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Abstract Cell membranes display a range of receptors that bind ligands and activate signaling
pathways. Signaling is characterized by dramatic changes in membrane molecular topography,
including the co-clustering of receptors with signaling molecules and the segregation of other
signaling molecules away from receptors. Electron microscopy of immunogold-labeled mem-
branes is a critical technique to generate topographical information at the 5–10 nm resolution
needed to understand how signaling complexes assemble and function. However, due to exper-
imental limitations, only two molecular species can usually be labeled at a time. A formidable
challenge is to integrate experimental data across multiple experiments where there are from
10 to 100 different proteins and lipids of interest and only the positions of two species can be
observed simultaneously. As a solution, we propose the use of Markov random field (MRF)
modeling to reconstruct the distribution of multiple cell membrane constituents from pair-wise
data sets. MRFs are a powerful mathematical formalism for modeling correlations between
states associated with neighboring sites in spatial lattices. The presence or absence of a protein
of a specific type at a point on the cell membrane is a state. Since only two protein types can
be observed, i.e., those bound to particles, and the rest cannot be observed, the problem is one
of deducing the conditional distribution of a MRF with unobservable (hidden) states. Here,
we develop a multiscale MRF model and use mathematical programming techniques to infer
the conditional distribution of a MRF for proteins of three types from observations showing
the spatial relationships between only two types. Application to synthesized data shows that
the spatial distributions of three proteins can be reliably estimated. Application to experimen-
tal data provides the first maps of the spatial relationship between groups of three different
signaling molecules. The work is an important step toward a more complete understanding of
membrane spatial organization and dynamics during signaling.
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1. Introduction

Cell membranes display a range of receptors that bind signaling molecules and ini-
tiate transmembrane responses. Receptors and the signaling proteins and lipids they
activate are distributed nonrandomly in membranes; in addition, receptor activation is
accompanied by dramatic reorganization of membrane components as well as by re-
cruitment of new signaling proteins from the cytoplasm to the membrane (Wilson et
al. 2000, 2001). Strict regulation of signal transduction from the outer cell surface
to the cytoplasm and nucleus is crucial for cell survival, differentiation, proliferation
and other activities. Unregulated signaling is an important component in the patho-
genesis of many diseases, including cancer. Nevertheless, many aspects of how the
cell maintains spatio-temporal control of signaling pathways remain unclear. Correlat-
ing the activities of receptors and signaling proteins and lipids with their spatial dis-
tribution and dynamics is essential to better understand the regulation of cell signal-
ing.

To observe the topographical events associated with cell signaling, several groups have
generated high resolution spatial maps of colloidal gold particles marking receptors and
signaling proteins and lipids in native membranes (Wilson et al. 2000, 2001, 2002, 2004;
Prior et al., 2003; Volna et al., 2004; Kim et al., 2005; Plowman et al., 2005; Xue et al.,
2007). The technique involves labeling membrane sheets stripped from the dorsal cell
surface with ligand- or antibody-coated electron-dense 2–10 nm gold nanoprobes, imag-
ing the labeled sheets by transmission electron microscopy (TEM), and extracting probe
coordinates from the digitized images. The spatial distributions of the probes with re-
spect to each other and with respect to membrane features such as clathrin-coated pits
and caveolae are subsequently analyzed (Oliver et al., 2004; Hancock and Prior, 2005;
Zhang et al., 2006; Nicolau et al., 2006). In general, due to limitations of applica-
ble gold particle size, only two different protein species can be labeled with confi-
dence in the same experiment. Experimentalists are exploring the use of new metal,
semi-conductor, and ceramic electron-dense nanoprobes with different shapes to ex-
pand the number of probes than can be discriminated (Hernandez-Sanchez et al., 2006;
Andrews et al., 2007). However, even with these new tools, the limited availability of
antibodies raised in different species to label signal pathway components makes it dif-
ficult to substantially expand the number of probes that can be used in a single exper-
iment. Consequently, there is a need to integrate experimental data across multiple ex-
periments. In this paper, we use Markov random field (MRF) modeling to address this
problem.

MRFs provide a powerful and robust framework for modeling correlations between
states associated with neighboring sites in spatial lattices. Cell membranes can be mod-
eled as a 2D lattice, and the presence or absence of a protein of a specific type at a point
on the cell membrane is a state. Since only two protein types can be observed, i.e., those
bound to particles, and the rest cannot be observed, the problem is one of deducing the
conditional distribution of a MRF with unobservable (hidden) states. A question of sig-
nificant importance is: What fraction of the conditional distribution of the MRF modeling
spatial relationships between proteins of all types can be inferred from particle prepara-
tions showing the spatial relationships between only two types? If the conditional distrib-
ution can be reliably estimated, then the Gibbs sampler (Geman and Geman, 1984) can be
used to synthesize sample MRFs allowing the complete set of protein spatial distributions
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to be visualized. In the subsequent sections, we briefly review the background literature
on MRF (Section 2), show how the conditional distribution of a MRF for proteins of
three types can be deduced from data documenting the spatial relationships between only
two types (Section 3) and describe a multiscale MRF model, with results on synthesized
and experimental data (Section 4). Finally, we propose applications of this technology for
reconstructing topographical distributions of membrane constituents during signal trans-
duction.

2. Background and related work

2.1. Background on Markov random field

MRFs have several components: a lattice S with m sites s; a neighborhood system
N = {Ns |s ∈ S}, where Ns is the subset of sites in S which are the neighbors of s; a
field of random variables X = {Xs |s ∈ S}, and a conditional probability mass function
(p.m.f.), P (Xs = xs |Xt = xt , t ∈ Ns). Each random variable Xs takes a value in a finite
set Q = {l1, . . . , lq} of the possible states. Xs = xs denotes the event that Xs takes the
value xs and the notation (X1 = x1,X2 = x2, . . . ,Xm = xm) denotes a joint event. The
joint event is abbreviated as X = x in which x = {x1, x2, . . . , xm} is a realization of X.
Therefore, there is also a joint p.m.f., P (X = x). Either the conditional p.m.f. or the joint
p.m.f. can be used to specify a MRF. The Markov property means that the state at a site is
dependent only on those at its neighboring sites:

P (Xs = xs |Xt = xt , t �= s, t ∈ S) = P (Xs = xs |Xt = xt , t ∈ Ns). (1)

For example, the neighbor set of s = (i, j) for a regular lattice S is commonly defined as

Ns = {
r = (k, l) ∈ S : 0 < (k − i)2 + (l − j)2 ≤ o

}
, (2)

where o is the order of the neighborhood system. Figure 1a–c show the neighborhood
systems for o = 1, 2 and 8.

