CS 530: Geometric and Probabilistic Methods in Computer Science
Homework 6 (Fall ’13)

1. Let \(f(t) = e^{-\pi t^2}, \quad f''(t) = 2\pi e^{-\pi t^2}(2\pi t^2 - 1), \) and \(g(t) = at + b. \) Prove or disprove the following:
\[\langle f'', g \rangle = 0 \]
for all \(a \) and \(b. \)

2. Let \(\Psi(t) = e^{-\pi t^2} \cos(2\pi s_0 t) \) and \(f(t) = e^{j2\pi s_1 t}. \) Give an expression for \(F(a, b) \), the continuous wavelet transform of \(f(t). \)

3. The \(n \)-th moment of \(\Psi \) is defined to be \(M_n\{\Psi\} = \int_{-\infty}^{\infty} t^n \Psi(t)dt. \) Let \(f(t) = e^{-\pi t^2}, \quad f'(t) = -2\pi t e^{-\pi t^2}, \) and \(f''(t) = 2\pi e^{-\pi t^2}(2\pi t^2 - 1). \) Prove the following:
 (a) \(M_0\{f'\} = 0. \)
 (b) \(M_0\{f''\} = M_1\{f''\} = 0. \)

4. The six vectors, \(f_1 = \begin{bmatrix} \cos(\pi/3) & \sin(\pi/3) \end{bmatrix}^T, \quad f_2 = \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) \end{bmatrix}^T, \quad f_3 = \begin{bmatrix} -1 & 0 \end{bmatrix}^T, \quad f_4 = \begin{bmatrix} -\cos(\pi/3) & -\sin(\pi/3) \end{bmatrix}^T, \quad f_5 = \begin{bmatrix} -\cos(\pi/3) & \sin(\pi/3) \end{bmatrix}^T, \quad f_6 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T \) form a frame \(F \) for \(\mathbb{R}^2. \) Draw the frame.
 (a) Give two representations for the vector, \(x = \begin{bmatrix} 1 & 1 \end{bmatrix}^T, \) in \(F. \)
 (b) Prove that \(x \) has an infinite number of representations in \(F. \)
 (c) Give a matrix which transforms any representation of a vector in \(F \) into its representation in the standard basis for \(\mathbb{R}^2. \)
 (d) Give a matrix which transforms a representation of any vector in the standard basis for \(\mathbb{R}^2 \) into its representation in \(F. \)

5. The continuous representation of the Haar highpass filter is
\[h_1(t) = \frac{1}{2}[\delta(t + \Delta t) - \delta(t - \Delta t)]. \]
The continuous representation of the Haar lowpass filter is
\[h_0(t) = \frac{1}{2}[\delta(t + \Delta t) + \delta(t - \Delta t)]. \]
Prove that
\[H_0(s)H^*_0(s) + H_1(s)H^*_1(s) = 1 \]
where \(H_0(s) \) and \(H_1(s) \) are the Fourier transforms of \(h_0(t) \) and \(h_1(t) \).

6. The \(N+1 \) channel Haar transform matrix can be recursively defined as follows:
\[
H_N = \frac{1}{\sqrt{2}} \begin{bmatrix}
I_{N-1} & 0 \\
0 & H_{N-1}
\end{bmatrix} \begin{bmatrix}
U_N \\
L_N
\end{bmatrix}
\]
where \(U_N \) convolves a length \(2^N \) signal with the Haar highpass filter followed by downsampling, \(L_N \) convolves a length \(2^N \) signal with the Haar lowpass filter followed by downsampling, \(I_N \) is the identity matrix of size \(2^N \times 2^N \) and
\[
H_1 = \frac{1}{\sqrt{2}} \begin{bmatrix}
U_1 \\
L_1
\end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix}
1 & -1 \\
1 & 1
\end{bmatrix}.
\]
(a) Using the above definitions, derive expressions for \(H_3 \) and \(H_3^{-1} \).
(b) Compute the Haar transform of the vector \(\begin{bmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8
\end{bmatrix}^T \).