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Abstract— Generating motions for robot arms in real-world
complex tasks requires a combination of approaches to cope
with the task structure, environmental noise, and hardware
imperfections. In this paper we present an efficient framework
for adaptive motion task learning on real hardware that consists
of task transfer, probabilistic roadmaps (PRM), and an online
reinforcement learning algorithm. Online refers to the agent
making decisions and then receiving information about that
decision immediately after the decision has been made, instead
of receiving a complete training set. The task transfer jump
starts training on the hardware with knowledge learned in
simulation. To achieve faster trainings speeds we integrate a
PRM with the learning agent. For motion-based task learning,
we use a reinforcement learning algorithm loosely based on
human cognition. We demonstrate the framework by applying
it to two pointing tasks on a 7 degree of freedom Barrett Whole
Arm Manipulator (WAM) robot. The first task has a stationary
target and illustrates the ability of the framework to quickly
adapt and compensate for hardware noise. The second task
goes a step further and introduces a non-stationary target,
demonstrating the framework’s ability to adapt quickly to a
new environment and new task.

I. I NTRODUCTION

In order to perform tasks, robots must be able to adapt to
a changing environment and problems. In order to process
real world information, online planning has to process higher
volumes of data with tighter deadlines at every time step. The
planning is subject to hardware imperfections and errors in
reading sensory information. Machine learning techniques,
especially online reinforcement learning (ORL) is a useful
tool for robotics motion learning and planning. It provides
a closed-loop feedback system continuously incorporating
current environment information into the planning and pro-
ducing the motions required to perform a task. However,
online reinforcement learning comes with several challenges
that make it potentially problematic to use on real hardware.
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Implementation of an ORL algorithm must be carefully
designed to be safe for the robot both in terms of collision
avoidance and producing motions that don’t strain hardware.
Training the ORL agent from scratch on real hardware can
cause wear and tear to the hardware and thus change the
dynamics of the system. Furthermore, motions take longer
time to execute on hardware than in simulation, and the
training phase could become impractically lengthy. Lastly,
the sheer size of real world state spaces and physical laws
of motion that need to be processed at every time step
in real-time could make ORL prohibitively computationally
expensive.

We propose a framework based on ORL that successfully
overcomes the challenges above and learns motion-based
tasks suitable for a real robot. To jump start the learning on
hardware, and avoid a lengthy training phase, we transfer the
knowledge from a task trained in simulation. To achieve per-
formance suitable for a physical system and ensure the safety
of the system, we rely on probabilistic roadmaps (PRM)
for dimensionality reduction. The state space information
reduced by the PRM is passed to our learning agent, which
learns to produce efficient motion plans. We use a Brain
Emulation and Cognition Architecture (BECCA) [8] agent. It
is an adaptive online reinforcement learning algorithm paired
with an unsupervised hierarchical feature creator. BECCA’s
algorithm contains a decay feature, allowing the agent to
forget features and motion plans over time. This feature is
especially useful for changing environments, as the agent
continuously learns and updates plans based on the current
feedback from the environment.

To demonstrate the framework, we implement it on a
pointing task on a 7 DoF WAM using all 7 degrees of
freedom. The robot needs to autonomously learn how to
point at a target location in its environment regardless of the
start position. In the first series of the experiments, the target
location is stationary. In the second series of experiments
the target location moves. We assess the performance of
the framework by measuring how well the agent adapts
to hardware imperfections and measurement noise. We also
examine the performance of the framework by looking into
time savings obtained by using transfer learning.

Our results show near-identical performance between sim-
ulation and transferred hardware runs. We show between
100 to 600 time steps of savings obtained by using transfer
learning, and demonstrate an agile agent that quickly adapts
to the new environment within 500 time steps. The work
here extends our previous work in [4]. Previously we utilized
transfer to accelerate our experimental procedures without



much discussion of the exact transfer process. Here we delve
deeper into the ramifications and possibilities of transfer
learning for robotics and reinforcement learning.

The rest of this paper is organized as follows: section
II gives an overview of the related work. Section III dis-
cusses the hardware in more detail. Section IV discusses
our methodology, and section V presents our experimental
results. Finally, section VI concludes the paper with the
framework’s benefits to online, reactive motion-based learn-
ing.

