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Foreword

I’'m not going to spend much space talking about how great this book is, or
how much I enjoyed reading the manuscript. Dan and George are good friends
of mine, and they asked me to talk about Scheme. The book is about Scheme
and about important ideas in programming, and they wanted a foreword to
match. So I’m going to tell you what I think about Scheme.

Small is beautiful.

Small is powerful.

Small is easy to understand.

I like the Scheme programming language because it is small. It packs a
large number of ideas into a small number of features.

How small is it?

It is the business of programming language standards committees to set
on paper careful, accurate descriptions of programming languages. It is a
difficult process; a standard must be both complete and concise. While not
all committees achieve the same level of detail or brevity, nevertheless I think
we may usefully compare the approximate number of pages in the defining
standard or draft standard for several programming languages:
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Common Lisp 1000 or more
COBOL 810
ATLAS 790
Fortran 77 430
PL/I 420
BASIC 360
ADA 340
Fortran 8x 300
C 220
Pascal 120
DIBOL 90
Scheme 50

Curious, is it not, that the spectrum should be bracketed—or perhaps I
should say parenthesized—by two dialects of Lisp?

Far be it from me to suggest that size of a language description should be
the primary measure of a language’s merit, whether one thinks that larger
or smaller is better. The uncertainty of this measure aside—thanks purely to
typesetting issues the figures shown above may be off by a factor of two from a
fair comparison—there is more to a language than the size of its library or the
number of syntactic forms. One must inquire what the features accomplish
for the user, how completely or how redundantly they cover the application
space, and how smoothly they interact.

Carpentry is one of my hobbies. I make wooden toys—doll houses and
trucks and blocks and jigsaw puzzles—for my children, and I rebuild the back
stairs when necessary. My shop is not particularly complete, but it contains
five hammers, six saws, thirty screwdrivers (one of them electric, with forty
interchangeable tips), and hundreds of drill bits. Each has a specific purpose,
and for precision work most cannot be replaced by any combination of the
others. (On the other hand, I have to admit that if I break a bit I can usually
come near enough in a pinch with the next closest size.) In some cases the
business ends of several tools are the same, but they have different handles.
I have a set of screwdrivers with wooden handles that I favor for long tasks,
because they are less likely to cause blisters; another set with more deeply
grooved plastic handles affords a tighter grip for greater torque.

Let me tell you, it is a joy to stand in the middle of a well-equipped shop and,
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when a particular task comes to hand, to reach out to the shelf or pegboard
and grab precisely the tool needed for the job. That is what Common Lisp,
or COBOL, or Fortran is like. But it takes years of experience to appreciate
the fine distinctions.

I also carry a Swiss army knife, the Victorinox “Craftsman” model. It is a
carpenter’s shop in miniature. It has only one or two of each thing: two knives
(large and small), two flat screwdrivers (large and small) and one Phillips
screwdriver, a file, a saw, an excellent pair of scissors, a ruler (3 in/7.5 cm),
an awl, bottle opener, can opener, tweezers, and of course the traditional
plastic toothpick. It weighs five ounces (142 gm).

Now, I wouldn’t want to rebuild my back stairs using only a Swiss army
knife. But let me tell you, it is a joy to wander about in my life feeling
virtually unburdened and yet, when some minor repair task comes to hand,
to reach into my pocket and have such a variety of tools at my disposal. (The
saw is only three inches long, but extremely sharp. I have used it to modify
office furniture to accommodate Ethernet cables.) And my pocket tool set is
perfectly adequate for illustrating the essence of saw-ness or screwdriver-ness
to the interested novice, such as my six-year-old.

The original Scheme, which Gerald Jay Sussman and I defined—or rather,
it seemed to me, discovered—in 1975, was a Swiss army knife. Hewing close
to the spirit of Alonzo Church’s lambda calculus, it had just one of anything
if it had one at all.

The most important concept in all of computer science is abstraction. Com-
puter science deals with information and with complexity. We make complex-
ity manageable by judiciously reducing it when and where possible.

I regret that I cannot recall who remarked that computation is the art
of carefully throwing away information: given an overwhelming collection of
data, you reduce it to a useable result by discarding most of its content.
(However, I clearly recall my father telling me that life is the art of carefully
throwing away opportunities, an interesting coincidental parallel.)

Abstraction consists in treating something complex as if it were simpler,
throwing away detail. In the extreme case, one treats the complex quantity
as atomic, unanalyzed, primitive. The lambda calculus carries this to a pure,
unadulterated extreme. It provides exactly three operations, plus a principle
of startling generality. The operations are:

e Abstraction: give something a name.
e Reference: mention something by name.

e Synthesis: combine two things to make a complex.
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Naming is perhaps the most powerful abstracting notion we have, in any
language, for it allows any complex to be reduced for linguistic purposes to a
primitive atom.

The inverse of abstraction is synthesis: the building up of complexity from
lesser pieces. Industrial-strength programming languages provide dozens or
hundreds of synthesizing features, such as arithmetic operations and control
structures, that construct entities from varying numbers and kinds of others.
Part of the ingenuity of the lambda calculus is to provide a single means of
synthesis, one that combines the smallest useful number of pieces: two.

What are the things that may be combined? Again, programming languages
that are truly macho (or macha, if you prefer) provide many choices: numbers
of various kinds, characters, strings, arrays, functions, records, pointers. You
can spend a semester or two just studying data structures. But in the lambda
calculus there is only one kind of thing that may be combined. Here lies the
rest of the ingenuity, the startling generalizing principle: the objects to be
combined are instances of the abstraction mechanism itself! Abstraction is
all there is to talk about: it is both the object and the means of discussion.
Svnthesis in the lambda calculus consists solely of taking a possibly already
compound abstraction mechanism and subjecting it to abstraction, giving
it a name so that it may be discussed later. That’s it. But because the
named thing can then be mentioned more than once, the lambda calculus is
as powerful as any other means of computation.

For everyday purposes the lambda calculus is a bit spare. One can write the
Bible, or all the works of Shakespeare, Tolstoy, Hemingway, or Ann Landers
using only a few dozen letters and punctuation marks, but only a few of
us—regarded as rather queer ducks by the rest of society—wish to sit around
all day discussing letter forms, spelling, and rules of punctuation. More to
the point, these great works are not best understood at the level of spelling
and punctuation. We form words, we publish dictionaries. From words we
establish cultures of shared stock phrases, clichés, proverbs, and fairy tales—
complex concepts that we can then treat as primitive for the purposes of
everyday discourse.

The original Scheme consisted of little more than the lambda calculus, a
single means of producing side effects, some redundant control structures for
convenience, and all the data structures and operations of MacLisp that one
cared to use, such as numbers and lists, though we regarded these as secondary.

Scheme has grown a bit in the last fourteen years, but in a very conservative
and judicious manner. I might add that I have had very little to do with the
process. I have applied most of my efforts to Common Lisp, though cheering
also for the good people who have been remolding Scheme, so I am in little
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danger of straining my shoulder when praising the results of their efforts.

Scheme today is more than a Swiss army knife, but rather less than a full
workshop with hundreds or thousands of tools. I would call it a toolbox, a
large one, filled with a careful selection of tools that will cover most jobs well,
and a few tools whose primary purpose is to make it easy to make more tools.
It’s heavy-duty, but portable. It is easily comprehended, but every tool in it
1s “real,” not a three-inch miniature.

Scheme is perfect for the classroom. It is small enough that the student
can grasp it all within a semester, but large enough that it addresses the most
important topics in programming language design. An important exception
1s static type checking. Scheme requires no type declarations, relying instead
on run-time type discrimination. In this, Scheme certainly points up an area
on which there is little agreement and in which it may be usefully contrasted
with C, Fortran, or Pascal. Nearly everyone agrees that “+” should stand for
addition. But type checking—hoo, boy!

Scheme focuses particular attention on the concepts of abstraction and gen-
erality to an extreme unmatched by any other programming language on my
list. All objects in the language may be named, by a single uniform naming
mechanism. All objects are first class.

s In Common Lisp, why are there many namespaces (variables, functions, go
tags, block names, catch tags, ...)?

s In Pascal, why can’t you return a procedure as the value of another proce-
dure?

s In Fortran 77, why can’t a procedure return an array?
s In C, why can’t a procedure definition occur within another procedure?
Besides being useful in its own right, Scheme provides a simple, sound, and

complete design with which to compare other languages and thus shed light
on these questions.

Guy L. Steele Jr.
Cambridge, Massachusetts
July 1989
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Preface

Programming should be from the beginning a creative and literate endeavor.
Our goal is to expose the reader to the exhilaration of reading and creating

beautiful programs. These programs should be concise in their expression,
general in their application, and easily understood. These goals are achieved
through creative use of abstraction techniques that capture recurrent patterns
of computation and allow them to be simply used.

We believe the programming language Scheme is superior for use in an in-
troductory programming course because it is both simple and powerful. It
is simple enough that program design can be learned with a minimum of
distraction by syntactic rules that govern the form programs must take. In
a typical introductory course the complex syntax of programming languages
such as C or Pascal must be mastered at the same time that elementary pro-
gram design techniques are being learned. Invariably syntactic concerns take
precedence over design issues, for nothing works if there are syntactic errors in
a program. As a result, students often get the impression that programming,
and computer science in general, is primarily concerned with memorizing de-
tails and unimaginatively adhering to intricate rules. Subsequent exposure
to assembly language programming reinforces this view. Hopefully at a later
time, typically in a software engineering or algorithm design course, program-
ming will be experienced as a creative activity that rewards the elegant use
of abstraction techniques and a good sense of style. But an unfortunate first
impression of programming may persist, or it may even discourage further
study of computer science altogether.

Using Scheme, we are able to focus primarily on issues of program design.
This makes programming fun, and gives a more accurate impression of where
the joys and challenges of programming lie. We also believe early attention
to design issues helps to develop a program design aesthetic. This in turn
provides a foundation for superior work and more creative fulfillment through
the student’s career as a programmer. There should be plenty of time in
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subsequent courses to learn the syntactic details of other languages, at which
time these details will be easier to master.

Scheme’s simplicity does not come at the expense of expressive power. In-
deed, Scheme may be used to express a broader range of programming styles
than its more complex brethren. The most popular styles are imperative,
functional, and object-oriented. Scheme is flexible enough to support pro-
gramming in all of these styles. Traditional programming languages support
the imperative style, which makes frequent use of assignment statements to
change the state of the computation.

In the last decade the functional style has gained prominence. It is char-
acterized by the absence of assignment statements, and is closer in spirit to
mathematics. In many cases the functional style yields more elegant and
comprehensible programs. We feel it is important for students to learn basic
functional programming techniques, such as recursion and functional compo-
sition, so that the benefits of this style may be enjoyed when solving prob-
lems for which it is well suited. Traditional programming languages impose
restrictions that seriously restrict the use of functional programming tech-
niques. Most functional programming languages, on the other hand, do not
support assignment. This prohibits the use of the imperative programming
style when it is most appropriate. Because Scheme supports both functional
and imperative programming styles, we are able to teach both along with an
understanding of when each is appropriate.

A recent advance in programming languages has been appreciation for the
object-oriented style of programming. This style is particularly suitable for
simulating objects in the “real world” and for structuring large systems in
ways that allow recurrent patterns of computation to be shared by similar ob-
jects. Using Scheme, we are able to illustrate the principles of object-oriented
programming in terms of more basic functional and imperative mechanisms.

This book i1s composed of five parts. The first two are concerned with
functional programming. In the first part, both recursive and iterative pro-
gramming techniques are developed. The second part deals with procedures
whose values are procedures—so called higher-order procedures. The third
part is about imperative programming. In the last two chapters of the third
part, we take advantage of assignment and higher order procedures to de-
velop an approach to object-oriented programming. In the fourth part, we
show how we can extend the syntax of Scheme by adding new forms of ex-
pression. We use this ability to support unbounded objects, called streams.
In the fifth part, we demonstrate a unique and powerful feature of Scheme:
first class escape procedures, also called continuations. These make it possible
to control program execution in ways that are difficult or impossible in other
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languages.

The exercises are an integral part of the presentation, making up one-fifth
of this book. Exercises come in two varieties. As in most textbooks, there are
exercises that reinforce the reader’s understanding of the text. However, we
have also included optional exercises that present extensions of the material
in the text. These exercises are grouped in sequences and are designated as
such before the first exercise in the sequence. They should be done in order,
since each relies on the results of previous ones. A deeper understanding will
be achieved by doing these exercises.

The dependency relationships between chapters is given in the following
table. The underlined number 5 means that Chapter 5 has some information
that is required but a full understanding of the material in Chapter 5 is not
necessary. The italic number 5 means that some of the procedures defined in
Chapter 5 are used, but it is enough to know what they do rather than how
they are defined. The symbol — may be read “depends on.”

2 — 1

3 — 1 2

4 — 1 2 3

5 — 1 2 3 4

6 — 1 2 3 4 5

7 — 1 2 8 4 4

8§ — 1 2 8 4 5 6 7

9 « 1 2 8 4 5§ 6 7

10 1 2 8 4 § 6 17 8 9
11 « 1 2 8 4 5§ 6 7 9

12 1 2 8 4 5§ 6 7 9 11
3 —« 1 2 8 4 § 6 7 11 12
14— ndg W2 Sau/miys sm6m o7 11

15 1 2 &8 4 5§ 6 7 1

16 — 1 2 8 4 § 6 7 11

17 « 1 2 8 4 5 6 7 11 16

This book requires no previous knowledge of programming and high school
algebra is its only mathematical prerequisite. The material has been class-
tested for three years. We do not intend that the entire book be taught in
any single semester. The first eleven chapters represent a one semester course.
From the dependency table it follows that getting through Chapter 7 with or
without Chapter 6 is essential. After that point the instructor has many
choices for finishing the course. One sequence that represents an ambitious
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course for those on a semester system is to skip Chapter 6, and include Chap-
ters 9, 11, 12, and 15. For those on a quarter system, we recommend as a
similarly ambitious course dropping Chapters 9 and 15, and the last section
of Chapter 12. This book may be used in a two semester sequence by cover-
ing the first eight chapters (Parts 1 and 2) in the first semester and finishing
the book in the second semester. The book can be used in a self-teaching
manner as long as the reader has access to Scheme. The book can also be
used by experienced programmers who want an introduction to Scheme and
functional programming. For them, we recommend cursory reading of the
first five chapters, followed by Chapters 7, 12, and 14-17.

You are about to embark on a most exciting and rewarding experience.
Programming, especially in Scheme, is fun!

Tigger on Scheme

The wonderful thing about Scheme 1is:

Scheme is a wonderful thing.

Complez procedural ideas

Are ezpressed via simple strings.

Its clear semantics, and lack of pedantics,
Help make programs run, run, RUN!

But the most wonderful thing about Scheme 1s:
Programming in it is fun,

Programming in it is FUN!

John Ramsdell, based on Walt Disney’s
Winnie the Pooh and Tigger Too,
Random House, New York, 1975,
based on books written by A. A. Milne.
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Part 1

Data

Data are either individual units of information or collections of data. Before
the book really begins in earnest, we are introduced to a recursive charac-
terization of data. In Chapter 1, we study the way Scheme treats symbolic,
numerical, and logical data.

In Chapter 2, we build procedures for processing symbolic data. We can
think of the act of dining out as a procedure. We generally enter a restaurant,
read a menu, order some food, eat that food, pay a bill, and exit. We do
not think about the procedure for a particular restaurant, but we abstract
over all restaurants. A primary goal of Part 1 is to present you with enough
examples of how to abstract over data so that your procedures will be general.
While developing your intuition for handling symbolic data, we introduce
recursive procedures. Recursion is at the heart of Part 1. Not only are the
data described recursively, but also the procedures, which process the data,
are recursive.

In Chapter 3, we study numbers and operations over numbers. We intro-
duce iterative processes as a special case of recursive processes. We conclude
this chapter with the development of a rational number (fraction) abstract
data type. Much of the theme of this book is the understanding of program-
ming with abstract types and this is the first such example.

In Chapter 4, we continue building your intuition about recursion and it-
eration. Here we combine the various data types into different structures and






1 Data and Operators

...1t 18 not the thing done or made which is beautiful, but the doing. If we
appreciate the thing, it is because we relive the heady freedom of making it.
Beauty is the by-product of interest and pleasure in the choice of action.

Jacob Bronowski,
The Visionary Eye

Computing is an art form. Some programs are elegant, some are ezquisite,
some are sparkling. My claim is that it is possible to write grand programs,
noble programs, truly magnificent programs.

Donald E. Knuth,

from an article by William Marling
in Case Alumnus

1.1 Introduction

Computer programming is many faceted.

It is engineering. Computer programs must be carefully designed. They
should be reliable and inexpensive to maintain. Like any other engineer-
ing discipline, computer programming has special challenges. The foremost
challenge is managing complexity. As programs grow larger, the number of
possible interactions between their pieces tends to grow much faster than the
volume of code. Abstraction is the primary technique for managing complex-
ity. An abstraction hides unnecessary detail and allows recurring patterns to
be expressed concisely. In this book we emphasize several powerful techniques
for building abstractions.

It is a craft. A program made with craftsmanship is both more serviceable
and more satisfying. Programmingrequires proficiency born of practice (hence
the many exercises in this book!). It requires great dexterity, though of a
mental rather than a manual sort. As woodworkers enjoy working with their
hands and fine tools, so programmers enjoy exercising their minds and working
with a fine programming language.

It is an art. Fine programs are the result of more than routine engineering.
They require a refined intuition, based on a sense of style and aesthetics that
is both personal and practical. As an artistic medium, programming is highly



plastic, unconstrained by physical reality. In programming, perhaps more
than in other arts, less is more. Simplicity is nowhere more practical than in
programming, where the bane is complexity. When just the right abstraction
for a problem has been found, it may be a thing of beauty. We hope you take
pleasure in the programs of this book.

It is not a science, but it is based on one: computer science. Though
our primary concern in this book is with the techniques of programming, we
will have occasion to introduce a number of important scientific results. We
hope you find the language and style of this book to be vehicles for deeper
understanding and appreciation throughout your study of computer science.

It is a literary endeavor. Of course, programs must be understood by
computers, which requires mastery of a programming language. But that
is not enough! Programs must be analyzed to understand their behavior,
and most programs must be modified periodically to accommodate changing
needs. Thus it is essential that programs be intelligible by humans as well as
by computers. The challenge is to convey the necessary details without losing
sight of the overall structure. This in turn requires creative use of abstrac-
tions and a good sense of style—habits we attempt to instill by example in
this book.

But this book is ultimately about more than the craft of engineering artistic
and literate programs. Programming teaches an algorithmic (step by well-
specified step) approach to problem solving, which in turn encourages an
algorithmic approach to gaining knowledge. This view of the world is pro-
viding numerous fresh insights in fields as diverse as mathematics, biology,
and sociology, as well as providing tools that assist and extend our minds in
almost every field of study. Thus programming ability, like mathematical and
writing ability, is an asset of universal value.

Programming ability and literary ability have another thing in common.
An essay or short story can be correct grammatically and can convey the
information that the author intended and still not be a literary work of art.
Computer programming has its own aesthetic, and good programmers strive to
produce programs that evoke appreciative responses in their readers. Writing
such programs requires both inspiration and the application of craftsmanship
that employs a thorough command of the programming language and the
metaphors it can support.

There are many languages from which to choose when designing a course
to teach the principles of programming. Scheme was selected because it is
an expressive language that provides powerful abstraction mechanisms for ex-
pressing the solutions to computational problems. This facilitates the writing
of clear and satisfying programs. It is especially good as a vehicle for teaching
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programming because the student is not required to learn unnecessary rules
and prohibitions before being able to write meaningful programs.

The programming language LISP (which stands for List Processing) was
developed around 1960 by John McCarthy. (See McCarthy, 1960.) Scheme
was derived from LISP by Gerald Jay Sussman and Guy Lewis Steele Jr.
around 1975. (See Sussman and Steele, 1975.) A number of people have been
involved in the evolution of Scheme since its inception and these developers
of the language have published a series of reports describing the current state
of the language. For the first such report, see Steele and Sussman, 1978. The
third revised report appeared in 1986. (See Rees and Clinger, 1986.) The
fourth revision is expected in 1989. There is also a working group preparing
for an IEEE Standard for Scheme. A number of books about Scheme have
appeared since then, including:

o Structure and Interpretation of Computer Programs by Abelson and Suss-
man with Sussman, MIT Press and McGraw-Hill Book Company, 1985.

o The Little LISPer by Friedman and Felleisen, MIT Press, 1987 and SRA
Pergamon, 1989.

o The Scheme Programming Language, by Dybvig, Prentice-Hall, 1987.
e Programmang in Scheme by Eisenberg, Scientific Press, 1988.
e An Introduction to Scheme by Smith, Prentice-Hall, 1988.

The following two publications are manuals for Scheme that accompany the
implementations of Scheme on microcomputers:

o MacScheme+Toolsmith™ Semantic Microsystems, 1987.

e PC Scheme, by Texas Instruments, Scientific Press, 1988.

We encourage you to read them because each presents its own programming
philosophy. We are all using the same language, but we have somewhat dif-
ferent stories to tell.

As you read these pages, remember that you should care how elegant your
programs are. The task that confronts you is not only to learn a programming
language but to learn to think as a computer scientist and develop an aesthetic
about computer programs. Enjoy this as an opportunity to understand the
creative process better. Solve problems not only for their solutions but also
for an understanding of how the solutions were obtained.

1.2 The Computer 5



1.2 The Computer

We begin by briefly describing the components of a computer. At this stage,
1t suffices to think of the computer as being composed of four components:

1. The input device, in this case the keyboard with the standard typewriter
keys and some additional ones. Each key can perform several functions.
On both the typewriter and the computer keyboard, we choose between
lower and upper case by depressing the Shift key. On the computer, we
can also hold down the Control (CTRL) key while pressing another key to
get another behavior, and on some computers, we can similarly hold down
the Alternate (ALT) key while pressing another key to get yet another
behavior. Finally, pressing and releasing the Escape (ESC) key before
pressing another key gives still another behavior. When a key is pressed,
the result is usually shown on the screen.

2. The processor, in which the computing is done. This contains the internal
memory of the computer, the arithmetic logic unit, and the registers where
the computations take place.

3. The output devices: the video monitor on which the interactive computing
1s viewed, which we refer to as the screen, and the printer where printed
copy of the output is produced.

4. The ezternal storage device. In microcomputers, this often consists of two
floppy disk drives. The user places diskettes into these drives and either
reads files from a diskette into the computer’s internal memory or writes
from the internal memory to a file on a diskette. Many microcomputers
and all larger computers have an internal disk on which files can be stored
and accessed.

Implementations of Scheme are available on a wide variety of computers
ranging from larger mainframe computers that support many users to indi-
vidual workstations or personal computers.

1.3 Numbers and Symbols

In order to make a computer do something for us, we must communicate with
the computer in a language that it “understands.” The English language,
which we are using for our communication in this paragraph, makes use of
words and certain grammatical rules that enable us to combine words into
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sentences. The words themselves consist of certain strings of characters, that
is, characters written one after the other with no blank spaces between them.
The computer languages also have their analogs of words, which we call sym-
bols. The characters used to make up the symbols are the same characters on
a standard typewriter keyboard, with a few additions and deletions. We shall
generally use the letters of the alphabet, the digits from 0 through 9, and some
of the other characters on the keyboard. A few of the other characters on the
keyboard have special meaning, just as certain characters like the period and
comma have special meaning in English. In Scheme, the characters

(Y>L1LYr; , " %\

have special meaning and cannot appear in symbols. Similarly, the characters

are used in numbers and may occur anywhere in a symbol except as the first
character. The following list contains examples of symbols in Scheme:

abcd r cdr p2q4 bugs? one-two *now¥

Numbers are not considered to be symbols in Scheme; they form a separate
category. Thus, as you would expect, 10, =753, and 31.5 are Scheme numbers.
In the English language, not every combination of letters gives us a meaningful
word. We keep words that are meaningful in our minds or in a dictionary,
and when we see or hear a word, we retrieve its meaning in order to use it.
In much the same way, symbols may be assigned some meaning in Scheme. A
symbol used to represent some value is called a variable. The computer must
determine the meaning of each variable or number it is given. It recognizes
that the numbers have their usual meaning. Scheme also keeps the meaning
of certain variables that have been assigned values, and when it is given a
symbol, it checks to see if it is one of those that has been kept. If so, it can
use that meaning. Otherwise it tells us that the symbol has not yet been
given a meaning.

To carry the analogy with the English language a step further, words are
put together in sentences to express the thoughts you want to convey. The
Scheme analog of a sentence is an ezpression. An expression may consist of
a single symbol or number (or certain other items to be defined later), or a
list, which is defined to consist of a left parenthesis, followed by expressions
separated by blank spaces, and ending with a right parenthesis. We first
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discuss the use of expressions involving symbols or numbers, and return to
discussing other types of data in Section 1.4.

When you turn on the computer and call up Scheme, you usually get a
message telling what implementation of Scheme you are using. Then a prompt
appears on the screen, prompting you to enter something. The nature of the
prompt depends on the implementation you are using. The prompt we use
in this book to simulate the output on the screen is a pair of square brackets
surrounding a number. Thus the first prompt will be

(1]

If you type a number after the prompt and then press the <RETURN> key
(sometimes referred to as the <ENTER> key),

[1] 7 <RETURN>

Scheme recognizes that the meaning of the character that you typed is the
number 7. We say that the value of the character you typed is the number 7
or that what you type has been evaluated to give the number 7. Scheme then
writes the value of what you type at the beginning of the next line and moves
down one more line and prints the next prompt:

[1] 7 <RETURN>
7
[2]

Let us review what we have just seen. At the first prompt, you enter 7 and
press <RETURN>. In general, an expression (or a collection of such expressions)
you enter in response to the prompt and before pressing <RETURN> is called
a program. In this example, Scheme reads your program, evaluates it to the
number 7, prints the value 7 on the screen at the beginning of the next line,
and then prints the next prompt one line lower. Thus Scheme does three
things in succession: it reads, it evaluates, and it prints. We refer to this
sequence of events performed by Scheme as its read-eval-print loop. After
printing the prompt, Scheme waits for you to type the next program. In the
example, when you press <RETURN>, Scheme completes one cycle of the loop
and begins another.

What happens when a symbol is typed after the prompt? Suppose first that
you type the symbol ten and press <RETURN>. If Scheme has not previously
been given a meaning for the symbol ten, we say that ten has not been bound
to a value. In the evaluate phase of the read-eval-print loop, no value is found
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for ten, and a message is printed informing you that an error was made and
describing the nature of the error. For example,

[2] ten <RETURN>
Error: variable ten not bound.

(The actual message printed depends on the implementation of Scheme you
are using.) How then do we assign a meaning or value to a symbol? Suppose
we want to assign the value 10 to the symbol ten. For this purpose we use
a define ezpression. (A define expression is an example of a special form: a
form of expression identified by a special symbol called a keyword, which in
this case is define.) The define expression is entered after the next prompt
as follows:

[3] (define ten 10) <RETURN>

In this example, Scheme evaluates the third subexpression, which has the value
10, assigns that value to the symbol ten, and finally, in our implementation
of Scheme, prints the next prompt. Since the value returned by a define
expression is never used, that value is not prescribed in the specification of
the language. For convenience in writing this book, we opt to suppress the
value returned by a define expression.

Now let’s see what happens when we enter the symbol ten:

[4] ten <RETURN>
10

This time, Scheme successfully evaluates the variable ten, so it prints the
value 10.

We have seen that a variable is a symbol to which a meaning (i.e., a value)
can be given. When a value is given to a variable, we say that the variable is
bound to that value. In our previous example, the symbol ten is a variable
bound to the value 10. In general, if var represents a variable and ezpr
represents an expression whose value we would like to bind or assign to var,
we accomplish the assignment by writing

(define wvar ezpr)

The define expression is made up of a keyword, a variable name var, and an
expression ezpr.

Now let’s suppose that tenis bound to 10 and we want Scheme to print not
the value 10 but instead to print the symbol ten. We want to have some way
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of telling Scheme not to evaluate ten but to print its literal value ten. The
mechanism that Scheme provides for doing this is called quoting the symbol.
We quote a symbol by enclosing in parentheses the word quote followed by
the symbol:

(quote symbol)

For example, you quote the symbol ten by writing (quote ten). If you type
(quote ten) and then <RETURN> in response to a Scheme prompt, you see

[S] (quote ten) <RETURN>
ten

From now on, we shall omit the <RETURN> notation. It is understood that
each line that we type must be followed by <RETURN>. We use the word enter
when we want to indicate that something is to be typed in response to the
Scheme prompt. The value that Scheme prints in response to what we enter is
said to be the value that the expression “evaluates to” or that is “returned.”
For example, we could have said, “If the symbol ten is bound to 10, and you
enter (quote ten), then Scheme evaluates it to ten, while if you enter ten,
Scheme evaluates it to 10.”

In all cases, whether a symbol is bound to some value or not, when a
quoted symbol is entered, the literal symbol is returned. Thus if we enter
(quote abc3), Scheme returns abe3. It 1s not necessary to quote numbers,
for the value of a number as an expression is the number itself.

[6] (quote abc3)
abc3

[7] (quote 12)
12

An object whose value is the same as the object itself is called a constant. At
this point, the only constants we have seen are numbers.

It is somewhat inconvenient to have to type so much each time we want to
quote a symbol, so an abbreviation for the quoting process is also available
in Scheme. In order to quote a symbol, we need only place an apostrophe
immediately before the symbol. Thus to quote the symbol ten, we simply
write ’ten. The apostrophe is referred to as “quote,” and the expression
'ten is verbalized as “quote ten.” Thus the responses to the prompts [6]
and [7] can also be made as follows:
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(6] ’abc3
abc3

(71 12
12

We can also assign to a variable a value that is the literal value of a symbol.
For example, if we enter the following:?

(8] (define Robert ’Bob)

we bind the variable Robert to the symbol Bob. When we next enter Robert,
we get

[9] Robert
Bob

so that Scheme has evaluated Robert and returned the value Bob.

We have two types of data so far, numbers and symbols. How are they used?
The use of numbers should be no surprise, since we usually think of doing
arithmetic operations on numbers to get answers to problems. We shall take
a brief look at how we do arithmetic in Scheme in this section and then return
for a more complete look at using numbers in Chapter 3. To perform the
arithmetic operations on numbers, Scheme uses prefiz notation; the arithmetic
operator is placed to the left of the numbers it operates on. The numbers on
which it operates are called the operands of the operator. Furthermore, the
operator and its operands are enclosed in a pair of parentheses. Thus to add
the two numbers 3 and 4, we enter (+ 3 4) and Scheme evaluates it and
returns the answer 7. On the computer screen it looks like this:

[10] (+ 3 4)
7

! We are mixing lower and uppercase letters in our symbols and showing that Scheme
returns the same mix of lower and uppercase letters as their literal values. Thus, if we
enter ’Bob, Scheme returns Bob. An implementation of Scheme that preserves the case of
letters is called case preserving, and in this book, we are assuming that the implementation
is case preserving. There are some implementations that are not case preserving, which
means that the case is changed to either all lowercase or all uppercase letters. Thus, in
some implementations, all letters are returned in lowercase, and when we enter ’Bob, Scheme
evaluatesit to bob. Other implementations that are not case preserving return all uppercase
letters, so that if we enter ’Bob, Scheme evaluates it to BOB.
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Multiplication is performed with the operator x, subtraction with —, and
division with /. How do we compute the arithmetical expression 3 x (12 —5)?
In prefix notation, we place the multiplication operator * first followed by the
first number 3. The second operand to the operator * is the difference between
12 and 5, which itself is written as (- 12 5). Thus the whole arithmetic
expression is entered as

[11] (* 3 (- 12 5))
21
f12] (+ 2 (/ 30 15))
4

In general, Scheme uses this prefix notation whenever it applies any kind
of operator to its operands. We shall return to a more complete discussion
of numerical computations in Chapter 3. A number of experiments with
numerical operations are included in the exercises at the end of this section.

