Introduction to Computer Graphics

Ed Angel
Professor of Computer Science, Electrical and Computer Engineering, and Media Arts
Director, Arts Technology Center
Director, ARTS Lab
University of New Mexico
Contact Information

angel@cs.unm.edu
www.cs.unm.edu/~angel/CS433
CS Office FEC 301F
277-6560
Office Hours: TTh PM
Arts Technology Center
CERIA 346
277-2186
Objectives

• Broad introduction to Computer Graphics
 - Software
 - Hardware
 - Applications
• Top-down approach
• OpenGL
Text Book

• The lectures cover the material in Chapters 1-8
• Survey additional topics as time permits
Prerequisites

• Good programming skills in C (or C++)
• Basic Data Structures
 - Linked lists
 - Arrays
• Geometry
• Simple Linear Algebra
Requirements

- 3 Assigned Projects
 - Simple
 - Interactive
 - 3D

- Term Project
 - You pick
Resources

• Can run OpenGL on any system
 - Windows
 - Linux
 - Mac

• CS lab
 - Linux/mesa
 - Some Nvidia cards
References

• Other helpful references
 - OpenGL: A Primer (Second Edition), Ed Angel, Addison-Wesley, 2004
 • Designed for students who need more programming information
 - The OpenGL Programmer’s Guide (the Redbook) and the OpenGL Reference Manual (The Blue book), Addison-Wesley,
 – The definitive references
 – New edition of red book just released
Web Resources

- www.opengl.org
- www.cs.unm.edu/~angel
Outline: Part 1

• Part 1: Introduction
• Text: Chapter 1
• Lectures 1-3
 - What is Computer Graphics?
 - Applications Areas
 - History
 - Image formation
 - Basic Architecture
Outline: Part 2

• Part 2: Basic OpenGL
• Text: Chapters 2-3
• Lectures 4-9
 - Architecture
 - GLUT
 - Simple programs in two and three dimensions
 - Interaction
Outline: Part 3

- Part 3: Three-Dimensional Graphics
- Text: Chapters 4-6
- Lectures 10-20
 - Geometry
 - Transformations
 - Homogeneous Coordinates
 - Viewing
 - Shading
Outline: Part 4

• Part 5: Implementation
• Text: Chapter 7
• Lectures: 21-23
 - Approaches (object vs image space)
 - Implementing the pipeline
 - Clipping
 - Line drawing
 - Polygon Fill
 - Display issues (color)
Outline: Part 5

- Part 4: Discrete Methods
- Text: Chapter 8
- Lectures 24-27
 - Buffers
 - Bitmaps and Pixel Maps
 - Texture Mapping
 - Compositing and Transparency
Outline: Part 6

• Part 6: Programmable Pipelines
• Text: Chapter 9
• Lectures 28-30
 - Shading Languages
 - GLSL
 - Vertex Shaders
 - Fragment Shaders
Outline: Part 7

- Part 7: Hierarchy
- Text: Chapter 10
- Lectures: 31-33
- Tree Structured Models
 - Traversal Methods
 - Scene Graphs
Outline: Part 8

• Part 8: Curves and Surfaces
• Text: Chapter 11
• Lectures: 34-38
Extra Lectures

• Marching Squares
• Virtual Trackball
• Display Issues
• Fractals
• Sampling and Aliasing
• Bump Mapping
• Environment Mapping
• Reflection and Transmission