EFFICIENT MOTION-BASED TASK LEARNING

Nicholas Malone¹, Aleksandra Faust¹, Brandon Rohrer², John Wood¹, Lydia Tapia¹

> ¹University of New Mexico ²Sandia National Laboratories 12 October 2012

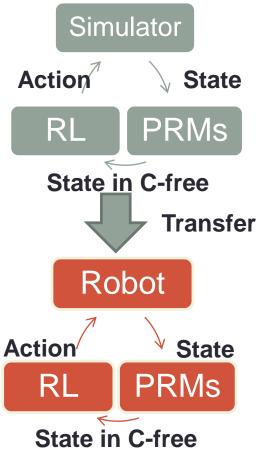
Motivation

- Robotic arm movement in dynamic environment
- Challenges:
 - High dimensionality
 - Environmental noise
 - Hardware imperfections
 - Hardware dynamics changes
 - Task changes over time

Task Learning Framework

- Characteristics
 - Adaptive
 - Safe on physical system
 - Real-time performance
 - Short training phase on hardware
- Based on
 - Probabilistic Roadmaps (PRMs)
 - Reinforcement learning
 - Transfer learning

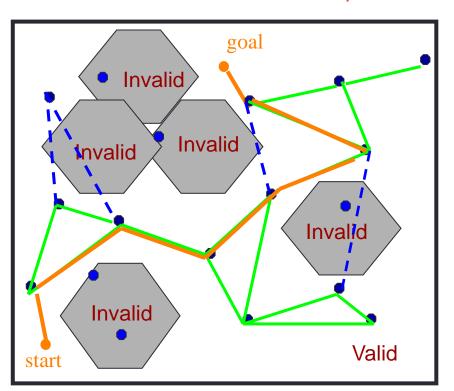
[Malone et al. ICRA 2012]



PRM

[Kavraki et al. IEEE Trans. Robot. Automat. 1996]

- Approximates the topology of C-space
- PRM
 - Nodes
 - Random samples
 - Edges
 - Paths fully in C-free space
 - Produced by a local planner
 - Pre-computed once
- RL receives
 - Current node in PRM
 - Allowed transitions



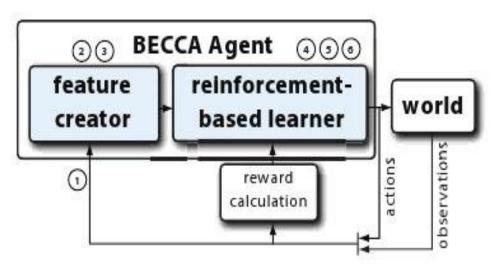
C-space

Reinforcement Learner

BECCA Agent

- Unsupervised feature creator
- Online reinforcement learner
- Model based
- Working memory concept
- Solves higher order Markov decision process
- Prior Applications
 - WAM robot pointing
 - Surveyor SRV-1 robot hide and seek
 - CoroBot hand-eye coordination
 - Visual tracking
 - Visual and audio integration

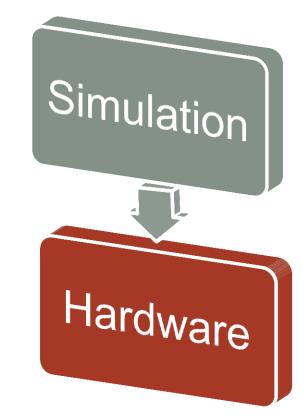
[Rohrer et al. *BICA* 2010] [Rohrer *ICDL* 2011] [Rohrer *AAAI Spring Symposium* 2012]



Transfer Learning

[Taylor and Stone, 2009]

- Transfer from simulation to hardware
 - PRM, RL agent, reward function
- Simulation
 - Many iterations
 - Fast per step
- Task performs well and safe for robot
- Hardware
 - Simultaneous learning and task execution
 - Fewer iterations
 - Steps take longer



Experiments - Methodology

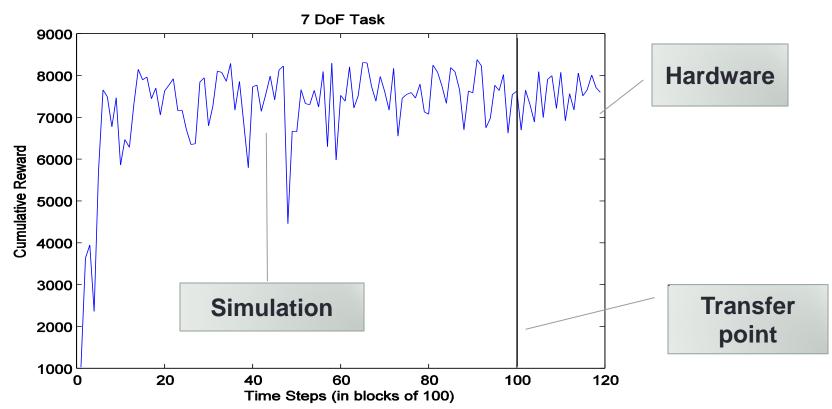
- On Barrett 7DoFs WAM
- Learning performance
 - Cumulative reward
- Transfer learning impact
 - Time saved by the transfer
 - Performance boost from the transfer
- Adaptability
 - Time to recover after environment change

