Implementation of an Embodied General Reinforcement Learner on a Serial Link Manipulator

Nicholas Malone¹ Brandon Rohrer² Lydia Tapia¹ Ron Lumia¹ John Wood¹

¹University of New Mexico

²Sandia National Laboratories

Problem

• Every robot is different

- Path planner must be tailord to the robot
- Structures must de designed specificially
- Our goal
 - Automate the process
 - Apply reinforcement learning
 - Address RL scalability

Proposed Solution

- BECCA (a Brain Emulating Cognition and Control Architecture)
 - Optimistically based on biological brains
 - Feature creator with reinforcement learner
- PRMs for handeling scaling issues

Motivation ○○●

Learning Ager

Experiments 0000 Scalability 0000

Robotic Platform

PIC 1

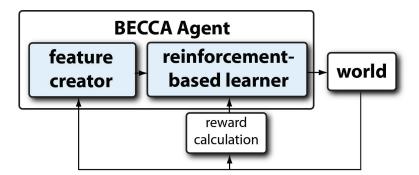
Figure: FIXME placeholder for the arch of the WAM

Figure: The WAM platform

- 7-DoF robotic arm
- Cable driven
- Joint position encoders

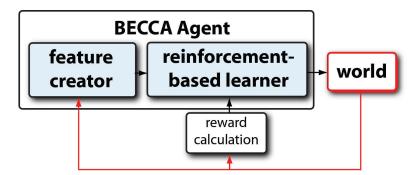
BECCA

Learning Agent ●○○○ Experiments 0000



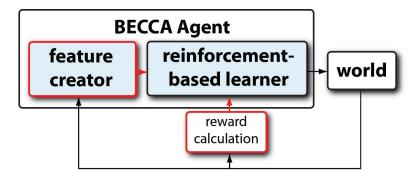
BECCA

Learning Agent ●○○○ Experiments 0000



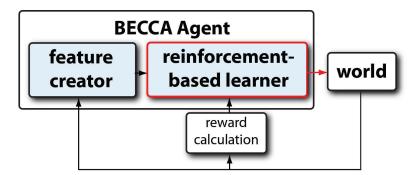
BECCA

Learning Agent ●○○○ Experiments 0000



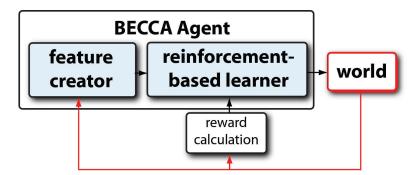
BECCA

Learning Agent ●○○○ Experiments 0000



BECCA

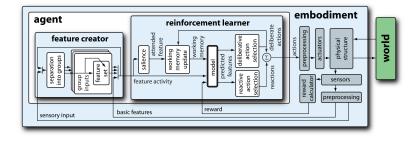
Learning Agent ●○○○ Experiments 0000



Motivatio	

Experiments 0000

Feature Creator

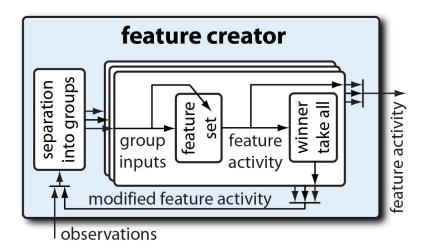


Motiva	ation

Learning Agent

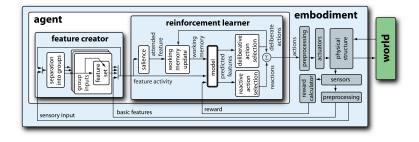
Experiments 0000 Scalability 0000

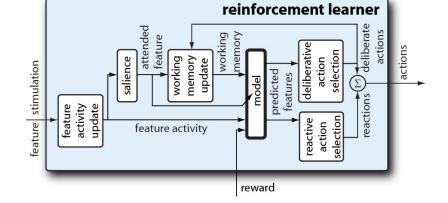
Feature Creator



Learning Agent ○○●○ Experiments 0000 Scalability 0000

Reinforcement Learner



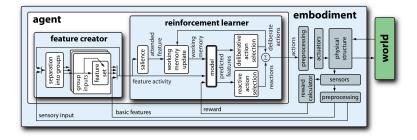


Reinforcement Learner

Learning Agent ○○●○ Experiments 0000

BECCA

Experiments 0000



Motivation	Learning Agent	Experiments	Scalability
000	0000	●000	0000
Baseline Tasks			

• 1-DoF

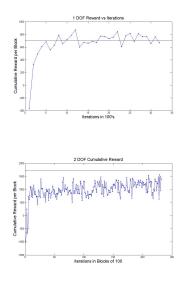
- 1 joint partitioned into 10 bins
- Rewarded for being in the middle bin