Fig. 1 MRF neighborhood systems for site s ∈ S: (a) first-order; (b) second-order; and
(c) eighth-order (Li, 1995).
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2.2. Related work

MRFs have been used in computer vision and image processing for texture synthe-
sis (Cross and Jain, 1983; Efros and Leung, 1999; Paget and Longstaff, 1998), image
segmentation (Derin and Elliott, 1987), and image restoration (Geman and Geman, 1984;
Li, 1995). The states of MRF texture models are all possible gray levels and di-
rectly observable. A sample texture is regarded as a realization of the MRF model
and is used to estimate the conditional distribution of the model through either para-
metric (Cross and Jain, 1983) or nonparametric methods (Efros and Leung, 1999;
Paget and Longstaff, 1998). Texture can be then synthesized by sampling from the
conditional distribution. In addition to MRFs where all states are observable, there
are also hidden Markov models which contain states that are not directly observ-
able. These hidden models are flexible and powerful when used in applications such
as image restoration and segmentation (Geman and Geman, 1984; Besag, 1986; De-
rin and Elliott, 1987; Tonazzini et al., 2006), because many kinds of prior knowl-
edge can be modeled. Maximum a posteriori (MAP) estimation is commonly used to
restore or segment images. For the nonhierarchical MRFs discussed thus far, exact
MAP estimation is computationally expensive. Consequently, approximation methods
such as iterated conditional modes (ICM) (Besag, 1986), dynamic programming (De-
rin and Elliott, 1987), or simulated annealing with Gibbs sampling (Geman and Ge-
man, 1984) are used. Another difficulty with nonhierarchical MRFs is that the neigh-
borhood systems need to be small because larger neighborhood systems dramati-
cally increase the number of parameters and the running time of the MAP algo-
rithms.

To address the problems associated with nonhierarchical models, multiscale MRF
models were formulated and have been extensively discussed in the image processing
literature (Bouman and Shapiro, 1994; Kato et al. 1996, 1999; Laferté et al., 2000;
Liang and Tjahjadi, 2006; Mignotte et al., 2000; Wilson and Li, 2003). In those hier-
archical MRF models, there is a series of random fields at a range of scales or resolutions,
and the random field at each scale depends only on the next coarser random field above it.
The MAP algorithms for the hierarchical MRF models have performance comparable to
or better than that of MAP estimation by simulated annealing for a nonhierarchical MRF,
but require less computation than simulated annealing or ICM.

Parameter estimation is important for Bayesian image analysis because model para-
meters are required for MAP estimation. Maximum likelihood (ML) estimation is of-
ten used for MRF parameter estimation (Besag, 1974). When part of the data is hid-
den, the Expectation-Maximization (EM) algorithm (Dempster et al., 1977) is com-
monly used for ML estimation. A major difficulty in applying the EM algorithm
to MRFs is in the calculation of the conditional expectation, which is generally in-
tractable because it requires summing over all possible configurations. Therefore, ap-
proximation techniques such as the mean field approximation (Celeux et al., 2003;
Tonazzini et al., 2006; Zhang, 1992) and pseudo-likelihood method (Chalmond, 1989;
Zhang et al., 1994) are used. The EM algorithm has been extended for parameter estima-
tion on a quadtree (Bouman and Shapiro, 1994; Laferté et al., 2000).
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Fig. 2 Structure of a quadruply stochastic random field used in modeling of protein spatial distributions.
Red, green and blue open circles represent R, G, and B , and red, green and blue closed circles represent
R′ , G′, and B ′ .

3. Modeling protein spatial distributions

In a specific signaling pathway, there are typically from 10 to 100 proteins of interest.
Let us consider a simple, idealized case, where there are three proteins of interest which
we call {R,G,B}, and where only two proteins can be observed in any single sample.
For this scenario, we use a hidden process D with four states {R,G,B,X} to character-
ize the distribution of proteins on the cell membrane. The additional state X corresponds
to background. D is called a distribution process. In addition, there are three observable
processes, Or , Og and Ob , to model observations where only two kinds of proteins can
be observed at a time. These processes are called observation processes and have four ob-
servable states {R′,G′,B ′,X′}. Following Rabiner (1989), we call these observable states
observation symbols, corresponding to the presence or absence of a gold particle bound to
a protein visualized by TEM. The observation symbol probability distribution (Rabiner,
1989) is used to describe the probability that hidden state j will be observed as symbol i.

Our approach is based on the quadruply stochastic model shown in Fig. 2. This model
assumes that the three observation processes depend on the same distribution process.
The behavior of the observation processes given the distribution process is defined by the
observation symbol probability distributions. There are three observation symbol prob-
ability distributions, one for each observation process. We assume that the state in a
given observation process depends only on the corresponding state in the distribution
process, and that three observation matrices, Qr , Qg and Qb , can be used to represent the
conditional probability mass functions, P ((Or)s = i|Ds = j), P ((Og)s = i|Ds = j) and
P ((Ob)s = i|Ds = j):

Qr =

⎡

⎢⎢⎢
⎣

0 0 0 0

0 1 0 0

0 0 1 0

1 0 0 1

⎤

⎥⎥⎥
⎦

, Qg =

⎡

⎢⎢⎢
⎣

1 0 0 0

0 0 0 0

0 0 1 0

0 1 0 1

⎤

⎥⎥⎥
⎦

, Qb =

⎡

⎢⎢⎢
⎣

1 0 0 0

0 1 0 0

0 0 0 0

0 0 1 1

⎤

⎥⎥⎥
⎦

,

where (Qk)ij is the probability that the hidden state j will be observed as the symbol i

in Ok . The problem is to infer the conditional p.m.f. of D given the observation processes
Or , Og and Ob .
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In the following sections, we demonstrate that the conditional p.m.f of a hidden MRF
with a first-order neighborhood system can be reliably estimated given the visible MRFs.