II. RELATED WORK

Taylor and Stone defined a taxonomy of transfer learning
in the reinforcement learning domain in [10]. Using that
terminology, our source task is a simulated pointing task. We
have two target tasks. In one, the target task has the same goal
and algorithm in both simulation and hardware runs. In the
other the target is moved but it still has the same algorithm.
The transferred knowledge is a set of feature groups and a
Q-function.

There is active research on WAM training through human
demonstration. A WAM system is represented as a canonical
system of motor primitives [6]. The direct policy search
class of reinforcement algorithms learns the parameters of
the canonical system, while using the demonstration as an
initial policy [6]. This line of research has produced a WAM
capable of playing table-tennis [5], performing a ball-in-a-
cup task [2], and flipping a pancake [3].

Unlike the above approaches which approximate the WAM
model, the BECCA agent is agnostic to the type of the
system and environment. At every time step the agent
receives two signals: a sensory vector and a reward signal.
The sensory vector is passed to a hierarchical feature creator.
The resulting features and the reward signal are passed to the
reinforcement learner.

PRMs are a method for solving complex path planning
problems [1], and they tackle these complex problems by
working in conformation space (C-space). PRMs work by
building a roadmap. A roadmap is a graph where configu-
rations are nodes and connections are edges. First, a set of
configurations are sampled. Then, for each sampled node a
set of candidates nodes are selected to form connections.
PRMs have been extended to work in a wide variety of
environments, ranging from simple open environments, to
complex narrow passageways [1]. They have also been used
in environments with moving obstacles [11].

III. H ARDWARE PLATFORM

The Barrett Whole Arm Manipulator (WAM) platform is
a 7 degree of freedom (DoF) robotic arm. It is cable-driven
and controlled with position encoders and torque estimation.
The WAM has been connected to a GE Intelligent Platforms
reflective memory network in a hub design that allows
multiple computers to share memory at speeds ranging from
43 MB/s to 170 MB/s. The reflective memory networks
allow remote computers to handle the planning and learning

processing, while leaving a small and fast computer on-board
the WAM to handle simple motion control.

IV. M ETHODS

We propose a framework for online motion-based task
learning that includes knowledge transfer from simulationto
hardware. Subsection IV-A discusses transfer methodology,
and subsection IV-B explains the agent in more detail.
Subsection IV-C contains details on PRM implementation
in our framework.

To test the performance of the framework, we implement
it on a WAM and use two series of tasks: with a stationary
target which is described in IV-D, and with a changing target
described in IV-E.

A. Transfer Learning

Transfer learning typically refers to utilizing information
learned in the past on a task in the present [10]. This past
learning can be transferred to a new task or to the same
task under different constraints. Transfer learning has also
been utilized in transferring knowledge from one robot to
another robot that may have a different internal architecture
to represent the world [10]. Taylor and Stone [10] define
jump start and time to threshold performance as two metrics
for transfer learning. Jump start defines the amount of gain
an agent initially recieves from transfered knowledge. Time
to threshold performance defines the amount of time it takes
an agent to reach the threshold performance, which is the
best the agent can do at a given task.

In this paper, we consider a much narrower version of
transfer learning. We transfer learned knowledge of a single
task between a perfect simulation of a robot to imperfect
robotic hardware. In simulation the robot always receives the
exact same joint angles for a particular state, but in hardware
the joint angles are subject to small error so re-entering the
same state will not have the exact same state information.
The source task uses the same learning agent, parameters,
and reward function as the target task. The only difference
is that the source task interacts with the WAM simulator
while the target task interacts with the WAM hardware.

The WAM simulator is a simple kinetic simulator, rep-
resenting the arm with seven points each corresponding to
one degree of freedom. The arm moves in the simulator by
simply adding the state and action vectors. The simulator
does not inject noise, and performs perfect movements. The
WAM arm, on the other hand, performs the movements as
described in III. The resulting motion is subject to error in
performing the movement.

When performing the transfer, we transfer the entire agent
with all its internal states and accumulated experience. We
only change the world model that it interacts with from the
simulator or the WAM interface.

B. BECCA

BECCA is a general reinforcement learner [4]. It takes
an input sensory vector as well as a scalar reward from the



world and then produces an output action vector. Internally
BECCA combines an unsupervised feature creator with a
reinforcement learning agent. Figure 1 shows an overview
of the architecture.
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Fig. 1: BECCA’s Architecture - At every time step, BECCA makes an
observation in the world, extracts features from the sensory input, performs
an action in response to the input, and receives a reward.