• 2-DoF

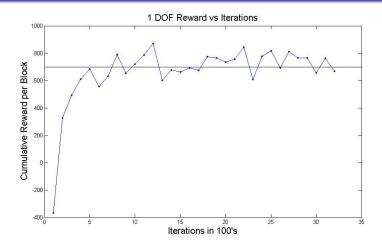
- 2 joints are partitioned into 10 bins each
- Rewarded +10 for being in the middle bin of each joint

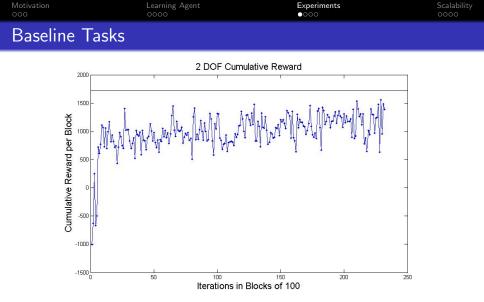
• 3-DoF

- 3 joints are partitioned into 3 bins each
- Rewarded +10 for being in the middle bin of each joint



Motivation	Learning Agent	Experiments	Scalability
000	0000	••••	0000
Baseline Tasks			





Motivation	Learning Agent	Experiments	Scalability
000	0000	●०००	0000
Baseline Tasks			

3-DoF graph goes here

Motiv	atio	

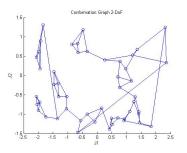
Learning Agent

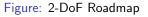
Experiments

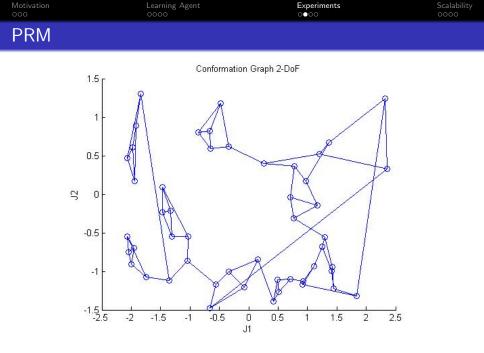
Scalability 0000

PRM

- Configuration Space (C-Space)
 - *n* DoFs results in *n* axes
 - A configuration is a point in the n dimensional space
- Roadmap Construction
 - Randomly sample configurations (vertices) in C-Space
 - Connect pairs of configurations (to form edges)
 - Roadmaps approximate the topology of C-Space





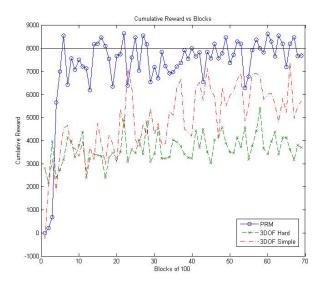


Learning Agen

Experiments

Scalability 0000

PRM Tasks



Learning Agent

Experiments

Scalability 0000

PRM Advantage

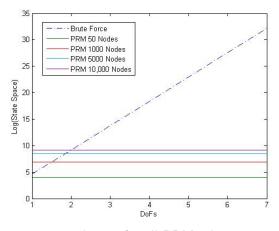
State Space |*States*| * |*Actions*|

Task	States	Actions	State Space
1-DoF	10	10	100
2-DoF	100	100	10000
3-DoF	1000	1000	1000000
PRM*	50	4	200

* for the experiments

Motivation	Learning Agent	Experiments	Scalability
000	0000	000●	0000
PRM Advantage			

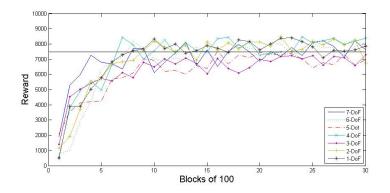
PRMs approximate the topology of the high dimensional state space.



note: k = 4 for all PRMs shown

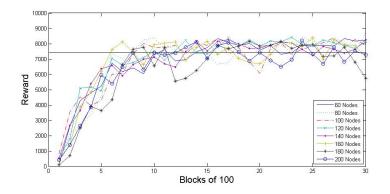
Motivation	Learning Agent	Experiments	Scalability
000	0000	0000	●○○○
Scalability			

Fixed roadmap size with variable DoFs



Motivation	Learning Agent	Experiments	Scalability
000	0000	0000	
Roadman Size			

Fixed DoF's with variable roadmap size



Motivation	Learning Agent	Experiments	Scalability
000	0000	0000	○○●○
Conclusion			

- Trained in simulation
- Run on real robots after training
- PRM BECCA is much more scalable than a brute force approach
- PRM's approximate the topology of the state space
- Scalability is one of the hardest challenges for Reinforcement Learning, and machine learning in general

Motivation	Learning Agent	Experiments	Scalability
000	0000	0000	
Acknowledgme	nts		

This work was supported by Sandia National Laboratories PO# 1074659. Tapia supported in part by the National Institutes of Health (NIH) Grant P20RR018754 to the Center for Evolutionary and Theoretical Immunology. We also thank Dr. Dave Vick for his help with the robotic hardware setup.