In summary, a symbol can be bound to a value using a special form that
begins with the keyword define. When a variable that has been bound to
a value is entered in response to a Scheme prompt, its value is returned. If
we want Scheme to return the literal value of the symbol instead of the value
to which it is bound, we quote the variable. The value of a quoted symbol is
just the literal value of the symbol.

It is possible to keep a record of the session you have in Scheme. The
particular mechanism for doing so depends on the implementation of Scheme
you are using. If you are using a version of Scheme that uses the windowing
capability of the computer, you may be able to send what is in the window
to a file. In some implementations, it is possible to run Scheme in an editor
and use the saving capability of the editor to preserve what you want from
the session in a file. Some versions offer a transcript facility that you turn
on at the beginning of the session and give it a filename, and then turn off
at the end of the session. The session is then preserved in the named file.
The manual for the Scheme you are using should identify the facility you have
available to save your Scheme sessions.

We strongly recommend that you try each of the things discussed in this
book at the computer to see how they work. Feel free to experiment with
variations on these ideas or anything else that occurs to you. You get a
much better feeling for computers and for Scheme if you “play around” at the
keyboard.
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Exercises

FEzercise 1.1

Find out what method your implementation of Scheme has for recording your
Scheme session in a file. Bring up Scheme on the computer and record this
session 1n a file called “sessionl.rec.” Enter each of the following to successive
prompts: 15, -200, 12345678901234, (quote alphabet-soup), ’alphabet-
soup, ’’alphabet-soup. (Note: Experiment with entering even larger posi-
tive and negative whole numbers and decimals and see what is returned.)

FEzercise 1.2
Assume that the following definitions have been made in the given order:

(define big-number 10500900)
(define small-number 0.00000025)
(define cheshire ’cat)

(define number1l big-number)
(define number?2 ’big-number)

What values are returned when the following are entered in response to the

prompt?

a. big-number b. small-number
¢. ’big-number d. cheshire

e. ’cheshire f. numberi

g. number?2 h. ’numberi1

Conduct the experiment on the computer in order to verify your answers.

FEzxercise 1.3
What is the result of entering each of the following expressions in response to
the Scheme prompt? Verify your answer by performing these experiments on
the computer.

a. (- 10 (- 8 (- 6 4)))

b. (/ 40 (x 5 20))

c. (/23)

d. (+ (x 0.1 20) (/ 4 -3))

Fzercise 1.4

Write the Scheme expressions that denote the same calculation as the following
arithmetic expressions. Verify your answers by conducting the appropriate
experiment on the computer.
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(4 xT)=(13+5)

(3% (4+ (=5 = =3)))

(2.5 = (5 x (1= 10)))

d. 5 x ((537 x (98.3 + (375 — (2.5 x 153)))) + 255)

o W

o

FEzercise 1.5
If a, B, and v are any three numbers, translate each of the following Scheme
expressions into the usual arithmetical expressions. For example:

(+ @ (+ B ) translates into o+ (3+17)
a. (+a (- + 87 a))
b. (+ (x a B) (x v B))
c. (/ (apB) (-a9))

1.4 Constructing Lists

14

So far, we have seen two data types, symbols and numbers. Another important
data type in Scheme is lists. We all use lists in our daily lives—shopping lists,
laundry lists, address lists, menus, schedules, and so forth. In computing, it
1s also convenient to keep information in lists and to be able to manipulate
that information. This section shows how to build lists and how to perform
simple operations on lists. In Scheme, a list is denoted by a collection of items
enclosed by parentheses. For example, (1 2 3 4) is a list containing the four
numbers 1, 2, 3, and 4. A special list that we make frequent use of is the
empty list, which contains no items. We denote the empty list by ().
Scheme provides a procedure to build lists one element at a time. This
procedure is called cons, a shortening of “constructor.” We refer to cons as a
constructor of lists. We now look at how cons works. We shall first perform
a number of experiments and then describe its general behavior. Suppose we
want to build a list that contains only the number 1. We enter the following;:

[1] (cons 1 '())
(1)

We see from this example that we enclosed three things in parentheses: the
variable cons, the number 1, and the empty list * (). The first entry tells us
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the name of the procedure we are applying, and the remaining two entries
tell what the procedure cons is operating on. The entries following the name
of the procedure are called the operands of the procedure. The values of
the operands are called the arguments of the procedure. In our case, the
first argument is the first item in the list we are constructing, and the second
argument is a list that contains the rest of the items in the list we are building.
Scheme first reads what we enter. In its evaluation phase, the operands are
evaluated, and the desired list is built. It then prints the list (1). (Note the
parallel between the application of cons and the application of the arithmetic
operations such as (+ 3 4). We again see that the operator is placed to the
left of the operands, using prefix notation.) Let us bind the variable 1s1 to
the list containing the number 1 by writing

[2] (define 181 (cons 1 ’()))
[3] 1s1
(1)

The define expression we entered at the prompt [2] binds the variable 1s1
to the value obtained by evaluating the subexpression (cons 1 ’()). That
subexpression evaluates to the list (1). Thus 1s1 is bound to the list (1).
Thus when the variable 1s1 is entered at the prompt [3], its value (1) is
returned.

We now create a list with 2 as its first element and the elements of 1s1 as
the rest of its elements. To accomplish this we write

(4] (cons 2 1s1)
2 1)

[5] 1s1

(1)

Once again, the two operands are evaluated—2 evaluates to itself and 1s1
to the list (1). Then a new list is formed having 2 as its first item and the
items of 1s1 as the rest of its items, giving us (2 1). This is the value that is
returned. At prompt [6], we verify that 1s1 is unchanged. Let us next bind
the variable 1s2 to a list like the one in [4].

[6] (define 182 (cons 2 1ls1))
[7] 1s2

2 1)

[8] 1s1

(1)
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The expression entered at the prompt [9] binds the variable ¢ to the literal
value of the symbol three. We can now create a list containing three as its
first element and the elements of 1s2 as the rest of its elements by writing

[9] (define ¢ ’three)
[10] (cons c 1s2)
(three 2 1)

When we apply cons to its two operands, the operands are both evaluated.
The first operand, c, evaluates to three, and the second operand, 1s2, evalu-
ates to the list (2 1). Then a new list is built with three as its first item and
the elements of the list (2 1) as the rest of its elements. The value (three
2 1) is returned.

Continuing our experiment, we bind the variable 1s3 to the value of (cons
¢ 1s2) using a define expression:

[11] (define 1s3 (cons c 1s2))

We now perform another experiment with cons. Let us build a list that
has as its first item the list 1s2 and as the rest of its items the same items
as those in 1s3. This is done by making 1s2 the first operand and 1s3 the
second operand of cons:

[12] (cons 1s2 1s3)

((2 1) three 2 1)

[13] 1s3

(three 2 1)

[14] (define 1s4 (cons 1s2 1s3))

The first operand of cons evaluates to the list (2 1), and the second operand
of cons evaluates to (three 2 1). Thus the procedure cons produces a new
list that has as its first item the list (2 1), followed by the elements in 1s3.
This gives us the value that was returned by Scheme: ((2 1) three 2 1).
Notice that when 1s3 was entered in response to the prompt [13], (three 2
1), the original value of 1s3, was returned, so cons did build a new list and
did not affect the list 1s3.

We are now in a position to summarize the facts that we observed in the
experiments. The procedure cons takes two operands. We apply the proce-
dure cons to these operands by enclosing the procedure name cons followed
by its two operands in parentheses. In general, a procedure name followed by
its operands, all enclosed in a pair of parentheses, is called an application, and
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we say that the operator is applied to its operands. When an application is
evaluated by Scheme, all of the expressions in the list are evaluated in some
unspecified order. The value of the first expression (the operator) informs
Scheme of the kind of computation that is to be made (in our case, cons in-
forms Scheme that a list is to be constructed). Then the computation defined
by the procedure (the value of the operator) is performed on the arguments,
which are the values of the operands. We assume for now that the second
operand of cons evaluates to a list (which may be the empty list). Then a
new list is created containing the value of the first operand as its first item
followed by all of the items in the list to which the second operand evaluated.
It i1s this new list that is returned as the value of the application. Since cons
first evaluates its operands, the lists contain only values. So far, these values
may be numbers, the literal value of symbols, and lists of these items. As
we progress through the chapters of this book, we shall encounter other data
types, all of which can be included in lists.

We have assumed in the discussion that the second operand of the cons
application evaluates to a list. This is the usual situation that we shall en-
counter, but it is also possible for the second argument to cons not to be a
list. We shall discuss this case in the next section. Furthermore, we see in 154
that a list may contain in it other lists. We say that the inner list is nested
within the outer list. The nesting may be several levels deep, for a nested
list may itself contain nested lists. Suppose we have a given list. Items that
are not nested within lists contained in the given list are called the top-level
items of the given list. Thus, if the given list is ((a b (¢ d)) e (£ g) h),
the top-level items are the list (a b (¢ d)), the symbol e, the list (£ g),
and the symbol h.

We can also build the list (2 1) in one step by applying cons twice as the
next experiment illustrates:

[15] (cons 2 (cons 1 ’()))
21

To construct the list ((2 1) three 2 1), we could write

[16] (cons (cong 2 (cons 1 ’())) (cons ’three (cons 2 (cons 1 ’()))))
((2 1) three 2 1)

The second and third cons’s build the list (2 1), and the fourth, fifth, and
sixth build the list (three 2 1). Then the first cons constructs the desired
list.
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We have used parentheses in writing several types of expressions—in the
application of a procedure to its arguments, in the special form with keyword
define, and in a list of values. When Scheme sees an expression enclosed
in parentheses, it assumes that the first item following the left parenthesis
evaluates to a procedure such as cons or is a keyword such as define.?2 It
then evaluates the expression according to what the first item tells it to do.
What happens when we enter an expression such as (2 1) in response to a
Scheme prompt?

[17] (2 1)

Error: bad procedure 2

This experiment shows that Scheme expected to see an application or special
form, and when the first item in the list is not an operator or a keyword, it
returned a message saying it detected an error. In this case it tried to treat
the list as an application but discovered as its first item the number 2, which
1s not a procedure.

Is there some way to enter a list of items that is to be taken literally? The
answer 1s yes. Suppose we want to enter a list containing the following items:
three, 2, 1. We use the quote symbol (apostrophe) and place it in front of
the left parenthesis. This indicates that each of the items included in the
parentheses is to be taken with its literal value. Thus to get a list containing
the desired three items, we would enter ’(three 2 1). The symbol three
should not be quoted within the parentheses since the outer quote already
indicates that it should be taken with its literal value. Let’s look at some
more examples:

[18] ’>((2 1) three 2 1)

((2 1) three 2 1)

[19] >(a b (c (d e)))

(ab (c (de))

[20] (cons ’(a b) ’(c (d e)))
((ab) c (de))

We now have a way of indicating whether a list we enter consists of literal
values. If the expression beginning with a parenthesis is not quoted, Scheme

2 We shall use several special forms in the coming chapters and then study their properties
more fully in Chapter 14. They are called special because their operands are not evaluated
as in procedure applications. If (define ten 10) were evaluated as a procedure application,
the operands ten and 10 would first be evaluated, but since ten has not yet been bound,
an error would result. In this special form, the symbol ten is not evaluated.
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assumes that the expression is not a quoted list, and the first item in the list
i1s examined to determine the nature of the expression and the computation
that should follow. If the expression in parentheses is quoted, Scheme assumes
that each item is to be taken literally.

We have now seen several procedures: the arithmetic operators +, %, -, and
/, and the list-manipulating operator cons. Procedures form another type
of data in Scheme. We have now encountered four types of data: numbers,
symbols, lists, and procedures.

Exercises

FEzercise 1.6

Using the symbols one and two and the procedure cons, we can construct the
list (one two) by typing (cons ’one (cons ’two ’())). Using the symbols
one, two, three, and four and the procedure cons, construct the following
lists without using quoted lists (you may use quoted symbols and the empty
list):

a. (one two three four)

b. (one (two three four))
c. (one (two three) four)
d. ((one two) (three four))

. (((one)))

Q]

FEzxercise 1.7
Consider a list 1s containing n values. If a evaluates to any value, how many
values does the list obtained by evaluating (cons a 1s) contain?

FErercise 1.8
What is the result of evaluating *(a ’b)? (Try it!) Explain this result.

1.5 Taking Lists Apart

We have seen how to build lists using the constructor cons. We now consider
how to take a list apart so that we can manipulate the pieces separately and
build new lists from old. We accomplish this decomposition of lists using two
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selector procedures, car and cdr.® If Is represents a nonempty list of items,
car applied to Is gives the first item in Is, while cdr applied to Is gives the
list consisting of all items in Is with the exception of its first item. Both car
and cdr take one operand that must evaluate to a nonempty list. Both car
and cdr are not defined on an empty list, and applying them to an empty list
produces an error.

Let’s look at the behavior of the selector car. When its argument is a
nonempty list, it returns the first top-level item in the list. Thus we have

[1] (car ’(1 2 3 4))
1

It is rather space consuming to indicate what a procedure returns by repro-
ducing what is seen on the computer screen. We shall adopt a more efficient
notation in which we express the above by

(car '(1 2 3 4)) =1

The double arrow “=>” is read as “evaluates to” or “returns.” Here are some
other examples of applying the procedure car (As in the previous section, 1s4
is bound to the list ((2 1) three 2 1).)

(car ’(a b c d)) = a

(car 1s4) = (2 1)

(car ’((1) (2) (3) (&) = (1)

(car ’(ab (cd ef) gh)) = ab

(car '(((hen cow pig)))) => ((hen cow pig))
(car () = O

When the selector cdr is applied to an argument that is a nonempty list,
the list returned is obtained when the first item (the car) of the argument
list is removed. Thus

(cdr (1 2 3 4)) => (2 3 4)
(cdr 1s4) => (three 2 1)

3 The symbol cdr is pronounced “could-er.” The names car and cdr had their origin in the
way the list-processing language LISP was originally implemented on the IBM 704, where
one could reference the “address” and “decrement” parts of a memory location. Thus car
is an acronym for “contents of address register,” and e¢dr is an acronym for “contents of
decrement register.”
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(cdr ’(a (b c) (de £))) = ((bc) (de £))
(cdr ’((ant hill) (bee hive) (wasp nest)))
=> ((bee hive) (wasp nest))
(cdr ’(1)) = O
(cdr ’((1 2))) = O
(cdr ’(0)) = O

We now have three list-manipulating procedures: the constructor cons and
the two selectors car and cdr. By applying these in succession, we can do
almost anything we want with lists. For example, if we want to get the second
item in the list (a b ¢ d), we first apply cdr to get (b ¢ d) and then apply
car to the result to get b. We combine these applications of cdr and car into
one expression by writing '

(car (cdr ’(abc d))) = b

For the next example, let 1ist-of-names be bound to the list ((Jane Doe)
(John Jones)). We look at how we retrieve Jane Doe’s last name from this
list. If we first apply car to list-of-names, we get the list (Jane Doe). We
now get the list (Doe) by applying cdr, and finally, we get Doe by applying
car. We want to emphasize the distinction between the list (Doe) containing
one item and the item Doe itself. All of these steps are combined in the
following expression:

(car (cdr (car list-of-names))) => Doe

In this example, we see that the procedures car and cdr are applied in
succession a number of times. The successive applications of car’s and cdr’s
is facilitated by the use of the procedures caar, cadr, caddr, ..., cddddr. The
number of a’s and d’s between the ¢ and r tells us how many times we apply
car or cdr, respectively, in order from right to left. For example, (cadr ’(a
b c)) is equivalent to (car (cdr ’(a b ¢))) and is b. Similarly, (caddr
’(a b c¢)) is equivalent to (car (cdr (cdr ’(a b ¢)))) and is c. We can
put up to four letters (a’s or d’s) between the ¢ and r. We make use of these
procedures in the next example.

Consider the following situation. We ask our helper to prepare a menu that
has on it the two items: chicken soup and ice cream. He prepares the menu
by using a define expression to bind the variable menu to the list (chicken
soup ice cream):

(define menu ’(chicken soup ice cream))
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We find this unsatisfactory and want to use the items in the list menu to
produce the list ((chicken soup) (ice cream)), which groups together the
related items. We build the new list one step at a time:

(car menu) = chicken

(cadr menu) = soup

(cons (cadr menu) ’()) = (soup)

(cons (car menu) (cons (cadr menu) ’())) = (chicken soup)
(cddr menu) = (ice cream)

We now have the two items that will make up our final list. We use cons to
build the final answer. We first use cons to build a list around the list (ice
cream) to get ((ice cream)) and then use cons again to build a list that
has (chicken soup) as its first item and (ice cream) as its second item.

(cons (cddr menu) ’()) = ((ice cream))
(cons (cons (car menu) (cons (cadr menu) ’())) (cons (cddr menu) ’()))
= ((chicken soup) (ice cream))

The process shown here can be used to build and manipulate lists in just
about any way we want. As we learn more about Scheme, we shall discover
shortcuts that facilitate the manipulation of lists.

Up to now, we have assumed that the second argument to cons is a list. If
it 1s not a list, we can still apply cons; the result, however, is not a list but
rather a dotted pair. A dotted pair is written as a pair of objects, separated by
a dot (or period) and enclosed by parentheses. The first object in the dotted
pair is the car of the dotted pair, and the second object in the dotted pair
1s the cdr of the dotted pair. Thus (cons ’a ’b) = (a . b), and (car
’(a . b)) => a, while (¢dr ’(a . b)) => b. Much of the work in this
book involves lists, which are built out of dotted pairs. For example, ’(a .
()) => (a),and ’(a . (b ¢)) => (a b ¢c). Thus any item built with
the constructor cons is referred to as a pair.

Exercise

Fzxercise 1.9
If a and 3 evaluate to any values, what is

a. (car (cons a f))

b. (cdr {cons a f3))
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The procedures cons, car, and cdr do not alter their operands. Let us
demonstrate this with an experiment.

[1] (define a 10)
[2] (define 1s-b ’(20 30 40))
[3] (car 1s-b)
20

[4] (cdr 1s-b)
(30 40)

[5] (cons a 1s-b)
(10 20 30 40)

[6] a

10

[7] 1s-b

(20 30 40)

After all of these operations involving car, cdr, and cons, the values of the
operands a and 1s-b stayed the same when they were entered in [6] and [7]
as they were when they were defined in the beginning.

So far, we have encountered three procedures—car, cdr, and cons—that
help us manipulate lists and four procedures—+, *, -, and /—that allow us to
operate on numbers. Another group of procedures, called predicates, applies
a test to their arguments and returns true or false depending on whether the
test is passed. Scheme uses #t to denote true and #f to denote false. The
value of #t is #t and the value of #f is #£, so both of these are constants.¢ #t
and #£, representing true and false, are known as boolean (or logical) values.
They form a separate type of data to give us five distinct types: numbers,
symbols, booleans, pairs (including lists), and procedures. More data types
will be introduced in later chapters. We now look at several predicates that
apply to these five data types.

The first predicate tests whether its argument is a number, and its name is
number?. Like most other predicates, the name ends with a question mark,
signaling that the procedure is a predicate. Thus if we apply the predicate
number? to some object, #t is returned if the object is a number, and otherwise
#1 is returned. If we make the following definitions,

(define num 35.4)
(define twelve ’dozen)

4 In some implementations of Scheme, the empty list () is returned instead of #£ to indicate
false.
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we get the following results:

(number? -45.67) = #t

(number? ’3) = #t

(number? num) = #t

(number? twelve) = #f

(number? ’twelve) => #f

(number? (+ 2 3)) = #t

(number? #t) => #f

(number? (car ’(15.3 -31.7))) = #t
(number? (cdr ’(15.3 =31.7))) => #f

In the last example, the operand evaluates to (=31.7), which is a list, not a
number.

The predicate symbol? tests whether its argument is a symbol. With the
definitions of num and twelve given above, we get the following results:

(symbol? 15) => #f

(symbol? num) = #f

(symbol? ’num) = #t

(symbol? twelve) = #t

(symbol? ’twelve) = #t

(symbol? #f) = #f

(symbol? (car ’(banana cream))) => #t
(symbol? (cdr ’(banana cream))) => #f

In the last example, (cdr ’(banana cream)) evaluates to a list, not a symbol.
There is also a predicate boolean? to test whether its argument is one of
the boolean values #t or #f.

(boolean? #t) => #t
(boolean? (number? ’a)) = #t
(boolean? (cons ’a ’())) => #f

A pair is an object built by the constructor cons, and the predicate pair?
tests whether its argument is a pair. For example, nonempty lists are con-
structed by cons, so they are pairs. We have

(pair? ’(Ann Ben Carl)) = #t
(pair? ’(1)) = #t

(pair? ’()) = #f

(pair? ’(0))) = #t

Data and Operators



(pair? ’(a (b ¢) d)) = #t
(pair? (cons ’a ’())) => #t
(pair? (cons 3 4)) = #t
(pair? ’pair) = #f

There is also a predicate null? which tests whether its argument is the
empty list.

(null? ’()) => #t
(null? (cdr ’(cat))) = #t
(null? (car ’((a b)))) = #f

Exercises

Ezercise 1.10

If the operands a and [ evaluate to any values, what is
a. (symbol? (cons a f3))

b. (pair? (cons a f3))

c. (null? (cons a f))

d. (null? (cdr (cons a ’())))

Ezercise 1.11
If a list 1s contains only one item, what 1s (null? (cdr 1s))?

We have given tests to determine whether an object is a number, a symbol,
a boolean, or a list, but we have not given a test to determine whether it is
a procedure. There is also a predicate procedure? which tests whether its
argument is a procedure.

(procedure? cons) => #t
(procedure? +) => #t
(procedure? ’congs) = #f
(procedure? 100) => #f

At this point, we have introduced five data types: numbers, symbols,
booleans, pairs, and procedures. As we progress through the book, we shall
meet other data types, such as strings, characters, vectors, and streams. A
question that we often ask is whether two objects are the same. Scheme offers
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several different predicates to test for the sameness of its arguments. Which
predicate you use depends upon the information you seek and the data type
of the objects. We list a number of these sameness predicates below and in-
troduce others as the need arises. When both objects are numbers, we use the
predicate = to test whether its arguments represent the same number. The
predicate = is used only to test the sameness of numbers. It is safe to use it
only on integers, since the representation of nonintegers in the computer can
lead to undesirable results.

(=3 (/62) = #t

(= (/122) (» 23)) = #t

(= (car (-1 ten 543)) (/ -20 (* 4 5))) = #¢t
(= (* 2 100) 20) = #f

There 1s also a predicate eq? to test the sameness of symbols. If its operands
evaluate to the same symbol, #t is returned. For this example, assume that
Garfield has been bound to ’cat.

(eq? ’cat ’cat) => #t

(eq? Garfield ’cat) = #t

(eq? Garfield Garfield) = #t

(eq? ’Garfield ’cat) => #f

(eq? (car ’(Garfield cat)) ’cat) = #f
(eq? (car ’(Garfield cat)) ’Garfield) = #t

The predicate eq? returns #t if its two arguments are identical in all re-
spects; otherwise it returns #f. Symbols have the property that they are
identical if they are written with the same characters in the same order. Thus
we use eq? to test for the sameness of symbols. On the other hand, each appli-
cation of cons constructs a new and distinct pair. Two pairs constructed with
separate applications of cons will always test #f using eq? even if the pairs
they produce look alike. For example, let us make the following definitions:

[1] (define 1ls-a (cons 1 '(2 3)))
[2] (define 1s-b (cons 1 ’(2 3)))
[3] (define 1ls-c ls-a)

Then we have
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(4] (eq? (cons 1 ’(2 3)) (cons 1 ’(2 3)))
#1

(5] (eq? 1ls-a ’(cons 1 ’(2 3)))

#f

(6] (eq? 1s-a 1ls-b)

#f

[7] (eq? 1s-a 1s-c)

#t

In [4], cons is applied twice to build two distinct pairs, so #f is returned
even though both of the pairs look alike as lists (1 2 3). In [5], the variable
1s-a refers to the pair defined in [1], which is distinct from the pair defined
by the cons in [5], so #f is returned. In [6], 1s-b refers to the pair built
by the cons in [2], which is distinct from that built in [1], so eq? again
evaluates to #f. Finally, 1s-c is defined to be the value of 1s-a, which is the
pair built by the cons in [1], so both 1s-a and 1s-c¢ refer to the same pair,
and eq? evaluates to #t.

When we want to include numbers, symbols, and booleans in the types of
objects the predicate tests for sameness, we use the predicate eqv?. We shall
later see that eqv? also tests vectors, strings, and characters for sameness.

(eqv? (+ 2 3) (- 10 5)) = #t

(eqv? 5 6) => #f

(eqv? 5 ’five) = #f

(eqv? ’cat ’cat) = #t

(eqv? ’cat ’kitten) => #f

(eqv? (car ’(a a a)) (car (cdr ’(a a a)))) = #t

We have not included lists among the data types we can test for sameness
using the predicates discussed. If we want a universal sameness predicate
that can be applied to test numbers, symbols, booleans, procedures, and lists
(and strings, characters, and vectors), we use the predicate equal?. In the
case of pairs constructed using separate applications of cons, equal? tests the
corresponding entries, and if they are the same, #t is returned. Thus equal?
tells us that the two lists (cons ’a ’(b ¢ d)) and (cons ’a (b ¢ d)) are
the same, whereas eq? and eqv? claim that they are different.

(equal? 3 (/ 6 2)) = #t

(equal? ’cat ’cat) = #t

(equal? ’(a b c) (cons ’a ’(b c))) = #t
(equal? (cons 1 ’(2 3)) (cons 1 (2 3))) => #t
(equal? ’(a (b c) d) ’(a (b c) d)) = #t
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(equal? ’(a (b ¢)) ’(a (c b)) = #f
(equal? (cdr ’(a ¢ d)) (cdr ’(b c d))) = #t

Now for the obvious question: How do we know which one to use? When
a predicate must first test to determine the type of its arguments, it is less
efficient than one designed specifically for the type of its arguments. Thus for
numbers, = is the most efficient sameness predicate. Similarly, for symbols,
eq? is the most efficient predicate. For testing only numbers or symbols, eqv?
1s more efficient than equal?. When we know that we shall be using numbers
or symbols, then eqv? is the sameness predicate we use. When the discussion
1s limited to numbers, we use =.

When we respond to a prompt with a number or a quoted symbol, we
have seen that the number or symbol is returned. If we enter a symbol that
has been bound to a value, that value is returned. If we apply a procedure
such as car to a list (1 2 3) by entering (car ’(1 2 3)), the expression is
evaluated and the value 1 1s returned and printed on the screen. On the other
hand, not every Scheme object is printable. If we enter only the name of a
procedure, such as car, the procedure, which is the value of car, is returned,
but not printed; instead a message is displayed, which indicates a procedure.
In this book, we indicate a procedure by printing angle brackets surrounding
the name of the procedure in italics. Thus, when we enter car, <car> i1s
displayed. In general, when we use <some-symbol>, it denotes a procedure.

We now summarize our discussion of cons, car, cdr, and predicates by
writing some facts that apply to their use. The list is certainly not all inclusive,
and we recommend that you add your own entries to it to reinforce your
understanding of the use of predicates. Let a@ and 3 be operands such that a
evaluates to any value and 3 evaluates to any nonempty list. We then have:

s The number of items in (cons a () is one greater than the number of
items in f.
s (eq? a ) = #t
implies
(eqv? a () = #t
tmplies
(equal? a () = #t
s (eq? (cons a () (cons a f3)) = #f
s (eqv? (cons o ) (cons a ()) = #f
s (equal? (cons a ) (cons a f3)) = #t

s (boolean? (eqv? a f)) = #t
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s (null? (cdr (cons a '()))) = #t
s (equal? (cons (car B) (cdr (B)) B) = #t
s (equal? (car (cons a 3)) a) = #t
s (equal? (cdr (cons a B)) [) = #t
s (null? B) = #f
s (pair? B) = #t
s (pair? (cons a 8)) = #t
s (pair? (coms a; ajz)) = #t
We have been introduced to five basic data types (numbers, symbols, bool-
eans, pairs, and procedures), and we have seen a number of procedures to

manipulate and test the data. In Chapter 2 we shall develop the tools to
compute with lists, and in Chapter 3 we shall do the same for numbers.

Exercises

Ezercise 1.12

Evaluate each of the following.

a. (edr ((a (b c) d)))

b. (car (cdr (cdr ’(a (b c) (d e)))))
c. (car (cdr ’((1 2) (3 4) (5 6))))
d. (cdr (car ’((1 2) (3 4) (5 6))))
e. (car (cdr (car ’((cat dog hen)))))
f. (cadr (a2 b c d))

g. (cadar ’((a b) (c d) (e £)))

Ezercise 1.13
We can extract the symbol a from the list (b (a ¢) d) using car and cdr
by going through the following steps:
(cdr (b (a ¢) d)) = ((a c) d)

(car (cdr (b (a ¢c) d))) = (a c)

(car (car (cdr ’(b (a ¢) d)))) = a
For each of the following lists, write the expression using car and cdr that
extracts the symbol a:
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Procedures and Recursion

2.1 Overview

In Chapter 1 we used several Scheme procedures such as those bound to the
numerical operators +, %, =, and /, the list-manipulating procedures bound to
cons, car, and cdr, and the predicates that test their arguments and return
#t or #f. One of the advantages of using the programming language Scheme
1s that the number of procedures provided by the language is relatively small,
so we do not have to learn to use many procedures in order to write Scheme
programs. Instead, Scheme makes it easy for us to define our own procedures
as we need them. In this chapter, we discuss how to define procedures to
manipulate lists. In Chapter 3, we shall see how to define procedures to do
numerical computations. In this chapter, we also discuss how a procedure
can call itself within its definition, a process called recursion. Finally, we
introduce an elementary tracing tool to help us in debugging programs.

2.2 Procedures

The notation f(z,y) is used in mathematics to denote a function; it has the
name f and has two variables, z and y. We call the values that are given to
the variables the arguments of the function. To each pair of arguments, the
function associates a corresponding value. In computing, we are concerned
with how that value is produced, and we speak about the sequence of com-
putational steps that we perform to get the value returned by the function as
an algorithm for computing the function’s value. The way we implement the
algorithm on the computer to get the desired value is called a procedure for
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computing the desired value. If £ is the name of the procedure with variables
x and y, we use a list version, (f x y), of the prefiz notation f(z,y) used
in mathematics. In general, prefix notation places the procedure or function
name in front of the variables. In the list version of prefix notation, the whole
expression is surrounded by parentheses, and within the parentheses, the name
of the procedure comes first, followed by the variables separated by spaces.
Although we used a procedure taking two arguments in this illustration, the
number of arguments depends on the procedure being used. For example, we
have already seen the procedure cons takes two arguments, and the procedure
car takes one.

Procedures such as those bound to the values of +, cons, car, cdr, null?,
eqv?, and symbol? are provided by the system as standard routines. It is
impossible for the system to provide all procedures needed. Therefore, it
i1s important to be able to define procedures as they are needed. Scheme
provides an elegant way of defining procedures based upon the lambda calculus
introduced by the logician Alonzo Church. (See Church, 1941.) We illustrate
this method with an example.

When we write (cons 19 ’()), we get a list with one number in it, (19). If
we write (cons ’bit ’()), we get a list with one symbol in it, namely (bit).
Now let’s write a procedure of one variable that returns a list containing the
value given to that variable as its only element. We do it with a lambda
expression,

(lambda (item) (cons item ’()))

A lambda expression is an example of a spectal form: a form of expression
identified by a special symbol called a keyword, in this case lambda.?

