Script
Usage
Use python SCRIPT_NAME -d FILE_PATH,FILE_PATH,... [OPTIONS] to run the program.
Example Usage
python SVDENSE_Baxter7DOF.py -d ./Baxter_14_22x22x21.npz -l 0.00001
python SVDENSE_Baxter7DOF.py -d ./Baxter_14_22x22x21.npz -s 90000 -p -r ./checkpoints/08102020180642/
Description
The script files provided allow the user to train the networks and predict output using trained network checkpoints.
The scripts provided are:
- SVDENSE_Baxter7DOF.py
- SVDENSE_ClosedLoop9DOF.py
- SVDENSE_Kuka7DOF_101010.py
- SVDENSE_Kuka7DOF_151515.py
- SVDENSE_Kuka7DOF_202020.py
- SVDENSE_Kuka7DOF_252525.py
- SVDENSE_Kuka7DOF_303030.py
- SVDENSE_Mico6DOF.py
- SVDENSE_Planar16DOF.py
- SVDENSE_Prismatic8DOF.py
- SVDENSE_Sawyer8DOF.py
- SVDENSE_UR3_6DOF.py
- SVDENSE_UR5_6DOF.py
- SVDENSE_UR10_6DOF.py
Options
Below are a list of command line parameters:
- -d FILE_PATH,FILE_PATH,... A comma separate list of file paths for the data. The program accepts data in the format decribed below in the Data section. This option is required.
- -C data_limit Limits the number of samples used by the network from the given data files. Default: 0 (All samples)+
- -s skip_count Skip the first skip_count samples in the data file.
- -p Use the network to predict outputs for the given samples and save predictions to a file. Note: This option was used for evaluation purposes and requires label data to generate labels for comparison.
- -c checkpoint_root Path to a directory. The network records the checkpoint data and logs to a time stamped sub directory within checkpoint_root directory. Default: checkpoints
- -r checkpoint_dir The path to restore the network weights.
- -e epochs The maximum number of epochs for training. Default 1000
- -b batch_size The network training batch size. Default: 100.
- -i tolerance The maximum number of epochs for which the network will train without new improvements. Default 100
- -l learning_rate The learning rate parameter for the training optimizer. Default 0.1
Data
Description
The files provided are saved scipy.sparse.csr_matrix objects. The first Num-Features columns are the start configuration followed by end configuration joint values for the robot. The remaining columns are label values for the Label-Dims volume grid space converted from xyz coorinates to a linear order with x being the most significant axis and z the least significant.
File name format: Robot_Num-Features_Label-Dims.npz
- Baxter_14_22x22x21.npz
- ClosedLoop_18_41x50x3.npz
- Kuka_14_10x10x10.npz
- Kuka_14_15x15x15.npz
- Kuka_14_20x20x20.npz
- Kuka_14_25x25x25.npz
- Kuka_14_30x30x30.npz
- Mico_12_15x15x15.npz
- Planar_32_1x100x100.npz
- Prismatic_16_88x88x2.npz
- Sawyer_16_26x26x26.npz
- UR3_12_15x15x15.npz
- UR5_12_20x20x20.npz
- UR10_12_30x30x30.npz
Software and Libraries
The following are a list of software and libraries used for the project:
- Python 3.6.9
- numpy 1.16.3
- scipy 0.19.1
- tensorflow-gpu 1.14
- tensorflow-estimator 1.14