2 organization will usually admit many different depth label-
Pr(xi 1 x9i 5 1)). However, in the illusory contour solution, ings, so that the majority of these equivalence classes will
this assumption does not hold because all three comple- contain many distinct (although equally ‘‘likely’’) integer
tions originate in the same physical process: the occlusion points. If the goal is to compute a unique organization,
of one surface by another. Since the corner is an artifact then additional preference criteria must be employed.
of occlusion, the illusory contour solution provides a single Additional preference criteria are described by Rock
explanation for the existence of each of the potential com- [25], who demonstrates the role they play with numerous
pletions, even though the corner is not instantiated. Since examples. First among these is the correlation between the

sign of occlusion and the sign of contrast. The effect of
this preference in human vision is that against a white6 Recall that this was the first of two assumptions which led to the

objective function. The second was the independent assumption. background, there is a strong tendency to perceive black as



12 WILLIAMS AND HANSON

figure. Similarly, the sign of occlusion is strongly correlated splines passing through two points with specified tangents.
The free parameters are the distance between b1 and b0with the sign of curvature. Consequently, in human vision,

figure tends to be perceived as convex and ground as con- in the direction of t̂ (i.e., d 5 ub1 2 b0u) and the dis-
tance between b3 and b2 in the direction of t̂9 (i.e., d9 5cave. Finally, there is a strong tendency in human vision

to perceive the space between closely spaced parallel lines ub3 2 b2u). The total bending energy, E 5 e k(s)2 ds, is
readily computed for a particular Bezier control polygonas figure. This also holds for the space between pairs of

contours exhibiting bilateral symmetry, although this ten- by Simpson’s method, and the d and d9 minimizing this
quantity can be computed through a multivariate minimi-dency is weaker than the others.

At first glance, it appears to be a simple matter to incor- zation technique, such as the downhill simplex method
described in [24].porate the additional figure–ground preferences into a new

objective function. Clearly, the variables required to form
0–1 valued expressions representing the competing depth 5.2. Completion Features and Categories
labelings exist in the integer linear program (i.e., xi 5 1

The probability density function defining the distributionand x9i 5 1). Unfortunately, matters are not so simple. The
of completion shape features is at least bimodal, since gapsproblem of determining the relative likelihood of a con-
originate in at least two distinct physical processes (i.e.,tour’s two possible signs of occlusion as a function of con-
gaps due to occlusion and gaps due to orientation disconti-trast is presumably straightforward. However, it is difficult
nuity). If straight-sided surfaces occur with sufficient fre-to design an objective function which differentially weights
quency, then it is likely that the probability density functionthe two signs of occlusion without introducing a bias for (or
describing the distribution of completion shape features isagainst) organizations with larger numbers of completions.
even more complex. Consider the joint conditional proba-Solving this problem is a subject for future work.
bility densities of completion shape features given gaps

5. EXPERIMENTAL SYSTEM caused by:

To simplify implementation of the experimental system, • Orientation discontinuity
‘‘off-the-shelf’’ components were used wherever possible. • Partial occlusion of a straight boundary
For example, the straight-line grouping algorithm devel- • Generic occlusion
oped by Boldt [3] was used to generate the input set of
boundary fragments. Consequently, the experimental sys- Although the likelihood that a gap between two frag-
tem was tested with straight-sided figures. This limitation ments is nonaccidental and originates in occlusion rapidly
is not as significant as it may seem, since it proved to be increases as distance between their near endpoints de-
a simple matter to design straight-sided equivalents of creases, a gap having nearly zero length is much more likely
some of the better known figures from the illusory contour to be caused by an orientation discontinuity. Similarly,
literature. Four of these are shown in Fig. 13. although likelihood increases as energy in the interpolating

curve decreases, the existence of a smooth interpolating
5.1. Minimum Energy Cubic Bezier Splines curve with nearly zero total bending energy has special

significance when straight-sided surfaces are allowed.For simplicity’s sake, cubic Bezier splines of minimum
For these reasons,7 it proved useful to divide the set ofenergy were used to represent completion shape, not true

completions into three categories and employ a multicate-curves of least energy. Consequently, only tangent continu-
gory Bayes classifier [5] to select among them. The categoryity (not tangent and curvature continuity) was enforced at
minimizing squared Mahalanobis distance (i.e., covari-fragment endpoints. This is a reasonable simplification,
ance-weighted Euclidean distance) between observed andsince the total bending energy in the minimum energy cubic
mean shape feature values (with zero mean) is used as aBezier spline still provides strong evidence of a mutual
heuristic measure of likelihood,nonaccidental origin.