If the procedure defined by this lambda expression is applied to 19, the
parameter item, which is in the list following the keyword lambda, is assigned
(bound to) the value 19. Then the following subexpression (known as the
body of the lambda expression) is evaluated with the parameter item bound
to 19. The value of the body so obtained is returned as the value of the
application. In this case, it returns the value of (cons item ’()), which is
(19). In summary, when a procedure that is the value of a lambda expression
is applied to some value, the parameter is bound to that value, and the body

1 Special forms look like applications but are not, and in order to recognize them, we have
to memorize the keywords, such as 1ambda and define. We shall see other keywords later,
but the list of keywords we have to memorize is small.
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of the lambda expression is evaluated with this parameter binding. The value
of the body is returned as the value of the application of the procedure.
The lambda expression has the syntax

(lambda (parameter ...) body)

The keyword lambda is followed by a list that contains the parameters. The
ellipsis (three dots) following parameter indicates that the list contains zero
or more parameters. The next subexpression is the body of the lambda expres-
sion. The value of a lambda expression is the procedure, which can be applied
to values appropriate for the evaluation of the body. These values must agree
in number with the number of parameters in the lambda expression’s param-
eter list. When the procedure is applied, the parameters are bound to the
corresponding values, and the body is evaluated. The value of the body is
then the value of the application.
In general, when a procedure is applied, the syntax is

(operator operand ...)

where operator is a subexpression that evaluates to the procedure being ap-
plied, and the operands are subexpressions that evaluate to the arguments to
which the procedure is applied. We stress that the arguments are the values
of the operands. For example, in the application (x (+ 2 3) (- 7 1)), the
operator * evaluates to the multiplication procedure, the two operands are
(+ 2 3) and (- 7 1), and the two arguments are 5 and 6. The value of the
application is then 30, the product of 5 and 6.

Thus to apply the procedure we defined above to build a list containing the
symbol bit, we enter

((lambda (item) (cons item ’())) ’bit)

and we get as the result (bit). Similarly,

((Qlambda (item) (cons item ’())) (* 5§ 6)) => (30)

It 1s awkward to write the whole expression

(lambda (item) (cons item ’()))

each time we want to apply the procedure. We can avoid this by giving the
procedure a name and using that name in the procedure applications. This

2.2 Procedures S5}



34

is done by choosing a name, say make-list-of-one, for this procedure and
then defining make-list-of-one to have the desired procedure as its value.
We write

(define make-list-of-one (lambda (item) (cons item ’())))

This is easier to read if we display the parts more clearly on separate lines as
follows:

(define make-list-of-one
(lambda (item)
(cons item ’())))

Scheme ignores any spaces in excess of the one space needed to separate
expressions. Scheme also treats <RETURN>’s as spaces until the one following
the last right parenthesis that is entered to close the first left parenthesis in
the expression. Thus Scheme reads the two ways of writing this definition
of make-list-of-one as the same Scheme expression. The indentation sets
off subexpressions, making the structure of the program easier to understand
at a glance.? To apply the procedure make-list-of-one, we enter the
application

(make-list-of-one ’bit)

and (bit) is returned.

We have now written a program that builds a list containing one item.
Computer programs to perform various tasks are written by defining the ap-
propriate procedure to accomplish the desired tasks. As the tasks become
more complicated, there are usually different ways of defining the procedures
to achieve the desired results. It is the aim of this book to lead you through
a series of learning experiences that will prepare you not only to be able to
write such programs but to do so in a way that is efficient, elegant, and clear
to read.

A word is in order about the choice of names for procedures and parameters.
Since a symbol can have as many characters in it as we wish, programs will be
easier to read if we choose names that describe the procedure or parameter.

2 To make entering expressions easier, some implementations of Scheme provide automatic
indenting and parenthesis matching. The automatic indenting places the cursor in the
proper position for the start of the next line, and the parenthesis matching indicates the
left parenthesis that a right parenthesis is closing.
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Thus we used the name make-1ist-of-one for the procedure that converted
a value into a list containing the value. In the lambda expression in the
definition of the procedure make-list-of-one, we selected the name item
for the parameter to indicate that it is expecting to be bound to the item that
is to be included in the list.

Now let’s write a procedure called make-list-of-two that takes two ar-
guments and returns a list whose elements are those two arguments. The
definition is:

(define make-list-of-two ; This procedure creates
(lambda (iteml item2) ; a list of two items.
(cons iteml (make-list-of-one item2))))

The parameter list following the keyword lambda consists of two parameters,
iteml and item2. You may be wondering about the semicolons in the first and
second lines of the program and the statements following them. When Scheme
reads an expression, it ignores all semicolons and whatever follows them on a
line. This allows us to make remarks about the program so that the reader
looking at it will know the intent of the programmer. Such remarks are called
documentation and can make understanding programs easier. By choosing
the names of variables carefully, you can reduce the amount of documentation
necessary to understand a program. The documentation can also precede or
follow the program if each line is preceded by a semicolon. In the programs
in this book, we try to select variable names that make such documentation
unnecessary. When we wish to make points of clarification, we shall state
them in the accompanying discussion.

We apply the procedure make-list-of-two to the two symbols one and
two by writing

(make-list-of-two ’one ’two) = (one two)

When we defined the procedure make-list-of-two, we used the parameters
iteml and item2. When we applied the procedure make-list-of-two, its
two arguments were the values of the operands ’one and ’two.

In Section 1.5, we saw how to take a list containing four items (menu was
bound to the list (chicken soup ice cream))and build a new list containing
the same items but grouped into two lists, each containing two items. We can
use the procedure make-list-of-two to give us another way of doing that
grouping. We define a procedure called regroup that has as its parameter
list-of-4, which will be bound to a list of four items. It returns a list with
the items in list-of-4 regrouped into two lists of two items each. In the
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course of writing the definition of regroup, we shall find it clearer to make
use of certain other procedures, which express what we want to appear in the
list of the two items we create. We use these procedures in the definition of
regroup and then define them afterward. The order in which the definitions
are written does not matter, and it is often more convenient to use a procedure
in a definition where it 1s needed, and then to define it later. In the definition
that follows, we make use of two such helping procedures, first-group and
second-group.

(define regroup
(lambda (list-of-4)
(make-list-of-two
(first-group list-of-4)
(second-group list-of-4))))

The procedure make-list-of-two is used to create a list of two items, the
first item being a list consisting of the first two items in 1ist-of-4 and the
second consisting of the last two items in 1ist-of-4. To construct the first
grouping, we use a helping procedure first-group that we define as:

(define first-group
(lambda (1s)
(make-list-of-two (car 1s) (cadr 1s))))

We define the helping procedure second-group as:

(define second-group
(lambda (1s)
(cddr 1s)))

When first-group is applied to 1ist-of-4, the parameter 1s is bound to
the list of four items and the helping procedure make-1ist-of-two is applied
to build the desired list consisting of the first two items in the list of four
items. Similarly, the helping procedure second-group produces the rest of
the list of four items following the first two, that is, the list consisting of the
last two items.

Now to get the new menu, we simply apply the procedure regroup to menu,
and we get the desired list:

(regroup menu) = ((chicken soup) (ice cream))
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What is gained by using these procedures over the method used in Chap-
ter 1 in which everything was expressed in terms of cons, car, cdr, and so
forth? The version in Chapter 1 is hard to understand when it is scanned, for
we have to pause to work out what the constructors and selectors are doing.
In the new version, you can look at the code for regroup and see immediately
that it is making a list of two items; the first group is again a list of two
items, the first two items in the list of four items, and the second group is a
list consisting of the remaining two items in the list of four items. By carefully
choosing the names of the procedures and parameters, we can make the pro-
grams easy to read and understand. In our case, the use of the three helping
procedures, make-list-of-two, first-group, and second-group, make the
program easier to understand. Often the helping procedures can be used in
many programs. In reality, helping procedures are ordinary procedures that
we happen to want to make use of in writing some program. Any procedure
can be used as a helping procedure.

We have defined procedures to build lists containing one item and two items.
Scheme provides a procedure 1ist, which takes any number of arguments and
constructs a list containing those arguments. For example,

(list ’a ’b ’c ’d) =>» (a b ¢ d)
(1ist ’(1 2) (3 4)) => ((1 2) (3 4))
(list) = ()

We shall see how 1ist is defined in Chapter 7.

There are two styles of writing programs, top-down and bottom-up program-
ming. In both, we are looking for the solution of some problem and want to
write a procedure that returns the desired solution as its value. For now, we
refer to this as the main procedure. In top-down style, we first write the defi-
nition of the main procedure. The main procedure often uses certain helping
procedures, so we write the definitions of the helping procedures next. These
in turn may require other helping procedures, so we write those, and so on. In
bottom-up style, we first write the definitions of the helping procedures that
we anticipate using, and at the end, we write the main procedure. We shall
use both styles of programming in this book.

We summarize this discussion by observing that the value of a lambda
expression with the syntax

(lambda (parameter ...) body)

is a procedure. The ellipsis after parameter means that this is a list of zero or
more parameters. When the procedure is applied, the parameters are bound
to the arguments (i.e., the values of the operands), and the body is evaluated.
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We can give the procedure a name by using a define expression with the
structure

(define procedure-name lambda-ezpression)

where procedure-name is the variable used as the name of the procedure.?
We apply (call or invoke) such a named procedure by writing the application

(procedure-name operand ...)

where the number of operands matches the number of parameters in the def-
inition of the procedure. In general, when an application of the form

(operator operand ...)

is evaluated, the operands and the operator are all evaluated in some un-
specified order. The operator must evaluate to a procedure. The values of
the operands are the arguments. The procedure binds the parameters to the
arguments and evaluates the body, the value of which is the value of the ap-
plication. Because the operands are first evaluated and it is their values, the
arguments, that the procedure receives, we say the operands are passed by
value to the procedure.

We have also encountered two expressions that are called special forms:
those with the keywords define and lambda. These expressions are not ap-
plications because not all the items in the expressions are evaluated initially.
For example, in a lambda expression, the parameter list is never evaluated
and its body is not evaluated initially. Most computer languages have some
keywords that have special meaning and cannot be used for other purposes.
In Scheme the number of such keywords for special forms is relatively small.
In Chapter 14, we shall see how we can add to Scheme our own special forms.

3 Scheme also supports
(define (procedure-name parameter ...) body)

as a syntax for a define expression.
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Exercises

When doing these exercises, you may find it convenient to save the defini-
tions of the procedures in a file. These procedures can then be used again.
They can be entered into Scheme from a file in which they were saved either
by using a transfer mechanism or by invoking a loading procedure. In some
implementations of Scheme, this is done with (1oad '"filename').

Fzercise 2.1: second

Define a procedure called second that takes as its argument a list and that
returns the second item in the list. Assume that the list contains at least two
items.

FEzercise 2.2: third

Define a procedure called third that takes as its argument a list and that
returns the third item in the list. Assume that the list contains at least three
items.

Ezercise 2.3: firsts-of-both
The procedure firsts-of-both is defined as follows:

(define firsts-of-both
(lambda (list-1 1list-2)
(make-list-of-two (car list-1) (car 1list-2))))

Determine the value of the following expressions:
a. (firsts-of-both (1 3 5 7) (2 4 6))

b. (firsts-of-both ’((a b) (c d)) '((e £) (g h)))

Ezercise 2.4: juggle

Define a procedure juggle that rotates a three-element list. The procedure
juggle returns a list that is a rearrangement of the input list so that the
first element of this list becomes the second, the second element becomes the
third, and the third element becomes the first. Test your procedure on:

(juggle ’(jump quick spot)) => (spot jump quick)
(juggle ’(dog bites man)) => (man dog bites)
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FErercise 2.5: switch

Define a procedure switch that interchanges the first and third elements of a
three-element list. Test your procedure on the examples given in the previous
exercise.

2.3 Conditional Expressions
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Suppose we want to define a predicate that tests whether a value is a number,
a symbol, an empty list, or a pair, and returns a symbol indicating its type.
The structure of the test can be written in natural language as:

If the value is a pair, return the symbol pair.

If the value is an empty list, return the symbol empty-list.
If the value is a number, return the symbol number.

If the value is a symbol, return the symbol symbol.
Otherwise, return the symbol some-other-type.

This description of the procedure using English gives a sequence of steps that
we follow to carry out the computation. Such a sequence of steps describing a
computation is called an algorithm. We implement the kind of “case analysis”
given in tl ‘s algorithm using a cond ezpression (the special form with keyword
cond). The keyword cond is derived from the word conditional. Using cond,
we write a procedure called type-of that tests its argument and returns the
type of the item as described above:

(define type-of
(lambda (item)
(cond

((pair? item) ’pair)
((null? item) ’empty-list)
((number? item) ’number)
((symbol? item) ’symbol)
(else ’some-other-type))))

Let us analyze the cond expression. In this case, the cond expression has
five clauses, each represented by two expressions enclosed in parentheses. The
first clause, ((pair? item) ’pair),has asits first expression (pair? item),
which is a boolean or logical expression with the value #t or #f depending on
whether the value bound to item is or is not a pair. We shall also refer to the
boolean expression as the condition. If the condition evaluates to true, then
the second expression in the clause (the consequent), ’pair, is evaluated and
pair is returned. If the condition in the first clause evaluates to false, the
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condition in the second clause ((null? item) ’empty-list) is evaluated.
If one of the subsequent conditions is true, then its consequent is evaluated
and that value is returned. The last clause has the keyword else as its
first expression, and if all of the preceding conditions are false, the expression
following else is evaluated, and its value is returned. The expression following
else is referred to as the alternative.

In general, the syntax of a cond expression is

(cond
(conditiony consequent;)
(conditiony consequentsy)

(conditionn consequentn)
(else altermative))

where for each k = 1,...,n, the expressions (condition; consequent;) and
(else alternative) are called clauses. The condition; and consequenty, for
k = 1,...,n, and the alternative are expressions, and else is a keyword.
Each of the conditional parts of the clauses is evaluated in succession until
one is true, in which case the corresponding consequent is evaluated, and
the value of the cond expression is the same as the value of the consequent
corresponding to the true condition. If none of the conditions is true, the
cond expression has the same value as the alternative, which is in the last
cond clause, known as the else clause.*

Scheme has another way of handling conditional expressions that have only
two cases. We can also use the special form with keyword if. Suppose we
want to write a procedure car-if-pair that does the following:

If its argument is a pair, return the car of the pair.
Otherwise, return the argument.

Here is the procedure car-if-pair using cond:

(define car-if-pair
(lambda (item)
(cond
((pair? item) (car item))
(else item))))

% The else clause is optional. If it is omitted and all of the conditions are false, then Scheme
does not specify the value that is returned as the value of the cond expression. We shall
avoid using cond expressions that return unspecified values.
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or using an if expression, it can be written as:

(define car-if-pair
(lambda (item)
(if (pair? item)
(car item)
item)))

In general, the syntax of an if expression is

(if condition consequent alternative)

or
(if condition consequent)

In the first case, if condition is true, the value of consequent is returned as
the value of the if expression; if condition is false, the value of alternative
is returned as the value of the if expression. In the second case, the alter-
native is not present. In this “one-armed if,” if condition is true, the value
of consequent is returned as the value of the if expression. If it is false, an
unspecified value is returned.

If expressions can be nested, enabling us to write the procedure type-of
given above as follows:

(define type-of
(lambda (item)
(if (pair? item)
‘pair
(if (null? item)
’empty-list
(if (number? item)
'number
(if (symbol? item)
’symbol
'some-other-type))))))

Any cond expression can be written as nested if expressions, but as the num-
ber of cases increases, the nesting of the if expressions gets deeper, and the
meaning of the whole conditional expression is obscured. Thus, using a cond
expression is often advantageous when there are several cases.
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The use of conditional expressions with either if or cond depends upon first
evaluating a condition. The condition may be simple, such as (null? 1s),
or it may involve something like testing whether 1s is a pair and whether its
car is some symbol such as cat. A condition that involves a combination
of two or more simple conditions is called a compound condition. We build
compound conditions by combining simple conditions with the logical compo-
sition operators and, or, and not. The compound condition mentioned above
can be written using and as follows:

(and (pair? 1s) (eq? (car 1ls) ’cat))

The syntax of each of these logical operators is given below:

(and ezpr; ezpry ... exTprn)
(or expry expry ... exprn)
(not ezxpr)

The and expression evaluates each of the subexpressions expr;, exprs, ...,
exprn in succession. If any one of them is false, it stops evaluating the rest
of the subexpressions, and the value of the and expression is #£. If all of the
subexpressions have true values, the value of the last subexpression is returned
as the value of the and expression.®

The or expression evaluates each of the subexpressions expry, exprs, ...,
expr, in succession. If any one of them is true, it stops evaluating the rest
of the subexpressions, and the value of the or expression is the value of that
first true subexpression. If all of the subexpressions are false, the value of the
or expression is #f.

The value of the not expression is #f when expr has a true value, and it is
#t when expr is false.

We illustrate the use of and and or in the following examples:

(define s-and-n-list?
(lambda (1s)
(and (pair? 1s)
(symbol? (car 18))
(pair? (cdr 1s))
(number? (cadr 1s)))))

5 Scheme has a convention of treating any value that is not false as true. Thus (if ’cat
'kitten ’puppy) = kitten, since the condition ’cat evaluates to cat, which is not false.
It is good programming style, however, for the conditions to be boolean expressions that
evaluate to either #t or #f.
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The predicate s-and-n-1ist? takes a list as its argument. The value of
the expression (s-and-n-list? some-list) is #t if:

some-list is a pair,

and the first item in some-1list is a symbol,
and the cdr of some-1list is a pair,

and the second item in some-list is a number.

Otherwise, the value of (s-and-n-list? some-1list) is #f. For example,
(s-and-n-1list? ’(a 1 b)) = #t

while
(s-and-n-1list? '(a b 1)) = #f

The test to determine whether the list is a pair is necessary since we can only
take the car of a pair. If the list is empty, the evaluation of the car of the
list never takes place. The evaluation terminates on the first false value.

(define s-or-n-list?
(lambda (1s)
(and (pair? 1s)
(or (symbol? (car 1s))
(number? (car 1s))))))

The predicate s-or-n-list? takes a list as its argument. The expression
(s-or-n-list? some-list) = #¢t if:

some-list is a pair,
and either the first item in some-1ist is a symbol or it is a number.

Otherwise (s-or-n-list? some-list) = #f.

There are occasions when we want to test whether a list contains precisely
one item, that is, whether the list is a singleton list. It is easy to define
a predicate singleton-1list? that tests whether its argument is a pair and
whether it contains just one element. To test whether a pair contains just one
element, it is enough to test whether its cdr is empty. Thus we can write

Program 2.1 singleton-list?

(define singleton-1list?
(lambda (1s)
(and (pair? 1s) (null? (cdr 1s)))))
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This definition makes use of the fact that the empty list is not a pair. Thus
the nonempty list whose cdr is empty must contain just one item and is thus
a singleton list.

Exercises

FExercise 2.6

Assume that a, b, and c are expressions that evaluate to #t and that e and £
are expressions that evaluate to #£. Decide whether the following expressions
are true or false.

a. (and a (or b e))
b. (or e (and (not £f) a c))
c. (not (or (not a) (not b)))

d. (and (or a f) (not (or b e)))

Ezercise 2.7
Decide whether the following expressions are true or false if expr is some
boolean expression.

a. (or (symbol? expr) (not (symbol? expr)))
b. (and (null? expr) (not (null? expr)))
¢. (not (and (or expr #f) (not expr)))

d. (not (or expr #t))

Fzercise 2.8
Decide whether the following expressions are true or false using s-and-n-
1ist? as defined in this section.

a. (s-and-n-1ist? ’(2 pair 12 dozen))
b. (s-and-n-1ist? ’(b 4 u ¢ a j))

c. (s-and-n-1ist? ’(a ten))

d. (s~and-n-1ist? ’(a))

Ezercise 2.9

Decide whether the following expressions are true or false using s-or-n-1ist?
as defined in this section.

a. (s-or-n-1ist? ’(b))
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b. (s=or-n-1list? (¢ 2 m))
c. (s-or-n-1ist? (10 10 10 10))

d. (s=or-n-list? ’())

2.4 Recursion
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We saw in Section 2.2 that certain procedures use other procedures as helping
procedures. In this section, we define procedures that use themselves as help-
ing procedures. When a procedure calls itself within the body of the lambda
expression defining it, we say that the procedure is recursive. To introduce the
idea of a recursive procedure, we set as our goal the definition of a procedure
last-item, that, when applied to a nonempty list, returns the last top-level
item in the list. Here are some examples of applications of last-item:

(last-item (1 2 3 4 5)) == 5
(last-item ’(a b (¢ d))) = (c 4)
(last-item ’(cat)) == cat
(last-item ’((cat))) = (cat)

It is a good idea to begin with the simplest cases of the arguments to which
the procedure is applied. In this case, the simplest nonempty list is a list
containing only one item. For example, if the list is (a), then the last item is
also the first item, and applying car to this list produces the last item. This
would work with any list containing only one top-level item, for the car of the
list 1s both its first and its last top-level item. Let us use the variable 1s as
the parameter in the definition of last-item. How can we test whether 1s
contains only one top-level item? When 1s contains only one top-level item,
its cdr is the empty list. Thus the boolean expression (null? (cdr 1s))
returns #t when—and indeed only when—the nonempty list 1s contains only
one top-level item. Thus, we may use a cond expression to test whether we
have the case of a one-item list and return the car of the list if that is the
case. We can then begin our program as follows:

(define last-item
(lambda (1s)
(cond
((null? (cdr 1s)) (car 1s))
)
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If we now consider a list 1s containing more than one top-level item, the cdr
of that list contains one fewer top-level items, but still includes the last item
of the original list. Each successive application of cdr reduces the number of
top-level items by one, until we finally have a list containing only one top-level
item, for which we have a solution. In this sense, application of cdr to the
list reduces the problem to a simpler case. This leads us to consider the list
obtained by evaluating (cdr 1s),® which contains all of the items of 1s except
its first item. The last item in (cdr 1s) is the same as the last item in 1s. For
example, the list (a b ¢) and the list (b ¢), which is its cdr, have the same
last item, c¢. Thus if we call the procedure last-item as a helping procedure
to be applied to (cdr 1s), we get the desired last item of the original list,
and that solves our problem. Thus to complete the definition of last-item,
we add the else clause to handle the case where the list contains more than
one item:

Program 2.2 1last-item

(define last-item
(lambda (1s)
(cond
((null? (cdr 1s)) (car 1s))
(else (last-item (cdr 1s))))))

To see that this does define the procedure last-item so that it returns the
correct result for any nonempty list 1s, we consider first a list (a) containing
only one item. Then the condition in the first cond clause is true, and (car
1s) does give us the last {which is also the first) item, a, in the list. Thus last-
item works on any list containing only one item. Now let’s consider the case
in which 1s is a list (a b) containing two items. Then its cdr, (b), contains
one item, so the procedure last-item does work on (cdr 1s), allowing us to
use it as a helping procedure in the else clause to get the correct result. Thus
last-item solves the problem for any list of two items. Now we use the fact
that last-item works on the cdr of any three-item list to conclude that it

6 It is common practice, when the context is clear, not to include the phrase obtained by
evaluating. We say, “the list (cdr 18)” instead of “the list obtained by evaluating (cdr
18)” whenever the context makes it clear that we want the value of (cdr 1s) rather than
the literal list whose first item is cdr and whose second item is 1s. When we want the
literal list, and the context is not clear, we indicate so by quoting it.
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works on the three-item list itself. We can continue this process of increasing
by one the number of items in the list indefinitely, showing that last-item
solves the problem for any list.

Since the procedure last-item called itself as a helping procedure, last-
itemis a recursive procedure. Our strategy in general in designing a recursive
procedure on a list is first to identify the “simplest case” and write the expres-
sion that solves the problem for that case as the consequent in the first cond
clause. We call this simplest case the base case or terminating condition. We
then identify a simplifying operation, which on repeated application to the
list produces the base case. Then in each of the other cases, we solve the
problem with some expression that calls the recursive procedure as a help-
ing procedure applied to the simplified list. In our example, the base case is
the list consisting of only one item. The simplifying operation is cdr, and in
the other cases, we see that the expression that solves the problem applies
last-item to the simplified list (c¢dr 1s).

To give us a better intuition about how last-item works, we shall apply
last-item to the list (a b ¢). What is (last-item ’(a b ¢))? We shall
walk through the evaluation of this expression. The parameter 1s is bound
to the argument (a b ¢), and the cond expression is evaluated. In this case,
(cdr 1s) is not empty, so the alternative in the else clause is evaluated.
This tells us to apply last-item to (cdr 1s). Since (cdr 1s) is (b ¢),
we must evaluate (last-item ’(b ¢)). We thus bind the parameter 1s to
the argument (b ¢) and enter the cond expression. Once again, (cdr 1s)
is not empty, so we evaluate the alternative in the else clause. This tells us
to apply last-item to (cdr 1s), which now is (¢). Thus we must evaluate
(last-item ’(c)). We now bind the parameter 1s to the argument (c) and
enter the cond expression. This time (cdr ’(c)) is the empty list. Thus the
consequent is evaluated to give (car ’(c))—c as the value of the expression.

The recursion in the illustration stops when the list is simplified to the
base case. In that case, the condition in the first cond clause is true. We
call the condition used to stop the recursion the terminating condition. In
our example, the terminating condition is (null? (cdr 1s)). Generally,
whenever a recursive procedure is defined, a terminating condition must be
included so that the recursion will eventually stop. (In Chapter 15 on streams,
we shall see examples in which a terminating condition is not needed.) We
usually begin the definition of a recursive procedure by writing the terminating
condition as the first cond clause. We then proceed with the rest of the
definition.

In the preceding discussion we introduced the substitution model. Using the
substitution model, we can determine the value of an expression by substitut-
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ing values for parameters. Through the first eight chapters, the substitution
model suffices. From Chapter Y on, however, there will be times when the
substitution model does not work. From time to time, we use it to clar-
ify a computation; most of the time, however, we use the general approach:
the environment model. In that approach we just remember the bindings of
variables and avoid any substitutions.

Let us next define a procedure member? that decides for us whether its first
argument is equal? to one of the top-level items in the list that is its second
argument. For example,

(member? ’cat ’(dog hen cat pig)) = #t
(member? ’fox ’(dog hen cat pig)) => #f
(member? 2 ’(1 (2 3) 4)) = #f
(member? ’(2 3) (1 (2 3) 4)) = #t
(member? ’cat ’()) => #f

AN T R N

In Example 3, 2 is not a top-level item in the list (1 (2 3) 4), so #f is
returned. We begin the definition of member? by determining the base case.
Regardless of what itemis, if 1s is the empty list, #£ is returned. This is the
simplest case and will be taken as our base case. To test for the base case,
we use the predicate null? so the terminating condition is (null? 1s). The
consequent for the terminating condition is #f. We can therefore begin the
definition of member? as a procedure having two parameters, item and 1s:

(define member?
(lambda (item 18)
(cond
((null? 1s) #£f)
o L))

Now given any list, what is the simplifying operation that simplifies 1s to
the empty list? It is again the procedure cdr. Assume that 1s is not empty.
If we know the value of (member? item (cdr 1s)), how do we get the value
for (member? item 1s)? Well, when is the latter statement true? It is true
if either the first item in 1s is the same as item or if item is a member of
the rest of the list following the first item. This can be written as the or
expression:

(or (equal? (car 1ls) item) (member? item (cdr 1s)))

Thus in the case when 1s is not empty, the above expression is true exactly
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when the expression (member? item 1s) is true. We then complete the defi-
nition of member? with

Program 2.3 member?

(define mezber?
(lambda (item 1s)
(cond
((aull? 1) #f)
(else (or (equal? (car 1s) item)
(mezber? item (cdr 1s)))))))

The procedure member? is recursive since it calls itself. Let us review the
reasoning used in the program for member?. If the terminating condition
(null? 1s) is true, then item is not in 1s, and the consequent is false. Oth-
erwise we look at the alternative, which is true if either item is the first item
in1s or if itemis in (cdr 1s) and is otherwise false.

When member? calls itself with argument (cdr 1s), its parameter is bound
to the value of (cdr 1s), which is a shorter list than the parameter’s previous
binding to 1s. In each successive recursive procedure call, the list is shorter,
and the process is guaranteed to stop because of the terminating condition
(null? 1s).

In order to use a list as the first argument to member? (as in Example 4),
we used the predicate equal? to make the sameness test in the else clause. If
we know that the items to which item is bound will always be symbols, we
can use eq? in place of equal?. The procedure so defined using eq? is named
memq? to distinguish it from member?, which is defined using equal? for the
sameness test. Similarly, if we know that the items to which item is bound
will always be either symbols or numbers, we can use eqv? for the sameness
test and call the procedure so defined memv?.?

We have now defined the procedure last-item, which picks the last top-
level item out of a list, and the procedure member?, which tests whether an
item is a top-level element in a given list. We continue illustrating how to
define recursive procedures with the definition of another useful procedure

7 Scheme provides the three procedures member, mezq, and memv, written without the ques-
tion mark. These behave somewhat differently from the ones we defined with the question
mark in that if item is not found, false is returned, but if item is found in 1s, the sublist
whose car is item is returned. For example, (memg b (2 b ¢)) = (b c).
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for manipulating lists. The procedure remove-1st removes the first top-level
occurrence of a given item from a list of items. For example,

1. (remove-18t ’fox ’(hen fox chick cock))

=> (hen chick cock)
2. (remove-1st ’fox ’(hen fox chick fox cock))

= (hen chick fox cock)
3. (remove-18t ’fox ’(hen (fox chick) cock))

= (hen (fox chick) cock)

4. (remove-1st ’fox '()) = ()
5. (remove-1st (1 2) (1 2 (1 2) ((1 2M)))
=» (12 (1 2))

In general, the procedure remove-1st takes two arguments, an element item
and a list 1s. It builds a new list from 1s with the first top-level occurrence of
item removed from it. We again begin looking at the simplest case, in which
1s 1s the empty list. Since item does not occur at all in the empty list, the
list we build is still the empty list. The test for the base case is then (null?
1s), and the value returned in its consequent is (). Thus the definition of the
procedure remove-1st begins with

(define remove-ist
(lambda (item 1ls)
(cond
((null? 18) ’())
D))

If 1s is not empty, the procedure that simplifies it to the base case is again
cdr. If we already know (remove-ist item (cdr 1s)), that is, if we have
a list consisting of the first top-level occurrence of item removed from (cdr
1s), how do we build up a list that is obtained by removing the first top-level
occurrence of itemin 187 There are two cases to consider. Let’s first consider
the example in which we remove the first occurrence of a from the list (a b
¢ d). Since a is the first item in the list, we get the desired result by merely
taking the cdr of the original list. This is the first case we consider. If the first
top-level item in 1s is the same as item, then we get the desired list by simply
using (cdr 18). This case can be added to the definition of remove-1st by
writing
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(define remove-1ist
(lambda (item 1s)
(cond
((null? 1s) > Q)
((equal? (car 1s) item) (cdr 1s))
.

The only case left to be considered is when 1s is not empty, and its first
top-level item is not the same as item. Consider the example in which we
apply remove-1st to remove the letter ¢ from the list (a b ¢ d). The list
is not empty and its first item is not ¢. Thus the list we build begins with
a and continues with the items in (b d). But (b d) is just the list obtained
by removing ¢ from (b ¢ d). The final result is then (a b d), which was
obtained by building the list

(cons (car ’(a b ¢ d)) (remove-1st ’c (cdr '(a b c d))))

In general, the list we are building now begins with the first element of 1s
and has in it the elements of (cdr 1s) with the first top-level occurrence of
item removed. But this is obtained when we cons® (car 1s) onto (remove-
1st item (cdr 1s)), so the final case is disposed of by adding the else clause
to the definition, which is given in Program 2.4.