3.1. A Markov random field model

MRFs with a first-order neighborhood system (see Fig. 1a) are used for both the distribu-
tion and observation processes. A Markov random field can be specified by a conditional
probability mass function, P (Xs = xs |Xt = xt , t ∈ Ns). We use P to denote a matrix (we
use this term even though P is five dimensional, i.e., it is a tensor) that contains these
conditional probabilities. For MRFs with a first-order neighborhood system, there are
45 = 1024 elements in P. The first step is to generate samples of visible Markov random
fields. To generate these visible samples, we must generate a realization of the distribution
process, d . Given P, d is generated using the Gibbs sampler (Geman and Geman, 1984):

1. Initialize d randomly.
2. Choose s ∈ S randomly and replace Ds with ds drawn from P (Ds = ds |Dt = dt ,

t ∈ Ns).
3. Repeat Step 2 many times.

After the realization is generated, samples of three visible fields, or , og , and ob , are ob-
tained by mapping the states in d to symbols of the observation process using the observa-
tion matrices. For example, we replace R,G,B,X with X′,G′,B ′,X′ respectively to gen-
erate or . For exposition purposes, we number the sites in the first-order neighborhood sys-
tem as in Fig. 3a. A five-tuple 〈m, l, k, j, i〉 and a four-tuple 〈l, k, j, i〉 can then be used to
denote the joint events (D4 = m,D3 = l,D2 = k,D1 = j,D0 = i) and (D3 = l,D2 = k,

D1 = j,D0 = i), respectively. The conditional probability P (D4 = m|D3 = l,D2 = k,

D1 = j,D0 = i) is estimated using histogramming (Gurelli and Onural, 1994):

P (D4 = m|D3 = l,D2 = k,D1 = j,D0 = i) = pmlkji ≈ H(〈m, l, k, j, i〉)
H(〈l, k, j, i〉) , (3)

where H are frequencies of the tuples in the samples of D. In order to get good estimates
for the conditional probabilities, the sample size need to be quite large. The realization of
the distribution process, d , is generated on a lattice of size 600 × 740. Corresponding to
each d , there is a set of three visible samples. Our experiments showed that 100 sets of
visible samples results in good estimates.

Unfortunately, the histograms for all states in the hidden field are not directly ob-
servable. However, we can deduce them from the histograms of symbols in the visible

Fig. 3 Numbering of the sites in a first-order (a) and 5-neighbor (b) neighborhood systems.
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Fig. 4 Isotropy in a first-order neighborhood system. (b), (c) and (d) are rotations of (a) by multiples of
90◦ . (e)–(h) are mirror images of (a) with respect to four axes of reflective symmetry, (i) axes of reflective
symmetry. All eight conditional probabilities, e.g., P(m|i, l, k, j) and P(m|l, k, j, i), are equal under the
isotropy assumption.

samples. By performing a raster scan of the window shown in Fig. 3a over the visible
samples, we obtain the frequencies of four-tuples and five-tuples of observation symbols.
Because of the one-to-one relationships between G in d and G′ in or and between B in d

and B ′ in or , we observe that

H
(〈G,G,B,G〉) = Hr

(〈G′,G′,B ′,G′〉), (4)

H
(〈B,G,G,B,G〉) = Hr

(〈B ′,G′,G′,B ′,G′〉), (5)

where Hr are histograms of four-tuple’s and five-tuple’s of symbols in or . It follows that

pbggbg ≈ Hr(〈B ′,G′,G′,B ′,G′〉)
Hr(〈G′,G′,B ′,G′〉) . (6)

Using analogous methods, we can directly estimate 108 of the conditional probabilities
(i.e., those involving at most two of the nonbackground states) from these observed fre-
quencies. There are still 916 unknown conditional probabilities. To reduce the number
of unknown variables, we exploit isotropy in the matrix of conditional probabilities as
shown in Fig. 4. The isotropy assumption is reasonable because the protein distributions
are independent of orientation. The number of unknown variables is reduced to 181 under
this assumption. We adopted ML estimation to infer these conditional probabilities. Al-
though the EM algorithm is the standard method for ML estimation when part of the data
is hidden, it converges very slowly. By exploiting a property of the observation matrix
(i.e., the probabilities in the observation matrix are either 0 or 1), we developed a nonit-
erative method using mathematical programming techniques to solve the ML estimation
problem.

3.2. Parameter estimation for MRFs with a first-order neighborhood system

Given a realization d of the distribution process, the ML estimate maximizes the condi-
tional probability, P (d|P), where P is the matrix of conditional probabilities. We approx-
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imate the probability of d given P by the pseudo-likelihood (Li, 1995) which is simply a
product of the conditional probabilities:

P(d|P) ≈
∏

s∈S

P(ds |dt , t ∈ Ns). (7)

However, the distribution process is not directly observable. Only visible samples are
available. Consequently, we need to compute the probability of a visible sample ok given
P and Qk . We also approximate the conditional probability of ok given P and Qk by the
pseudo-likelihood:

P(ok|P,Qk) ≈
∏

s∈S

P
(
(ok)s |(ok)t , t ∈ Ns

)
, (8)

where (by Bayes’ rule):

P
(
(ok)s |(ok)t , t ∈ Ns

)

=
∑

ds ,dt ,t∈Ns

P
(
(ok)s |ds

)
P(ds |dt , t ∈ Ns)P

(
dt , t ∈ Ns |(ok)t , t ∈ Ns

)
(9)

=
∑

ds ,dt ,t∈Ns

P((ok)s |ds)P(ds |dt , t ∈ Ns)P((ok)t , t ∈ Ns |dt , t ∈ Ns)P(dt , t ∈ Ns)

P((ok)t , t ∈ Ns)
.