The feature creator identifies repeated patterns in the input
vector and groups loosely correlated elements [7] [8]. The
groups are considered to be subspaces, and the unit vectors
of these subspaces are the extracted features. New inputs
are projected onto each feature and the single feature, in
each group with the greatest response magnitude is added
to an active feature vector [8] [7] [9]. All other features
with smaller response magnitudes are not added to the active
feature vector. The active feature vector is then passed to the
reinforcement learner, and on the next time step is fed back
into the feature creator so that more complex features can
be generated.

The reinforcement learner consists of a cause-effect table.
The cause is the working memory, and the effect is the
current active feature vector. Working memory is simply the
sequence of actions that the agent has chosen in the last few
time steps. The cause-effect pairs are then associated with
an experienced reward. To use this model, the reinforcement
learner compares its current working memory and the current
active feature vector to the elements in the table. It then
chooses the entry which is associated with the highest reward
and takes the next action in the cause sequence.

In terms of traditional Markov Decision Process (MDP)-
based reinforcement learning, the cause-effect pairs are
equivalent to action-state pairs. The cause-effect table with
the working memory and its expected reward roughly corre-
sponds to a Q-function in traditional MDP-based reinforce-
ment learning. However, BECCA’s model does not assume
the Markovian property and might depend on more than one
previous state.

As time progresses, less frequently observed cause-effect
transitions fade from the memory and the cause-effect ta-
ble. This makes BECCA inherently able to adapt to new
situations and environments at the cost of a steeper learning
curve.

While BECCA is mostly automated, an engineer must
design a task to interface with BECCA via sending sensory
vectors and interpreting action vectors. Such an interfaceis

called a task. A task simply defines what information from
the world will be sent to the agent, and in what format. Note
that BECCA is agnostic to the format. The task also defines
how to read an action vector and move the robotic actuators.
Again, note that BECCA is agnostic to how this is defined,
and it will learn whatever format the engineer devises.

C. Probabilistic Roadmaps

In this paper, we use the PRMs combined with learning
agent techniques from our previous work [4] to build a
roadmap for the reinforcement learning agent to navigate.
The learning agent is provided with the configurations
and the adjacency information. It is constrained to making
straight line movements along the edges in the adjacency ma-
trix, thus constraining the reinforcement learner to learnhow
to navigate the roadmap. Each experiment generates a new
random roadmap, except for when a transfer occurs. During
a transfer, the previously learned roadmap is preserved. The
PRM is the underlying state space provided to the learning
agent.

D. Pointing Task with Stationary Target

The sensory vector is an element binary vector, since the
PRM containsn nodes. Each node represents a particular
configuration of the robotic arm. When the robot is at a
particular configuration the corresponding element in the
sensory vector is set to 1.

Algorithm 1 shows how the pointing task is constructed.
The action vector is a 4 element long binary vector and
is parsed by theinterpret function. In this task, we have
constrained BECCA to only return a single 1 in the action
vector. The interpret function in Algorithm 1 does the
following: The 1 in the action vector represents BECCA
selecting to move to one of the 3 neighbors, and the4th

element is interpreted as staying at the current configuration.
For example the action vector[0, 1, 0, 0] is interpreted by
the task as selection to move to the second neighbor of
the current configuration in the roadmap. The function then
returns the configuration of the selected neighbor.

E. Pointing Task with Non-stationary Target

The formulation and the setup of the non-stationary target
task is the same as in Section IV-D. The reinforcement

Algorithm 1 Task Step

Require: Task
1: Task.agent.action = [0, 0, 0, 0]
2: while not coverging do
3: newLocation← interpret(task.agent.action)
4: sendToWAM(newLocation)
5: task.currentPosition← read current WAM location
6: task.SensoryInput← task.currentPosition

7: task.reward← task.calculateReward()
8: task.agent← agentstep(SensoryInput,Reward);
9: end while



learner is trained on an initial pointing task and then trans-
ferred to hardware, however upon being transferred the goal
state is changed. Thus, the learning agent must compensate
for the changed goal, while learning to adapt to the dynamics
of the hardware system. Specifically, for this task the goal
state is moved to one of the neighbors in the roadmap of
the simulation goal state. The reward structure is changed so
that the new goal state is reward 100 and the neighbors of
the new goal 10 and the neighbors of the neighbors 0.1.