Program 2.4 remove-ist

(define remove-ist
(lambda (item 1s)
(cond
((null? 1s) °Q0))
((equal? (car 1s) item) (cdr 1s))
(else (cons (car 1ls) (remove-1st item (cdr 1s)))))))

To get a better understanding of how recursion works, let’s walk through
the evaluation of an application of the procedure remove-1ist; for example

(remove-1st ’c ’(a b ¢ d))

8 Scheme programmers use the verb cons, which has an infinitive “to cons”, tenses “cons,
cons’d, has cons'd”, participle “consing”, and conjugation “I cons, he conses, etc.” We shall
make frequent use of these words.
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Since the list (a b ¢ d) is not empty and the first entry is not c, the alter-
native in the else clause is evaluated. This gives us

(cons ’a (remove-1st ’c (b c d)))

To get the value of this expression, we must evaluate the remove-1st subex-
pression. Once again, the list (b ¢ d) is not empty, and the first item in the
list is not the same as c¢. Thus the alternative in the else clause is evaluated.
This gives us as the value of the whole expression above:

(cons ’a (cons ’b (remove-1st ’c ’(c d))))

Once again, to get the value of this expression, we must evaluate the remove-
1st subexpression. Now the list (¢ d) is not empty, but its first item s the
same as c. Thus the condition in the second cond clause in the definition of
remove-1st is true and the value of its consequent is (d). Thus the above
expression has the value

(cons ’a (cons ’b ’(d)))
which can be simplified to give the value
(a b d)

This is the value returned by the procedure call. In the next section, we shall
see how the computer can help us walk through a procedure application.

In order to be able to remove a sublist from a given list, as in Example
5, the predicate equal? was used to test for sameness in the second cond
clause. If we know that all of the arguments to which item will be bound are
symbols, we can use eq? to test for sameness. The procedure defined using eq?
instead of equal? is named remg-1st. Similarly, if we restrict the arguments
to which item will be bound to symbols or numbers, we can use eqv? to test
for sameness in the second cond clause, and we name the procedure so defined

remv-1st.

Exercises

Ezercise 2.10
Rewrite the definitions of the three procedures last-item, member? and
remove-1st with the cond expression replaced by if expressions.
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Ezercise 2.11

The definition of member? given in this section uses an or expression in the
else clause. Rewrite the definition of member? so that each of the two subex-
pressions of the or expression is handled in a separate cond clause. Compare
the resulting definition with the definition of remove-ist.

Erercise 2.12
The following procedure, named mystery, takes as its argument a list that
contains at least two top-level items.

(define mystery
(lambda (1s)
(if (null? (cddr 1s))
(cons (car 1s) ’())
(cons (car 1ls) (mystery (cdr 1s))))))

What is the value of (mystery (1 2 3 4 5))7 Describe the general behav-
1or of mystery. Suggest a good name for the procedure mystery.

FErercise 2.13: subst-ist

Define a procedure subst-1st that takes three parameters: an item new, an
item old, and a list of items 1s. The procedure subst-1st looks for the first
top-level occurrence of the item old in 1s and replaces it with the item new.
Test your procedure on:

(subst-1st ’dog ’cat ’(my cat is clever))

=> (my dog is clever)
(subst-1st 'b ’a ’(c a b a ¢))

=> (cbbac

(subst-1st (0) (%) *((*) (1) (*) (2)))
=> ((0) (1) (=) (2))
(subst-1st ’two ’one *()) = ()

In order to be able to include lists as possible arguments to which the param-
eters new and old are bound, use equal? to test for sameness. Also define
procedures substq-1st and substv-1st that use eq? and eqv? respectively,
instead of equal? to test for sameness.
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Ezercise 2.14: insert-right-ist
The procedure insert-right-1ist is like remove-1st except that instead of

removing the item that
For example,

(insert-right-1st ’'n

it is searching for, it inserts a new item to its right.

ot ’does ’(my dog does have fleas))
=> (my dog does not have fleas)

The definition of insert-right-1st is

(define insert-right

-1st

(lambda (new old 1s)

(cond
((null? 1s)

16

((equal? (car 1s) old)
(cons old (cons new (cdr 1s))))

(else (cons

(car 1s)
(insert-right-1st new old (cdr 1s)))))))

Define a procedure insert-left-1st that is like insert-right-1st except

that instead of inserting a new item to the right of the item it is searching

for, it inserts it to its left. Test your procedure on

(insert-left-1st ’hot ’dogs ’(I eat dogs))

=> (I eat hot dogs)

(insert-left-1st ’fun ’games ’(some fun))

(insert-left-1st ’a

(insert-left-1st ’a

=> (some fun)
'b ’(abcabc))

=> (aabcabc)
' () = ()

FEzercise 2.15: list-of-first-items
Define a procedure list-of-first-items that takes as its argument a list
composed of nonempty lists of items. Its value is a list composed of the first

top-level item in each of the sublists. Test your procedure on:

(list-of-first-items
(list-of-first-items
(list-of-first-items
(list-of-first-items

2.4 Recursion

’((a) (bcd) (e £))) = (a b e)
'((123) (456))) = (14)
>((one))) => (one)

) = O
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FEzercise 2.20: list-of-symbols?

Define a procedure list-of-symbols? that tests whether the top-level items
in a given list 1s are symbols. Write your definitions in three ways, first using
cond, then if, and finally and and or. Test your procedures with:

(list-of-symbols? ’(one two three four five)) = #t
(list-of-symbols? ’(cat dog (hen pig) cow)) => #f
(list-of-symbols? ’(a b 3 4 d)) => #f
(list-of-symbols? ’()) = #t

Fzercise 2.21: all-same?
Define a procedure all-same? that takes a list 1s as its argument and tests
whether all top-level elements of 1s are the same. Test your procedure with:

(all-same? ’(a a a a a)) => #t
(all-same? ’(a b a b a b)) => #f
(all-same? ’((a b) (a b) (a b))) = #t
(all-same? ’(a)) => #t

(all-same? ’()) = #t

2.5 Tracing and Debugging

We have now walked through several programs to understand their behavior.
We had to evaluate expressions ourselves and make decisions as to which
branches of conditional expressions to follow. The computer is able to do
both of these, so we can take advantage of its power to relieve us of this kind
of work. The tool we develop here enables us to walk through or, as it is
technically known, trace our programs. We can also use this tool to find and
correct errors in our programs, a process called debugging.

The computer can help us walk through or trace our programs if we make
use of a procedure writeln (read as “write-line”) that prints its arguments
directly to the computer screen. Some Scheme implementations provide the
procedure writeln, and if the one you are using does not make it available,
you can enter its simple definition.® The procedure writeln takes any number

of arguments. When we evaluate

® A more complete discussion of writeln and related procedures that write to the screen
is presented in Chapter 7. You may enter the definition of writeln given in Program 7.5 if
your implementation of Scheme does not provide it.
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(writeln ezpry ezpry ... ezprn)

the expressions ezpr; expry ... ezpr, are all evaluated; then their values are
printed on the screen in order from left to right with no blank spaces between
them. When the last value is printed, the cursor moves to the beginning of
the next line. Like every other procedure, writeln must return a value, but
we are not concerned with this value. In fact, different implementations of
Scheme may return different values. Since it is unspecified in Scheme what
value writeln returns, we shall assume in our implementation that the value
returned is not printed on the screen.

For example, if the variable Jack is bound to the value Jill and the variable
Punch is bound to the value Judy, the evaluation of (writeln Punch Jack)
will print

JudyJill

on the screen with no space between the words. If we evaluate the expression
(writeln ’Punch ’Jack), then the screen shows

PunchJack

We can control the spacing and print sentences on the screen if we use
another type of data called strings. A string is any sequence of keyboard
characters. In Scheme, a string is written as a sequence of characters enclosed
with double quotes: *. Thus "This is a string.'is an example of a string.
If we want to include a double quote or a backslash in a string, we must precede
it by a backslash.!® Thus, we can write the string “He said \"Hello\".",
which has "Hello" within double quotes. If we evaluate the expression

(vriteln "This is a string.")
then
This is a string.

appears on the screen. Note that the double quotes are not printed with the
string. Thus the evaluation of the expression

10 A character, such as a backslash, which is used to change the normal meaning of what
follows it is referred to as an escape character.
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(writeln "He said \"Hello\".")

prints
He said "Hello".

A string 1s another example of a constant in Scheme. Thus if we enter a
string in response to a prompt, the string is returned, including the double
quotes.

[1] "This is a string."
"This is a string."

If we evaluate

(vriteln "My friends Jack and " Jack ".")

we see on the screen:

My friends Jack and Jill.

The first occurrence of Jack is in the string, so it is printed literally as Jack.
The second occurrence of Jack i1s not in a string, so it is evaluated, and its
value Jill is printed. This time we have a space between the words and and
Jill, since the blank space is included after the word and in the string. The
last string in the writeln expression contains only the period.

The procedure writeln is usually evaluated as one of a sequence of ex-
pressions that are evaluated consecutively. This is accomplished by using the
special form with keyword begin. A begin expression has any number of
subexpressions following the keyword begin. Each of these subexpressions is
evaluated consecutively in the order that it appears and the value of the last
subexpression is returned as the value of the begin expression. For example,

[2] (begin
(writeln "The remove-1st expression")
(vriteln "is applied to the list (1 2 3 4)")
(vriteln "to build a new list without the number 2.")
(remove-1st 2 ’(1 2 3 4)))
The remove-1s8t expression
is applied to the list (1 2 3 4)
to build a new list without the number 2.
(134)
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When the preceding begin expression is evaluated, the four subexpressions are
evaluated consecutively. The first three are writeln expressions, which print
their arguments on the screen, with a new line starting after each writeln
expression is evaluated. The values returned by the writeln expressions are
ignored. The value of the last expression is the only value returned—that is
the (1 3 4) that appears on the last line.

We want to stress that what is printed on the screen is not the value of the
writeln expressions. Instead, what is printed on the screen is done as a side
effect. A side effect causes some change to take place (in this case, the change
was printing on the screen), but it is not a value that is returned. When using
a begin expression, all of the subexpressions before the last one are included
for their side effects and not for the values that they return. The value of
the last subexpression is the only one returned. Here is another example to
illustrate that only the value of the last subexpression is returned.

[3] (begin
(+ 3 4)
(- 5 11)
(* 10 10))
100

The values of the first two subexpressions are ignored. In this case, the first
two subexpressions did not produce any side effects, so although they were
evaluated, we do not see any evidence of it and there really was no point in
putting them there!

The syntax of the begin expression is

(begin ezpr; ezpry ... ezprn)

where the expressions ezpr;, exprs, ... ezxpr, are evaluated in their given
order, and the value of the last one, ezpr,, is returned.

We now have all the tools we need to use writeln to help us walk through
an application of remove-1st to remove the letter ¢ from the list (a b ¢
d). We “wrap” a helping procedure entering around the condition of each
cond clause as we enter it and wrap a helping procedure leaving around the
consequent (or alternative) as we leave the cond clause. The definitions of
these helping procedures are given after the main program. The procedure
entering takes three arguments: the value of the condition, the value of 1s,
and the identifying number of the cond clause: 1 for the first, 2 for the second,
and 3 for the last. It tells us, using a writeln statement, which cond clause we
are entering and the value of 1s. The procedure leaving takes two arguments:
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the value of the consequent (or alternative) and the identifying number of the
cond clause. It tells us which cond clause we are leaving and the value of the
consequent. When we run the program, we thus get a written record each
time we enter or leave a cond clause. Inserting such writeln expressions into
the definition of a procedure to study the evaluation of the procedure is one
way of tracing the procedure. Program 2.5 contains the code for the procedure
that traces remove-1st. The definition of the helping procedure entering is
in Program 2.6, and of the helping procedure leaving is in Program 2.7.

When we enter a cond clause, the condition is the entering expression whose
parameter test is bound to the value of the original condition of remove-1ist.
If test is true, it writes the fact that we are entering the cond clause with
the appropriate identifying number and the current value of the variable 1s.
In any event, test is returned as the value of the condition. If test is false,
the next cond clause is entered. If test is true, the consequent of that cond
clause is evaluated. If the else clause is entered, we use the quoted symbol
else as the first argument of entering. Scheme treats the symbol else as
true (since it is not false) so the alternative is evaluated.

The consequent (or alternative) in each cond clause of remove-1st-trace
is a leaving expression. It has the value of the original consequent (or alter-
native) of the cond clause of remove-1st as the binding of its first parameter,
result. When the leaving expression is evaluated, it tells us the identifying
number of the cond clause and the value to which result is bound. It then
returns result.

Now let’s apply remove-1st-trace to see how this tracing information
helps us see what is happening during the evaluation.

[1] (remove-1st-trace ’c '(a b c d))

Entering cond-clause-3 with 1s = (a b ¢ d)

Entering cond-clause-3 with 1s = (b ¢ d)

Entering cond-clause-2 with 1s = (c d)
Leaving cond-clause-2 with result = (d)
Leaving cond-clause-3 with result = (b d)
Leaving cond-clause-3 with result = (a b d)

(a b d)

This output tells us that we first entered the third cond clause with 1s bound
to (a b c d). With this binding, the leaving expression in the alternative is
evaluated, so that its first operand

(cons ’a (remove-ist-trace ’c (b c d))) (1)
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is evaluated. Thus remove-1st-trace is called again, and a is waiting to be
consed onto the value obtained before we can leave cond clause 3. The next
message on the screen tells us that we are entering the third cond expression
again with argument (b ¢ d). This time, the alternative

(cons ’b (remove-ist-trace ’c ’(c d))) (2)

is evaluated, and b is waiting to be consed onto its value before we can leave
cond clause 3. As before, remove-1st-traceis called again before the leaving
writeln expression is evaluated. This time, the first item in (¢ d) is the same
as c, and we are told that we entered the second cond clause with 1s bound
to (¢ d). When we enter the consequent, the first operand in the leaving
expression evaluates to (d). Then the writeln expression prints on the screen
that we are leaving the second cond clause with the result bound to (4),
and the value (d) is returned.

Cons expression (2) is waiting for the value of the remove-1st-trace call,
and now that valueis (d). With this value, the cons expression in (2) evaluates
to (b d). We can now complete the evaluation of the leaving expression,
which tells us that we are leaving cond clause 3 with result bound to (b
d). But this is just the value that cons expression (1) is waiting for as the
value of its remove-1st-trace invocation. Using the value (b d) as its last
argument, cons expression (1) evaluates to (a b d). It was the first operand
in the application of leaving in the third cond clause. Now that it has
been evaluated, the writeln expression writes its message, which says that
we are leaving cond clause 3 with result bound to (a b d). The leaving
invocation now returns the value to which result is bound, (a b d), and
that becomes the value of the original procedure call. The trace we made
here illustrates well the order in which we enter and leave the cond clauses.
We see that we do not leave the cond clause until a value is found for the
recursive invocation of remove-ist-trace, and the evaluation of the cons
expression can be completed.

In the previous example, we entered only the second and third cond clauses.
If we invoke remove-1st-trace to remove an item from a list that does not
contain it, we enter only the first and third cond clauses, as the following trace
illustrates:
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[2] (remove-1st-trace 'e ’(a b c d))
Entering cond-clause-3 with 1s = (a b c d)
Entering cond-clause-3 with 1s = (b ¢ d)
Entering cond-clause-3 with 1ls = (c d)
Entering cond-clause-3 with 1z = (d)
Entering cond-clause-1 with 1ls = ()

Leaving cond-clause-1 with result = ()

Leaving cond-clause-3 with result = (d)

Leaving cond-clause-3 with result = (c d)

Leaving cond-clause-3 with result = (b ¢ d)

Leaving cond-clause-3 with result = (a b ¢ d)

(abcd

Analyze the trace to be sure you can explain it in a manner similar to that
used in the previous example.

We have used writeln expressions to trace a program by printing certain
information about places in the program where the evaluation is being made
and the values of certain variables at that place. This helps us understand
how programs work. It is also an excellent tool for finding errors in programs.
If a program is not doing what you expect it to do, you can put a writeln
expression at certain places in the program where you think the error may be
and look at the values of variables to compare them with what you expect at
that place. By studying these values, you can frequently pinpoint the source
of the error and make the appropriate changes to cause the program to work
correctly. When the program is corrected and runs as you want, the writeln
expressions used to locate the errors should be removed. Tracing a program
with the writeln expressions placed at strategic points is a helpful and often
used debugging tool.

Exercise

Fzercise 2.22

In the first trace, the second and third cond clauses were entered. In the
second trace, the first and third cond clauses were entered. Can you give
a remove-1st-trace invocation that enters only the first and second cond
clauses? Explain.
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The last example of recursion in this chapter is the procedure swapper,
which takes three arguments: an item x, an item y, and a list 1s. It builds
a new list in which each top-level occurrence of x in 1s is replaced by y, and
each top-level occurrence of y in 1s is replaced by x. We are “swapping” x
and y in 1s. For example,

(swapper ’cat ’dog ’(my cat eats dog food))

=> (my dog eats cat food)
(swapper ’john ’mary ’(john loves mary)) = (mary loves john)
(swapper ’a 'n ’(bnanan)) = (banan a)
(swapper ’a ’b ’(c (ab) d)) = (c (a b) d)
(swapper ’a ’b ’()) = (O

In the fourth example, the a and b in the list are not at top level, so they are
not swapped.

In order to define swapper, we begin with an analysis of the base case.
What is the simplest case for this problem? If 1s is empty, there is nothing
to swap and the empty list is returned. Thus we take as the base case for 1s
the empty list, and we begin the definition as follows:

(define swapper
(lambda (x y 1s)
(cond
((null? 1s) Q)
D))

A nonempty list is simplified to the base case using the simplifying oper-
ation cdr. What is returned if we invoke (swapper x y (cdr 1s))? The
result will be (edr 1s) with the items x and y interchanged. But this differs
from (swapper x y 1s) only in that the first item in (swapper x y 1s) is
missing. We will get (swapper x y 1s) from (swapper x y (cdr 1s)) by
consing the correct first item onto (swapper x y (cdr 1s)). There are three
possibilities for this first item: it can be x, y, or neither. First, if (car 1s) is
x, we should cons y onto (swapper x y (cdr 1s)), so the next cond clause
in our definition can be added:

 (define swapper
(lambda (x y 1s)
(cond
((nul17? 1s) ’(0))
((equal? (car 1s) x)
(cons y (swapper x y (cdr 18))))
)))
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Program 2.8 swapper

(define swapper
(lambda (x y 1s)
(cond

((null? 1s) (D)

((equal? (car 1s) x)

(cons y (swapper x y (cdr 1s))))

((equal? (car 1s) y)

(cons x (swapper x y (cdr 1s8))))
(else

(cons (car 1ls) (swapper x y (cdr 1s)))))))

Second, if (car 1s) is y, we should cons x onto (swapper x y (cdr 1s)),
so the next cond clause can be added:

(define swapper
(lambda (x y 1s)
(cond

((null? 1s) Q)

((equal? (car 1s) x)

(cons y (swapper x y (cdr 1s))))
((equal? (car 1s) y)

(cons x (svapper x y (cdr 1s))))

)

Finally, if (car 1s) is neither x nor y, then we just cons (car 1s) itself
onto (swapper x y (cdr 1s)), giving us the else clause and completing the
definition given in Program 2.8.

If we invoke the procedure swapper with the arguments ’b, ’d, and ’(a
b ¢ d b), it should return the list (a d ¢ b d) in which b and d have been
interchanged. Let’s walk through the program to see how it constructs this
answer. In the first procedure call, 1s is bound to (a b ¢ d b). This list is
not empty, and its car is neither b nor d, so the else clause is evaluated and
gives as the answer the cons expression:

(cons ’a (swapper 'b ’d (b c d b)))

Let’s refer to the value of this cons expression as answer-1, and that is the
value that we are looking for to solve the problem. At this point, however,
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we have not yet evaluated the recursive invocation of swapper, so let’s give
its value the name answer-2. We can now rewrite answer-1 as

answer-1 18: (cons ’a answer-2)
answer-2 1s: (swapper ’b ’d (b c 4 b))

We see that enswer-1 is waiting for the value of answer-2, so we move on to
evaluating aenswer-2 and we shall return to get the value of answer-1 when
answer-2 is known.

To evaluate answer-2, we observe that the list (b ¢ d b) begins with b, so
the second cond clause is the one with the true condition, and evaluating its
consequent gives us

answer-1 1s: (cons ’a answer-2)
answer-2 1s: (cons ’d answer-3)
answer-3 1s: (swapper ’b ’d ’(c d b))

We still do not have a value for answer-3, so we once again set aside answer-2
until we have a value for answer-3. Note that we are making a table of these
various answers, with each successive entry placed below the preceding one.
We shall often refer to this table, so we give it the name return table.

To evaluate answer-3, we see that (¢ d b) is not empty, and does not
begin with b or d, so the alternative in the else clause is evaluated. We get
for answer-3

(cons ’c (swapper ’b ’d ’(d b)))

and we give the invocation of swapper within answer-3 the name answer-4.
This gives us the return table:

answer-1 18: (cons ’a answer-2)
answer-2 1s: (cons ’d answer-3)
answer-3 18: (cons ’c answer-4)
answer-4 18: (swapper ’b ’d ’(d b))

We have added answer-3 to our return table to wait until we have the value
of answer-4.

For the invocation of swapper in answer-4, the condition in the third cond
clause is true, so our return table now becomes

answer-1 1s: (cons ’a answer-2)
answer-2 1s: (cons ’d answer-3)
answer-3 18: (cons ’c answer-4)
answer-4 18: (cons ’b answer-5)
answer-5 1s: (swapper ’b ’c (b))

We have added answer-4 to our return table to wait for a value for answer-5.
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For the invocation of swapper in answer-5, the condition in the second
cond clause is true, so the return table now becomes

answer-1 1s: (cons ’a answer-2)
answer-2 is: (cons ’d answer-3)
answer-3 is: (cons ’c¢ answer-4)
answer-4 1s: (cons ’b answer-5)
answer-§ 1s: (cons ’d answer-6)
answer-6 1s: (swapper ’b ’d ’())

Once again we have added answer-5 to the return table to wait until we
have a value for answer-6. In the invocation of swapper in answer-6, the
terminating condition in the first cond clause is true, and the value () is
returned for answer-6.

What effect does this termination have on the return table? Although we
have a value for answer-6, the computation does not stop, for we have to get
the values of each of the waiting variables in our return table. Until now,
on each recursive invocation of swapper, a new row was added to the return
table waiting for a value. This time we got a value for answer-6, so we do
not have to add a row to the return table. Instead we replace the swapper
expression in the last row by its value (). We can now work our way back up
the table one row at a time, replacing each variable on the right side by the
value it has on the next row below. We shall write these replacements in a
new table, starting with the value for answer-6.

answer-6 1s: @)
answer-§ is: (a)
answer-4 is: (b d)
answer-3 1s: (¢ b d)
answer-2 1s: (d ¢cbd)
answer-1 1s: (adcbd)

The last row gives us the anticipated value for our invocation of swapper.
Let’s take another look at the definition of the procedure swapper. In the
last three cond clauses, something is consed onto

(swapper x y (cdr 1s))

What that something should be is determined by testing the value of (car
1s). We can write a helping procedure swap~-tester that makes the test and
returns the correct value to be consed onto

(swapper x y (cdr 1s))
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Assuming that we have such a test procedure, we can rewrite the definition
of swapper as follows:

(define swapper
(lambda (x y 1s)
(cond
((null? 1s) ()
(else (cons (swap-tester x y (car 1ls))
(swapper x y (cdr 1s)))))))

We now define the helping procedure swap-tester to distinguish the three
cases for us:

(define swap-tester
(lambda (x y a)
(cond
((equal? a x) y)
((equal? a y) x)
(else a))))

When swap-tester is called within swapper, the arguments x, y, and (car
1s) are substituted for the parameters x, y and a, respectively, and swap-
tester returns the correct value to be consed onto

(swapper x y (cdr 18))

The use of such helping procedures often simplifies the writing and reading of
programs. We shall make frequent use of this technique.

We could also have achieved the same effect without using the helping
procedure swap-tester by using in swapper the cond expression of swap-
tester in place of calling swap-tester. This leads to another version of
swapper:

(define swapper
(lambda (x y 1s)
(cond

((null? 1s) ’Q))

(else (cons (cond
((equal? (car 1s) x) y)
((equal? (car 1s) y) x)
(else (car 1s)))

(swapper x y (cdr 18)))))))
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In this section, we have seen how to use writeln expressions to trace or
debug a program. We have also seen how a return table is created when a
recursive procedure is evaluated.

Exercises

Ezercise 2.23
Identify what is printed on the screen and what is returned in each of the
following:

a. (begin
(writeln "(* 3 4) =" (* 3 4))
(= (* 3 4) 12))

b. (begin
(vriteln "(cons ’a ’(b ¢)) has the value " (cons ’a ’(b c)))
(writeln "(cons ’a ’(b c¢)) has the value " ’(a.b ¢))
(vriteln "(cons ’a ’(b ¢)) has the value (a b c)")
(cons ’a ’(b ¢)))

c. (begin
(wvriteln "Hello, how are you?")
(vriteln "Fine, thank you. How are you? " ’Jack)
(¥riteln "Just great! It is good to see you again, " ’Jill)

"Good-bye. Have a nice day.")

Ezxercise 2.24: describe
With describe defined as

(define describe
(lambda (s)
(cond

((null? s) (quote ’()))
((number? s) s)
((symbol? s) (list ’quote 8))
((pair? s) (list ’cons (describe (car s)) (describe (cdr s))))
(else s))))

evaluate each of the following expressions:
a. (describe 347)
b. (describe ’hello)
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c. (describe ’(1 2 button my shoe))
d. (describe ’(a (b c (d e) £ g) h))

Describe what describe does in general.

Ezercise 2.25

Write a trace similar to the one used in remove-1st-trace to trace the pro-
cedure swapper, showing the binding of the parameter 1s each time the cond
expression is entered and whenever a cond clause is exited. Invoke the traced
procedure swapper-trace on the arguments b, d, and (a b ¢ d b) used in
the example in this section.

Ezercise 2.26

In the return table built for the invocation of swapper in this section, the
computation did not stop when the terminating condition was true and the
first cond clause returned (). Instead, the variables in the table were evaluated
one by one until the value of the first was obtained to provide the value of
the original invocation. This program behaved in this way because after each
invocation of swapper, a cons still had to be completed. There was still
an operation to perform after swapper was invoked. Do a similar analysis,
building the return tables, on the two procedures last-itemin Program 2.2
and member? in Program 2.3. In the first case, consider (last-item ’(a b
c)), and in the second case, consider (member? ’c ’(a b ¢ d)). In these
two examples, there is no procedure waiting to be done after the recursive
invocations of the procedure. Such programs are called iterative. We shall
discuss the behavior of iterative programs more thoroughly in the chapter on
numerical recursion.

Ezercise 2.27

Does the answer change if cond clause 2 and cond clause 3 are interchanged
in the definition of swapper? Does the same thing hold if cond clauses 1 and
2 are interchanged in swap-tester?

Ezercise 2.28: tracing, test-tracing
A more generally applicable tracing tool than the procedure leaving given
in Program 2.7 is the procedure tracing defined by

(define tracing
(lambda (message result)
(begin
(vriteln message result)
result)))
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Data Abstraction and Numbers

3.1 Overview

Many of the procedures we studied in Chapters 1 and 2 operated on lists
and symbols. Another interesting area of applications deals with numerical
computations. In this chapter, we study procedures that perform arithmetic
operations on numbers. We also develop a program to do exact arithmetic us-
ing fractions instead of decimals, which are usually associated with computers.
This will provide our first illustration of data abstraction.

3.2 Operations on Numbers

We shall discuss two types of numbers, integers and real numbers. The inte-
gers are the usual positive and negative counting numbers and zero:

o, —4,-3,-2,-1,0,1,2,3,4,...
where, in this case, the ellipsis means that the list continues indefinitely in
both directions.

The set of real numbers includes both positive and negative decimal num-
bers and zero. For example, 34.56, —3.456, 0.00034, and 17.0 are all real
numbers. The integers are also considered to be real numbers, so we may also
refer to the real number 5 or 5.0. We write real numbers with up to fifteen
significant figures,® so % will be written as 0.333333333333333 and % multi-
plied by 10000 is written as 3333.33333333333. When the decimal point moves

! The number of significant figures represented is system dependent.
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beyond the fifteenth digit, Scheme may switch over to scientific notation. For
example, 0.333333333333333e45 represents the number one-third multiplied
by 10 raised to the forty-fifth power—that is, by a one followed by forty-five
zeros. Let’s look at some simpler examples of scientific notation. The number
2.735€2 is the same as 273.5, since the e2 means that 2.735 is multiplied by
a one followed by two zeros—that is, by 100. Another way of saying this is
that the e2 means that the decimal point is moved two places to the right.
Another example is 2.735e-2, which is the same as 0.02735, since e-2 means
that 2.735 is multiplied by .01, or that the decimal point is moved two places
to the left.

We use two predicates, integer? and real?, to test the type of a number.
The expression (integer? num) is true if num is an integer and false other-
wise. The expression (real? num) is true if num is any real number, including
integers, and is otherwise false. Three other useful predicates are zero?, pos-
itive?, and negative?, which make the obvious tests to see whether their
arguments are zero, positive, or negative, respectively.

The four basic arithmetic operations are given by the procedures associated
with the variables + for addition, - for subtraction, * for multiplication, and
/ for division. These are applied to numbers with applications, as were the
list operations in Chapter 2. For example, to add the two numbers 5 and 7,
we enter the expression (+ 5 7), and the answer 12 is returned. Similarly?

(- 4 32) = -28
(x -15 -3) => 45
(/ -15 -3) = 5
(/ -16 -3) => 5.33333333333333

We recommend that you play around with these arithmetic operations on
various kinds of numbers and see what results appear.

In many programs, the successor of a given integer n is desired, and rather
than entering (+ n 1), we can use the successor procedure addi and write
(add1l n). Thus

(add1 7) => 8
(add1 -37) => -36

2 When division is performed with two integers, some implementations of Scheme return
a fraction instead of a decimal. For example, (/ 2 3) is either displayed as 2/3 or as
0.66666666666666.
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Program 3.1 addi

(define addil
(lambda (n)
(+ n 1)))

Program 3.2 subl

(define subl
(lambda (n)
(-n 1))

Not all implementations of Scheme provide the procedure add1, so we include
its definition in Program 3.1.

Similarly the predecessor procedure subi can be used to get the integer
that precedes a given integer. For example, instead of writing (- n 1), we
can write (subl n). Thus

(subl 7) = 6
(subl -37) = -38

The definition of sub1i is included in Program 3.2 in case the implementation
of Scheme you are using does not provide it.

There are many more Scheme procedures defined on numbers. We present
a brief list of these procedures in Figure 3.3 and make some short remarks
about each. When the objects to be tested for sameness may or may not be
numbers, eqv? and equal? both determine the type and apply the appropriate
sameness test. When it is known that the objects to be tested for sameness
are numbers, it is better to use =, which is specifically designed to apply to
numbers and should be used only to compare numbers. When testing for 0,
you should use zero?.

The computer’s decimal representation 0.333333333333333 for the quo-
tient (/ 1 3) is not the same as the fraction 1/3 but is, rather, an approxi-
mation to it, the use of which is made necessary by the way real numbers are
represented in the computer. Thus we would not expect = to return true if
we test (/ 1 3) and 0.333333333333333. In general, because the internal
representation of certain numbers in the computer is only an approximation
to the actual number, we refer to such numbers as inezact numbers. We con-
sider numbers written with explicit use of a decimal point as being inexact,
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Expression

(= m n)
(< m n)
(<= m n)
> m n)
(>=m n)
(abs n)

(ceiling n)

(floor n)

(round n)

(truncate n)

(expt n k)
(sqrt n)

(max n...), (minn...