(10)

Because we assume that a symbol at a site in an observation process depends only on the
corresponding state in the distribution process, it follows that

P
(
(ok)t , t ∈ Ns |dt , t ∈ Ns

) =
∏

t∈Ns

P
(
(ok)t |dt

)
. (11)

Finally, we observe that

P
(
(ok)s |(ok)t , t ∈ Ns

)

=
∑

ds ,dt ,t∈Ns

P(ds |dt , t ∈ Ns)P(dt , t ∈ Ns)
∏

t∈{s}∪Ns
P((ok)t |dt )

P((ok)t , t ∈ Ns)
(12)

and where k ∈ {r, g, b}.
In Eq. (12), P ((ok)s |ds) is known and defined in Qk . P ((ok)t , t ∈ Ns) are the probabil-

ities of four-tuples of symbols in the visible fields, and can be estimated from samples of
the visible fields. P (dt , t ∈ Ns) are the probabilities of four-tuples of states in the hidden
field (determined by P). The unknown variables are P (ds |dt , t ∈ Ns) and P (dt , t ∈ Ns).
The maximum likelihood estimation of P is achieved by maximizing the logarithm of the
probability that the process generated the visible samples as a function of P (ds |dt , t ∈ Ns)

and P (dt , t ∈ Ns):

P̂ = arg max
P

∑

k∈{r,g,b}
log P(ok|P,Qk). (13)
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Fig. 5 Quadtree of tuple probabilities. The probability of each vertex equals the sum of the probabilities
of its children.

Under the isotropy assumption, there are 181 unknown conditional probabilities. In ad-
dition, 37 of the joint probabilities of state four-tuples are also unknown. The conditional
probabilities are constrained by

∀i, j, k, l
∑

m

pmlkji = 1, (14)

where i, j , k, l, m ∈ {R,G,B,X}. There are also constraints on the joint probabilities of
state four-tuples. To illustrate these constraints, we can build a quadtree of the four-tuple
probabilities (see Fig. 5). The constraint is

∑

〈l,k,j,i〉∈C(a)

P
(〈l, k, j, i〉) = P (a), (15)

where a is the nearest known ancestor of the four-tuple and C(a) is the set of leaves of
the quadtree which are on the branch which starts at a. We know that at least one of the
ancestors of the four-tuple is known because the probabilities of all one-tuple’s are known:

P
(〈R〉) = Pg

(〈R′〉), (16)

P
(〈G〉) = Pr

(〈G′〉), (17)

P
(〈B〉) = Pg

(〈B ′〉), (18)

P
(〈X〉) = 1 − P

(〈R〉) − P
(〈G〉) − P

(〈B〉). (19)

Therefore, there are 218 unknown variables with constraints defined by Eqs. (14) and (15).
The objective function is

f =
∑

k

log P(ok|P,Qk) (by Eq. (8))

=
∑

k

log

[∏

s∈S

P
(
(ok)s |(ok)t , t ∈ Ns

)]
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=
∑

k

∑

(ok)t ,t∈Ns

Hk

(
(ok)t , t ∈ Ns

)
log P

(
(ok)s |(ok)t , t ∈ Ns

)
, (20)

where k ∈ {r, g, b} and P((ok)s |(ok)t , t ∈ Ns) is defined in Eq. (12). Hk((ok)t , t ∈ Ns) is
the observed frequency of the four-tuple of symbols. The problem we need to solve is

maximize: f

subject to:

(i) 0 ≤ P (ds |dt , t ∈ Ns) ≤ 1;
(ii) 0 ≤ P (dt , t ∈ Ns) ≤ 1;

(iii) the constraint defined by Eq. (14);
(iv) the constraint defined by Eq. (15).

A software package, SNOPT (Gill et al., 2002), is used to solve the above problem.

3.3. Results for the Markov random field model

To test our method for ML estimation, we first specified a conditional distribution for a
MRF with a first-order neighborhood system. 100 realizations of the MRF was generated
on a lattice of size 600 × 740 by sampling from the conditional distribution using the
Gibbs sampler. For each realization, three visible samples were obtained by mapping the
hidden states in the realization to the observation symbols using the observation matrices.
By means of a raster scan with a window (see Fig. 3a) over the visible samples, the
frequencies of the four-tuples and five-tuples of observation symbols were computed. We
estimated 108 conditional probabilities directly from those frequencies. To estimate the
remaining conditional probabilities, Eq. (20) was used to create an objective function and
maximization subject to the constraints described in Section 3.1 was solved by SNOPT.
This resulted in good estimates which generate realizations that are visually very similar to
those generated using the specified conditional distributions (see Fig. 6). We computed the
relative errors of estimates in terms of the matrix 2-norm, ‖P̂ − P‖2/‖P‖2 (see Table 1).
We note that the estimates are not numerically good for the case shown in Fig. 6b and c.
One factor that may contribute to the error in the estimates is the lack of sufficient data
for accurate estimation of conditional probabilities. Another factor may be the fact that
the visible fields may be consistent with many different hidden distributions, and the ML
estimation process can yield any of these distributions (Derin and Elliott, 1987).

4. A multiscale modeling approach

Unfortunately, the first-order neighborhood system is too small to get optimal results,
especially when there are long range correlations between states. In addition, because

Table 1 Relative errors of estimates for the MRF modeling

1 2 3 4

‖P̂−P‖2‖P‖2
(×102) 2.98 14.3 37.4 6.20

Figure 6a 6b 6c 6d
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Fig. 6 Non-hierarchical MRF modeling on synthesized data. Each row shows the result of one experi-
ment: samples generated with specified (right) and estimated (left) conditional distributions.
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10 nm particles are larger than 5 nm particles, the interactions between 10 nm particles
are at distances longer than those between 5 nm particles in experimental data. Figure 7
illustrates the problem: The clustering of 10 nm particles is optimally characterized at the
scale of 80 pixels, but clustering of 5 nm particles is optimally characterized at the scale
of 40 pixels. We also note that artifacts due to the small neighborhood system (i.e., parti-
cle positions aliasing with the lattice) become worse with coarser grids. Although we can
use larger neighborhood systems following Tjelmeland and Besag (1998), the number of
unknown variables dramatically increases. For example, there are 19,400 unknown vari-
ables for a second-order neighborhood system, which is too large for SNOPT to handle.
Even if it were possible to find another package able to solve a system with such a large
number of unknown variables, we do not have large enough datasets to reliably estimate
the conditional distributions, because there are only 10 to 20 images captured in a typical
experiment using nanoprobes.