Let p and p9 be the ends of the two boundary fragments
which are to be joined and t̂ and t̂9 be vectors tangent to

Pr(completionux) Y
(12)the fragments at those points (see Fig. 14). A cubic spline

exp(2min(xtC 21
cornerx, xtC 21

straightx, xtC 21
genericx)),which smoothly passes through both points with orienta-

tions matching those of the fragments is easily constructed
in the Bezier form by specifying the locations of four con- where the components of x are
trol points. While the first and fourth control points are
located at the ends of the fragments (i.e., b0 5 p and b3 5
p9), the locations of b1 and b2 are underdetermined. In 7 Together with the need to distinguish corners from other completions,

as required by objective function Q9unit .general, there is a two-parameter family of smooth cubic
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FIG. 13. Four test figures from the illusory contour literature. Upper left: Warped Square. Upper right: Ehrenstein. Lower left: Kanizsa Plusses.
Lower right: Woven Square.

x1 5 ub0 2 b3u E k(s)2 ds (13)

x2 5 E ds (14)

x3 5
l 1 e ds 1 l9

e ds
(15)

x4 5 uu 2 u9 u (16)

x5 5H0 if k(0)k(e ds) $ 0

1 otherwise.
(17)

Here x1 is the total bending energy normalized by the
distance between the fragment endpoints, x2 is total arc

FIG. 14. A cubic Bezier spline. In general, there is a two-parameter length, x3 is gap size relative to the size of the boundary
family of smooth cubic splines passing through any two points p and p9

fragments, x4 is change in orientation, and x5 is the pres-with specified tangents. The free parameters are the distance between
ence of an inflection point. The matrices defining the fea-b1 and b0 in the direction of t̂ (i.e., d 5 ub1 2 b0u) and the distance between

b3 and b2 in the direction of t̂9 (i.e., d9 5 ub3 2 b2 u). ture probability densities for each category are
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while the diagonal entry for inflection was set to 1.0 3 109

(i.e., ‘‘don’t care’’).
Finally, the ‘‘generic’’ category functions as a ‘‘catch

all.’’ The only shape feature which is of special importanceCcorner 5

1.0 3 109 0 0 0 0

0 5.0 0 0 0

0 0 0.05 0 0

0 0 0 1.0 3 109 0

0 0 0 0 1.0 3 1029

is the presence or absence of an inflection point. To control
the number of potential completions, the diagonal entry
for the inflection feature in Cgeneric was set to 1.0 3 1029.

3 4 (18)

The result is that inflection points are not allowed. The
values of the other diagonal entries were determined by
a process of trial and error.

5.3. Building the Graphs
Cstraight 5

0.001 0 0 0 0

0 2500.0 0 0 0

0 0 0.25 0 0

0 0 0 0.001 0

0 0 0 0 1.0 3 109

The straight line segments which serve as input to the
experimental system are produced by Boldt’s zero crossing
grouping algorithm [3]. In general, if there are n boundary

3 4 (19)

fragments with 2n endpoints, there will be O(n2) potential
completions and O(n4) crossing vertices in Gplanar. Since
there are a constant number of variables and constraints
per crossing vertex, the constraint matrix for the integer
linear program will be of size O(n8). Since the test figures

Cgeneric 5

5.0 0 0 0 0

0 1000.0 0 0 0

0 0 0.25 0 0

0 0 0
f
5

0

0 0 0 0 1.0 3 1029

. typically contain about 50 boundary fragments, the space
requirements alone of the ‘‘naive’’ formulation are unac-
ceptable.