(exp n), (log n)

(sin n), (cos n)

(asin n), (acos n)
(tan n)

(atan n)

(quotient n k)

(remainder n k)

(modulo n k)

Remarks

Tests whether the exact numbers m and n are equal.

Tests whether m is less than n.

Tests whether m is less than or equal to n.

Tests whether m is greater than n.

Tests whether m is greater than or equal to n.

Gives the absolute value of n. (abs 5) == § and
(abs -5) = 5.

Gives the smallest integer (inexact) which is > n.
(ceiling 5.3) = 6. (ceiling -5.3) == -5,

Gives the largest integer (inexact) which is < =.
(floor 5.3) = 5. (floor -5.3) == -6.

Rounds n to the nearest integer (inexact). If n is
exactly halfway between two integers, it rounds it
to the nearest even integer.

Gives the integer (inexact) obtained by chopping off
the decimal part of n.

Raises n to the power k.

The square root of n, n > 0.

The maximum and minimum of n..., respectively.

The exponential of n and logarithm of n to the base
e, respectively.

The trigonometric sine and cosine, respectively, of n
(n in radians).

The arc sine and arc cosine of n, respectively.

The tangent of n (n in radians).

The arc tangent of n.

The quotient of n divided by k.

The remainder of n divided by k with the sign of the
dividend.

The remainder of n divided by k with the sign of the

divisor.

Figure 3.3 Some of Scheme’s mathematical operators
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for example, 3.25, —0.05. Integers, written without decimal points, are ezact
numbers, and certain operations, such as + and *, preserve the exactness of
numbers. One should use only the predicate = to test for the sameness of
exact numbers.

We close this section with the definitions of several procedures that illustrate
the use of arithmetic operations in recursive programs. The first procedure
harmonic-sum sums the first n terms of the harmonic series, that is, it sums
the series of the form

1+1+1+ +1
2 3 n

Our strategy again is to simplify the problem by reducing the number of terms
n that are being summed. If n is zero, no terms are summed, and the sum is
zero. This will serve as the terminating condition for our recursion.

(define harmonic-sum
(lambda (n)
(cond
((zero? n) 0)

- )))
To make the recursive step, we observe that we get (harmonic-sum n) from
(harmonic-sum (subi n)) by adding the nth term. For any positive n,
(harmonic-sum n) is the same as

(+ (/ 1 n) (harmonic-sum (subl n)))

so we complete the definition with

Program 3.4 harmonic-sum

(define harmonic-sum
(lambda (n) L
(cond ’
((zero? n) 0) |
(else (+ (/ 1 n) (harmonic-sum (subil n))))))) ’

In programs dealing with numbers, it is often the case that the recursion is
accomplished by reducing the numerical argument each time the procedure
calls itself, and the smallest value of the numerical argument (in this case, n is
zero) provides the terminating condition. Another simple illustration of this
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idea is the construction of a list containing a specified number of zeros. We
define 1ist-of-zeros which has parameter n and builds a list containing n
zeros. Its code is given in Program 3.5.

Program 3.5 1list-of-zeros

(define list-of-zeros
(lambda (n)
(cond
((zero? n) 'Q))
(else (cons 0 (list-of-zeros (subl n)))))))

The procedure length takes as its argument a list of items 18 and then
tells how many top-level items are in the list. For example,

(length ’(a b cde)) = 5
(length ’(1 (2 3) (456))) =3
(length ’(one)) == 1

(length () = 0

The procedure length is provided in all implementations of Scheme. We shall
show the definitions of many of the procedures provided by Scheme because
you will learn programming better by knowing how these basic procedures
are defined. When you test our definitions of these procedures, it is good
practice to use a different name for the procedure you define so that you do
not override the definition of the procedure provided by Scheme. Thus for
the procedure length, you can use the name =length= when you enter your
definition.

To define 1ength, we use recursion. The base case is the empty list whose
length is zero, and the operation cdr is used to simplify longer lists. We begin
the definition with the terminating condition:

(define length
(lambda (1s)
(if (null? 1s)
0
D))

Suppose we know (length (cdr 1s)); then we get (length 1s) by simply
adding one to (length (cdr 1s)). This recursive step completes the last
line of the definition:
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Program 3.6 length

(define length
(lambda (1s)
(if (null? 1s)
0
(add1 (length (cdr 1s))))))

The next procedure we define is 1ist-ref, which takes as arguments a list
of items 1s and a (nonnegative) integer n and gives us the (n + 1)st top-level
item in 1s. For example

(list-ref ’(abcde f) 3) = d
(list-ref ’(a b c d e f) 0) = a
(list-ref ’(a b c) 3)
= Error: list-ref: Index 3 out of range for list (a b c)
(list-ref ’((1 2) (3 4) (5 6)) 1) = (3 4)
(list-ref ’() 0)
=> Error: list-ref: Index O out of range for list ()

The number n is called the indez of the item extracted from the list 1s by
(1ist-ref 1s n). If the index is greater than or equal to the length of the
list of items 1s, an error is announced. Since the first item in the list 1s has
index 0, we say that the indexing is zero based.

The strategy we use in this recursion is based on the observation that if we
are looking for the nth item in the list, that item becomes the (n — 1)st item
in the cdr of the list. Thus we shall successively remove the first item from
the list and simultaneously reduce the index of the desired item by one. If
the index reaches zero and the list is not empty, the first item in the list is
the item returned. We can determine whether the list will not become empty
before or when the index becomes zero by testing whether the length of the
list is larger than the index. If that is not the case, we signal an error. This
enables us to write the first version of the definition of the Scheme procedure

list-ref as follows:

(define list-ref
(lambda (1s n)
(cond
((<= (length 1s) n)
(error "list-ref: Index" n 'out of range for list' 1s))
((zero? n) (car 1ls))
(else (list-ref (cdr 1s) (subl n))))))
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The procedure error employed here to signal an error uses a procedure sim-
ilar to writeln to print its arguments on the screen and then returns to
the Scheme prompt. Most Scheme systems provide an error procedure. A
definition of the procedure error is given in Chapter 7.

In the program for 1ist-ref, the test for whether the length of 1s is less
than or equal to n is made on each recursive call. However, if the test is false
on the first call, it will remain false in each successive recursive call, since
both the length of the list and the index are reduced by one in each successive
call. It would be a much better program if the test were made only once, and
if it were false, then a helping procedure would be called that produces the
desired item. We give such a definition next.

(define list-ref
(lambda (1s n)
(cond
((<= (length 1s) n)
(error "list-ref: Index" n "out of range for list" 1ls))
(else (list-ref-helper 1s n)))))

with the helping procedure defined as

(define list-ref-helper
(lambda (1s n)
(if (zero? n)
(car 1s)
(1ist-ref-helper (cdr 1s) (subl n)))))

In general, it is good practice to avoid redundant computations when recur-
sive calls are made. The use of a helping procedure, as illustrated in this
definition of 1ist-ref, is a way of avoiding this kind of inefficiency. Once it
is established that the length of the list is greater than the index, the helping
procedure does the rest of the computation to find the item without calling the
procedure list-ref again and determining the length of each 1s repeatedly.

Another approach to defining 1ist-ref derives from observing that if, dur-
ing the recursive calls, the list 1s becomes empty while the index n is non-
negative, the index must have been too large for the list. Thus the program
can be written as:
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Program 3.7 1list-ref

(define list-ref
(lambda (18 n)
(cond
((null? 1s)
(error "list-ref: Index" n "out of range for list" 1s))
((zero? n) (car 1s))
(else (list-ref (cdr 1ls) (subl n))))))

Exercises

We refer to a list of numbers as an n-tuple. Thus (1 3 5 7), (-1.3 2.5),
(3), and () are examples of n-tuples. The numbers in an n-tuple are called
components. In Exercises 3.1-3.4, you are asked to define several procedures
on n-tuples. In all of the exercises in this section, you may use procedures
you have already defined as helping procedures.

Fzercise 3.1: sum
Define a procedure sum that finds the sum of the components of an n-tuple.
Test your procedure on:

(sum ’(1 23 45)) => 15
(sum ’(6)) ==b> 6
(sum () == 0

FEzercise 3.2: pairwise-sum

Define a procedure pairwise-sum that takes two n-tuples of the same length,
ntpl-1 and ntpl-2, as arguments and produces a new n-tuple whose compo-
nents are the sum of the corresponding components of ntpl-1 and ntpl-2.
Test your procedure on:

(pairvise-sum ’(1 3 2) ’(4 -1 2)) = (5 2 4)
(pairvise-sum (3.2 1.5) ’(6.0 -2.5)) == (9.2 -1.0)
(pairvise-sum ’(7) ’(11)) ==> (18)

(pairvise-sum () *()) == ()

In an analogous way, define a procedure pairwise-product that produces an
n-tuple whose components are the products of the corresponding components
of ntpl-1 and ntpl-2.

3.2 Operations on Numbers 81



82

Ezercise 3.3: dot-product

Define a procedure dot-product that takes two n-tuples of the same length,
multiplies the corresponding components, and adds the resulting products.
This exercise can be done either directly or by using the procedures defined
in Exercises 3.1 and 3.2. Consider the advantages and disadvantages of each
approach. Test your procedure on:

(dot-product ’(3 4 -1) (1 -2 -3)) => -2
(dot-product ’(0.003 0.035) ’(8 2)) => 0.094
(dot-product ’(5.3e4) ’(2.0e-3)) => 106.0
(dot-product ’() ’()) = 0

Ezercise 3.4: mult-by-n
Define a procedure mult-by-n that takes a number num and an n-tuple ntpl
as arguments and multiplies each component of ntpl by num. Test your pro-

cedure on:
(mult-by-n 3 *(1 2 3 45)) = (3 69 12 15)
(mult-by-n 0 (1 357 9 11)) = (0 00 0 0 0)
(mult-by-n -7 ') = (O

Ezercise 3.5: index

Define a procedure index that has two arguments, an item a and a list of
items 1s, and returns the index of a in 1s, that is, the zero-based location of
a in 1s. If the item is not in the list, the procedure returns -1. Test your
procedure on:

(index 3 ’(1 23 45 6)) = 2

(index ’so ’(do re me fa so la ti do)) => 4
(index ’a ’(b c d e)) = -1

(index ’cat ’()) = -1

Ezercise 3.6: make-list

Define a procedure make-1ist that takes as arguments a nonnegative integer
num and an item a and returns a list of num elements, each of which is a. Test
your procedure on:

(make-list 5 ’no) = (no no no no no)
(make-list 1 ’maybe) => (maybe)
(make-list 0 *yes) = ()

(length (make-list 7 'any)) => 7
(all-same? (make-list 100 ’any)) => #t
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Ezercise 3.7: count-background

Define a procedure count-background that takes an item a and a list of items
1s as arguments and returns the number of items in 1s that are not equal?
to a. Test your procedure on:

(count-background ’blue ’(red white blue yellow blue red)) = 4
(count-background ’red ’(white blue green)) = 3
(count-background ’white ’()) = 0

Ezercise 3.8: 1list-front

Define a procedure 1ist-front that takes as arguments a list of items 1s and
a nonnegative integer num and returns the first num top-level items in 1s. If
num is larger than the number of top-level items in 1s, an error is signaled.
Test your procedure on:

(list-front ’(abcd e £ g) 4) = (a b c d)

(list-front ’(a b c) 4) => Error: length of (a b c) is less than 4.
(list-front ’(abcd e f g) 0) = ()

(list-front ’() 3) => Error: length of () is less than 3.

FEzercise 3.9: wrapa

Define a procedure wrapa that takes as arguments an item a and a nonnegative
integer num and wraps num sets of parentheses around the item a. Test your
procedure on:

(wrapa ’gift 1) => (gift)

(vrapa ’sandwich 2) => ((sandwich))
(vrapa ’prisoner 5) => (((((prisoner)))))
(wrapa ’moon 0) = moon

FEzercise 3.10: multiple?

Define a predicate multiple? that takes as arguments two integers m and n
and returns #t if m is an integer multiple of n. (Hint: Use remainder.) Test
your procedure on:

(mnultiple? 7 2) = #£
(multiple? 9 3) = #t
(multiple? 5 0) => #f
(multiple? 0 20) => #t
(multiple? 17 1) => #1
(multiple? 0 0) => #t
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Ezrercise 3.11: sum-of-odds
It can be shown?® that the sum of the first n odd numbers is equal to n2. For
example,

1+3+5+7=16=42

Write a procedure sum-of-odds that sums the first n odd integers. Test your
procedure by evaluating it for all values of n from 1 to 10 to see that each is
the perfect square of the number of terms.

Ezercise 3.12: n-tuple->integer
Define a procedure n-tuple->integer that converts a nonempty n-tuple of
digits into the number having those digits. Test your program on the following:

(n-tuple->integer '(3 1 4 6)) == 3146

(n-tuple->integer '(0)) ==» 0

(n-tuple->integer ’()) ==b Error: bad argument () to n-tuple->integer
(+ (n-tuple->integer ’(1 2 3)) (n-tuple->integer ’(3 2 1))) == 444

Ezercise 3.13

If 1s is a list of length 1000, how much “cdring” in 1s is necessary in each
of the three programs for 1ist-ref presented in this section in order to find
(list-ref 1s 4)? Which of the three programs is most efficient?

3.3 Exact Arithmetic and Data Abstraction
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The numbers discussed above were either integers for which the arithmetic
operations of +, -, and * give exact results or are inexact numbers, which may
be rounded decimal representations and for which the arithmetic operations
give approximations. For division, even if the numerator and denominator
are exact integers, the result may be an approximation; for example, (/ 1 3)
might return the inexact number 0.33333333333333, which is not % It is
possible to do arithmetic with fractions (rational numbers) and get answers
as exact fractions when arithmetic operations are performed. In this section,
we shall develop such an exact arithmetic.

SLet S=1+4+3+5+:--4(2n—1). We get the same sum if we add the numbers in reverse
order,so S = (2n - 1)+ (2n - 3) +--- + 3+ 1. Adding the first terms of each sum, we get
2n. Adding the second terms of each sum, we get 2n and in general adding corresponding
terms in the two sums, we get the same sum, 2n. There are n such corresponding pairs of
terms, so 25 = n(2n) and § = n?.

Data Abstraction and Numbers



Recall that a fraction (or rational number) $ is composed of two integers: a
is its numerator, and b, which must be different from zero, is its denominator.
For the moment, we do not concern ourselves with how the rational number or
fraction is represented. We shall come back to that later in this section. For
the time being, we use the fact that a rational number has a numerator and
a denominator and assume that we have access to these two parts by means
of two procedures numr and denr. Thus if rtl represents a rational number,
then (numr rtl) is its numerator and (denr rtl) its denominator. These
are called the two selector procedures for rational numbers, just as car and
cdr were the two selector procedures for lists. We shall also assume that we
have a constructor procedure that reassembles the rational number from its
numerator and denominator. We call this constructor procedure make-ratl
because it builds (or makes) a rational number from its parts. Thus for a
rational number rtl, the expression

(make-ratl (numr rtl) (denr rtl))

is just the rational number rtl again. For example, (make-ratl 3 5) is the
rational number with numerator 3 and denominator 5.

With these selector and constructor procedures, we proceed to build up the
arithmetic of rational numbers without concerning ourselves with the repre-
sentation of the rational numbers. We begin with the definition of a predicate
rzero?, which tests whether a rational number rtl is equal to zero. We use
the fact that a rational number is equal to zero only when its numerator is
equal to zero. Thus we have:

Program 3.8 rzero?

(define rzero?
(lambda (rtl)
(zero? (numr rtl))))

Now we recall how two fractions are combined by the various arithmetic
operations. For example, the sum of the fractions § and § has the numerator
(a*d) + (bxc) and the denominator b*d. Thus if x and y are two rational
numbers, we define the sum procedure, say r+, in Program 3.9. The first
argument to make-ratl is the numerator of the sum, and the second argument
to make-ratl is the denominator of the sum.
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Program 3.9 r+

(define r+
(lambda (x y)
(make-ratl
(+ (+ (numr x) (denr y)) (* (numr y) (denr x)))
(* (denr x) (denr y)))))

Since the product of two fractions ¢ and £ is the fraction having numerator
axc and denominator bxd, we can define the product procedure r#* for rational
numbers as follows:

Program 3.10 r=*

(define r*
(lambda (x y)
(make-ratl
(* (nuar x) (numr y))
(* (denr x) (denr y)))))

Similarly, the difference procedure r- is defined by

Program 3.11 r-

(define r-
(lambda (x y)
(make-ratl
(- (+ (numr x) (denr y)) (* (numr y) (denr x)))
(x (denr x) (denr y)))))

If we invert a nonzero rational number §, we get % The procedure rinvert in
Program 3.12 carries out this operation . We now define the division operator
r/ in Program 3.13. The definition of r/ reflects the familiar rule, “invert the
divisor and multiply.”

Another useful procedure is the predicate r= that tests whether two rational
numbers are equal. Two rational numbers ¢ and § are equal if ad = bc. Thus
we can write the definition of r= given in Program 3.14.
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Program 3.12 rinvert

(define rinvert
(lambda (rtl)
(if (rzero? rtl)
(error "rinvert: Cannot invert ' rtl)
(make-ratl (denr rtl) (numr rtl)))))

Program 3.13 r/

(define r/
(lambda (x y)
(r* x (rinvert y))))

Program 3.14 r=

(define r=
(lambda (x y)
(= (* (numr x) (denr y)) (* (numr y) (denr x)))))

Program 3.15 rpositive?

(define rpositive?
(lambda (rtl)
(or (and (positive? (numr rtl)) (positive? (denr rtl)))
(and (negative? (numr rtl)) (negative? (denr rtl))))))

We can similarly define a predicate rpositive? by using the fact that a
rational number £ is positive if a and b are both positive or both negative.
Thus we get Program 3.15.

The predicate r> tests whether a rational number x is greater than a ra-
tional number y by testing whether their difference is positive. This leads to
Program 3.16. The definition of the predicate r<, which tests whether x is less
than y is obtained by interchanging x and y in the last line of the definition
of r>.

Many other familiar procedures can be built up in terms of these, and
we can go on to develop an extensive arithmetic for rational numbers using
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Program 3.16 1>

(define r>
(lambda (x y)
(rpositive? (r- x y))))

Program 3.17 max

(define max
(lambda (x y)
(if &G xy)
x

y)))

Program 3.18 rmax

(define rmax
(lambda (x y)
(if (> x y)
x

y)))

what we have constructed up to this point. For example, we can define the
procedure rmax, which selects the larger of its two arguments, or its second
argument if they are equal. Before defining rmax, we show in Program 3.17
how the Scheme procedure max for two numbers can be defined. Similarly, we
can define rmax as shown in Program 3.18.

The definition of the procedure rmin, which returns the smaller of its two
arguments or the second if they are equal, is obtained from the definition
of rmax by changing the r> to r<. We are now in a position to make an
important observation. When two procedure definitions are as similar as
rmax and rmin, we could have written one definition from which both could
be obtained by passing the predicate r> or r< as an argument to the procedure.
To demonstrate how this is done, let us use the parameter pred to stand for
either of these predicates. Then we define the procedure extreme-value in
Program 3.19.
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Program 3.19 extreme-value

(define extreme-value
(lambda (pred x y)
(if (pred x y)

x

y)))

Now we can simply write

(define rmax
(lambda (x y)
(extreme-value r> x y)))

and

(define rmin
(lambda (x y)
(extreme-value r< x y)))

We get as a bonus the fact that max and min can also be obtained from
extreme-value, for if x and y are real numbers, we can write

(define max
(lambda (x y)
(extreme-value > x y)))

and for min we have

(define min
(lambda (x y)
(extreme-value < x y)))

The predicates that were passed as arguments to the procedure extreme-
value are procedures themselves. The ability to pass procedures as arguments
to other procedures is a powerful tool in Scheme, and we shall make use of it
many times. In Chapter 7, when we talk about procedures that return other
procedures, we shall see a better way of writing these definitions.

We can also define a procedure rprint that prints the results of our calcu-
lations in the familiar form as a fraction by using the procedure writeln.
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Program 3.20 rprint

(define rprint
(lambda (rtl)
(wvriteln (numr rtl) "/" (denr rtl))))

Thus if rtl represents the fraction %, (rprint rtl) displays 2/3.

We have gone a long way in our exact arithmetic using the selector proce-
dures numr and denr and the constructor procedure make-ratl without ever
saying what they are. Using the arithmetic operations for the rationals r+,
r*, r-, and r/ and the other procedures that we have defined, we can write
many complicated programs using exact arithmetic on rational numbers. If
someone were to give us the three procedures numr, denr, and make-ratl, we
would not have to know how they are defined in order to use them, and other
procedures depending on them, in programs we write.

If, in the course of writing a program, we need a rational number with
numerator 2 and denominator 3, we simply write (make-ratl 2 3) for that
number. Thus if we were writing a rational number package for someone else
to use, all we would have to provide the user with are the procedures numr,
denr, make-ratl, and the other procedures defined in terms of these and the
user can compute with the package without ever being concerned about how
the procedures numr, denr, and make-ratl themselves are defined. We have
treated the rational numbers as abstract data. We are now free to choose any
representation of the rational numbers we wish and to define the selectors and
constructor procedures appropriately for the data representation we choose.
What is especially nice about this approach is that we are free to change the
data representation any time we wish, and when we only redefine the three
procedures numr, denr, and make-ratl, the rest of the procedures we have
written still work and do not have to be changed in any way. That is the
power of abstraction.

So far, we have been able to write all of our procedures, but we have not
been able to test them because we have not been given the constructor and
the selectors. We have reached the point where we choose a representation
of the rational numbers and define the selector and constructor procedures.
For the first method of defining them, let us take the representation of the
rational number with numerator a and denominator b to be (list a b),
where b is never to be zero. We can then define the selectors numr and denr
for the rational number rtl and the constructor make-ratl for the integers
int1 and int2 as shown in Program 3.21. With these definitions, all of the
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Program 3.21 numr, denr, make-ratl

(define numr
(lambda (rtl)
(car rtl)))

(define denr
(lambda (rtl)
(cadr rtl)))

(define make-ratl
(lambda (int1 int2)
(if (zero? int2)
(error "make-ratl: The denominator cannot be zero.')
(list int1l int2))))

procedures we previously defined can be used with no modifications to make
up our package for rational arithmetic.

To find the denominator of a rational number using the given list represen-
tation, we have to take the car of the cdr of the list representing the number.
It is possible to have a representation that makes the denominator operation
more efficient and uses less storage space if we use a dotted pair to represent
the rational number. Thus the rational number that has numerator a and
denominator b is represented by the dotted pair (a . b). Then the selectors
are

(define numr
(lambda (rtl)
(car rtl)))

(define denr
(lambda (rtl)
(cdr rtl)))

and the constructor is

(define make-ratl
(lambda (int1 int2)
(if (zero? int?2)
(error "make-ratl: The denominator cannot be zero.')
(cons int1 int?2))))
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Another natural representation to consider for the rational number with nu-
merator 3 and denominator 4 is the symbol 3/4. We do not have the tools to
define the selectors and the constructor for this representation yet. A knowl-
edge of how to operate with string and character data types is necessary to
do so. However, each of the possibilities for representing the rational numbers
gives rise to different definitions of the procedures numr, denr, and make-ratl,
but none of the other procedures defined in our rational arithmetic package
has to be changed in any way. They are all representation independent. If you
want to change representations, only the constructor and selector procedures
would have to be changed; the rest of the procedures would still be valid with
no alterations. We defined only the three procedures numr, denr, and make-
ratl in terms of the data objects (lists or dotted pairs in the examples) used
by the computer; the rest of the procedures were defined in terms of these se-
lector and constructor procedures with no reference to the data objects. Since
the data objects were not specified in advance, we treat the data abstractly
and develop the rest of the procedures using the abstract data. We can then
specify concrete realizations of the data objects (or data structures) to run
the procedures. This is data abstraction.

Exercises

Use the procedures defined in this chapter for rational arithmetic in defining
the following procedures.

FEzercise 3.14: rminus
Define a procedure rminus that takes a rational number as its argument and
returns the negative of that number.

Erercise 3.15: same-sign?
Consider this definition of rpositive?:

(define rpositive?

(lambda (rtl)
(same-8ign? (numr rtl) (denr rtl))))

Define same-sign? so that rpositive? is correct.

Ezercise 3.16: rabs
Define a procedure rabs that takes a rational number and returns its absolute
value.
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4 Data Driven Recursion

4.1 Overview

In this chapter, we continue our study of recursion over the top-level items in
lists. Then we make the extension to recursion over the items in the nested
sublists as well, giving us tree recursion. In certain of our computations, a
return table is built while operations that have yet to be performed wait for
recursive procedure calls to return values. We discuss another way of doing
the computations, called iteration, in which there are no operations waiting
for procedure calls to return values, and hence no return table need be con-
structed. The factorial procedure and Fibonacci sequences are introduced. To
compare the efficiency of various methods for computing them, we investigate
the growth of execution time as the argument grows, demonstrating linear
and exponential growth rates.

4.2 Flat Recursion

We begin with three more examples of recursive procedures, with the recursion
being done over the top-level items in lists. In our examples of recursion
involving lists, we made the recursive step by applying the procedure to the
cdr of the list. The car of the list was then treated as a unit, which is why the
recursion was over the top-level items in the list. We refer to a recursion over
the top-level items of a list as a flat recursion, and we say that the procedure
so defined is flatly recursive or simply a flat procedure.

The first procedure we define is the two-argument version of the Scheme
procedure append, which has as parameters two lists, 1s1 and 1s2 and builds



a list that consists of the top-level items in 1s1 followed by the top-level items
in 1s2. We say that we are appending 1s2 to (the end of) 1s1. For example,

(append ’(a b c) ’(cd)) = (abccd)
(append () ’(a b c)) = (abc)

We define append using recursion on the first list, 1s1. Cdring on 1s1 ulti-
mately produces the base case in which 1s1 is empty. In the base case, when
1s1 is empty. 1s2 is returned. Thus we can begin the definition with the base
case:

(define append
(lambda (1s1 1s2)
(if (null? 1s1)
1s2
.M

To express (append 1s1 1s2) in terms of (append (cdr 1s1) 1s2), observe
that (append (cdr 1s1) 1s2) differs from (append 1s1 1s2) only in the
absence of the first top-level item in 1s1. For example, if 1s1is (a b ¢) and
1s2 is (d e), then (append (cdr 1s1) 1s2) gives us (b ¢ d e). and only
(car 1s1) remains to be included. Thus when 1s1 is not empty, (append
1s1 1s2) is the same as (cons (car 1s1) (append (cdr 1s1) 1s2)). We
can therefore complete the definition of append.

Program 4.1 append

(define append
(lambda (1s1 1s2)
(if (null? 1s1)
182
(cons (car 1s1) (append (cdr 1s1) 1s2))))) .

Another procedure often used is the Scheme procedure reverse, which
takes a list as its argument and builds a list consisting of the top-level items
in its argument list taken in reverse order. For example,

(reverse '(1 23 45)) = (54321)
(reverse *((1 2) (3 4) (5 6))) = ((56) (34) (12))
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We again use recursion and look at what reverse does to the cdr of the list
1s. In the first example above,

(reverse ’(2 34 5)) = (564 3 2)

To get reverse of (1 2 3 4 5) from (5 4 3 2), we must put the 1 into the
last position in the list. We can do this with the procedure append if we make
the 1 into a list (1) and then append (1) to the end of (5§ 4 3 2). This is
the key to writing the definition of the procedure reverse.

We take the empty list as the base case and note that if we reverse the
items in the empty list, we still have the empty list. Thus we can begin the
definition with the terminating condition, which says that if the list is empty,
the empty list 1s returned.

(define reverse
(lambda (1s)
(if (null? 1s)
Q)
. )))

To get (reverse 1s) from (reverse (cdr 1s)), we must append the list

that 1s the value of (reverse (cdr 1s)) to the front of the list that is the
value of (1ist (car 1s)). We then complete the definition with

Program 4.2 reverse

(define reverse
(lambda (1s)
(if (null? 1s)
'O
(append (reverse (cdr 1s)) (list (car 1s8))))))

A list of numbers (or n-tuple) is said to be sorted in increasing order if each
number in the list is less than or equal to the number following it in the list.
For example, (2.3 4.7 5 8.1) is sorted in increasing order. If we have two
lists, each sorted in increasing order, we can merge them into a single list in
increasing order. For example, if the list given above is merged with the list
(1.7 4.7), we get the list (1.7 2.3 4.7 4.7 5 8.1).

Let us now write a procedure merge, which takes two n-tuples, sorted-
ntpli and sorted-ntpl2, which have already been sorted in increasing order,
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and builds the list obtained by merging them into one sorted n-tuple. If either
list is empty, merge returns the other list. Otherwise we compare the car of
the lists and cons the smaller one onto the list obtained by merging the rest
of the two lists. This analysis leads to the following definition:

Program 4.3 merge

(define merge
(lambda (sorted-ntpll sorted-ntpl2)
(cond :
((null? sorted-ntpll) sorted-ntpl2)
((null? sorted-ntpl2) sorted-ntpll)
((< (car sorted-ntpll) (car sorted-ntpl2))
(cons (car sorted-ntpli)
(merge (cdr sorted-ntpl1l) sorted-ntpl2)))
(else (cons (car sorted-ntpl2)
(merge sorted-ntpll (cdr sorted-ntpl2)))))))

We shall use merge in Chapter 10 when we discuss the sorting of lists.

The definition of reverse used the procedure append, which was defined
earlier. It does not matter which was defined first, as long as both are defined
when the procedure reverse is invoked.

The test of whether a nonnegative integer is even or odd gives us another
good example of one procedure using another in its definition. There are many
more direct ways of defining the predicates even? and odd?, but the one we
present now was chosen because it illustrates how each of two procedures
invokes the other in its definition. We use the fact that an integer 1s even if
its predecessor is odd and odd if its predecessor is even. Starting with any
nonnegative integer, reducing it successively by 1 will eventually bring it to
0, which 1s even. This analysis leads us to the following definitions:

Program 4.4 even?

! (define even?

;‘ (lambda (int)

f (if (zero? int)

Z #t

} (0dd? (subl int)))))
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and

Program 4.5 odd?

(define odd?
(lambda (int)
(if (zero? int)
#f
(even? (subl int)))))

In the definition of the procedure even?, the procedure odd? is called, and in
the definition of 0dd?, the procedure even? is called. This is an example of
mutual recursion in which each procedure calls the other. The two procedures
are said to be mutually recursive.

The procedure remove-1ist defined in Chapter 2 removed the first top-level
occurrence of an item from a list of items. Let us now define a procedure
remove that removes all top-level occurrences of item from a list 1s. As
before, the recursion will be flat, but now we continue the recursion until all
top-level occurrences of item have been removed from 1s. The base condition
1s (null? 1s), and when it is true, the empty list is returned. Thus we begin
our definition with:

(define remove
(lambda (item 1s)
(cond
((null? 1s8) ’0))
.M

Next, if 1s is not empty, (remove item (cdr 1s)) is exactly the same as
(remove item 1s) when the first item in 1s is item, for that item is removed.
On the other hand, when the first item in 1s is not item, then we must cons
it onto (remove item (cdr 1s)) in order to get (remove item 1s). Thus
we complete the definition, which is presented in Program 4.6.

The definition of remove differs from that of remove-1st in the middle
clause of the cond expression. In remove-1st the recursion stopped when the
first occurrence of item was found, whereas in remove the recursion continues.
This difference is typical of what we see if we compare the definitions of
procedures that stop after the first occurrence of an item to those that continue
to the end of the list. The procedure remove uses equal? to test for sameness.
You could write a version named remq that uses eq? to test for sameness and
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Program 4.6 remove

(define remove
(lambda (item 1s)
(cond
((null? 1s) °0))
((equal? (car 18) item) (remove item (cdr 1s)))
(else (cons (car 1ls) (remove item (cdr 1s)))))))

a version named remv that uses eqv? to test for sameness. The exercises
contain other procedures involving flat recursion that go to the end of the
lists instead of stopping after the first occurrence of a given item.