4.1. A multiscale MRF model

To solve those problems, we have developed a multiscale MRF model. Following Bouman
and Shapiro (1994), we build a pyramid with three layers (Fig. 8a). Each site in a coarse
layer is a parent of four sites in the layer beneath it. Let us denote the three layers
from coarse-to-fine, L(2), L(1), and L(0). For each layer, there is a corresponding dis-
tribution process, D(i) where i ∈ {2,1,0}. Each of these is modeled as a MRF with a
first-order neighborhood system. Furthermore, two additional distribution processes are
used to model the correlation between the values of sites in one layer and those in the
layer beneath it: D(2,1) between L(2) and L(1), and D(1,0) between L(1) and L(0). Both
of these are modeled as MRFs with a 5-neighbor neighborhood system, where four
neighbors are in the same layer and the fifth neighbor is their parent in the layer above
(Fig. 8b). There are also three corresponding observation processes for each of the dis-
tribution processes: O

(2)
k , O

(1)
k , O

(0)
k , O

(2,1)
k , and O

(1,0)
k where k ∈ {r, g, b}. In our multi-

scale MRF model, the value of a site at a given scale depends not only on its parent in
the layer above but also on its neighbors at the same scale. In this respect, our model is
closely related to the models presented in (Kato et al. 1996, 1999; Mignotte et al., 2000;
Wilson and Li, 2003). However, unlike the models described by these authors, we solve
the statistical inference problem by means of a sequence of related multi-resolution prob-
lems rather than as a single problem representing the entire quadtree. Multi-resolution
representations of the observed data at three scales are realizations of O(i), i ∈ {2,1,0},
and data between two scales are realizations of O(2,1) and O(1,0). We can infer the con-
ditional p.m.f.’s of D(i) from O

(i)
k as described in Section 3.1. Furthermore, if we can

estimate the conditional p.m.f.’s of D(2,1) from O
(2,1)
k , and D(1,0) from O

(1,0)
k , then the

Gibbs sampler can be used to generate samples from the conditional p.m.f.’s in a coarse-
to-fine manner.

We tested the multiscale MRF model on the data used in Fig. 7. The data were
processed at three different scales, with grid sizes of 20, 40 and 80 pixels, respectively.
The finest scale was chosen to be 20 pixels because that is the most frequent distance of
the nearest neighbor for every particle in the data set. When there are multiple proteins
present at a single site, simple majority is used to determine the state of the site. Because
there are only two proteins, the frequencies of the four-tuples and five-tuples of states are
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Fig. 7 Non-hierarchical MRF modeling on experimental data with two proteins. The first protein is a gly-
cosylphosphatidylinositol-linked protein, Thy-1 (labeled with 10 nm particles), and the second is a linker
for activation of T cells, LAT (labeled with 5 nm particles). The MRF model has a first-order neighbor-
hood system. Because only two proteins are involved, the frequencies of the four-tuple’s and five-tuple’s
of states can be computed directly from the observed data. The conditional probabilities of the MRF are
computed using Eq. (3). A Gibbs sampler is used to generate samples from the conditional distribution of
the MRF. The reconstruction depends on the grid size used to process the data. Grid sizes of 20, 40 and 80
pixels are used to process and reconstruct samples in (a), (b) and (c). A real TEM image is shown in (d).
The black arrow points to 5 nm particles and the white arrow points to 10 nm particles. The bar equals
0.1 micron.

Fig. 8 Multiscale MRF model and 5-neighbor neighborhood system.
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computed by means of a raster scan with a 80 × 80 pixel window (see Fig. 3a). The con-
ditional probabilities of D(2) are then computed using Eq. (3). In an analogous way, the
conditional probabilities of D(1) and D(0) are computed using 40 × 40 and 20 × 20 pixel
windows respectively. By means of a raster scan using 80 × 80 and 40 × 40 pixel win-
dows, the frequencies of the five-tuple’s and six-tuple’s of states (see Section 4.2) can also
be computed. The conditional probabilities of D(2,1) are then computed using Eq. (21). In
an analogous manner, the conditional probabilities of D(1,0) are computed using windows
of size 40 × 40 and 20 × 20 pixels. The Gibbs sampler is then used to generate samples
from the conditional p.m.f.’s:

1. Initialize D(2) randomly.
2. Sample from the conditional p.m.f. of D(2).
3. Initialize D(1) randomly.
4. While keeping D(2) unchanged, sample from the conditional p.m.f. of D(2,1).
5. Initialize D(0) randomly.
6. While keeping D(1) unchanged, sample from the conditional p.m.f. of D(1,0).

Keeping the upper layer unchanged while sampling from MRFs modeling adjacent layers
allows long range properties to propagate from coarse scales to fine scales. The multiscale
MRF model is very good at characterizing both short and long range interactions between
states as shown in Fig. 9. Compared to Fig. 7a, b and c, particle distributions in Fig. 9c
are visually very similar to those in the real sample images and the artifacts due to the
use of the relatively small neighborhood system are minimal. There are 10 images in our
sample dataset, which is adequate to obtain good estimates of the conditional probabilities
as shown in Fig. 9.