Fortunately, there are several good strategies for limiting

3 4 (20)

the number of potential completions which are explicitly
represented by edges in Gnonplanar . Since a factor of two

In the heuristic likelihood function, Ccorner, Cstraight, and reduction in the number of edges in Gnonplanar can result
Cgeneric act like covariance matrices since each is positive in as much as a factor of four reduction in the number of
definite and is used to define a multivariate density resem- crossings in Gplanar, this is the obvious point to apply prun-
bling a Gaussian. Although these ‘‘densities’’ are not nor- ing strategies. These strategies are listed below in roughly
malized, the heuristic likelihood function returns values their order of usefulness:
between 0 and 1 and these values are used as probabilities.

• Likelihood threshold.The specific values which comprise Ccorner, Cstraight, and
• k-most likely at each endpoint.Cgeneric were chosen partly by design and partly by trial
• Contrast sign constraint.and error. For example, since gaps caused by orientation
• Overlap pruning.discontinuity are very short, length (i.e., x2) must be nearly

zero if a completion is to be classified as a ‘‘corner.’’ The The Gplanar computed for the four test figures are shown
values of energy and relative orientation (i.e., x1 and x4), in Fig. 15. An integer linear program (ILP) is generated
on the other hand, are completely irrelevant. Accordingly, by writing a fixed set of integer linear inequalities, as de-
the diagonal entry for the length feature in Ccorner was set scribed in the last section, for each of the vertices and
to the value of 0.5 (pixels) and the entries for energy and edges of Gplanar. The ILP is solved by the method of branch
relative orientation were set to 1.0 3 109. This illustrates

and bound search [22, 26]. When an optimal feasible solu-
that certain entries function more like ‘‘switches’’ than tion exists, it is interpreted as a labeling of Gplanar, which
covariances. Because the diagonal entries for energy and defines Gknot (i.e., a labeled knot-diagram). The labeled
relative orientation are so large, these values do not affect knot-diagrams computed for the four test figures are shown
the ‘‘likelihood’’ of a completion classified as a corner. in Fig. 16. These organizations maximize the following

Similarly, the two features which together characterize objective function:
the ‘‘straight’’ category are energy and relative orientation
(i.e., x1 and x4). A completion joining two collinear lines

Q9surface 5 Q9unit 1 Qdepth. (21)should have nearly zero energy and its orientation should
remain constant. However, whether or not an essentially
straight completion contains an inflection point (i.e., x5) is Although the Q9unit term has already been defined, with-

out the second term, the ILP is underconstrained. Accord-immaterial. Accordingly, the diagonal entries for energy
and relative orientation in Cstraight were both set to 0.001 ingly, for the purposes of the experimental implementa-
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FIG. 17. A simple modification (described in [29]) allowed the experi-FIG. 15. Gplanar for the four test figures. This graph represents the k-
most-likely completions (k 5 3) for every boundary fragment as cubic mental system to be demonstrated on Kanizsa’s drawings of partially

occluded cubes (note: in the original figures, the occluding bars are notBezier splines of least energy. Boundary fragments are drawn thick and
potential completions are drawn thin. Graph vertices (endpoints and closed). Upper left: The Y’s with Bars test figure. Upper right: Gknot for

the Y’s with Bars test figure. The completed surface can not be embeddedcrossings) are omitted for clarity’s sake.
in planes at constant depth. Lower left: The X’s with Bars test figure.
Lower right: Gknot for the X’s with Bars test figure. It is especially notewor-

tion, it was necessary to define Qdepth (even though the thy that the experimental system has correctly organized the X’s with
issue of the bias for larger organizations has not been Bars test figure because perceptual completion of this figure is challenging

even for human vision. This result demonstrates the potential disambigu-satisfactorily resolved). If we adopt the convention that xi
ating power of topological constraints.represents the sign of occlusion with orientation matching

the sign of contrast, then a preference for black figure and

white ground can be implemented by assigning a positive
unit weight to xi for i [ Efragments:

Qdepth 5 O
i[Efragments

xi . (22)

At least superficially, the organizations produced by the
experimental system resemble what humans perceive. The
appropriate illusory surfaces are constructed for the
Warped Square, Ehrenstein, and Woven Square test figures.
In the case of the Woven Square, the computed illusory
surface passes over and under the diamond-shaped frame,
so as to conform with the ‘‘proximal stimulus.’’ This is in
agreement with the human percept. Finally, like the human
visual system, the experimental system does not construct
an illusory rectangle in the case of the Kanizsa Plusses
figure. Additional experimental results are shown in
Fig. 17.