Exercises

FEzercise 4.1: insert-left

Define a procedure insert-left with parameters new, old, and 1s that builds
a list obtained by inserting the item new to the left of each top-level occurrence
of the item old in the list 1s. Test your procedure on:

(insert-left ’z ’a ’(abaca)) = (zabzacz a)
(insert-left 0 1 °(0 1 0 1)) = (00100 1)
(insert-left ’dog ’cat ’(my dog is fun)) = (my dog is fun)
(insert-left ’two ’one ’()) = ()

Ezercise 4.2: insert-right

Define a procedure insert-right with parameters new, old, and 1ls that
builds a list obtained by inserting the item new to the right of each top-level
occurrence of the item old in the list 1s. Test your procedure on:

(insert-right ’z ’a ’(abaca)) = (azbazcaz)
(insert-right 0 1 ’(0 1 0 1)) = (0100 10)
(insert-right ’dog ’cat ’(my dog is fun)) = (my dog is fun)
(insert-right ’two ’one *()) = ()

Ezercise 4.3: subst

Define a procedure subst with parameters new, old, and 1s that builds a list
obtained by replacing each top-level occurrence of the item old in the list 1s
by the item new. Test your procedure on:
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(subst ’z ’a ’(abaca)) = (zbzc2z)

(subst 01 (010 1)) = (000 0)

(subst ’dog ’cat ’(my dog is fun)) == (my dog is fun)
(subst ’two ’one '()) = ()

Ezercise 4.4: deepen-1
Define a procedure deepen-1 with parameter 1s that wraps a pair of paren-
theses around each top-level item in 1s. Test your procedure on:

(deepen-1 ’(a b c d)) = ((a) (b) (c) (d))
(deepen-1 ’((a b) (c (d e)) £)) = (((ab)) ((c (de))) (£))
(deepen-1 () = (O

4.3 Deep Recursion

In this section, we consider recursion over all the sublists of a list. We say
that the sublist (b ¢) is nested in the list (a (b ¢)). It is convenient to have
some way of describing how deep the nesting is. If an item is not enclosed by
parentheses, that item has nesting level 0. For example, the item bird has
nesting level 0. The elements of a list such as (a b ¢) have nesting level 1.
Thus b has nesting level 1 while the whole list (a b ¢) has nesting level 0.
Then each additional layer of parentheses adds 1 to the nesting level, so that
the nesting level of the item ¢ in (a (b (¢ d))) is 3. The objects in the list
that have nesting level 1 are the top-level objects of the list. The top-level
objects in the list (a (b ¢) (d (e £))) are a, (b ¢), and (d (e £)).

We define a procedure count-all with parameter 1s that counts those
items in the list 1s that are not pairs. For example

. (count-all ’((ab) ¢ () ((d (e))))) => 6
. (count-all ’(() OO O)) = 3

. (count-all " ((0)))) = 1

. (count-all ’()) = 0

oW N e

To simplify our discussion, we use the adjective atomic to describe an item
that is not a pair. In this case, all of the atomic items in the list were counted,
not just the top-level items. Since the empty list is not a pair, the empty lists
that are included as items within the lists of Examples 1, 2, and 3 are counted
as atomic items in the lists.
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The base case for the recursion is the empty list, for in that case, count-all
returns zero. Thus the definition begins with:

(define count-all
(lambda (1s)
(cond
((null? 1s) 0)
D))

If 1s is not empty, we proceed as we did in our previous examples and consider
how we can get (count-all 1s) from (count-all (cdr 1s)). The two
differ by the number of atomic items in (car 1s). If (car 1s) is atomic,
then (count-all 1s) has a value that is just one greater than the value of
(count-all (cdr 1s)). Thus we can continue the definition with:

(define count-all
(lambda (1s)
(cond
((null? 1s) 0)
((not (pair? (car 1s))) (addl (count-all (cdr 1s))))
D))

When (car 1s) is a pair (as is the case in Examples 1 and 3), we must count
the atomic items in (car 1s) and add that amount to the value of (count-
all (cdr 1s)) to get the value of (count-all 1s). Thus we complete the
definition with:

Program 4.7 count-all

(define count-all
(lambda (18)
(cond
((null? 1s) 0)
((not (pair? (car 1s))) (addl (count-all (cdr 1s))))
(else (+ (count=-all (car 1ls)) (count-all (cdr 1s)))))))

In fact, we can combine the last two cond clauses if we write the definition as
follows:
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(define count-all
(lambda (1s)
(cond

((null? 1s) 0)

(else (+ (if (pair? (car 1s))
(count-all (car 1s))
1)

(count-all (cdr 1s)))))))

The recursion described differs from flat recursion in that when the car of the
list is a pair, we apply the procedure being defined both to the car and to the
cdr of the list. In flat recursion, the procedure being defined was applied only
to the cdr of the list. When the recursion is over all of the atomic items of a
list, so that in the recursive step the procedure is applied to the car of the
list and to the cdr of the list, we call it a deep recursion. A procedure defined
using a deep recursion will be referred to as a deeply recursive procedure or
simply a deep procedure to distinguish it from a flat procedure. Deep recursion
is also called tree recursion.

Before leaving the definition of count-all, we should observe that we could
have avoided the use of the not in the second cond clause by changing the
order in which we considered the last two cases. That would give us the
definition:

(define count-all
(lambda (1s)
(cond
((null? 1s) 0)
((pair? (car 1s))
(+ (count-all (car 1s)) (count-all (cdr 1s))))
(else (+ 1 (count-all (cdr 1s)))))))

Many of the flat procedures defined earlier have analogs that are deep pro-
cedures. To illustrate this, we consider the procedure remove-all, which is
analogous to remove. The procedure remove-all removes all occurrences of
an item item from a list 1s. For example,

(remove-all ’a '((a b (c a)) (b (a c) a))) = ((b (c)) (b (c)))

The base case is the empty list, and when 1s is empty, the empty list is
returned. Thus we begin the definition of remove-all with:
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(define remove-all
(lambda (item 1s)
(cond
((null? 1s) ’(Q))
)

We next express (remove-all item 1ls) in terms of (remove-all item
(cdr 1s)). If (equal? (car 1s) item) returns true, then (remove-all
item 1s) is the same as (remove-all item (cdr 1ls)), and we have:

(define remove-all
(lambda (item 1s)
(cond
((null? 1s) Q)
((equal? (car 1s) item) (remove-all item (cdr 1s)))

- )))

If (car 1s) is a pair that is not the same as item, then we remove all occur-
rences of item from (car 1ls) and cons the result onto (remove-all item
(cdr 1s)). Thus,

(define remove-all
(lambda (item 1s)
(cond
((null? 1s) Q)
((equal? (car 1ls) item) (remove-all item (cdr 1s)))
((pair? (car 1s))
(cons (remove-all item (car 1ls)) (remove-all item (cdr 1s))))

- ))

Finally, if (car 1s) is atomic and is not the same as item, we must cons it
back onto (remove-all item (cdr 1s)) in order to get (remove-all item
1s). We wrap up the definition in Program 4.8. We can combine the last two
cond clauses if we rewrite the definition as follows:

(define remove-all
(lambda (item 1s)
(cond
((mull? 1s8) Q)
((equal? (car 1s) item) (remove-all item (cdr 1s)))
(else (cons (if (pair? (car 1s))
(remove-all item (car 1s))
(car 1s))
(remove-all item (cdr 1s)))))))
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Program 4.8 remove-all

(define remove-all
(lambda (item 1s)
(cond

((null? 1s) ’Q))
((equal? (car 1ls) item) (remove-all item (cdr 1s)))
((pair? (car 1s))
(cons (remove-all item (car 1ls)) (remove-all item (cdr 1s))))
(else (cons (car 1s) (remove-all item (cdr 1s)))))))

In this example, we again see that when (car 1s) is a pair not equal to item,
the procedure remove-all is applied recursively to both the car and the
cdr of 1s. Thus remove-all displays this characteristic behavior of deeply
recursive procedures.

We used equal? to test for sameness in the definition of remove-all. If
the arguments to which item is bound are always symbols, we can use eq? to
test for sameness. In this case, we know that the item that is the same as the
symbol we are removing is never a pair, so it is expedient to test for pair?
first. We can write the definition of remg-all as shown in Program 4.9. We
can similarly define remv-all, which uses eqv? in place of eq?.

Program 4.9 remg-all

(define remq-all
(lambda (symbl 1s)
(cond
((null? 18) Q)
((pair? (car 1s))
(cons (remg-all symbl (car 1s)) (remg-all symbl (cdr 1s))))
((eq? (car 1s) symbl) (remq-all symbl (cdr 1s)))
(else (cons (car 1ls) (remq-all symbl (cdr 1s)))))))

When the flat procedure reverse is applied to a list, we get a new list with
the top-level objects in reverse order. Thus,

(reverse ’(a (b c) (d (e £)))) => ((d (e £)) (b c) a)

We can also define a procedure reverse-all that not only reverses the order
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of the top-level objects in the list but also reverses the order of the objects at
each nesting level with the sublists. We would then have:

(reverse-all ’(a (b ¢c) (d (e £)))) = (((f e) d) (c b) a)

For the base case, the list is empty, and (reverse-all ’()) returns the
empty list. Thus the definition begins with:

(define reverse-all
(lambda (1s)
(cond
((null? 1s) Q)
. )))

To carry out the recursion, we build (reverse-all 1s) from (reverse-all
(cdr 1s)). In the latter, all of the elements of (reverse-all (cdr 1ls))
are already in the correct order. We have to see how to include the items of
(car 1s). If (car 1s) is a pair, we have to reverse its elements and place
them at the end of (reverse-all (cdr 1s)) with the procedure append.
Thus we have:

(define reverse-all
(lambda (1s)
(cond
((null? 1s) Q)
((pair? (car 1ls))
(append (reverse-all (cdr 1s))
(list (reverse-all (car 1s)))))

e D))

In the remaining case, (car 1s) is not a pair, so we merely place it at the
end of (reverse-all (cdr 1s)).

(define reverse-all
(lambda (1s)
(cond

((null? 1s) ’Q))

((pair? (car 1s8))

(append (reverse-all (cdr 1s))
(list (reverse-all (car 1s)))))

(else

(append (reverse-all (cdr 1s))
(list (car 18)))))))
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Once again, in this recursion we see the typical form of a deep recursion. We
applied reverse-all to both the car and the cdr of the list in the second
cond clause.

It is instructive to look back at this definition of reverse-all and observe
the similarity between the two alternatives that begin with append in the
last two cond clauses. They differ only in the application of reverse-all
to (car 1s) in the last line. Because of this similarity, we can combine the
two append expressions into one expression by putting the conditional branch
after (reverse-all (cdr 1s)). We get the following version of the definition
of reverse-all:

Program 4.10 reverse-all

(define reverse-all
(lambda (1s)
(if (null? 1s)
X0)
(append (reverse-all (cdr 1s))
(list (if (pair? (car 1s))
(reverse-all (car 1s))

(car 1s)))))))

In this section, we have seen how to write deeply recursive procedures.
These have the characteristic property that a recursive step applies the pro-
cedure being defined to both the car and the cdr of the list.

Exercises

Ezercise /.5: subst-all, substq-all
Define a procedure subst-all with call structure (subst-all new old 1s)
that replaces each occurrence of the item old in a list 1s with the item new.

Test your procedure on:

(subst-all ’z ’a ’(a (b (a ¢)) (a (d a))))

= (z (b (z ¢)) (z (d 2)))
(subst-all 0 ’(1) ’(((1) (0)))) = ((0 (0)))
(subst-all ’one ’two ’()) = ()

Also define a procedure substg-all in which the parameters new and old are
only bound to symbols, so that eq? can be used for the sameness test.
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Ezercise 4.6: insert-left-all

Define a procedure insert-left-all with call structure (insert-left-all
new old 1ls) that inserts the item new to the left of each occurrence of the
item old in the list 1s. Test your procedure on:

(insert-left-all ’z ’a ’(a ((b a) ((a (c))))))

=> (z a ((bza) ((za(c))))
(insert-left-all ’z ’a ’(((2)))) = (((z a)))
(insert-left-all ’z ’a ’()) => ()

Ezercise {.7: sum-all
Define a procedure sum-all that finds the sum of the numbers in a list that
may contain nested sublists of numbers. Test your procedure on:

(sum-all *((1 3) (5 7) (9 11))) = 36
(sum-all (1 (3 (5 (7 (9)))))) = 25
(sum-all ’()) = 0

4.4 Tree Representation of Lists
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There is a convenient way of thinking of a list graphically as a tree that has
its root at the top and grows by branching downward. The original list is
a node that is located at the root. Each top-level object in the list forms a
new node connected to the root node by a branch. Each sublist itself then
becomes the root of a subiree, and the tree grows downward. For example,
the tree representing the list (a (b ¢ d) ((e £) g)) is given in Figure 4.11.
Each item or sublist of the original list is a node of this tree. Each sublist is
itself the root of a subtree of the original tree. Thus ((e f) g) corresponds
to the subtree given in Figure 4.12.

An item at the lower end of a branch that is not the top end of another
branch is called a leaf of the tree. We can readily see how deeply an item
is nested in the list by looking at its nesting level in the tree. For example,
in Figure 4.11, the leaf a is at nesting level 1 and the leaf e at nesting level
3. We say that the depth of a list is the maximum of the nesting levels of all
of its items. The list (a (b ¢ d) ((e £) g)) has depth 3. With the tree
growing downward, we can say that the depth of a list is the nesting level of
its lowest leaves.

To traverse a tree, that is, to move down the tree from one node to another,
we use the procedures car and cdr. Taking the car of a list corresponds to
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(a (b cd) ((e f) g))

| }K %
b c d (e f)

eAf

Figure 4.11 Tree representation of the list (a (b ¢ d) ((e £) g))

((e f) g)

(e f) g

Figure 4.12 The subtree ((e £) g)

moving down one node on the leftmost branch of the tree. Taking the cdr
of a list corresponds to considering the tree that is left when the leftmost
branch is omitted. Thus when taking the car, we move down one level on
the tree. When taking the cdr, we stay at the same level of the tree. With
an appropriate sequence of car and cdr applications, we can reach any node
of a tree. For example, in the tree in Figure 4.11, the node (e f) is reached
using caaddr.

We define a procedure depth that takes item as its argument and returns
its depth. The item may be either atomic or a list. If item is atomic, we
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Program 4.13 depth

r
‘ (define depth
| (lambda (item)
! (if (not (pair? item))
0
} (max (add1 (depth (car item))) (depth (cdr item))))))

assign it depth 0. Since the empty list is atomic, it also has depth 0. We take
as the base case for the recursive definition the test (not (pair? item)), for
that corresponds to being at a leaf of the tree. We begin the definition of
depth with:

(define depth
(lambda (item)
(if (not (pair? item))
0
- )))

The depth of the whole tree is the larger of the depth of its leftmost branch
and the depth of the rest of its branches. Taking the car of the list moves
down one node on the leftmost branch, so that the depth of the whole leftmost
branch is one greater than the depth of (car item). The depth of the rest
of the branches is just the depth of (cdr item). This gives us the definition
displayed in Program 4.13.

The procedure depth gives us the maximum number of levels in a tree
representing its argument. We next define a procedure that gives us a list of
the leaves on the tree as a list of atomic items, where each leaf is raised out
of its sublist to be at top level. We call this procedure flatten. When we
apply it to the list (a (b ¢ d) ((e £) g)),weget (a b cd e f g). The
parameter of the procedure flatten will be 1s. The base case is the empty
list, which flattens into itself. Thus we begin the definition of flatten with:

(define flatten
(lambda (1s)
(cond
((null? 1s) *Q))
)

When 1s is not empty, we build (flatten 1ls) from (flatten (cdr 1s))
by first determining whether (car 1s) is a pair. If it is, we flatten (car 1s)
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and append the already flattened (flatten (cdr 1s)) to it to get (flatten
1s). This gives us

(define flatten
(lambda (1s)
(cond
((null? 1s) ’Q))
((pair? (car 1s))
(append (flatten (car 1ls)) (flatten (cdr 1s))))
. )))

In the remaining case, (car 1ls) is atomic, so we cons it onto (flatten
(cdr 1s)), and we complete the definition with

Program 4.14 flatten

(define flatten
(lambda (1s)
(cond
((null? 1s) ’())
((pair? (car 1ls))
(append (flatten (car 1ls)) (flatten (cdr 1s))))
(else (cons (car 1ls) (flatten (cdr 1s)))))))

We have discussed flat and deep recursion. A flat recursion is over the
top-level items of a list. This is equivalent to a recursion over the nodes of
the corresponding tree, which are one level below the root. A deep recursion
is over all of the items in the list. This is equivalent to a recursion over the
leaves of the corresponding tree. That is why deep recursion is also referred
to as tree recursion.

We conclude this section with an example of a procedure that removes an
item from a list but only the first (leftmost) occurrence of that item in the
list. Let us name the procedure remove-leftmost and look at a couple of
examples.

1. (remove-leftmost ’b ’(a (b ¢c) (c (b 2))))
=> (a (c) (c (b a)))
2. (remove-leftmost ’(c d) ’((a (b ¢)) ((c d) e)))
=> ((a (b c)) (o))
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In Example 1, the first b that occurs in (b c¢) is removed, but the second b
that occurs in (¢ (b a)) is not removed. We denote the item to be removed
by item and the list by 1s. The base case is again the empty list. When 1s
is empty, the empty list is returned. Thus we begin the definition with the
terminating condition:

(define remove-leftmost
(lambda (item 1s)
(cond
((null? 1s) *())
DD

In order to take care of arguments like that in Example 2, we use equal? as
the sameness predicate. If (car 1s) is the same as item, the answer is (cdr
1s), so we continue the definition with:

(define remove-leftmost
(lambda (item 1s)
(cond
((null? 1s) *())
((equal? (car 1s) item) (cdr 1s))
. )))

If (car 1s) is atomic and is not the same as item, the answer is obtained
by consing (car 1s) to the list obtained by removing the leftmost item from
(cdr 1s). Thus we get:

(define remove-leftmost
(lambda (item 1s)
(cond
((null? 1s) ’Q))
((equal? (car 1s) item) (cdr 1s))
((not (pair? 1s))
(cons (car 1s) (remove-leftmost item (cdr 1s))))

)]

We still have the case in which (car 1s) is a nonempty list not equal to
item. If we analyze the recursion by looking at

(remove-leftmost item (cdr 1ls))

we see that we get a list with the first occurrence of item removed; but we
do not know whether this was the first occurrence of item in 1s. We want to
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Program 4.15 remove-leftmost

(define remove-leftmost
(lambda (item 1s)
(cond

((null? 1s) '())

((equal? (car 1ls) item) (cdr 1s))

((not (pair? (car 1s)))

(cons (car 1s) (remove-leftmost item (cdr 1s))))
((member-all? item (car 1s))

(cons (remove-leftmost item (car 1s)) (cdr 1s)))
(else (cons (car 1s) (remove-leftmost item (cdr 1s)))))))

Program 4.16 member-all?

(define member-all?
(lambda (item 1s)
(if (null? 1s)
#f
(or (equal? (car 1s) item)
(and (not (pair? (car 1s)))
(member-all? item (cdr 1s)))
(and (pair? (car 1s))
(or (member-all? item (car 1s))
(member-all? item (cdr 1s))))))))

remove only the first occurrence of item in 1s, and its first occurrence may
not be in (cdr 1s). In order to use this kind of argument, we must first
check to see whether the first occurrence of item in 1s is in (car 1s). We
do that with the helping procedure member-all?, a deeply recursive version
of member?, that we define after this definition. If item is in (car 1s), we
cons (remove-leftmost item (car 1s)) onto (cdr 1s) to get the answer.
Otherwise, we cons (car 1s) onto (remove-leftmost item (cdr 1ls)) to
get the answer. Thus we complete the definition as shown in Program 4.15.
The definition of member-all? is presented in Program 4.16.

A look at the definition of remove-leftmost reveals that the consequent in
the third cond clause and the alternative in the else clause are the same. We
can eliminate the repetition by interchanging the order of the tests we make.
The new version is given in Program 4.17.
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Program 4.17 remove-leftmost

(define remove-leftmost
(lambda (item 1s)
(cond
((null? 1s) ’Q))
((equal? (car 1s) item) (cdr 1ls))
((and (pair? (car 1s)) (member-2117 item (car 1s)))
(cons (remove-leftmost item (car 1ls)) (cdr 1ls)))
(else (cons (car 1s) (remove-leftmost item (cdr 1s)))))))

The recursion in the procedure remove-leftmost differs from the list re-
cursions done earlier in that we have to test whether itemis in the car of the
list before proceeding to build the answer. This means cdring through the
car of the list twice in some cases. We shall return to the consideration of
remove-leftmost in Chapter 5, where a definition is presented that avoids
this double cdring. We have now seen various examples of both flat and deep
(tree) recursions.

Exercises

Ezercise 4/.8: count-parens-all

Write the definition of a procedure count-parens-all that takes a list as its
argument and counts the number of opening and closing parentheses in the
list. Test your procedure on:

(count-parens-all ’()) = 2
(count-parens-all ’((a b) c)) = 4
(count-parens-all ’(((a () b) c) O ((d) e))) = 14

Ezercise {.9: count-background-all

Define a procedure count-background-all that takes as its arguments item
and a list 1s and returns the number of items in 1s that are not the same
as item. Use the appropriate sameness predicate for the data shown in the
examples. Test your procedure on:

(count-background-all ’a ’((a) b (c a) d)) = 3

(count-background-all ’a ’((((b (((a)) ¢)))))) = 2
(count-background-all ’'b ’()) = 0
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Program 4.18 fact

(define fact
(lambda (n)
(if (zero? n)
1
(x n (fact (subl n))))))

FEzercise 4.10: leftmost
Define a procedure leftmost that takes a nonempty list as its argument and
returns the leftmost atomic item in the list. Test your procedure on:

(leftmost '((a b) (c (d e)))) = a
(leftmost ’((((c ((e £) g) h))))) = ¢
(leftmost (() a)) = ()

Ezercise 4.11: rightmost
Define a procedure rightmost that takes a nonempty list as its argument and
returns the rightmost atomic item in the list. Test your procedure on:

(rightmost '((a b) (d (c d (f (g h) i) m n) u) v)) = v
(rightmost ’((((((b (c)))))))) => ¢
(rightmost ’(a ())) = ()

4.5 Numerical Recursion and Iteration

Recursion can also be used in numerical calculations. We consider several
examples in this section. We begin with the procedure fact, which takes
a nonnegative integer n as its parameter and returns its factorial—that is,
the number multiplied successively by all the positive integers less than that
number. For example, (fact 5) has the value 5 x 4 x 3 x 2 x 1 = 120. We
derive this procedure using much the same kind of reasoning as we used with
lists, but instead of using cdr to reduce the size of the argument, we use subi.
Eventually the successive applications of sub1 to the argument will reduce it
to 0. We use the convention that the factorial of 0 is 1, so that (fact 0) is
1. The recursive step in this case is done by considering (fact (subi n)),
which gives us the successive products of ali of the positive integers less than
n. To get (fact n) from (fact (subl n)), all we have to do is multiply it
by n. From this, we get the definition for fact in Program 4.18.
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When the procedure fact is applied to a number, say 3, a return table
is built much the same as the one that was built for the procedure swapper
in Chapter 2. The value of (fact 3) is denoted by answer-1. It is 3 times
(fact 2), so the evaluation of answer-1 must wait until answer-2is evaluated,
where answer-2is (fact 2). Thus the first two rows of the return table are:

answer-11s (x 3 answer-2)
answer-2 is (fact 2)

When we evaluate (fact 2), the return table becomes

answer-1 15 (x 3 answer-2)
answer-2is (x 2 answer-3)
answer-3 is (fact 1)

When we evaluate (fact 1), the return table becomes

answer-11s (x 3 answer-2)
answer-21s (x 2 answer-3)
answer-31s (x 1 answer-4)
answer-4 is (fact 0)

where (fact 0) is 1. Now that we have found that answer-4 is 1, we work our
way up the table, replacing each answer on the right side by the value obtained
for it in the row below. This process is known as backward substitution. This
gives us:

answer-4 s
answer-3 is
answer-2 1s
answer-1 is

DN ==

so (fact 3) is 6. In finding (fact 3), the return table has four rows. In the
last row, the value of the variable on the left was obtained directly from the
terminating condition of the program. Then each of the other three variables
on the right was computed with a multiplication, so there were three multi-
plications required to complete the computation of (fact 3). The building
up of the return table and the subsequent backward substitution may be
summarized in the following:
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(fact 3)

(x 3 (fact 2))

(x 3 (x 2 (fact 1)))

(x 3 (x 2 (x 1 (fact 0))))
(x 3 (x 2 (x11)))

(x 3 (x 2 1))

(x 3 2)

6

In general, to find the factorial of the number n, there would be n + 1
invocations of procedure fact. Thus the return table has n + 1 rows. In the
last row, the value on the right is found to be 1—the value returned when the
terminating condition is true. In each of the other n rows of the return table,
a multiplication is performed to find the value on the right, making a total of
n multiplications to complete the computation.

We observed that a return table is constructed when we compute the fac-
torial using the recursive procedure fact. When the terminating condition
becomes true, the backward substitution must be performed on the return
table to get the answer. When the computation requires the construction of
a return table and backward substitution to get the answer, we say that the
computation is using a recursive process. We now look at another way of
defining a procedure to compute the factorial of a number that does not build
a return table. Instead, at each recursive invocation of the procedure, the
computations are performed without having to wait for other needed values,
and when the terminating condition is true, the answer is already computed
and is returned. In general, when the computer carries out a computation
without building a return table, so that backward substitution is not neces-
sary, the computational process is called an iterative process.

We have seen that in programs like the one written for fact, there is an
operation waiting for the value returned by the recursive procedure call. The
computational process so defined is not implemented as an iterative process.
On the other hand, we saw several iterative procedures, such as member?, in
which no operations waited for values returned by the recursive procedure
calls. In some programming language implementations, when an iterative
procedure is executed, it is still possible that a return table is built up and later
reduced by backward substitution. However, in Scheme, when a procedure is
intended to be iterative, the computation is always implemented in such a
way that no return table is needed.

To implement the computation of the factorial procedure as an iterative
process, we define a procedure named fact-it that has two parameters: n,
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which is the integer whose factorial we are computing, and acc, another in-
teger, called an accumulator, which stores the answer at each step. Here is
how it works in computing the factorial of 3. Initially, n is bound to 3 and
acc is bound to 1. On each recursive invocation of fact-it, n is reduced by
1, and acc is replaced by its old value multiplied by the previous value of n.
When the base case (zero? n) is true, acc is equal to the answer 6. This is
illustrated in the following table. The initial values of n and acc are in the
first row. The entries in the first column decrease by 1 while each entry in the
second column is computed by multiplying the two entries in the preceding
row.

S =N Wy
1= - SO

To define fact-it, we begin with the base case for which n is zero. When
(zero? n) is true, the accumulator has the answer, so acc is returned. Thus
we begin the definition with:

(define fact-it
(lambda (n acc)
(if (zero? n)
acc

- )))

If n is not zero, we call fact-it with n reduced by one and the accumulator
multiplied by n, so the definition is completed with:

Program 4.19 fact-it B

]

(define fact-it
(lambda (n acc)
(if (zero? n)
acc
(fact-it (subl n) (* acc n)))))

Let’s walk through an invocation (fact-it 3 1), writing the successive
recursive invocations of fact-it, and finally writing the value 6 that is re-
turned:
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(fact-it 3 1)
(fact-it 2 3)
(fact-it 1 6)
(fact-it 0 6)
6

In this computation, no return table is built up waiting for uncomputed values
to be returned. The accumulator is bound to the answer when the terminating
condition is true, and the answer is returned without any backward substitu-
tion. The fact that there is no waiting operation on each recursive invocation
of fact-it is seen when we look at the last line of the definition. After the
procedure call, there is no further operation to be done. Compare this last
line with the last line,

(* n (fact (subl n)))

in the definition of fact. We see that after the procedure fact is called, the
result must still be multiplied by n. When fact-it is called, no additional
operations are performed on the result. Thus fact-it runs as an iterative
process, but fact does not. When we trace this iterative procedure, we see
that the computation does not build up a return table of operations waiting
for values to be returned.

If we count the number of times we call the procedure fact-it and the
number of multiplications, we see that the total number of multiplications
is the same for the procedures fact-it and fact. However, the backward
substitution in the return table, which is built up when evaluating fact,
requires more memory space than is needed when evaluating the iterative
fact-it, which needs no return table. In the next section, we look at another
example, the computation of the Fibonacci numbers, where the difference is
more dramatic.

To compute the factorial of 3, we invoke (fact-it 3 1). If we do not like
to write the extra argument for the accumulator, we can define an iterative
version of fact that takes only one argument by writing

(define fact

(lambda (n)
(fact-it n 1)))
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Exercises

Ezercise 4.12

Enter the procedure fact into the computer and compute (fact n) forn =
10, 20, 30, 40, 50 and 100. You will have an opportunity to observe how
the implementation of Scheme you are using displays large numbers.

FEzercise /.13
What happens when you invoke (fact 3.5)7

Ezercise 4.14: harmonic-sum-it
Define an iterative procedure harmonic-sum-it that sums the first n terms
of the harmonic series

R
2 3 4 5

Test your procedure by summing the harmonic series for 10 terms, 100 terms,
1000 terms, and 10,000 terms. It can be shown that

1 1 1 1 1
= Coodl = 2 < = = DN W~
2+ 9 +n_logn_1+2+3+ +n—1

Lo =

where log n is the natural logarithm of n. Using the Scheme procedure log,
verify this inequality for the values of the sums computed above.

4.6 Analyzing the Fibonacci Algorithm
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The following problem appeared in a textbook written in 1202 by the Italian
mathematician Leonardo of Pisa, who was the son of Bonacci, so his nickname,
taken from “filius Bonacci,” became Fibonacci. How many pairs of rabbits are
born of one pair in a year? It was assumed that every month a pair of rabbits
produces another pair and that rabbits begin to bear young two months after
their own birth.

The sequence of numbers that give the number of pairs of rabbits each
month is 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. This tells us that
at the end of one month, the first pair had a pair of offsprings, so we have
two pairs. At the end of two months, only one pair is old enough to have
offsprings, so we have three pairs. At the end of three months, the first pair
of offsprings is old enough to bear young, so this time we get two new pairs,
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and we have five pairs altogether. If we continue in this way, we generate
the sequence given above. Observe that each number in the sequence is the
sum of the two numbers preceding it. It has become customary to begin the
sequence with 0, 1, and use the algorithm that says that the next number
is always the sum of the preceding two numbers. The nth number in this
sequence is called the nth Fibonacci number.

We now define a procedure £ib that takes a nonnegative integer n as its
parameter and returns the Fibonacci number corresponding to n. We have
(£fib 0) is 0, (£fib 1) is 1, (£ib 2) is 1, (£fib 3) is 2, and in general, for
n > 1, (fib n) is the sum of (fib (- n 1)) and (£fidb (- n 2)). We now
use this last recursive condition to define the procedure £ib in Program 4.20.