4.2. Parameter estimation for MRFs with a 5-neighbor neighborhood system

In order to apply the multiscale MRF model to data where there are three proteins, the
parameters of the hidden MRF with a 5-neighbor neighborhood system first need to
be estimated from the visible fields. We adopted a strategy similar to that described in
Section 3.1 to solve the ML estimation problem. As shown in Fig. 3b, we number the
sites in a 5-neighbor neighborhood system. Using this numbering scheme, a six-tuple
〈n,m, l, k, j, i〉 and a five-tuple 〈m, l, k, j, i〉 can be used to denote the joint events

(
D

(u,w)

5 = n,D
(u,w)

4 = m,D
(u,w)

3 = l,D
(u,w)

2 = k,D
(u,w)

1 = j,D
(u,w)

0 = i
)

and
(
D

(u,w)

4 = m,D
(u,w)

3 = l,D
(u,w)

2 = k,D
(u,w)

1 = j,D
(u,w)

0 = i
)

respectively, where u denotes an upper layer and w denotes a lower layer. For the sake of
notation, we use the prime symbol to denote (u,w). The conditional probability

P (D′
5 = n|D′

4 = m,D′
3 = l,D′

2 = k,D′
1 = j,D′

0 = i)

can then be estimated:

P (D′
5 = n|D′

4 = m,D′
3 = l,D′

2 = k,D′
1 = j,D′

0 = i)

= pnmlkji ≈ H(〈n,m, l, k, j, i〉)
H(〈m, l, k, j, i〉) , (21)
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Fig. 9 Multiscale MRF modeling on experimental data with two proteins. The first protein is a glyco-
sylphosphatidylinositol-linked protein, Thy-1 (labeled with 10 nm particles), and the second is a linker for
activation of T cells, LAT (labeled with 5 nm particles). (a) A sample of D(2) generated from the con-
ditional p.m.f. of D(2); (b) a sample of D(1) after sampling from the conditional p.m.f. of D(2,1); (c) a
sample of D(0) after sampling from the conditional p.m.f. of D(1,0); and (d) a real TEM image. The black
arrow points to 5 nm particles and the white arrow points to 10 nm particles. The bar equals 0.1 micron.

where H are histograms of the tuples. The probability of a realization of the distribution
process, d ′, given P is also approximated by a product of the conditional probabilities:

P(d ′|P) ≈
∏

s∈S(w)

P(d ′
s |d ′

t , t ∈ Ns), (22)

where S(w) is the set of sites in the lower layer. The probability of a realization of the
observation process, o′

k , given P and Qk is approximated as:

P(o′
k|P,Qk) ≈

∏

s∈S(w)

P
(
(o′

k)s |(o′
k)t , t ∈ Ns

)
, (23)

where

P
(
(o′

k)s |(o′
k)t , t ∈ Ns

)
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=
∑

d ′
s ,d ′

t ,t∈Ns

P(d ′
s |d ′

t , t ∈ Ns)P(d ′
t , t ∈ Ns)

∏
t∈{s}∪Ns

P((o′
k)t |d ′

t )

P((o′
k)t , t ∈ Ns)

(24)

and where k ∈ {r, g, b}. P ((o′
k)s |d ′

s) are known and defined in Qk .
P ((o′

k)t , t ∈ Ns) are the probabilities of symbol five-tuples in the visible fields and can
be estimated from the visible samples. P (d ′

t , t ∈ Ns) are the probabilities of state five-
tuples in the hidden field. In Eq. (24), P (d ′

s |d ′
t , t ∈ Ns) and P (d ′

t , t ∈ Ns) are unknown
variables. The maximum likelihood estimation of P is achieved by maximizing the log-
arithm of the probability that the process generated the visible samples as a function of
P (d ′

s |d ′
t , t ∈ Ns) and P (d ′

t , t ∈ Ns):

P̂ = arg max
P

∑

k∈{r,g,b}
log P(o′

k|P,Qk). (25)

Isotropy is assumed only between neighbors that are in the lower layer. The conditional
probabilities vary if we swap between one neighbor at the lower layer and the neighbor at
the upper layer. The number of unknown conditional probabilities in P is 802. In addition,
there are 181 unknown probabilities of state five-tuples. The total number of unknown
variables is 983. As in Section 3.1, we build a quadtree of state tuples where the five-
tuples are leaves. The probabilities of the five-tuples are constrained by

∑

〈m,l,k,j,i〉∈C(a)

P
(〈m, l, k, j, i〉) = P (a), (26)

where a is the nearest known ancestor of the five-tuples and C(a) is the set of leaves of
the quadtree which are on the branch which starts at a. The problem we need to solve is

maximize:

f =
∑

k

log P(o′
k|P,Qk)

=
∑

k

∑

(o′
k)t ,t∈Ns

Hk((o
′
k)t , t ∈ Ns) log P((o′

k)s |(o′
k)t , t ∈ Ns) (27)

subject to:

(i) 0 ≤ P (d ′
s |d ′

t , t ∈ Ns) ≤ 1;
(ii) 0 ≤ P (d ′

t , t ∈ Ns) ≤ 1;

(iii) ∀d ′
t , t ∈ Ns

∑

d ′
s

P (d ′
s |d ′

t , t ∈ Ns) = 1;

(iv) the constraint defined by Eq. (26).

The above problem is also solved using SNOPT.
We did seven experiments to examine the quality of estimation. A conditional distrib-

ution for a MRF with a 5-neighbor neighborhood system was first specified. 100 realiza-
tions of the MRF was generated on a double lattice (a lattice of size 300 × 370 above a
lattice of size 600 × 740) by sampling from the conditional distribution using the Gibbs
sampler. For each realization, three visible samples were obtained by mapping the hidden
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Table 2 Relative errors of estimates for the MRF modeling with a 5-neighbor neighborhood system

1 2 3 4 5 6 7

‖P̂−P‖2‖P‖2
(×102) 44.1 33.7 29.9 35.6 35.9 45.3 33.3

states in the realization to the observation symbols using the observation matrices. By
means of a raster scan with a window (see Fig. 3b) over the visible samples, the frequen-
cies of the five-tuples and six-tuples of observation symbols were computed. To estimate
the conditional probabilities, Eq. (27) was used to create an objective function and maxi-
mization subject to the constraints described above was solved by SNOPT.

Table 2 shows relative errors of estimates in terms of matrix 2-norm for the seven ex-
periments. Like the MRF model with a first-order neighborhood system, there are errors
in the estimates. When the number of samples are increased by a factor of 10, similar er-
rors were also observed. It is very likely that the errors are due to the fact that the visible
fields are consistent with many different hidden distributions. As demonstrated in Sec-
tions 4.3 and 4.4, although there were errors in estimates of the conditional probabilities
of the MRF with a 5-neighbor neighborhood system, the multiscale MRF model worked
well when applied to synthesized and experimental data.