6. A REVISED PROBLEM-LEVEL FORMULATION

FIG. 16. Gknot for the four test figures. Note that the completed
Figural completion was portrayed earlier as the problemsurfaces in the Woven Square test figure (lower right) can not be embed-

ded in planes at constant depth. of computing a labeled knot-diagram representing an ante-
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pler integer linear programs in the unit/depth organization
model. The results of a revised experimental implementa-
tion are compared to those of the original.

The motivation for this new decomposition is twofold.
First, evidence from human vision supports the hypothesis
that unit organization occurs in advance and independently
of depth organizations (see Fig. 19). Second, the integer
linear program for the unit organization subproblem can
be shown to possess a property called total unimodularity,
which allows it to be solved by numerical relaxation in a
locally connected network (see [29]).

6.1. Evidence from Human Vision

Earlier, the figural completion problem was reduced to
a graph labeling problem and posed as an integer linear
program. This was made possible by assuming that comple-
tion shape is determined solely by the tangents and curva-
tures of the terminal ends of the occluded boundaries and
not by a completion’s role in any eventual surface organiza-
tion. A still more radical notion is proposed by Kellman
and Loukides [17], who argue that unit organization is
accomplished in advance and independently of depth orga-

FIG. 18. Alternate problem decompositions. Figural completion re-
nization. More specifically, they propose that visible con-quires three different sources of ambiguity to be overcome (i.e., shape,

unit, and depth). In theory, all three can be resolved concurrently, which
would result in the problem decomposition shown in (a). However, it
was proposed earlier that the shape of a perceptual completion is indepen-
dent of the role it plays in the organization. This permitted the decomposi-
tion shown in (b), which we refer to as the surface organization model.
In this section, a further decomposition is proposed. The unit/depth orga-
nization model, shown in (c), requires the additional assumption that unit
ambiguity can be resolved in advance and independently of depth ambi-
guity.

rior scene from a set of contour fragments representing
image luminance boundaries. Given this computational
goal and this input, three distinct sources of ambiguity
were identified. These were termed shape, unit, and depth.
Since the applicable physical constraints were insufficient
to overcome these ambiguities, an additional assumption
was introduced. Broadly speaking, this assumption was:
the shape of a perceptual completion is independent of the
role it plays in the organization. This assumption allowed
the figural completion problem to be decomposed into two
independent subproblems, the first devoted to shape, the
second devoted jointly to unit and depth. Decomposed
in this way, it proved possible to formulate the second
subproblem as an integer linear program, which led to a
unique solution.

In this section, a further decomposition is proposed.
FIG. 19. Predictions of different models. (a) A variation of a displayAgain, this decomposition occurs along the lines of the

by Fahle and Palm [6]. Although only one illusory rectangle is physicallyinherent ambiguities (see Fig. 18). Specifically, it is pro-
possible, the arrangement of the inducing elements and the overall sym-

posed that unit ambiguity is resolved in advance and inde- metry of the figure seems to suggest that two are present. (b) Bistable
pendently of depth ambiguity. The integer linear program interpretation predicted by surface organization model. (c) Bistable inter-

pretation predicted by unit/depth organization model.for the surface organization model is replaced by two sim-
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tour fragments are organized into closed plane curves be-
fore their relative depths at points of intersection are
determined.

If the goal of figural completion is to compute a topologi-
cally valid surface organization, then there is a fundamental
theoretical problem with Kellman and Loukides’ proposal.
Unless unit and depth organization are accomplished to-
gether, there is no guarantee that the set of closed plane
curves produced by the unit organization process will have
a consistent depth labeling. Yet, recent evidence seems to
suggest that the human visual system has not heard of
this theory.

