CS 241 Data Organization using C

Brooke Chenoweth

Fall 2017

Instructor

Name: Brooke Chenoweth

Email: bchenoweth@cs.unm.edu (Include course number in a meaningful subject line, please)

Office: Room 234 of Electrical and Computer Engineering (ECE)

Office Hours: MF 2:00pm - 4:00pm (or email me to schedule a meeting at another time)

Textbook

This little book has been around since 1988, so it shouldn’t be difficult to find a copy.

Description

CS-241 is an introduction to the C Programming language, an introduction to using a command-line interface of the Linux operating system, and an introduction to machine level data organization and memory allocation. Students taking this course should already be familiar with basic concepts of computer programming such as variables, conditional control flow and loops. Developing mastery of these fundamental concepts is one of the goals of CS-241. Students in CS-241 author many C programs; lab assignments are short and usually variants on examples in the textbook. Projects are more interesting and touch on a wide range of computer applications which have included encryption, numerical analysis, databases, scientific visualization, artificial intelligence, genetic algorithms and games. Many examples used in this course involve implementation of standard data structures such as linked lists and trees. However, mastery of such data structures is not within the course’s domain.

The primary goals of CS-241 are for the student to be able to:

1. Read and apply the C syntax covered in the textbook (The C Programming Language by Kernighan and Ritchie).
2. Without a computer, determine the output of C language source code involving triply nested loops, conditional control flow, function calls, pointers, arrays, arithmetic, logical and bit operators, structures and memory allocation.

3. Use a Linux command-line environment to manipulate files, and directories, and to edit, compile, run and debug C programs. This includes the use of simple makefiles and a low level debugger such as valgrind.

4. Implement, in C, any given algorithm with a complexity level equivalent to that of quicksort or a doubly linked list with accuracy, efficiency and clarity

Grading

- 60% Programming Assignments (labs and projects)
- 30% Exams (midterm and final)
- 10% Lecture, quizzes, and participation

Late projects/assignments will not be accepted without prior permission.

Syllabus

<table>
<thead>
<tr>
<th>Weeks</th>
<th>Topics</th>
<th>Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 2</td>
<td>Types, Operators, Expressions, Scope, Control Flow, Intro to Functions, and Bit Manipulation.</td>
<td>K&R: Chap 1-3</td>
</tr>
<tr>
<td>3 - 4</td>
<td>Functions and Program Structure</td>
<td>K&R: Chap 4</td>
</tr>
<tr>
<td>5 - 6</td>
<td>Pointers, Arrays, Structures, Linked Data Structures</td>
<td>K&R: Chap 5-6</td>
</tr>
<tr>
<td>7 - 8</td>
<td>I/O and System Interface</td>
<td>K&R: Chap 7-8</td>
</tr>
<tr>
<td>9 - 10</td>
<td>Linear Data Structures, Efficient debugging techniques, Lists, Strings, and Dynamic Memory Allocation</td>
<td>Supplemental reading</td>
</tr>
<tr>
<td>11 - 12</td>
<td>Hashing and other efficient data structures</td>
<td>Supplemental reading</td>
</tr>
<tr>
<td>13 - 14</td>
<td>Sorting, memory management</td>
<td>Supplemental readings</td>
</tr>
<tr>
<td>15</td>
<td>Makefiles, Debugging, Profiling and performance tuning, Review</td>
<td>Supplemental readings</td>
</tr>
</tbody>
</table>

Lab Attendance

Lab class meets once per week in a computer lab. You are expected to attend. If for some reason you cannot attend your regularly scheduled lab class but are able to attend one of the other lab classes during the same week, then that other lab can count as your lab attendance.

NOTE: Before attending a different lab section, check with that section’s lab instructor to make sure there is an open space for you.

1Exact schedule subject to change
NOTE: In order to receive credit for attending a different lab section, it is your responsibility to make sure the lab instructor of that section counts you as present while you are in the lab class (NOT after the fact). Your name will not be on that instructor’s roster. You must make sure to speak to the lab instructor during the lab class, telling him or her first and last name, and in what section you are registered.

If you feel you need extra help or would simply like to attend lab section in addition to your own, then you are encouraged to do so. First, however, please contact the lab instructor of the extra lab you want to attend to make sure that there is enough space.

Working Together

Working together and helping one another on all projects (but not on exams and quizzes) is highly encouraged. This includes discussion of project specification, algorithms, data structures, and test cases. It does not include code. Each person must author his or her own code.