4.3. Results on synthesized data

We applied the multiscale MRF model to synthesized data where we know the ground
truth. The conditional probabilities of D(2), D(2,1), and D(1,0) were first specified. A Gibbs
sampler was then used to generate samples from the conditional distributions through a
coarse-to-fine pass described in Section 4.1. The three scales used to generate the samples
were 80, 40 and 20 pixels. The coordinates of all three proteins at the finest layer in the
samples were exported as data. We eliminated the coordinates of R to generate a set of
data where R is missing. In an analogous way, a set of data where G is missing and a set
of data where B is missing were obtained. We processed the data sets at the same three
scales used to generate them. The data sets at scale of 80 pixels are regarded as samples of
O

(2)
k and were used to estimate the conditional p.m.f. of D(2). The data sets at scales of 80

and 40 pixels were used to estimate the conditional p.m.f. of D(2,1). The data sets at scales
of 40 and 20 pixels were used to estimate the conditional p.m.f. of D(1,0). Finally, the
estimates of the conditional probabilities of D(2), D(2,1), and D(1,0) were used to generate
samples by means of Gibbs sampling in a coarse-to-fine manner as before. This produced
satisfactory results. As shown in Fig. 10, the samples of the finest layer generated with
specified and estimated conditional probabilities are visually very similar.

4.4. Results on experimental data

As a critical test, we applied the multiscale MRF model to two sets of experimental data
obtained by immunogold labeling of membrane sheets. They were prepared from rat ba-
sophilic leukemia 2H3 (RBL-2H3) mast cells, that express the high affinity IgE receptor,
FcεRI. Crosslinking this receptor with multivalent ligand activates a complex, multicom-
ponent tyrosine kinase-dependent signaling pathway leading to the release of histamine
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Fig. 10 Multiscale MRF modeling on synthesized data. Each row shows the result of one experiment:
samples of the finest layer of the multiscale MRF model generated with specified (left) and estimated
(right) conditional distributions.
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and other mediators of allergic and asthmatic responses. Early events in the FcεRI sig-
naling cascade include receptor redistribution into large clusters, the recruitment of both
membrane-bound and cytoplasmic signaling proteins to the receptor-rich domains and
also the segregation of certain tyrosine phosphorylated scaffolding and signaling proteins
away from the receptor-rich domains (Wilson et al. 2000, 2001, 2002).

The first experiment involved three signaling species: the β subunit of the FcεRI it-
self (β), linker for activation of T cells (LAT), and phospholipase Cγ isoform 1 (PLCγ 1).
LAT is a transmembrane scaffolding protein that helps to recruit signaling proteins to the
membrane. PLCγ 1 is an enzyme that cleaves phosphatidylinositol lipid, generating sec-
ond messengers such as inositol triphosphate and diacylglycerol. Previous work from this
group implicated LAT in the organization of “secondary signaling domains,” since LAT
clusters segregate from IgE receptors and these clusters colocalize with PLCγ 1 (Wilson
et al., 2001). To reconstruct the distributions all three proteins in the same membrane,
we analyzed three sets of double-label data: (1) PLCγ 1 labeled with 5 nm particles and
LAT labeled with 10 nm particles (Fig. 11a); (2) LAT labeled with 5 nm particles and β

labeled with 10 nm particles (Fig. 11b); and (3) PLCγ 1 labeled with 5 nm particles and
β labeled with 10 nm particles (Fig. 11c). There were 10 images in each data set. Spatial
point patterns for the two particle sizes were extracted from digitized images as described
in (Zhang et al., 2006). We computed histograms of the distances of the nearest neighbor
for every particle in the data sets and found that the most frequent distance is 16 pixels.
Consequently, windows of size 16×16, 32×32, and 64×64 pixels were used to estimate
the histograms of symbols at the three scales. LAT, PLCγ 1, and β were assigned to R,
G, and B, respectively. In Fig. 11d, the sample reconstructed from the modeling demon-
strates both the colocalization of PLCγ 1 (green) with LAT (red) and the segregation of
LAT/ PLCγ 1 from β (blue) in a single integrated image.

In the second experiment, we again chose the FcεRI β subunit but added two different
signaling species, Grb2-binding protein 2 (Gab2) and the p85 subunit of phosphatidyli-
nositol 3-kinase (p85 of PI 3-kinase). Gab2 is an adaptor protein and PI 3-kinase is an
enzyme that phosphorylates phosphatidylinositol lipids in the 3 position on the inosi-
tol ring. Previous double-label studies indicated that Gab2 and p85 are both recruited to
receptor-rich domains in activated RBL-2H3 cells (Wilson et al., 2001). This dataset was
also composed of three double-label protocols, with 10 images each: (1) Gab2 was la-
beled with 5 nm particles and β was labeled with 10 nm particles (Fig. 12a); (2) Gab2
was labeled with 5 nm particles and p85 was labeled with 10 nm particles (Fig. 12b); and
(3) p85 was labeled with 5 nm particles and β was labeled with 10 nm particles (Fig. 12c).
The data are processed at scales of 20, 40, and 80 pixels. In Fig. 12d, the sample recon-
structed from the modeling confirms the colocalization of p85 (red), Gab2 (green), and β

(blue) in a single integrated image.

5. Discussion

The heterogeneous organization of plasma membrane components and functions has been
recognized for decades (Berlin et al., 1974) and there is growing consensus that plasma
membrane heterogeneity is a critical regulator of signaling pathway activity. Thus, corre-
lating the activities of receptors and signaling proteins and lipids with their spatial distri-
bution and dynamics is essential to understand the regulation of cell signaling.
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Fig. 11 Multiscale MRF modeling for the first experiment involving three proteins where only two are
observable in any single sample. (a) TEM image where PLCγ 1 (5 nm) and LAT (10 nm) are observed;
(b) TEM image where LAT (5 nm) and β (10 nm) are observed; (c) TEM image where PLCγ 1 (5 nm) and
β (10 nm) are observed; and (d) a reconstruction computed using Gibbs sampling that shows the spatial
distributions of all three proteins, LAT (red), PLCγ 1 (green), and β (blue). The black arrows point to 5 nm
particles and the white arrows point to 10 nm particles. The bar equals 0.1 micron.