V. EXPERIMENTS

We perform two experiments. One experiment is station-
ary target pointing task and the other is a non-stationary
pointing task. All experimental results are averaged over
five executions. Throughout the experiments, we measure
the performance on the learning agent by measuring its
cumulative reward. When the learning agent is transitioned
from simulation to physical hardware, it is placed in a config-
uration that is as far as possible from the goal configuration.

We present the performance of the learning agent on
hardware compared to performance in simulation. The agent
executes in time steps but the graphs are shown in blocks,
where 1 block equals 100 time steps. We look at the
time savings brought on by using transfer learning, and the
initial boost of performance that was obtained by knowledge
transfer. In case of the non-stationary task, we will look at
the time it takes the agent to react to a change in environment
and recover to the previous level of performance

Each experimental run is executed on a new roadmap of 50
configurations generated using PRMs. Each configuration is
connected to 3 neighbors and itself. A random point in the
50 configurations is chosen as the goal. The goal node is
given a reward of 100. The neighbors of the goal are given
a reward of 10 and the neighbors of the neighbors are given
a reward of 0.1. All other configurations are given a reward
of 0.

A. Pointing Task with Stationary Target

Figure 2 shows the cumulative reward of the pointing task
with the stationary target in simulation and on hardware. The
vertical line indicates the transition from the simulationto
the hardware. The results show near-seamless transition, and
the average performance of the agent on hardware very close
to the performance in the simulation.

Table I shows the average cumulative reward for each
experiment after stabilization, before and after transition to
real hardware. Stabilization in simulation occurs at 20 blocks.
The performance of the agent on the hardware outperforms
the agent in simulation by 154 units of reward.

To better demonstrate the advantages of using the transfer
learning in our framework, the pointing task with stationary
target experiments were run again in a different manner. Five
completely untrained learning agents were run on hardware
for 20 blocks and the results averaged together. Then five
agents which were trained for 100 blocks in a simulation
were run on hardware for 20 more blocks and averaged

TABLE I: Average cumulative rewards in simulation and on hardware
after the stabilization for 7DoF task with a stationary target and 7DoF task
with a non-stationary target

Task Simulation Hardware
Stationary Target 7460.3 7614.8

Nonstationary Target 7460.3 7491.5

together. Figure 3 shows the comparison of the stationary
pointing task using transfer to the same task without using
transfer. The advantages of using transfer are seen primarily
in the jump start and the time to threshold metrics. Table II
shows the transfer metrics for the three experiments. Jump
start shows the immediate gain from using the transfer. The
pointing task starts very close to the threshold performance
using the transfer and has a jump start gain of 5716. In
all random runs the transfered learning agent outperforms
the non-transfered learning agent (Table II). Furthermore
the transferred task reaches the threshold performance in 2
blocks compared to 7 blocks without transfer (Figure 3). It is
important to note the time saved by using transfer learning.
Table III shows the run times for simulation versus hardware
for 20 blocks. It is clear that simulation is faster by up
to 1 hour and 55 minutes. Using transfer learning it takes
significantly less physical time on the robotic hardware for
the agent to perform the given task as near optimal levels.
This not only saves valuable time but it also saves valuable
wear and tear on the hardware.

It is important to note that the learning algorithm is not
executing pre-planned paths. It learns from experience which
paths lead to highest reward and attempts to follow those
paths. The paths learned in simulation provide BECCA with
a strong foundation to work from, however each execution
of the learning problem finds different paths due to the
randomness of exploration. Thus, it is possible to witness
executions of BECCA on the same underlying roadmap with
slightly varying performances.
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Fig. 2: Cumulative reward for the pointing task with stationary target
per time step. The vertical line indicates where the learningagent was
transitioned from simulation to real hardware.
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Fig. 3: Cumulative reward for the pointing task running on hardware
with stationary target task with transfer and without transfer per time
step. Transfer is when an agent trained in simulation is transferred to
hardware. Jump start shows the initial gain obtained by usingthe transferred
knowledge. Time to threshold indicates the time that the task without the
transfer needs to achieve the same level of performance as the task with the
transfer.