Cheating

Cheating will be dealt with very harshly, and includes:

- Copying code from another person or having someone else write your code.
- Copying code from the Internet or another source. (If there’s some code that you would really, really like to use, please check with us before you do it.)
- Attempting to disassemble, decompile, or otherwise reverse engineer compiled example programs.
- Allowing another person to copy your code.
- Leaving your code (paper or electronic copies) where others can find it. You are responsible for the security of your intellectual property.
- Use of external libraries other than those included with gcc without documenting it. Note: If you do document usages of external libraries, it will not be considered cheating. However, you still might not receive full marks if the library covers too much of the assignment. It is best to check with one of the instructors before using an external library.
- Violation of copyright or license agreements on external libraries. If you use external library code, it is your responsibility to understand and comply with the appropriate copyright and license issues.
- Violation of the University policy on acceptable computer use.
Not being able to explain how some significant part of your code works will result in a zero for the assignment. It does not matter if the reason you do not understand your code is because you did not do the work or because you got your code working by trial and error. If I suspect someone of cheating, the first thing I do is ask that person to explain the code. This is not a quiz you ever want to fail. Too much code in the real world is built and maintained by trial and error. It makes for a house of cards. It is not a good way to produce code nor is it a good way to learn.

Submitting Assignments

All assignments must be in UNM Learn in order to receive credit for them. If Learn is down, you may e-mail the assignment to the lab instructor in order to prove it was done on time. However, it must be inside Learn before you can receive credit for it.

It is your responsibility to make sure the correct file is submitted to Learn before the deadline. Always double-check your submissions. If you realize you accidentally attached the wrong file, immediately resubmit the correct file with a note explaining the error.

Assignments are due at midnight. (Technically, the deadline in Learn is 11:59PM. The graders will accept submissions up to 12:15 or so to account for variations in clocks, network hiccups, etc.) You are permitted to submit multiple times and the most recent on time submission will be the one graded, so feel free to submit partial solutions as you complete milestones.

Pay attention to deadlines! Assignments are not always due on the same day of the week. You will generally have at least a week for each one, but some larger assignments may give you more time.

Late Assignments

Ideally, all assignments will be completed and submitted well before the deadline. However, I am well aware that sometimes this will not be possible due to illness, technical problems, other classes, etc. For that reason, each student is given a pool of ten extension days they may use during the semester, limited to at most three days for any given assignment.

• Extension days may not be used for online quizzes or surveys, since they generally will be discussed in the next lecture.

• You may use a maximum of three extension days for a given assignment. I want to be able to discuss the solution to an assignment within a reasonable amount of time after the deadline.

• You have a total of ten extension days over the course of the semester. It is up to you if you want to turn in three assignments three days late, five assignments two days late, every assignment one day late, or some other variation. You do not have to use them at all.
• Weekends count as days, too, so if an assignment is due on Friday and you don’t turn it in until Monday, that would use 3 extension days.

• Use your extension days wisely. If you use all of them on 20 point assignments early in the term, you won’t have any left to spend on a difficult 100 point assignment later on.

Americans with Disabilities Act (ADA) Policy Statement

The Americans with Disabilities Act (ADA) is a federal antidiscrimination statute that provides comprehensive civil rights protection for persons with disabilities. Among other things, this legislation requires that all students with disabilities be guaranteed a learning environment that provides for reasonable accommodation of their disabilities. If you believe you have a disability requiring an accommodation, please contact the Accessibility Resource Center (http://arc.unm.edu/)

The ARC is there to help you. If you have a condition where you need extra time or a quiet place for exams, I strongly recommend that you take advantage of their services.

Title IX Sexual Harassment Policy Statement

No form of discrimination, sexual harassment, or sexual misconduct will be tolerated in this class or at UNM in general. I strongly encourage you to report any problems you have in this regard to the appropriate person at UNM. As described below, I must report any such incidents of which I become aware to the university. UNM also has confidential counselors available through UNM Student Health and Counseling (SHAC), UNM Counseling and Referral Services (CARS), and UNM LoboRespect.

In an effort to meet obligations under Title IX, UNM faculty, Teaching Assistants, and Graduate Assistants are considered “responsible employees” by the Department of Education (see pg 15 – http://www2.ed.gov/about/offices/list/ocr/docs/qa-201404-title-ix.pdf). This designation requires that any report of gender discrimination which includes sexual harassment, sexual misconduct and sexual violence made to a faculty member, TA, or GA must be reported to the Title IX Coordinator at the Office of Equal Opportunity (http://oeo.unm.edu). For more information on the campus policy regarding sexual misconduct, see: https://policy.unm.edu/university-policies/2000/2740.html

Computer Science Advisement

Whether or not you have been officially admitted to the CS program yet, please consult the Department of Computer Science Undergraduate Advisor with any questions you may have. This is especially important when navigating the prerequisites for certain courses and
resolving scheduling issues. More general university advisors are not always familiar with the details of the computer science program.

Computer Science Department Website

I host some course files on the CS department servers. Sometimes I may make a typo in a link or set the access permissions on a file incorrectly so that it cannot be reached. In those cases, let me know and I’ll fix it.

It is also possible that the entire CS department website (http://cs.unm.edu) is unreachable for some reason. If that happens, I suggest you email the CS support team directly (email: cssupport@cs.unm.edu), since that will be faster than emailing me and waiting for me to see the message and email support myself. (Unfortunately, it is a bit hard to find the CS support email when the CS site is down, which is why I included here.)