Program 4.20 £ib

(define fib
(lambda (n)
(if (< n 2)
n
(+ (£ib (- n 1)) (£ib (- n 2))))))

(fib 4)
(fib 3) (fib 2)
(fib 2) (fib 1) (fib 1) (fib 0)
(fib 1) (fib 0)

Figure 4.21 Recursion tree for (£ib 4)

To trace how (£ib 4) is evaluated, we make a tree (Figure 4.21) in which

4.6 Analyzing the Fibonacci Algorithm 121



122

the root is labeled (£ib 4). This is evaluated by adding (£ib 3) and (fib
2), so our tree will have two branches, one going to a node (£ib 3) and
the other to a node (£ib 2). Each of these gives rise to two branches, (£ib
3) giving rise to branches to the nodes (£ib 2) and (fib 1), and (£ib 2)
giving rise to branches to the nodes (£ib 1) and (£ib 0). This continues
until all of the leaves are either (£ib 1) or (£ib 0), which are known to be
1 and O, respectively. This tree is an example of a binary tree because each
node that is not a leaf has at most two branches going down from it.

From Figure 4.21, we see that each node corresponds to a procedure call that
is made in evaluating (£ib 4). In this case, there are nine procedure calls.
Each branch point (a node from which two branches originate) corresponds
to an addition, so there are four additions. In a similar way, we can build a
recursion tree for (£ib 5), and we will have fifteen nodes and seven branch
points, hence fifteen procedure calls and seven additions. We suggest that you
draw the recursion trees for (fib 5) and for (£ib 6) to see how large they
are and count the number of procedure calls and additions. It is not difficult
to see from the trees that if (calls-fib n) tells how many procedure calls
there are in computing (£ib n) and (adds-£ib n) tells how many additions
there are in computing (£ib n), then these procedures satisfy the relations

(calls-fib 0) s 1
(calls-fib 1) s 1
(calls-fib n) is (addl (+ (calls-fib (- n 1)) (calls-fib (- n 2))))

and

(adds-fib 0) 1is O
(adds-fib 1) s 0
(adds-fib n) is (addl (+ (adds-fib (- n 1)) (adds-fib (- n 2))))

We get Table 4.22 for these quantities.

n 01 2 3 45 6 7 8 9 10
(£ib n) 0 1 1 2 3 5 81321 34 S5
(calls-fibn) 1 1 3 5 9 15 25 41 67 109 177
(adds-fibn) 0 0 1 2 4 7 12 20 33 54 88

Table 4.22 Count of procedure calls and additions

The number of procedure calls and the number of additions increase so
rapidly because in each procedure call, £ib calls itself twice. This leads to
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accl acc?2

0 N W N » = O
0 O W N -

Table 4.23 Accumulator values for the iterative Fibonacci procedure

inefficiency since the same fib is called with the same arguments a number
of times, so that the different recursive calls repeat each other’s work. In the
tree shown in Figure 4.21, (£ib 2) is invoked twice and (fib 1) is invoked
three times. We next look at an iterative method for computing the Fibonacci
numbers.

A clue to how to set up an iterative process for computing the Fibonacci
numbers is found by observing that it takes the previous two numbers to
compute the next number in the sequence. Thus we have to store two numbers
at each step. We begin by storing the first two Fibonacci numbers, 0 and 1
in accumulators, which we call acc1l and acc2. Thus at the start,

accl acc2
0 1

At each step, acci holds the current Fibonacci number and acc2 holds the
next one. Thus we can describe the algorithm that takes us from one step to
the next as follows:

1. The new value of accl is the same as the previous value of acc2.

2. The new value for acc2 is the sum of previous values of acc1 and acc2.

We apply these rules to extend the table to show the next six steps, as dis-
played in Table 4.23.

We are now ready to define a procedure fib-it that takes three arguments,
a nonnegative integer n, and the two accumulators, acc1 and acc2, and re-
turns the Fibonacci number corresponding to n. There are two ways that we
can use the algorithm given to write the code. In the first method, we can
use the value stored in acc1 (initially 0) to give us the answer. In that case,
one iteration of the algorithm gives us (£ib 1), two iterations give us (£ib
2), and in general n iterations give us (£idb n) for any positive n. In the
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Program 4.24 fib-it

(define fib-it
(lambda (n acci acc2)
(if (=n 1)
acc2
(fib-it (subl n) acc2 (+ accl acc2)))))

second method, we can use the value stored in acc2 (initially 1) to give us
the answer. In this case, one iteration of the algorithm gives us (fib 2), two
iterations give us (£ib 3), and in general, (n — 1) iterations give us (fib n).
The second method is more efficient for getting the value of (fib n). We opt
to implement the second method.

Our iterative procedure £ib-it takes three parameters: the positive integer
n and the two accumulators acc1 and acc2. To implement the algorithm
stated above, we successively replace acc2 by the sum of acc1l and acc2,
and replace acci by the previous value of acc2. Then to compute the nth
Fibonacci number, we must repeat the process (n — 1) times. We use the
variable n as a counter and reduce it by one on each pass. When n reaches 1,
the accumulator acc2 contains the answer. This leads to the definition given
in Program 4.24.

Let’s walk through (fib-it 6 0 1) to see how this works. On successive
passes through the program, the following procedure calls are made:

(£fib-it 6 0 1)
(£ib-it 5 1 1)
(fib-it 4 1 2)
(fib-it 3 2 3)
(£fib-it 2 3 5)
(£fib-it 1 5 8)
8

and the answer is the final value of acc2, which is 8. To compute the sixth
Fibonacci number, we only make six procedure calls and 5 additions. In
general, to compute the nth Fibonacci number, we make n procedure calls
and do n — 1 additions. This is a noticeable improvement over the number
of procedure calls and additions when £ib is invoked. The iterative version,
fib-it, is certainly more efficient and saves a considerable amount of time
in computing the Fibonacci numbers. The ordinary recursive version, £ib, is
less efficient but it does have the advantage of being easier to define directly
in terms of the rule that defines the Fibonacci numbers.
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Again, if we do not want to include the initial values of the accumulators
in each procedure call, we can define the iterative version of £ib as

(define fib
(lambda (n)
(if (zero? n)
0
(£ib-it n 0 1))))

We have seen that some methods of evaluating a given expression may take
more resources than other methods. The study of the efficiency of various
algorithms is called the analysis of algorithms. Let us denote the total re-
sources used in computing an expression that depends on an argument n to
be (res n). In our discussion, £ib depended on the argument n, and we can
define as the resources used the sum of (calls-fib n) and (adds-fib n).
Inspection of the table for (calls-fib n) shows that the following relation
exists between (calls-fib n) and (fib n):

(calls-fib n) = (addl (x 2 (subl (fib (add1l n)))))
Similarly, (adds-fib n) and (fib n) are related by
(adds-fib n) = (subl (fib (addl n)))
so that
(res n) = (addi (* 3 (subl (fib (addi n»)))))

We now derive an estimate for (f£ib n). If you prefer, you can skip to
the formula for (fib n) given at the end of the derivation. We use the
fact that if a procedure satisfies the Fibonacci recurrence relation F(n) =
F(n—1)+ F(n — 2) and the initial conditions F(0) =0 and F(1) = 1, then
F(n) = (£ib n) for all n. We begin by making a rather arbitrary assumption:
that F(n) gets large like some number a raised to the nth power. We then look
for restrictions that can be placed on the number a in order for the function
a™ to satisfy the Fibonacci recurrence relation. If we are lucky enough to find
such conditions that determine a, we have solved the problem of finding a
formula for F(n). Substitution of a™ into the recurrence relation gives us

a® = an—l +an—2
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and dividing through by a”~? gives us the simple relation
a®=a+1

This quadratic equation has the positive root

and the negative root

_(1-vH
=

which are approximately 1.618 and —0.618, respectively.

It is easily verified that since both a™ and b” satisfy the Fibonacci recurrence
relation, then for any pair of numbers A and B, the sum F(n) = Aa"” + Bb"
also satisfies the same recurrence relation. We thus try to find values of A
and B so that F(0) = 0 and F(1) = 1. The constants A and B will now be
evaluated from the fact that

b

F(0)=0=A+B
F(l)=1= Aa+ B}

We find that A = —B = 1/+/5 and that with these values of A and B, F(n)
and (£ib n) are the same for n = 0 and n = 1, and that they both satisfy
the Fibonacci recurrence relation for all n. This means that they are the same
for all n, and we have

(£idb =) = F(n) = %(a" _bn) - %[(l-f-?\/g)n N (1 _2\/§)n]

Thus (£ib n) is somewhat less than 1.77, and (res n) is somewhat less than
TR

In general, we say that the procedure (res n) is of order O(f(n)) for some
function f of n if there is a constant K such that (res n) < K f(n) when n
is sufficiently large. In our case, we can say (res n) = O(1.7") and since it
grows like the nth power of a number greater than 1, we say that (res n)
has ezponential order when computing (£ib n).

On the other hand, the operation count (res n) for computing (£ib-it
n 0 1) is 2n — 1, which is simply O(n). Here the n does not appear in an
exponent, but rather (res n) issimply a constant times n. We say that in this
case, (res n) has linear order. Thus the time required to compute (£ib n)
grows exponentially with n, while the time required to compute (£ib-it n
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Program 4.25 reverse-it

(define reverse-it
(lambda (1s acc)
(if (null? 1s)
acc
(reverse-it (cdr 1ls) (cons (car 1s) acc)))))

0 1) grows linearly with n. We have seen what a dramatic difference this
makes.

In our two examples of iterative programs, we used procedures defined on
numbers. It is also possible to use similar methods to write iterative versions
of some of the list-processing procedures we considered earlier. For example,
consider the procedure reverse, which takes a list of items 1s and returns
a list with the items in reverse order. We can write an iterative version
reverse-it that takes two arguments, a list of items 1s and an accumulator
acc, which is initialized to be the empty list. The code for reverse-it is
given in Program 4.25. We now can obtain the procedure reverse by writing

(define reverse
(lambda (1s)
(reverse-it 1s ’())))

We leave it as an exercise to compare this iterative version with the earlier
recursive version of reverse. If we actually walk through each version with a
simple example, we see that the accumulator already is the answer when 1s is
empty, whereas in the recursive version, we still have to use backward substi-
tution in a return table to get the answer. Furthermore the iterative version
does not use the helping procedure append. Generally, iterative versions tend

to require more arguments.

Exercises

Ezercise /.15

Rewrite the recursive version of the procedure £ib with the line
(vriteln "n = " n)

inserted just below the line (lambda (n). Then compute (£ib 4) and com-
pare the results with the tree in Figure 4.21. Also compute (£ib 5) and (£ib
6) and observe how the number of recursive calls to £ib increases.
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Ezercise 4.16
Rewrite the iterative version of the procedure £ib-it with the line

(vriteln "'n="n ", accl = " accl ", acc2 = " acc2)

inserted just below the line
(lambda (n accl acc2)

Compute (£ib-it 4 0 1) and compare the output with the output for (£ib
4) in the preceding exercise. Do the same for (fib-it 5 0 1) and (£fib-it
6 0 1).

Ezercise 4.17: calls-fib, adds-fib

Write the definitions of the procedures calls-fib and adds-£ib discussed in
this section. Test your procedures on the values given in Table 4.22. Also
evaluate each of these procedures for larger values of n to get an idea of their
rates of growth.

Ezercise 4.18: length-it
Write an iterative version length-it of the procedure length that computes
the length of a list.

Ezercise 4.19: mk-asc-list-of-ints, mk-desc-list-of-ints

Write an iterative procedure mk-asc-list-of-ints that, for any integer n,
produces a list of the integers from 1 to n in ascending order. Then write an
iterative procedure mk-desc-list-of-ints that, for any integer n, produces
a list of integers from n to 1 in descending order.

FEzercise /.20: occurs, occurs-it

Define both recursive and iterative versions of a procedure occurs that counts
the number of times an item occurs at the top level in a list. Call the iterative
version occurs-it. Test your procedures by counting how many times the
item a occurs at top level in each of the following lists:

(abacad)
(bca(ba)c a)
(b (c d))

Data Driven Recursion



5 Locally Defined Procedures

5.1 Overview

When we bind a variable to some value using define, we are able to use that
variable to represent the value to which it is bound either directly in response
to a Scheme prompt or within a program that we are writing. Does this
mean that we have to think of new names for every variable we use when we
write many programs? No. Scheme gives us a mechanism for limiting where
bindings are in effect. In this chapter, we look at ways of binding variables
so that the binding holds only within a program or part of a program. The
main tools for doing this are two special forms with keywords 1et and letrec.
After introducing them, we use them to implement polynomials as a data type
in Scheme. We then apply the polynomial methods we develop to a discussion
of binary numbers, which form the basis of machine computation.

5.2 Let and Letrec

You may have wondered how Scheme knows what value to associate with
various occurrences of a variable. When some value is assigned to a variable,
we may think of that information being stored in a table with two columns: the
left one for variable names and the right one for the associated values. Such
a table is called an environment. A number of variables (such as those bound
to procedures) like +, *, car, and cons are predefined. These definitions are
kept in a table which we call the initial global environment. This initial global
environment is in place whenever you start up Scheme. When a given variable
1s encountered in an expression, Scheme looks through its environment to see
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if the variable has been bound to a value. Naturally, the variable + is bound
to the arithmetic operation we usually associate with the addition procedure,
and so on.

In addition to having the predefined Scheme variables, we have seen how
to use define to bind a variable to a desired value. The expression (define
var val) binds the variable var to the value val. We can again think of the
variables we define ourselves as being placed in a table which we call the user
global environment and when a variable is encountered in an expression, the
global environment (which includes both the user and initial global environ-
ments) is scanned to see if that variable is bound to a value. If a binding
cannot be found, a message is written saying that the variable is unbound in
the current environment. The user global environment remains in effect until
the user exits from Scheme.

Variables are also used as parameters to procedures that are defined by a
lambda expression. For example, in the lambda expression

(lambda (x y) (+ x y))

the variables x and y occurring in the body (+ x y) of the lambda expression
are locally bound (or lambda bound) in the expression (+ x y) since the x and
y occur in the list of parameters of that lambda expression. If we apply the
procedure, which is the value of this lambda expression, to the arguments 2
and 3, as in

((lambda (x y) (+ x y)) 2 3)

we can think of a new table being made, called a local environment, which
1s associated with this procedure call. In this local environment, x is locally
bound to 2 and y is locally bound to 3. Then substituting 2 for x and 3 for
y gives (+ x y) the value 5, and

((lambda (x y) (+ x y)) 2 3)

returns the value 5.
A variable occurring in a lambda expression that is not lambda bound by
that expression is called free in that expression. If we consider the expression

(lambda (f y) (f a (f y 2)))

the variables £ and y are lambda bound in the expression, and the variables
a and z are free in the expression. When the application
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((lambda (f y) (f a (f y z))) cons 3)

is evaluated, the operator (which is the lambda expression) and its two oper-
ands are first evaluated. When the lambda expression is evaluated, bindings
are found for the free variables in a nonlocal environment. Then, with these
bindings for the free variables, the body of the lambda expression is evaluated
with £ bound to the procedure, which is the value of cons, and y bound to
3. If either of the free variables is not bound in a nonlocal environment, a
message to that effect appears when the application is made. On the other
hand, if a is bound to 1 and z is bound to (4) in a nonlocal environment,
then this application evaluates to (1 3 4).

We used the term nonlocal environment in the previous paragraph when
we referred to the bindings of the free variables in the body of a lambda
expression. Those bindings may be found in the global environment or in a
local environment for another lambda expression. This is illustrated by the
following example:

((lambda (x)
((lambda (y)
- xy)
15))
20)

The variable x is free in the body of the inner lambda expression, but its
binding is found in the local environment for the outer lambda expression.
The value of the expression is 5.

In the example

(lambda (x y) (+ x y))

the local bindings hold only in the body (+ x y) of the lambda expression,
and when we leave the body, we can for the moment think of the local en-
vironment as being discarded. The expression (+ x y) is said to be in the
scope of the variable x (and also of y). In general, an expression is said to
be in the scope of a variable x if that expression is in the body of a lambda
expression in which x occurs in the list of parameters.

By looking at a Scheme program, one can tell whether a given expression is
in the body of some lambda expression and determine whether the variables
in that expression are lambda bound. A language in which the scope of the
variables can be determined by looking only at the programs is called lezically
scoped. Scheme is such a language.
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Scheme provides several other ways of making these local bindings for vari-
ables, although we shall later see that these are all ultimately related to
lambda bindings. The two that we discuss here are let expressions and le-
trec expressions. To bind the variable var to the value of an expression val
in the expression body, we use a let expression (which is a special form with

keyword let) with the syntax:

(let ((var wval)) body)

To make several such local bindings in the expression body, say var; is to
be bound to val,, vars to vals, ..., var, to val,, we write

(et ((vary valy) (varg valy) ... (varn valp)) body)

The scope of each of the variables vary, var,y, ..., var, is only body within
the let expression. For example, the expression

(let ((a 2) (b 3))
(+ a b))

returns 5. Here a is bound to 2 and b is bound to 3 when the body (+ a b)
1s evaluated. Another example is

(let ((a +) (b 3))
(a 2 b))

returns 5, since a is bound to the procedure associated with + and b is bound
to 3. Similarly, in the expression

(let ((add2 (lambda (x) (+ x 2)))
(b (* 3 (/2 12))))
(/ b (add2 b)))

the variable add2 is bound to the procedure to which (lambda (x) (+ x 2))
evaluates, which increases its argument by 2, and b is bound to 0.5, and the
whole expression returns 0.2.

The local binding always takes precedence over the global or other nonlocal
bindings, as illustrated by the following sample computation:
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[1] (define a 5) (5] (Qet ((a 5))
(2] (add1 a) (begin
6 (writeln (addl a))
[3] (let ((a 3)) (let ((a 3))
(add1 a)) (writeln (addl a)))
4 (add1 a)))
[4] (addi a) 6
6 4
6

The define expression makes a binding of a to 5. When a is encountered in
(add1 a) in [2], its value is found in the global environment and 6 is returned.
In [3], aislocally bound to 3, and the expression (add1i a) is evaluated with
this local binding to give the value 4. The scope of the variable a in the let
expression is only the body of the let expression. Thus in [4], the value of
the variable a in (add1 a) is again found in the global environment, where
a is bound to 5, so the value returned for (add1 a) is 6. In [5], we see a
version of the same computation in which no global bindings of a are made,
but here the local binding takes precedence over the nonlocal bindings.
We get a better understanding of the meaning of the let expression

(let ((a 2) (b 3))
(+ a b))

when we realize that it is equivalent to an application of a lambda expression:
((lambda (a b) (+ a b)) 2 3)

To evaluate this application, we first bind a to 2 and b to 3 in a local envi-
ronment and then evaluate (+ a b) in this local environment to get 5.
In general, the let expression

(let ((vary valy) (varg valy) ... (varp valp)) body)
is equivalent to the following application of a lambda expression:
((lambda (vary vary ... varp) body) wvaly valy ... valp)

From this representation, we see that any free variable appearing in the
operands valy, vals, ..., val, is looked up in a nonlocal environment. For
example, let’s consider

5.2 Let and Letrec 138



134

[1] (define a 10) [4] (et ((a 10) (b 2))
[2] (define b 2) (let ((a (+ a 5)))
[3] (let ((a (+ a 5))) (* ab)))

(* a b)) 30
30

In this example, a is bound globally to 10 in [1], and b is bound globally
to 2 in [2]. Then in [3], the expression (+ a 5) is first evaluated.! The
variable a is free in the expression (+ a 5), so the value to which a is bound
must be looked up in the nonlocal (here global) environment. There we find
that a is bound to 10, so (+ a 5) is 15. The next step is to make a local
environment where a is bound to 15. We are now ready to evaluate the body
of the let expression (* a b). We first try to look up the values of a and b
in the local environment. We find that a is locally bound to 15, but b is not
found there. We must then look in the nonlocal (here global) environment,
and there we find that b is bound to 2. With these values, (* a b) is 30, so
the let expression has the value 30. In [4], we see a similar program in which
the free variables are looked up in a nonlocal but not global environment.
Looking back at the let expressions, we see how the lexical scoping helps us
decide which environment (local or nonlocal) to use to look up each variable.

It is important to keep track of which environment to use in evaluating an
expression, for if we do not do so, we might be surprised by the results. Here
1s an interesting example:

[1] (define addb
(let ((b 100))
(lambda (x)
(+ x b))))
(2] (Qet ((b 10))
(addb 25))
125

Because b is bound to 10 in [2] and (addb 25) is the body of the let expres-
sion with this local environment, one might be tempted to say that the answer
in [2] should have been 35 instead of 125. In [1], however, the lambda ex-
pression falls within the scope of the let expression in which b is bound to

! The symbol + is also freein (+ a 5), and its value is found in the initial global environment
to be the addition operator. The number 5 evaluates to itself. Similarly, the symbol # is free
in the body, and its value is found in the initial global environment to be the multiplication
operator.
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100. This is the binding that is “remembered” by the lambda expression, and
when it is later applied to the argument 25, the binding of 100 to b is used
and the answer is 125.

Let’s look at [1] again. The variable addb is bound to the value of the
lambda expression, thereby defining addb to be a procedure. The value of
this lambda expression must keep track of three things as it “waits” to be
applied: (1) the list of parameters, which is (x), (2) the body of the lambda
expression, which is (+ x b), and (3) the nonlocal environment in which the
free variable b is bound, which is the environment created by the let expression
in which b is bound to 100. The value of a lambda expression is a procedure
(also called a closure), which consists of the three parts just described. In
general, the value of any lambda expression is a procedure (or closure) that
consists of (1) the list of parameters (which follows the keyword lambda), (2)
the body of the lambda expression, and (3) the environment in which the
free variables in the body are bound at the time the lambda expression is
evaluated. When the procedure is applied, its parameters are bound to its
arguments, and the body is evaluated, with the free variables looked up in
the environment stored in the closure. Thus in [2], (addb 25) produces the
value 125 because the addb is bound to the procedure in which b is bound to
100.

Consider the following nested let expressions:

(et ((d 2))
(let ((add2 (lambda (x) (+ x b)))
(b 0.5))
(/ b (add2 b))))

The first let expression sets up a local environment that we call Environment 1
(Figure 5.1).

» —[2]

Figure 5.1 Environment 1

The inner let expression sets up another local environment, which we call
Environment 2. The first entry in this environment is add2, which is bound
to the value of (1ambda (x) (+ x b)). The x in (+ x b) 1s lambda bound
in that lambda expression, and the value of b can be found in Environment 1.
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But the inner let expression is in the body of the first let expression, so
Environment 1 is in effect and we find that the value associated with b in
Environment 1 is 2. Thus we have Environment 2 (Figure 5.2).

add2 — rProcedure I (x) | (+ x b) ‘Environment 1 I

b — [o.5]

Figure 5.2 Environment 2

All of the variables in the expression to which add2 is bound are either
bound in that expression itself (as was x) or are bound outside of the let
expression (as was b). We are now ready to evaluate the expression (/ ®
(add2 b)). In which environment do we look up b? We always search the
environments from the innermost let or lambda expression’s environment out-
ward, so we search Environment 2 first, finding that b is bound to 0.5. Thus
the whole expression is (/ 0.5 2.5), which evaluates to 0.2.

As an example of how let is used in the definitions of procedures, we
reconsider the definition of the procedure remove-leftmost, which was given
in Program 4.15. Recall that our objective is to produce a list the same
as the list 1s except that it has removed from it the leftmost occurrence
of item. In the base case, when 1s is empty, the answer is the empty list.
If (car 1s) is equal to item, (car 1s) is the leftmost occurrence of item
and the answer is (cdr 1s). If neither of the cases is true, there are two
possibilities: either (car 1s) is a pair, or it is not a pair. If it is a pair,
we want to determine whether it contains item. In Program 4.15, we used
member-all? to determine this. Another way is to check whether (car 1s)
changes when we remove the leftmost occurrence of item from it. If so, then
item must belong to (car 1s), in which case the answer is

(cons (remove-leftmost item (car 1ls)) (cdr 1s))
But if we use this approach, we have to evaluate
(remove-leftmost item (car 1ls))

twice, once when making the test and again when doing the consing. To avoid
the repeated evaluations of the same thing, we use a let expression to bind a
variable, say rem-1ist, to the value of
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(remove-leftmost item (car 1s))

and use rem-list each time the value of this expression is needed. Here is
the new code for remove-leftmost:

Program 5.3 remove-leftmost

(define remove-leftmost
(lambda (item 1s)
(cond

((null? 1s) ’())

((equal? (car 1s) item) (cdr 1s))

((pair? (car 1s))

(let ((rem-list (remove-leftmost item (car 1s))))
(cons rem-1list (cond
((equal? (car 1s) rem-list)
(remove-leftmost item (cdr 1s)))

(else (cdr 1s))))))

(else (cons (car 1ls) (remove-leftmost item (cdr 1s)))))))

In a let expression

(let ((var wal)) body)

any variables that occur in val and are not bound in the expression val itself
must be bound outside the let expression (i.e., in a nonlocal environment), for
in evaluating val, Scheme looks outside the let expression to find the bindings
of any free variables occurring in val. Thus

(let ((fact (lambda (n)
(if (zero? n)
1
(* n (fact (subl n)))))))
(fact 4))

will return a message that fact is unbound. You should try entering this code
to become familiar with the messages that your system returns. This message
refers to the fact occurring in the lambda expression (written here in italics),
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which is not bound outside of the let expression.? Thus if we want to use a
recursive definition in the “val” part of a let-like expression, we have to avoid
the problem of unbound variables that we encountered in the above example.
We can avoid this difficulty by using a letrec expression (a special form with
keyword letrec) instead of a let expression to make the local binding when
recursion is desired.

The syntax for letrec is the same as that for let:

(letrec ((wary waly) (warp wvalz) ... (varn valn)) body)

but now any of the variables vary, vars, ..., var, can appear in any of the
expressions valy, valy, ..., val,, and refer to the locally defined variables
vary, vary, ..., var,, so that recursion is possible in the definitions of these
variables. The scope of the variables var;, vary, ..., var, now includes val,
valy, ..., val,, as well as body. Thus,

(letrec ((fact (lambda (n)
(if (zero? n)
1
(* n (fact (subl n)))))))

(fact 4))

has the value 24.
We can also have mutual recursion in a letrec expression, as the next ex-

ample illustrates:

(letrec ((even? (lambda (x)
(or (zero? x) (odd? (subil x)))))
(0dd? (lambda (x)
(and (not (zero? x)) (even? (subl x))))))
(odd? 17))

has the value #t.

In Program 5.4 we take another look at the iterative version of the factorial
procedure discussed in Program 4.19, this time written with letrec. Here we
are able to define the procedure fact with parameter n and define the iterative
helping procedure fact-it within the letrec expression. This enables us to

2 If we call (fact 0), the value 1 is returned, since the consequent of the if expression is
true and the alternative, in which the call to fact is made, is not evaluated. In this case
no error message would result.
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Program 5.4 fact

(define fact
(lambda (n)
(letrec ((fact-it
(lambda (k acc)
(if (zero? k)
acc
(fact-it (subl k) (* k acc))))))
(fact-it n 1))))

Program 5.5 swapper

(define swapper
(lambda (x y 1s)
(letrec
((swap
(lambda (1s*)
(cond
((null? 1s*) ()
((equal? (car 1s#*) x) (cons y (swap (cdr 1s*))))
((equal? (car 1s#*) y) (cons x (swap (cdr 1s*))))
(else (cons (car 1s*) (swap (cdr 1s%))))))))
(swap 1s))))

define an iterative version of fact without having to use a globally defined
helping procedure. There 1s an advantage to keeping the number of globally
defined procedures small to avoid name clashes. Otherwise you might forget
that you used a name for something else earlier and assign that name again.

The letrec expression provides a more convenient way of writing code for
procedures that take several arguments, many of which stay the same through-
out the program. For example, consider the procedure swapper defined in
Program 2.8, which has three parameters, x, y, and 1s, where x and y are
items and 1s is a list. Then (swapper x y 1s) produces a new list in which
x’s and y’s are interchanged. Note that in Program 2.8 each time we invoked
swapper recursively, we had to rewrite the variables x and y. We can avoid
this rewriting if we use letrec to define a local procedure, say swap, which
takes only one formal argument, say 1s*, and rewrite the definition of the
procedure swapper as shown in Program 5.5.
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The parameter to swap is 1s*, and when the locally defined procedure
swap is called in the last line of the code, its argument is 1s, which is lambda
bound in the outer lambda expression. We could just as well use the variable
1s instead of 1s* as the parameter in swap since the lexical scoping specifies
which binding is in effect. When we call swapper recursively in the old code,
we write all three arguments, whereas when we call swap recursively in the
new code, we must write only one argument. This makes the writing of the
program more convenient and may make the code itself more readable.

In this section, we have seen how to bind variables locally to procedures
using the special forms with keywords let and letrec. We use these impor-
tant tools extensively in writing programs that are more efficient and easier
to understand.

Exercises

Ezercise 5.1

Find the value of each of the following expressions, writing the local environ-
ments for each of the nested let expressions. Draw arrows from each variable
to the parameter to which it is bound in a lambda or let expression. Also
draw an arrow from the parameter to the value to which it is bound.

a. (let ((a 5))
(let ((fun (lambda (x) (max x a))))
(let ((a 10)
(x 20))
(fun 1))))

b. (let ((a 1) (b 2))
(let ((b 3) (c (+ a b)))
(let ((b 5))
(cons a (cons b (cons ¢ *()))))))

Ezercise 5.2
Find the value of each of the following letrec expressions:

a. (letrec
((loop
(lambda (n k)
(cond
((zero? k) n)
((< n k) (loop k n))
(else (loop k (remainder n k)))))))
(loop 9 12))
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b. (letrec
((1oop
(lambda (n)
(if (zero? n)
0
(+ (remainder n 10) (loop (quotient n 10)))))))
(loop 1234))

Ezercise 5.3
Write the two expressions in Parts a and b of Exercise 5.1 as nested lambda
expressions without using any let expressions.

FEzercise 5./
Find the value of the following letrec expression.

(letrec ((mystery
(lambda (tuple odds evens)
(if (null? tuple)
(append odds evens)
(let ((next-int (car tuple)))
(if (odd? next-int)
(mystery (cdr tuple)
(cons next-int odds) evens)
(mystery (cdr tuple)
odds (cons next-int evens))))))))
(mystery (3 16 4 7 9 12 24) ’() *(0)))

Ezercise 5.5
We define a procedure mystery as follows:

(define mystery
(lambda (n)
(letrec
((mystery-helper
(lambda (n s)
(cond
((zero? n) (list s))
(else
(append
(mystery-helper (subl n) (cons 0 s))
(mystery-helper (subl n) (cons 1 s))))))))
(mystery-helper n *()))))

What is returned when (mystery 4) is invoked? Describe what is returned
when mystery is invoked with an arbitrary positive integer.
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Ezercise 5.6: insert-left-all
Rewrite the definition of the procedure insert-left-all (See Exercise 4.6.)
using a locally defined procedure that takes the list 1s as its only argument.

Ezercise 5.7: £ib
As in Program 5.4 for fact, write an iterative definition of £ib using fib-it

(See Program 4.24.) as a local procedure.

Ezercise 5.8: 1list-ref

Program 3.7 is a good definition of 1ist-ref. Unfortunately, the informa-
tion displayed upon encountering a reference out of range is not as complete
as we might expect. In the definitions of 1ist-ref, which precede it, how-
ever, adequate information is displayed. Rewrite Program 3.7, using a letrec
expression, so that adequate information is displayed.

5.3 Symbolic Manipulation of Polynomials
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One of the advantages of a list-processing language like Scheme is its con-
venience for manipulating symbols in addition to doing the usual numerical
calculations. We illustrate this feature by showing how to develop a sym-
bolic algebra of polynomials. By a symbolic algebra we mean a program that
represents the items under discussion as certain combinations of symbols and
then performs operations on these items as symbols rather than as numerical
values.