 Pointing task evaluated on both stationary and nonstationary target

Experiments - Parameters

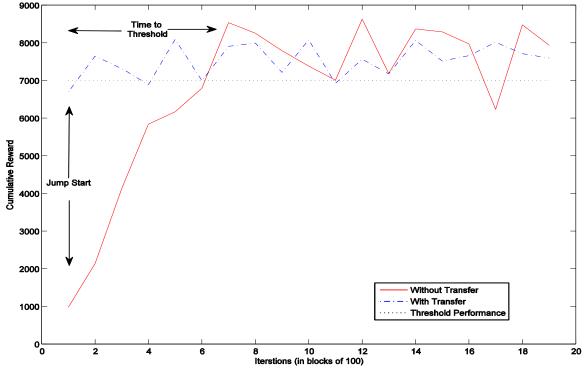
- Reinforcement learner:
 - Exploration rate: 30%
 - Reward: gradient reward based on the distance from the goal
- PRM
 - 50 nodes
 - Connected to 3 nearest neighbors
- Local planner
 - Simulation: linear interpolation
 - Hardware: on-board WAM controller

Stationary Task: Learning Performance



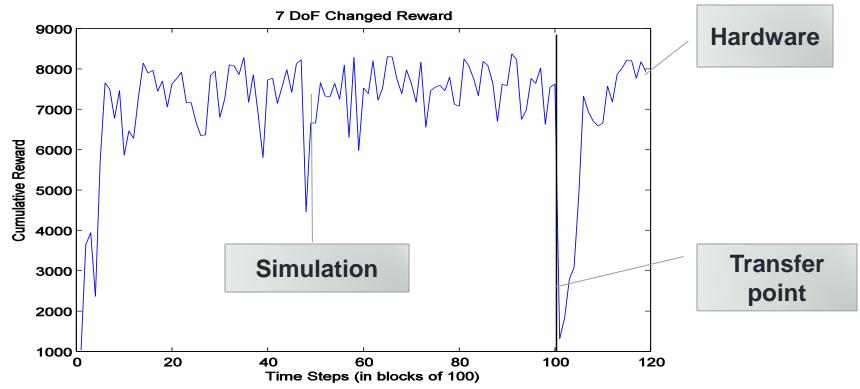
- Cumulative reward before and after the transfer from simulation to hardware
- No loss of learning performance after the transfer

Stationary Task: Transfer Learning Impact



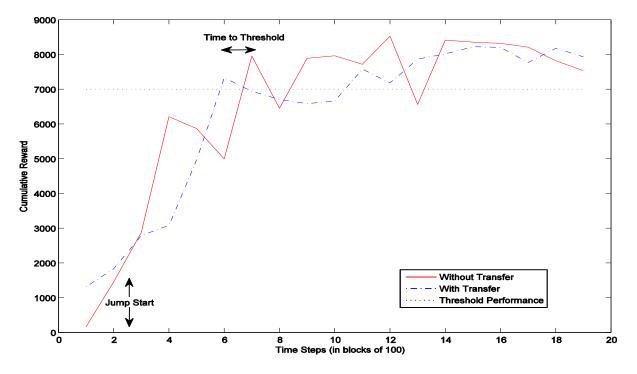
- Jumpstart 5700 reward points
- 500 steps less until threshold
- Significant time savings when training in simulation first

Non-stationary Task: Learning Performance



- Cumulative reward before and after the transfer from simulation to hardware
- Fast recovery after the target moves

Non-stationary Task: Transfer Learning Impact



- Jumpstart 1300 reward points
- 100 steps less until threshold
- Previous training still has benefits even when target changes

Running time: Simulation vs. Hardware

Task		Hardware (min)
2000 steps	23	122

- Simulation 5 times faster
- Training in simulation saves 100 minutes over 2000 steps

Efficient Motion-based Task Learning

https://www.cs.unm.edu/amprg/Research/RobotLearning/

Conclusion

- Motion-based task learning framework
 - PRM
 - Online reinforcement learner
 - Transfer learning
- Implemented on Barrett 7DoF WAM
 - Pointing task with stationary target
 - Pointing task with non-stationary target
- Results
 - Adapts to the new changes in the environment
 - Performs well in high dimensional spaces
 - Safe for hardware

Thank you!

Quadrocopter Learning

- Reinforcement learning approach for generating trajectories with minimal residual oscillations (swing-free) for rotorcraft carrying a suspended load that allows the trained agent to be transferred to a variety of models, state and action spaces and produce a number of different trajectories.
- <u>https://www.youtube.com/watch?v=DIs7qJAg910</u>