TABLE II: Transfer Metrics for stationary and non stationary tasks. Jump
start shows the gain from using transfer. Threshold gain shows the reduction
in time steps needed to reach the threshold performance

Task Metric Average min max

Stationary
Jump Start (reward) 5716 2757 9280

Threshold Gain (steps) 500 200 700

Non-stationary
Jump Start (reward) 1313 364 1702

Threshold Gain (steps) 100 100 400

B. Pointing Task with Non-stationary Target

In this experiment the reinforcement learner is trained on
an initial pointing task and then transferred to hardware.
However, upon being transferred, the goal state is changed.
Thus, the learning agent must compensate for the changed
environment. The goal state is moved to one of the neighbors
in the roadmap of the simulation goal state. The reward
structure is changed so that the new goal state is reward
100 and the neighbors of the new goal 10 and the neighbors
of the neighbors 0.1.

Figure 4 shows the results of 100 blocks of simulation and
then 20 blocks of running on hardware where the goal has
changed. Initially there is a steep performance drop, but the
reward does not drop to zero. The agent quickly recovers and
learns the new reward structure within 6 blocks. This shows
the online nature of the BECCA algorithm. It is able to first
learn one environment and then be placed into a slightly

TABLE III: Average time in minutes to run 20 blocks in simulation and
on hardware for 7DoF task with a stationary target and 7DoF task with a
non-stationary target

Task Simulation (min) Hardware (min)
Stationary Target 23 122

Non-stationary Target 24 121

different environment but able to compensate for the change
quickly.
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Fig. 4: Cumulative reward for running in simulation and then transferring
the task to hardware. The transfer occurs at 100 blocks.

Figure 5 is a comparison between the agent having previ-
ously learned a pointing task to an agent without any prior
knowledge. However, the agent with knowledge has learned
to point to a different goal in simulation before being run on
hardware. The untrained agent is also run on hardware but
has a stationary target. Thus, the transfered agent has some
information about the structure of the environment but it does
not have the exact reward structure as the goal was moved
before being placed on real hardware. The figure shows that
the agent with prior knowledge has a small jump start of
1313 units of reward and reaches the threshold performance
1 block faster than the agent without transferred knowledge.
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Fig. 5: Cumulative reward for the pointing task running on hardware
with a non-stationary target task with transfer and withouttransfer per time
step. Jump start shows the initial gain obtained by using the transferred
knowledge. Time to threshold indicates the time that the task without the
transfer needs to achieve the same level of performance as the task with the
transfer.



VI. D ISCUSSION

We demonstrated an efficient online motion-based task
learning framework based on reinforcement learning that
works in high-dimensional spaces in real-time, is reactiveto
changes in the environment, performs safe hardware motions,
and efficiently learns on hardware. We demonstrated the
framework by implementing it on a 7 DoF WAM using
all joints to produce pointing motions with both stationary
and non-stationary targets. The framework is robust and
extensible to other robotics systems as well as with different
model formulations, and for a large variety of tasks as well.

Dimensionality reduction and collision checks can be
handled through PRMs for any motion-based task. When
PRMs are used in this manner, they impose hard limits
on the system. For example, self-collision states tend to be
invariant to the type of environment or the task, and are good
candidates to be precomputed ahead of time. When there is
error in the model used for simulation caused by noisy sensor
data, the robot can explore the validity of the simulation’s
roadmap and learn how to efficiently navigate in the physical
environment.

Transfer learning can be used to avoid early learning
phases when the agent’s performance tends to be erratic,
to reduce wear and tear on robot, and to speed up the
learning process on the real hardware. It can be a powerful
techniques to mitigate the long convergence times of rein-
forcement learning. Combining transfer learning, reinforce-
ment learning and probabilistic roadmap methods produces
a powerful framework for solving complex robotic tasks. By
harnessing each method’s strengths, the weaknesses of the
other methods can be mitigated.

An online reinforcement learning algorithm is a suitable
candidate for a planner when paired with the above tech-
niques. Such a reinforcement learner continuously learns and
updates its policy by incorporating most recent experience
from the environment and produces motion plans that are
adaptive, real-time, and reactive. Hardware soft limits can
be implemented through the reward function.
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