Implementation of an Embodied General Reinforcement Learner on a

Serial Link Manipulator

Nicholas Malone!  Brandon Rohrer? Lydia Tapia1 Ron Lumia®  John Wood!

1University of New Mexico

2Sandia National Laboratories

Sandia
National
Laboratories

@ UNM




Motivation
°

Problem

@ Every robot is different
e Path planner must be tailord to the robot
e Structures must de designed specificially
@ Our goal
o Automate the process

e Apply reinforcement learning
e Address RL scalability
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.

Proposed Solution

e BECCA (a Brain Emulating Cognition and Control
Architecture)

e Optimistically based on biological brains
o Feature creator with reinforcement learner

@ PRMs for handeling scaling issues
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Robotic Platform

PIC 1

Figure: FIXME placeholder for
Figure: The WAM platform the arch of the WAM

@ 7-DoF robotic arm

@ Cable driven

@ Joint position encoders
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Learning Agent
°

Feature Creator

feature creator
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Baseline Tasks

o 1-DoF
e 1 joint partitioned into
10 bins
o Rewarded for being in
the middle bin
@ 2-DoF

e 2 joints are partitioned
into 10 bins each

o Rewarded +10 for
being in the middle bin
of each joint

@ 3-DoF

e 3 joints are partitioned
into 3 bins each

e Rewarded 410 for
being in the middle bin
of each joint

Cumulative Reward per Block

Cumulative Reward per Block

Experiments
°

1 DOF Reward vs lterations

2 DOF Cumulative Reward
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Baseline Tasks

1 DOF Reward vs Iterations
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Baseline Tasks

2000

Experiments
°

2 DOF Cumulative Reward
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°

Baseline Tasks

3-DoF graph goes here



Experiments

e Configuration Space (C-Space)
o n DoFs results in n axes
e A configuration is a point in
the n dimensional space
@ Roadmap Construction .
o Randomly sample
configurations (vertices) in
C-Space
o Connect pairs of
configurations (to form edges)
o Roadmaps approximate the Figure: 2-DoF Roadmap
topology of C-Space

Confarmation Graph 2-DoF




Experiments

Conformation Graph 2-DaF

05F
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PRM Tasks

Cumulative Reward vs Blocks
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PRM Advantage

Experiments
°

State Space
|States| * |Actions|

Task | States | Actions | State Space
1-DoF 10 10 100
2-DoF | 100 100 10000
3-DoF | 1000 1000 1000000
PRM* 50 4 200

* for the experiments
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PRM Advantage

PRMs approximate the topology of the high dimensional state

space.
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Scalability

Fixed roadmap size with variable DoFs
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Roadmap Size

Reward

Fixed DoF's with variable roadmap size
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Conclusion

Trained in simulation

Run on real robots after training

PRM BECCA is much more scalable than a brute force
approach

PRM's approximate the topology of the state space

Scalability is one of the hardest challenges for Reinforcement
Learning, and machine learning in general
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