A range of static and dynamic methods is available to investigate receptor distributions
on membranes. In the mast cell system that our biology team studies, the high affinity
IgE receptor, FcεRI, has been tracked by scanning electron microscopy with immuno-
gold probes (Seagrave et al., 1991), fluorescence recovery after photobleaching (FRAP)
with fluorescent probes (Thomas et al., 1992), time-resolved phosphorescence anisotropy
(TPA) with phosphorescent probes (Rahman et al., 1992) and single particle tracking us-
ing either gold nanoprobes (Barisas et al., 2007) or quantum dot (QD) probes (Andrews
et al., 2007; Lidke et al., 2007). Some of these methods can be used to localize more than
one molecular species, for example, the analysis of QD-FcεRI dynamics in the context of
GFP-actin distribution (Lidke et al., 2007). Correlated movement of receptors and signal-
ing proteins can in principle be studied by fluorescence correlation spectroscopy (FCS)
and protein-protein interactions can be studied by fluorescence resonance energy trans-
fer (FRET). However, these dual-label techniques require transfection with fluorescent
analogs of signaling proteins and, in the case of FRET, favorable molecular geometry to
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Fig. 12 Multiscale MRF modeling for the second experiment involving three proteins where only two are
observable in any single sample. (a) TEM image where Gab2 (5 nm) and β (10 nm) are observed; (b) TEM
image where Gab2 (5 nm) and p85 (10 nm) are observed; (c) TEM image where p85 (5 nm) and β (10 nm)
are observed; and (d) a reconstruction computed using Gibbs sampling that shows the spatial distributions
of all three proteins, p85 (red), Gab2 (green), and β (blue). The black arrows point to 5 nm particles and
the white arrows point to 10 nm particles. The bar equals 0.1 micron.

enable FRET to occur. Although protein-protein colocalization can be measured dynam-
ically, relationship to membrane architecture is not revealed and extension to more than
two labels would be very difficult.

To date, immuno-electron microscopy on membrane sheets provides the highest reso-
lution view of membrane topography. It also enables observations of spatial relationships
between several different molecular species at high resolution and without the need for
transfection. Importantly, it also reveals details of membrane architecture, such as the
proximity or residency of receptors within coated pits or caveolae. Thus, its chief limita-
tion is the small number of different molecular species that can be imaged on the same
membrane sheet. As a first step toward overcoming this limitation, we have developed a
multiscale hidden MRF model that can be used reliably to estimate the spatial relation-
ships among three proteins from experiments showing spatial relationships between only
two of these proteins. The code is available on our web-site cellpath.health.unm.edu and
we are optimistic that it will be adopted by other groups.
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New applications of the MRF will enhance the utility of the current model. For exam-
ple, in the experiments above, it is assumed that all proteins of interest on cell membranes
are labeled by gold particles. We use labeling efficiency to denote the percentage of a
protein labeled by gold particles in a biological experiment. However, in our experience,
labeling efficiencies in experiments using nanoprobes are typically less than 100%. These
values must be determined individually for each molecular species probed, using quan-
titative methods such as flow cytometry or western blotting that can be fitted to reliable
standard curves, and may range from 50–70% (data not shown). Once these quantitative
methods have been used to estimate labeling efficiency in a given biological experiment,
MRF modeling can be used to correct for underlabeling. The strategy is to include the
labeling efficiency in the observation matrices as follows:

Qr =

⎡

⎢⎢⎢
⎣

0 0 0 0

0 p
g
r 0 0

0 0 pb
r 0

1 1 − p
g
r 1 − pb

r 1

⎤

⎥⎥⎥
⎦
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,

where p
j

i is the labeling efficiency of protein j in experiments where protein i is missing.
The method has recently been used to correct for 40% underlabeling of the epidermal
growth factor receptor (EGFR) on breast cancer cell membranes, permitting more accurate
estimates of the numbers of receptors per cluster (Yang et al., 2007).

We currently use MRFs with a first-order neighborhood system. In the next phase
of work, we predict that a larger neighborhood system can be implemented, improving
the quality of the reconstruction computed using Gibbs sampling. However, as the size
of the neighborhood system increases, the number of unknown variables becomes too
large to be solved using SNOPT. By exploiting Markov–Gibbs equivalence (Besag, 1974;
Li, 1995), we can write the conditional probability in terms of clique potentials. We be-
lieve that by using the Gibbs formulation and by exploiting isotropy within cliques the
number of unknown variables can be further reduced, so that we can utilize a MRF model
based on a second-order neighborhood system (i.e., an 8-neighborhood). In addition, it
is easier to obtain biological insights when the results are interpreted in term of clique
potentials. For example, if the potential of RB 2-clique is larger than that of RG 2-clique,
R is more likely to colocalize with G than with B . Using clique potentials, combined
with MRF modeling’s ability to derive confidence intervals, we can provide quantitative
measurements of co-clustering for molecular species.

These new approaches will allow the modeling to keep pace with technological ad-
vancements that permit the experimentalists to routinely label more than two molecular
species at a time. These advancements will rely on successful applications of new shape-
defined 2–10 nm nanoparticles (Hernandez-Sanchez et al., 2006). The upper limit for
simultaneous labeling is likely to be at most 4 or 5 molecular species at a time, for at least
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as long as antibodies remain the principal reagents for probe targeting. Our proposed ex-
tensions to the code will permit combinations of these larger data sets to be analyzed,
permitting more complete maps of molecular topography during signal transduction.

6. Conclusion

We have described a novel approach for reconstructing spatial relationships between three
proteins on cell membranes from samples showing relationships between only two pro-
teins. This approach utilizes a multiscale hidden Markov random field model where math-
ematical programming techniques are used to deduce the conditional distributions. To our
knowledge, we are the first to use Markov random fields to model the spatial distribution
of proteins on cell membranes. The application of our approach to synthesized data has
demonstrated that the multiscale MRF model is good at characterizing both short and long
range statistical properties and that the spatial relationships among three proteins can be
reliably estimated. The application to experimental data has provided the first maps of the
spatial relationship between groups of three different signaling molecules. The ability to
analyze the spatial organization and dynamics of multiple membrane proteins during sig-
naling is a critical step towards a more complete understanding of the spatial and temporal
regulation of signal transduction pathways.
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