Consider the stimulus depicted in Fig. 19a, which is a
variation of a figure designed by Fahle and Palm [6]. Al-
though only one illusory rectangle is physically possible,
the arrangement of the inducing elements and the overall
symmetry of the figure seems to suggest that two are pres-
ent. Since only one illusory rectangle is possible, the surface
organization model predicts that the two organizations
which appear in Fig. 19b will be perceived with equal
likelihood. Each of these is a distinct unit organization,
containing a different set of boundary components. Both

FIG. 20. A comparison of the labeling problems. (a) The integerare topologically valid and consistent with the image evi-
linear program for the surface organization model (i.e., ILPsurface) is a

dence. labeling problem on Gplanar. Unit and depth organization constrain one
However, an informal study of the visual systems of the another, resulting in true surface organization. (b) In the unit/depth

organization model, unit organization is accomplished in advance andauthor’s colleagues suggests that nothing like Fig. 19b is
independently of depth organization. ILPunit is not a labeling problemperceived. In fact, most subjects experience something
on Gplanar but on its precursor, Gnonplanar. Completions not instantiatedmore closely resembling one of the two organizations de-
in the unit organization are deleted. A much simpler Gplanar is then labeled

picted in Fig. 19c. Here two illusory rectangles exist in by ILPdepth.
some degree of perceptual tension. Sometimes one is on
top, sometimes the other. Some observers describe the
illusory rectangles as intersecting one another. There are
two significant conclusions which can be drawn about this. xp 5 O

j[completions(p)
xj .

First, irrespective of which illusory rectangle is on top, the
unit organization consists of the same set of boundary
components. Second, neither organization is topologically The objective function for ILPunit and the optimal feasi-

ble solution defines the unit organization. Any completionvalid. It is as if the visual system commits to a unit organiza-
tion which subsequently can not be consistently labeled. not instantiated in the unit organization (i.e., any comple-

tion j, such that xj 5 0) is deleted from Gnonplanar . The
6.2. The Unit/Depth Organization Model

structure of Gnonplanar after pruning is very simple. Since
the in-degree and out-degree of every endpoint vertex isThe unit/depth organization model is defined by two

independent and individually simpler graph labeling prob- equal to one, the connected components of Gnonplanar are
all simple graph cycles. If the unit organization has a consis-lems. Like the ILP for the surface organization model

(i.e., ILPsurface), these are also formulated as integer linear tent depth labeling (which is not guaranteed) then these
cycles represent the boundary components of an ante-programs, which we will refer to as ILPunit and ILPdepth.

While ILPsurface is a labeling problem on Gplanar, the unit rior scene.
The unit organizations computed for the four contrastorganization problem in isolation, ILPunit, is a labeling

problem on its precursor, Gnonplanar. The overall structure test figures are shown in Fig. 21. These are the optimal
feasible solutions of ILPunit. In three of the four cases, theof the unit/depth organization model is compared to the

surface organization model in Fig. 20. If xj equals one when unit organization can be consistently labeled; these act
as the precursors of topologically valid anterior scenes.completion j [ completions(p) is instantiated, and xj equals

zero when completion j is not instantiated, then ILPunit is However, in the case of the Kanizsa Plusses test figure no
consistent labeling is possible. This suggests that eitherformed by generating one constraint per endpoint p of

the form the unit/depth organization model is incorrect or that the
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FIG. 21. Unit organizations for the contrast test figures. In three of
the four cases, the unit organization can be consistently labeled; these
act as the precursors of topologically valid anterior scenes. However, in
the case of the Kanizsa Plusses test figure (lower left), no consistent
labeling is possible.

