Post-compiler Software Optimization for Reducing Energy

Eric Schulte * Jonathan Dorn † Stephen Harding *
Stephanie Forrest * Westley Weimer †

*Department of Computer Science
University of New Mexico
Albuquerque, NM 87131-0001

†Department of Computer Science
University of Virginia
Charlottesville, VA 22904-4740

March 4, 2014
What is GOA?

Genetic Optimization Algorithm
What is GOA?

Genetic Optimization Algorithm

Post Compiler

source \rightarrow GCC \rightarrow.s \rightarrow GOA \rightarrow.s \rightarrow.exe
What is GOA?

Genetic Optimization Algorithm

Post Compiler

source → **GCC** → .s → GOA → .s → .exe

Genetic

width=1

Copy

Delete

Swap

Two Point Crossover
What is GOA?

Genetic Optimization Algorithm

Post Compiler

source → .s → GOA → .s → .exe

Genetic width=1

Copy

Delete

Swap

Two Point Crossover

ASPLOS 2014
Modified Semantics – Blackscholes
Hardware Specific – Swaptions
Modified Resources – Vips
Genetic Optimization Algorithm (GOA)

- **Source Code**
 - Compile
 - Assembler
 - Link
 - Executable

- **Fitness Function**
 - Minimize
 - Best
 - Cycles of seed with fitness
 - Population

- **Test Suite**
 - Insert
 - Profile
 - Transformation

- **Optimization**
 - Select
 - Link

- **Inputs**
 - Copy
 - Run
Mutation Operations

Copy

Delete

Swap

Two Point Crossover

ASPLOS 2014
Energy Model

\[\text{power} = C_{\text{const}} + C_{\text{ins}} \frac{\text{ins}}{\text{cycle}} + C_{\text{flops}} \frac{\text{flops}}{\text{cycle}} + C_{\text{tca}} \frac{\text{tca}}{\text{cycle}} + C_{\text{mem}} \frac{\text{mem}}{\text{cycle}} \]

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Description</th>
<th>Intel (4-core)</th>
<th>AMD (48-core)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{\text{const}})</td>
<td>constant power draw</td>
<td>31.530</td>
<td>394.74</td>
</tr>
<tr>
<td>(C_{\text{ins}})</td>
<td>instructions</td>
<td>20.490</td>
<td>-83.68</td>
</tr>
<tr>
<td>(C_{\text{flops}})</td>
<td>floating point ops.</td>
<td>9.838</td>
<td>60.23</td>
</tr>
<tr>
<td>(C_{\text{tca}})</td>
<td>cache accesses</td>
<td>-4.102</td>
<td>-16.38</td>
</tr>
<tr>
<td>(C_{\text{mem}})</td>
<td>cache misses</td>
<td>2962.678</td>
<td>-4209.09</td>
</tr>
</tbody>
</table>

Table: Power model coefficients.
Benchmark Applications

<table>
<thead>
<tr>
<th>Program</th>
<th>C/C++ Lines of Code</th>
<th>ASM Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>blackscholes</td>
<td>510</td>
<td>7,932</td>
<td>Finance modeling</td>
</tr>
<tr>
<td>bodytrack</td>
<td>14,513</td>
<td>955,888</td>
<td>Human video tracking</td>
</tr>
<tr>
<td>ferret</td>
<td>15,188</td>
<td>288,981</td>
<td>Image search engine</td>
</tr>
<tr>
<td>fluidanimate</td>
<td>11,424</td>
<td>44,681</td>
<td>Fluid dynamics animation</td>
</tr>
<tr>
<td>freqmine</td>
<td>2,710</td>
<td>104,722</td>
<td>Frequent itemset mining</td>
</tr>
<tr>
<td>swaptions</td>
<td>1,649</td>
<td>61,134</td>
<td>Portfolio pricing</td>
</tr>
<tr>
<td>vips</td>
<td>142,019</td>
<td>132,012</td>
<td>Image transformation</td>
</tr>
<tr>
<td>x264</td>
<td>37,454</td>
<td>111,718</td>
<td>MPEG-4 video encoder</td>
</tr>
<tr>
<td>total</td>
<td>225,467</td>
<td>1,707,068</td>
<td></td>
</tr>
</tbody>
</table>

Table: Selected PARSEC benchmark applications.
Multivariate Breeders Equation

Natural Selection into phenotypic traits [?, Chpt. 4].

$$\Delta \hat{Z} = G\beta$$