FIG. 22. Unit organizations for the outline test figures. In the case
objective function, as defined, does not incorporate all of of the Y’s with Bars test figure (top), the unit organization is the same
the preference factors which operate in human vision. as for the surface organization model. However, in the case of the X’s

Figure 22 shows the unit organizations computed for the with Bars test figure (bottom), the unit organization admits no consistent
depth labeling.two outline test figures. In the case of the Y’s with Bars

test figure, the unit organization is the same as for the
surface organization model. However, in the case of the

ILPdepth needs only to differentiate among alternative fig-X’s with Bars test figure, the unit organization admits no
ure-ground assignments for a unit organization of fixedconsistent depth labeling. This shows that in the experi-
size.mental implementation of the surface organization model,

The computational advantage of decomposing the fig-the topological constraints can play a role in unit formation.
ural completion problem according to the unit/depth orga-Like the ILP for the surface organization model, ILPdepth
nization model are convincingly demonstrated in Tables 1is a labeling problem on Gplanar. As before, Gplanar is created
and 2. Table 1 compares the total number of simplex pivotby splitting the edges of Gnonplanar wherever two intersect
steps for ILPsurface to the sum of the totals for ILPunit andand creating a crossing at that point. But ILPdepth is consid-

erably simpler than ILPsurface, since it exploits the fact that
every edge in Gplanar must appear in Gknot.

TABLE 1Recall that a major problem with the surface organiza-
Surface vs Unit/Depth Organization Modelstion model was the theoretical difficulty in combining unit

(Total Pivot Steps)
and depth preference factors in a single objective function.

Percent PercentIdeally, the objective function should interpret points
Figure Surface Unit/depth cost savingswithin the feasible region as equally specific predictions

about the actual state of the world. Unfortunately, as dis- Warped Square 1124 162 14.4 85.6
cussed earlier, the relative likelihoods of different figure- Ehrenstein 1209 505 41.8 58.2

Kanizsa Plusses 1411 178 12.6 87.4ground assignments can not be compared when the unit
Woven Square 1263 170 13.5 86.5organizations are of different sizes. One advantage of di-
Y’s with Bars 13377 504 3.8 96.2viding ILPsurface into ILPunit and ILPdepth is that this theo-
X’s with Bars 5339 188 3.5 96.5

retical objection disappears. The objective function for



PERCEPTUAL COMPLETION OF OCCLUDED SURFACES 19

TABLE 2 implemented in an experimental system. In the majority
Surface vs Unit/Depth Organization Models of cases, the implementation of the revised model gives

(Total Multiplies) the same solution and at significant computational savings.
In conclusion, we note that there are many places wherePercent Percent

the scope of the existing theory is simply too narrow andFigure Surface Unit/depth cost savings
is insufficient to account for human competence. For exam-

Warped Square 7.34 3 108 1.35 3 107 1.8 98.2 ple, the human ability to understand line-drawings of
Ehrenstein 1.03 3 109 8.47 3 107 8.3 91.7

smooth surfaces embedded in ways which violate the defi-Kanizsa Plusses 1.49 3 109 2.55 3 107 1.7 98.3
nition of anterior scene suggests that the representationWoven Square 1.21 3 109 1.63 3 107 1.4 98.6

Y’s with Bars 1.40 3 1011 1.20 3 108 0.1 99.9 computed by the figure completion process is more general
X’s with Bars 6.35 3 109 2.94 3 107 0.5 99.5 than (and probably subsumes) the labeled knot-diagrams

developed here.
Toward this end, it is worth reexamining Huffman’s [13]

influential paper ‘‘Impossible Objects as Nonsense Sen-
ILPdepth. Table 2 similarly compares the total number of tences.’’ While this paper is widely cited as one source of
floating point multiplies. The average reduction in the total the Huffman–Clowes junction catalog for trihedral scenes,
number of simplex pivot steps for the five (out of a total the last few pages are actually devoted to a labeling scheme
of seven) instances where the results of two models could for line-drawings of smooth surfaces. We optimistically
be compared is 83%. The average reduction in the total predict that the methods described here can be generalized
number of floating point multiplies for the same five in- to the full Huffman labeling scheme, leading to a computa-
stances is 97%. tional theory sufficient to explain the full range of percep-

tual completion phenomena at work in human vision.
7. CONCLUSION
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