We begin by reviewing what is meant by a polynomial. An expression 5z*
is referred to as a term in which 5 is the coefficient and the exponent 4 is
the degree. In general, a term is an expression of the form azz*, where the
coefficient a; is a real number and the degree k is a nonnegative integer. The
symbol z is treated algebraically as if it were a real number. Thus we may
add two terms of the same degree, as illustrated by 5z* + 3z* = 8z* In
general, the sum of two terms of like degree is a term of the same degree with
coefficient that is the sum of the coefficients of the two terms. This rule is
expressed in symbols by

arz® + bpz* = (ar + bk)zk

A term can also be multiplied by a real number, as illustrated by 7(5z%) =
35z%. In general, when we multiply the term azz* by the real number c, the
product is a term that has coefficient cai and the same degree; thus

c(axz®) = (caz)2*
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We may also multiply two terms using the following rule: the product of two
terms is a term with degree equal to the sum of the degrees of the two terms
and with coefficient equal to the product of the coefficients of the two terms.
This is expressed symbolically by

(a;27)(bez*) = (a;jbe)a’ **

Here is how it looks in a numerical example: (3z*)(7z%) = 21z°. It is custom-
ary to write a term of degree 0 by writing only its coefficient. The term a;z!
of degree 1 is usually written as a;z, omitting the exponent 1 on z. Thus
3z° is written as 3, and 5z is written as 5z. Terms of positive degree with
coefficients 0 are generally omitted.

Two terms of like degree can be added to produce a term of the same
degree, but two terms of different degrees do not produce a term when added.
Instead, we can only indicate the addition by placing a plus sign between
the two terms. A polynomial is a sum of a finite number of terms, usually
arranged in order of decreasing degree. The degree of the polynomial is the
maximum of the degrees of its terms. Thus the polynomial 3z* + 5z2 + 12
has degree 4, and the terms of degree 3 and 1 have coefficient 0 and are not
written. In general, a polynomial of degree n is of the form

@nz™ + ap_12" Y+ -+ azz® + a1z + ao

where the coefficients ax, for £k = 0,...,n denote real numbers. The sum of
two polynomials is the polynomial obtained by adding all of the terms of both
polynomials, using the rule given above for adding terms of like degree. Thus
the sum of

3z +5224+12 and 7z’ +6z*—z?+11z—15

is the polynomial
725+ 9z* + 422 + 112 - 3

The term of highest degree in a polynomial is known as its leading term, and
the coefficient of the leading term is known as its leading coefficient. The
leading term of 3z* + 5z2 + 12 is 3z*%, and its leading coefficient is 3.

Our goal is to write programs that produce the sum and product of poly-
nomials. We saw the definition of the sum in the discussion above, and later
we shall define the product. As in our development of exact arithmetic in
Chapter 3, we again assume that certain constructor and selector procedures
for polynomials have been predefined and return to their definition later in
this section when we consider the actual representation of the polynomials in
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the computer. We proceed to describe what these selector and constructor
procedures do when applied to a polynomial.

There are three selector procedures: degree, leading-coef, and rest-of-
poly. If poly is a polynomial, then (degree poly) is the degree of poly and
(1eading-coef poly) is the leading coefficient of poly. There is a zero poly-
nomial, the-zero-poly, which has degree zero and leading coefficient zero.
Finally, (rest-of-poly poly) is the polynomial obtained from a polynomial
of positive degree, poly, when its leading term is removed. If poly is of degree
zero, (rest-of-poly poly) is the-zero-poly.

The constructor procedure is called poly-cons. If n is a nonnegative inte-
ger, a is a real number, and p is the-zero-poly or a polynomial of degree
less than n, then (poly-cons n a p) is the polynomial obtained by adding
the leading term az™ to the polynomial p. In particular, for any polynomial
poly, the value of

(poly-cons (degree poly)
(leading-coef poly)
(rest-of-poly poly))

is poly. We shall adopt another convention, which says that a polynomial of
positive degree cannot have zero as its leading coefficient. Thus if poly has
degree less than n for some positive n, then (poly-cons n 0 poly) evaluates
to poly.

Using these procedures, we proceed to develop our symbolic algebra of
polynomials. We begin by devising a test to see if a polynomial is the-zero-
poly. All we have to ask is whether both its degree and leading coefficient
are zero. Thus we define zero-poly? in Program 5.6.

Program 5.6 zero-poly?

(define zero-poly?
(lambda (poly)
(and (zero? (degree poly)) (zero? (leading-coef poly)))))

Program 5.7 shows how we build a term having degree deg and coefficient
coef. The term so defined is itself a polynomial of degree deg consisting of
only one term. A polynomial consisting of one term is also referred to as a
monomial. If we are given a polynomial poly, we get its leading term by
applying the procedure leading-term, which we define in Program 5.8 using
make-term.
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Program 5.7 make-term

(define make-term
(lambda (deg coef)
(poly-cons deg coef the-zero-poly)))

Program 5.8 1leading-term

(define leading-term
(lambda (poly)
(make-term (degree poly) (leading-coef poly))))

We next define the procedure p+ such that if polyl and poly2 are two
polynomials, then (p+ polyl poly2) is the sum of poly1 and poly2. Let us
recall that the sum of two terms bz* and cz* of the same degree k is a term
(b+c)z* also of degree k. The sum of two polynomials is then the polynomial
obtained by adding the terms of like degree in the two polynomials. Our
algorithm for adding the two polynomials poly1 and poly2 is:

e Ifpolylis the-zero-poly, their sum is poly2; if poly2 is the-zero-poly,
their sum is polyl.

o If the degree of poly1 is greater than the degree of poly2, their sum is a
polynomial that has the same leading term as poly1, and the rest of their
sum is the sum of (rest-of-poly poly1) and poly2.

o If the degree of poly2 is greater than the degree of poly1, their sum is a
polynomial that has the same leading term as poly2 and the rest of their
sum is the sum of (rest-of-poly poly2) and polyl.

e If polyl and poly2 have the same degree n, the degree of their sum is n,
and the leading coefficient of their sum is the sum of the leading coefficients
of poly1 and poly2, and the rest of their sum is the sum of (rest-of-poly
polyl) and (rest-of-poly poly2).

This algorithm for the sum, p+, of poly1 and poly2 leads to Program 5.9.

In this program, the use of the let expression enabled us to write each of
the cond clauses more concisely and more clearly. For example, had we not
used the let expression, the first cond clause would have looked like
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Program 5.9 p+

(define p+
(lambda (polyl poly2)
(cond
((zero-poly? polyl) poly2)
((zero-poly? poly2) polyl)
(else (let ((n1 (degree polyl))
(n2 (degree poly2))
(a1 (leading-coef polyl))
(a2 (leading-coef poly2))
(rest1l (rest-of-poly polyl))
(rest2 (rest-of-poly poly2)))
(cond
((> n1 n2) (poly-cons n1 al (p+ restl poly2)))
((< n1 n2) (poly-cons n2 a2 (p+ polyl rest2)))
(else
(poly-cons n1 (+ al a2) (p+ restl rest2)))))))))

((> (degree polyl) (degree poly2))
(poly-cons (degree polyl)
(leading-coef poly1)
(p+ (rest-of-poly polyl) poly2)))

Such use of let expressions often makes programs more readable.

We next define the product p* of two polynomials polyl and poly2. The
product of the terms azz* and a,, 2™ is the term (ar x am):ck‘*"". To multiply
a term 4z? times a polynomial 3z° + 223 + 4z + 5, we multiply each of the
terms of the polynomial by 4z% and add the resulting terms to get

1227 + 8z° + 1623 + 2022
Now to multiply two polynomials,
412+ 3242 and 32°+2z3+4z+5

we first multiply each term of the first by the entire second polynomial to get
the three polynomials

1227 + 82° + 1623 + 2022
92° + 62* + 1222 + 152
6z° + 423 + 8z + 10
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and then we add these three polynomials to get the desired product:
1227 + 92° + 14z° + 6z* + 2023 + 3222 + 23z + 10

We now translate the above example into an algorithm for multiplying any
two polynomials poly1 and poly2. It will be convenient to define locally the
product t* of a term trm and a polynomial poly. The algorithm for this is:

e If poly is the-zero-poly, then (t* trm poly) is just the-zero-poly.

e Otherwise the degree of their product is the sum of the degrees of trm
and poly. The leading coefficient of their product is the product of the
coefficient of trm and the leading coefficient of poly. The rest of their
product is just the product of trm and the rest of poly.

Once t* has been defined, the product p* of poly1 and poly2 can be defined
using the following algorithm:

e If polyl is the-zero-poly, then (p* polyl poly2) is just the-zero-
poly.

e Otherwise, we multiply the leading term of poly1 by poly2, and add that
to the product of the rest of poly1 and poly2.

This leads us to Program 5.10 for p*. In this program, t* is defined locally
using a letrec expression since it is a recursive definition. The lambda expres-
sion for the procedure p* is placed within the body of the letrec expression for
t* so that the local procedure it defines is available for use in p*-helper. The
letrec expression that defines p*-helper is used because the variable poly2 is
not changed in the recursive invocations of the procedure being defined. Thus
it is better programming style not to carry it along as a parameter. We define
the local procedure p*-helper that has as its only parameter the polynomial
pl that is bound to poly1 when it is later invoked.

Program 5.11 defines a unary operation negative-poly such that when
poly is a polynomial, (negative-poly poly) is its negative: the polynomial
with the signs of all of its coefficients changed. We compute it by multiplying
poly by the polynomial that is a term of degree 0 and leading coefficient —1.

Now that we have the negative of a polynomial, we can define the difference
p- between polyl and poly2 as shown in Program 5.12.

We now consider how to find the value of a polynomial poly when a number
is substituted for the variable x. To evaluate the polynomial 4z3+8z% — 7z +6
for ¢ = 5, we substitute 5 for z and get 4(53)+8(5%)—7(5)+6. The polynomial
can be evaluated at a given value of z by computing each term a,z* separately
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Program 5.10 p*

(define p*
(letrec
((t* (lambda (trm poly)
(if (zero-poly? poly)
the-zero-poly
(poly-cons
(+ (degree trm) (degree poly))
(* (leading-coef trm) (leading-coef poly))
(t* trm (rest-of-poly poly)))))))
(lambda (poly1 poly2)
(letrec
((p*-helper (lambda (p1)
(if (zero-poly? pl)
the-zero-poly
(p+ (t* (leading-term pl) poly2)
(p*-helper (rest-of-poly p1)))))))
(p*-helper poly1)))))

Program 5.11 negative-poly

(define negative-poly
(lambda (poly)
(let ((poly-negative-one (make-term 0 -1)))
(p* poly-negative-one poly))))

Program 5.12 p-

(define p-
(lambda (polyl poly2)
(p+ polyl (negative-poly poly2))))

and then adding the results. For example, we have
4(5%)+8(51) —T7(5)+6=4x (5x5x5)+8x (5x5)—7x(5)+6

but this is very inefficient. If we evaluate this by computing each z* by
multiplying z by itself £ — 1 times and then multiplying the result by ax, we
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would be using k multiplications. For a polynomial of degree n, we must add
the number of multiplications for each term, whichis 1 +2 43+ .- 4 n =
n(n + 1)/2 multiplications, to which we add the n additions needed to add
up the terms, and we get a grand total of n(n + 1)/2 + n operations. We can
reduce this number of operations significantly by using the method of nested
multiplication, also known as Horner’s rule, or synthetic division.

Before we derive the method of nested multiplication, we consider as an
example the polynomial P(z) = 4z3 4+ 822 — 7z + 6. If we write the constant
term first and factor an z out of the rest of the terms, we get P(z) = 6 +
z(—7 + 8z + 4z%). We next factor an z out of the terms after the —7 in
the parentheses, to get P(z) = 6 + z(—7 + z(8 + z(4))). For z = 5, this
becomes 6 + 5(—7 + 5(8 + 5(4))). Whereas evaluating the polynomial P(z) in
its original form required nine operations, in this last form only six operations
are required—three multiplications and three additions.

In the general case of a polynomial of degree n, we note that all terms of
degree 1 or more contain a factor of z, so we can factor it out to get our
polynomial in the following form:

ao + (a1 + axz + asz? + -+ a,nm"_l)

We repeat this process, starting with the term a;, to represent our polynomial
as:
ao + z(a; + z(az + azz + - - - + apz™"?))

By continuing to factor out an z from the terms after the constant term, we
finally arrive at the result:

ao + z(e1 + z(az + z(az + - - + z(an-1 + za,)...)))

In this method of evaluating the polynomial, we have n multiplications and
n additions, so there are altogether 2n operations. In this way, the number of
operations grows linearly with n (that is, like n to the first power, or using the
notation of Chapter 3, O(n)) while in the previous way, it grew quadratically
(that is, like n to the second power, or O(n?)).

We next define a procedure poly-valuesuch that (poly-value poly num)
is the value of the polynomial poly when num is substituted for x. A clue for
defining this procedure recursively (in fact, iteratively) comes from observing
that if we think of the last expression a,_; + za, as a coefficient b, then
the expression is just a polynomial of degree n — 1 having leading coefficient
b and all terms of degree less than n — 1 the same as those in poly. In
implementing this, we obtain a,_; by taking the leading coefficient of (rest-
of-poly poly). But this works only if (rest-of-poly poly) has degree
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Program 5.13 poly-value

(define poly-value
(lambda (poly num)
(letrec
((pvalue (lambda (p)
(let ((n (degree p)))
(if (zero? n)
(leading-coef p)
(let ((rest (rest-of-poly p)))
(if (< (degree rest) (subl n))
(pvalue (poly-cons
(subl n)
(* num (leading-coef p))
rest))
(pvalue (poly-cons
(subl n)
(+ (* num (leading-coef p))
(leading-coef rest))
(rest-of-poly rest))))))))))

(pvalue poly))))

n—1, that is, when a,_; # 0. Thus, if (rest-of-poly poly) has degree less
than n — 1, we use za, for b. Thus the code for poly-value in Program 5.13
treats two cases depending upon the degree of rest.

This program is iterative since when pvalue is called in the if clauses, no
further operation is performed after the application of pvalue. Moreover,
because the procedure of one argument pvalue appears first in both the con-
sequent and the alternative of the last if expression, it can be pulled out of
the if expression so that the body of the last let expression reads

(pvalue (if (< (degree rest) (subil n))
(poly-cons
ce)
(poly-cons
o))
The last thing we illustrate before thinking about the representation of the
polynomial is how to build a given polynomial. For example, if we want to
define p1 to be the polynomial

523 — 322+ 2 — 17
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Program 5.14 The five basic definitions (Version I)

(define the-zero-poly ’(0))

(define degree
(lambda (poly)
(subl (length poly))))

(define leading-coef
(lambda (poly)
(car poly)))

(define rest-of-poly
(lambda (poly)
(cond
((zero? (degree poly)) the-zero-poly)
((zero? (leading-coef (cdr poly)))
(rest-of-poly (cdr poly)))
(else (cdr poly)))))

(define poly-cons
(lambda (deg coef poly)
(let ((deg-p (degree poly)))
(cond
((and (zero? deg) (equal? poly the-zero-poly)) (list coef))
((>= deg-p deg)
(error '"poly-cons: Degree too high in" poly))
((zero? coef) poly)
(else
(cons coef
(append (list-of-zeros (subl (- deg deg-p)))
Poly)))))))

we simply write

(define p1 (poly-cons 3 5
(poly-cons 2 -3
(poly-cons 1 1
(poly-cons 0 -17 the-zero-poly)))))

Using the concept of data abstraction again, we have been able to develop
a symbolic algebra of polynomials without knowing how the polynomials are
represented. We did this by assuming that we had the selector and constructor
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procedures and the zero polynomial. We shall now see several ways in which
these can be defined.

A polynomial is completely determined if we give a list of its coefficients,
where we enter a zero when a term of a given degree is missing. The degree
of the polynomial is then one less than the length of the list of coefficients.

Thus the polynomial
anz” + an_12" "' + -+ + a1z + ao, an #0

can be represented by the list (an an—1 --- a1 ag). For example, the poly-
nomial 5z — 722 + 21 is represented by the list (5 —7 0 21), where the zero
corresponds to the term 0z! that is suppressed in 5z — 722 + 21.

If this representation of a polynomial as a list of its coefficients is adopted,
we can make the five basic definitions for the symbolic algebra of polynomials
as shown in Program 5.14. Since we required that the leading coefficient of
a polynomial be different from zero, we put a zero test in the second cond
clause in the definition of rest-of-poly to skip over the missing zeros. In
the definition of poly-cons, the third cond clause guards against a leading
coefficient of zero, and the last line uses the procedure 1ist-of-zeros defined
in Program 3.5 to fill in missing zeros if deg differs from the degree of p by
more than 1.

The above representation of a polynomial by its list of coefficients has an
obvious disadvantage when we try to represent the polynomial z1°%° + 1. We
would have to construct a list of 1001 numbers, all zero except the first and
last. The above representation is perfectly adequate when we are dealing
with polynomials of low degree, but it becomes cumbersome when we have
to write “sparse” polynomials of high degree. The following representation
of polynomials is more convenient for such higher-degree polynomials; we
represent the polynomial by a list of pairs of numbers. In each pair, the first
element is the degree of a term, and the second element is the coefficient of
that term. The pairs corresponding to terms with zero coefficients are not
included, except for the-zero-poly, which is represented by ((0 0)). The
pairs are ordered so that the degrees decrease. Thus the polynomial

anz” +an_12" 14+ ajz4+ap, an #0

has the representation ((n an) (n-1an—_1) --- (1 a1) (0 ag)), for those terms
with a; # 0. We then can write the five basic definitions for the algebra of
polynomials as shown in Program 5.15.

There may be other representations of polynomials that are more conve-
nient to use in special circumstances. The advantage of our approach us-
ing data abstraction is that we only need to define the-zero-poly, degree,
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pi(z) =5zt — 72 + 22 — 4
pa(z) = 23+ 622 — 3z
and using poly-value, find pi(—1), p1(2), p2(0), and p2(—2).

Ezercise 5.10
Look closely at the definition of p+ (see Program 5.9). When n1 is greater than

n2, the variables a2 and rest2 are ignored. Similarly, when n1 is less than
n2, the variables a1 and rest1 are ignored. Rewrite p+ so that this wasting
of effort disappears. Hint: You will need to use let within the consequents
of cond clauses.

Ezercise 5.11: poly-quotient, poly-remainder

Define a procedure poly-quotient that finds the quotient polynomial when
poly1l is divided by poly2 and a procedure poly-remainder that finds the
remainder polynomial when poly1 is divided by poly2.

FEzercise 5.12

Another representation of polynomials as lists that can be used is a list of
coefficients in the order of increasing degree. The list of pairs representation
given above can also be written in order of increasing degree. Consider the ad-
vantages and disadvantages of these representations compared to those given

above.

FEzercise 5.13

How would the constructors and selectors be defined if we use
(cons deg coef) instead of (list deg coef)

in our second representation using lists of pairs?

Ezercise 5.14

The definition of t* in Program 5.10 is flawed. Each time t* is invoked recur-
sively it evaluates both (degree trm) and (leading-coef trm), although
these values never change. In addition, the variable trm does not need to be
passed to t* because trm never changes. Explain how these two flaws are
eliminated in the following definition of p*.
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(define p*
(let
((t* (lambda (trm poly)
(let ((deg (degree trm))
(lc (leading-coef trm)))
(letrec
((t*-helper
(lambda (poly)
(if (zero-poly? poly)
the-zero-poly
(poly-cons
(+ deg (degree poly))
(*» 1c (leading-coef poly))
(t*-helper (rest-of-poly poly)))))))
(t*-helper poly))))))
(lambda (polyl poly2) ...)))

Ezercise 5.15: append-to-list-of-zeros ‘

In the first version of poly-cons presented in Program 5.14, poly is appended
to a list of zeros. The procedure list-of-zeros requires one recursion to
build the list of zeros and append requires another. Two recursions over the
list of zeros is inefficient. The program can be rewritten so as to require
only one recursion over the list of zeros. One suggestion for doing so is to
combine the construction of the list of zeros and the appending of poly into
one procedure append-to-list-of-zeros, which takes two parameters, n and
x and produces a list that contains x preceded by n zeros. This procedure can
be written either recursively or iteratively. Try your hand at both versions
and test them in poly-cons.

5.4 Binary Numbers

Information is stored in the computer in the form of binary numbers. One
may loosely think of the memory cells in which information is stored as a
row of switches, each having two positions: on and off. If a switch is on, it
represents the digit 1, and if it is off, it represents the digit 0. The information
contained in one such switch is called a b#t, and eight bits of information
usually constitute a byte of information. Since there are 28 different settings
for eight switches, we can represent 256 different values by using one byte. In
this section, we shall discuss the representation of numbers in binary form,
and more generally, as numbers with an arbitrary base.
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First recall that in the decimal system, each digit in a number is a place-
holder representing the number of times a certain power of 10 is counted.
Thus 4,723 is the same as

4% 103+7x10%+2x 10"+ 3 x 10°

The 10 is called the base of the number system. We can think of any number
represented in this way as a polynomial in which the variable z has been
replaced by 10. In the same way, we can represent any number as a polynomial
in which the variable z has been replaced by the base b and the coefficients are
taken to be numbers between 0 and b — 1. It is customary to write a number
in the base b system using the placeholder concept as a string of digits, each
digit being the corresponding coefficient in the polynomial. For example, for
base 2 (binary numbers), the digits are 0 and 1 and the polynomial

I1x2°+1x2°4+0x2%4+0x22+1x22+0x2'+1x2°

can be represented as 1100101.
In general, for binary numbers, the number

an2" +an_12" "1+ +a12+ ag

is written in the form anan,_1 ...a1a0. We first consider the problem of finding
the decimal number when we are given its binary representation. This is
precisely the problem of evaluating a polynomial when the variable z has the
value 2. We can use the results of the last section if we represent our binary
number as a polynomial of degree n that has the coefficient a; for the term of
degree k, for k = 0,1,...,n. We define a procedure digits->poly that takes
a list of the digits of a binary number as its argument and returns a polynomial
of degree one less than the number of digits and that has the given digits as its
coefficients. The polynomial is constructed by the local procedure make-poly,
which has as its parameters the degree deg of the polynomial, which is one less
than the number of digits in the binary number, and 1s, which is the list of
digits of the binary number. If we already have the polynomial for the binary
number obtained when the first digit is removed, that is, for parameters (sub1
deg) and (cdr 1s), we get the polynomial for the parameters deg and 1s by
adding the term having degree deg and coefficient (car 1s). This leads us
to the definition given in Program 5.16.

Now to convert from the binary representation of a number to the deci-
mal number, we use the procedure binary->decimal given in Program 5.17,
which takes a list of the binary digits as its argument and returns the decimal
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Program 5.16 digits->poly

(define digits->poly
(lambda (digit-list)
(if (null? digit-list)
(error "digits->poly: Not defined for the empty list")
(letrec
((make-poly
(lambda (deg 1s)
(if (null? 1s)
the-zero-poly

(poly-cons deg (car 1s)
(make-poly (subl deg) (cdr 1s)))))))
; (make-poly (subl (length digit-list)) digit-1list)))))

Program 5.17 binary->decimal

[

(define binary->decimal
(lambda (digit-list)
(poly-value (digits->poly digit-list) 2)))

I S

number. As an example, we find the decimal number for the representation
of the binary number 11001101.

(binary->decimal (1 1 0 0 1 1 0 1)) => 205

If we have a polynomial, say 122+ 1, which corresponds to the binary num-
ber 101, how do we recover the list of binary digits (1 0 1)? To do this, we
define a procedure poly->digits that takes a polynomial poly corresponding
to a binary number and returns a list of the digits of that binary number. For
example,

(poly->digits (digits->poly (1 1010 1))) = (11010 1)

Consider (rest-of-poly poly); if its degree is one less than the degree of
poly, then (poly->digits poly) is just

(cons (leading-coef poly) (poly->digits (rest-of-poly poly)))
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Program 5.18 poly->digits

(define poly->digits
(lambda (poly)
(letrec
((convert
(lambda (p deg)
(cond
((zero? deg) (list (leading-coef p)))
((= (degree p) deg)
(cons (leading-coef p)
(convert (rest-of-poly p) (subl deg))))
(else
(cons 0 (convert p (subl deg))))))))
(convert poly (degree poly)))))

Otherwise, we have to cons zeros onto the list to take into account the gap
in the degrees between the leading term and the next term with nonzero co-
efficient. In order to do this, it is convenient to introduce a local procedure,
which we call convert. It keeps track of the degree of the term being con-
sidered, even if the coefficient is zero. Thus convert has two parameters: p,
which is a polynomial, and deg, which is an integer representing the degree
of the term. We define poly->digits as shown in Program 5.18.

We also want to convert from the decimal number to its binary represen-
tation. We shall do this with the procedure decimal->binary, which takes a
decimal number and returns a list of the digits in its binary representation.
We can easily derive the algorithm if we recall that we want to find the co-
efficients a,,an-1,...,a0 in the polynomial corresponding to the number g,
which we now write using nested multiplication:

g=ao+2(ay +---+2(an-1 +2a,)--)

Observe that ag, which must be either 0 or 1, is just the remainder ro when
g 1s divided by 2, since ¢ = ag + 2(somenumber). Recall that rg is 0 if ¢ is
even, and it is 1 if ¢ 1s odd. If we let go be the quotient when ¢ is divided by
2, then we have

go=a)+2(az+ -+ 2(an-1+2a,)-)

We now repeat this process to find that a; is the remainder r; when g is
divided by 2, and so forth. In general, if g is the quotient when gz_; is
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Quotient Remainder

197
98 1
49 0
24 1
12 0
6 0
3 0
1 1
0 1

Figure 5.19 Conversion of 197 to its binary representation

divided by 2 and if r; is the remainder when gx_; is divided by 2, then
ay = .

For example, to convert the decimal number 197 to binary form, we do
our work in two columns; the first gives the quotient, and the second gives
the remainder when the successive numbers are divided by 2. Figure 5.19
shows this computation. Each line in the table represents the quotient and
the remainder when the previous quotient is divided by 2. The binary repre-
sentation of the number is found by reading the remainders from the bottom
of the table to the top: 11000101. We will then have

(decimal->binary 197) = (1 1000 1 0 1)

Implementing this algorithm is accomplished in Program 5.20 by building
up the polynomial corresponding to the binary number term by term as the
remainders are obtained. The first term we build has degree 0 and the de-
grees increase by one each time a new remainder is found. Thus we are able
to define decimal->binary with the help of dec->bin, which has a second
parameter deg that keeps track of the degree of the term, starting from zero
and increasing by one in each recursive invocation.

We now have

(decimal->binary (binary->decimal ’(1 011 0))) = (101 10)
(binary->decimal (decimal->binary 143)) == 143

Two other number systems that are commonly used in computing are the oc-

tal (base 8) and the hezadecimal (base 16) systems. For octal, the base bin the
polynomial representation is replaced by 8, and in hexadecimal, the base b is
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Program 5.20 decimal->binary

(define decimal->binary
(lambda (num)
(letrec
((dec->bin
(lambda (n deg)
(if (zero? n)
the-zero-poly
(p+ (make-term deg (remainder n 2))
(dec->bin (quotient n 2) (addil deg)))))))
(poly->digits (dec->bin num 0)))))

replaced by 16. The digits 0, 1,2, 3,4, 5, 6, 7 are used for octal numbers and the
digits 0,1, 2,3,4,5,6,7,8,9, A, B,C, D, E, F for hexadecimal numbers. Here
A stands for 10, B for 11, ..., F for 15.

Exercises

Ezercise 5.16
Convert each of the following decimal numbers to base 2.

a. 53
b. 404

Fzercise 5.17

Convert each of the following base 2 numbers to decimals.

a. 10101010
b. 1101011

FEzercise 5.18: octal->decimal, hexadecimal->decimal
Look over the programs for binary->decimal and decimal->binary and see
what changes have to be made to get definitions for the four procedures:

octal->decimal
hexadecimal->decimal
decimal->octal
decimal->hexadecimal

Since we are representing our hexadecimal numbers as lists of digits, we can
use the number 10 for 4, 11 for B, and so on, so that (12 & 10) is the list

Locally Defined Procedures



representation of the hexadecimal number C5A. Define one pair of conversion
procedures base->decimal and decimal->base that take two arguments, the
number to be converted and the base, where the base can be any positive
integer. Then define a procedure change-base that changes a number num
from base b1 to base b2, where num is a list of digits. Thus (change-base
num bl b2) is a list of digits that gives the base b2 representation of num.
Test your program on:

(change-base (5 11) 16 8) == (1 3 3)
(change-base (6 6 2) 8 2) = (1101100 10)
(change-base (10 1111101) 2 16) => (17 13)

FEzercise 5.19: binary-sum, binary-product

Define two procedures, binary-sum and binary-product, that take two bi-
nary numbers as arguments and return the sum and product of those numbers
in binary form. This can be done in two ways. First, you could convert both
numbers to decimal form, perform the arithmetic operation, and then con-
vert to binary form. You could, on the other hand, treat the binary numbers
as polynomials and perform the arithmetic operations on these polynomials,
using the appropriate carrying rules for binary numbers. Write programs for
binary-sum and binary-product using both approaches.

Ezercise 5.20: binary->decimal, decimal->binary

We have presented the conversions from binary to decimal and from deci-
mal to binary as applications of the algebra of polynomials developed in this
chapter. Write the two procedures binary->decimal and decimal->binary
directly from the definitions of binary and decimal numbers, using the list
representation for binary numbers and not making use of the polynomial al-
gebra.
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Interactive Programming

6.1 Overview

In this chapter, we begin by taking a brief look at the string data type. We
then illustrate some of the input and output features available in Scheme by
developing a program to find the square root of numbers. After implementing
the basic square root algorithm, we look at ways of viewing intermediate
results and of providing data at run time. We close this chapter with a look
at two famous problems: the Tower of Hanoi and the Eight Queens problem,
both of which demonstrate ways of outputting data.

6.2 Strings

Strings form an important data type, and there are a number of operations
that can be performed on strings. A brief introduction to strings was presented
in Chapter 2. Recall that a string is written in Scheme as a sequence of
keyboard characters enclosed within double quotes. We now look at a few of
the procedures in Scheme for manipulatingstrings. For example, the predicate
string? tests whether its argument is a string; string-length takes a string
as its argument and returns the number of characters in the string, including
blank spaces; and string-append takes any number of strings as arguments
and forms a new string by appending (or concatenating) them. The procedure
substring has the call structure

(substring string start end)

where string is a given string, and start and end are integers satisfying the
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inequalities 0 < start < end < L where L represents the length of string. It
returns a string, which is a substring of string consisting of those characters
beginning with the zero-based index start and including all of the characters
up to but not including the one with index end. Thus the length of the
substring is just the difference between end and start. It is also possible to
convert a symbol, such as *hello into the string "hello" using the procedure
symbol->string. Below are some examples illustrating string operations:

(string-length "This is a string") = 16

(string-length "") = 0

(string-append "This is" " a string") = "This is a string"
(string-append "12" "34" "56") => ''123456"

(substring "This is a string" 0 4) = "This"

(substring "This is a string" 4 6) = " i"

(substring "This is a string" 5 13) = "is a str"
(symbol->string ’hello) = "hello"

(string=7 "This is a string" "This is a string") = #t
(string=? "This is a string" "This is a STRING") => #f
(string-ci=? "This is a string" "This is a STRING") = #t

The predicate string=7 tests whether two strings are the same and distin-
guishes between upper- and lowercase. The predicate string-ci=? treats
upper- and lowercase as though they were the same character. (The “ci”
stands for case insensitive.) Thus the next to the last example above is false,
and the last example is true.

‘We illustrate the use of these string procedures by defining a procedure
string-insert that inserts a string insrt into a string strng so that the
first character in insrt has index n in the resulting string. For example,

(string-insert "45" "123678" 3) => ''12345678"

The definition appends the substring of strng consisting of those characters
with indices less than n, the string insrt, and the substring of strng consist-
ing of those characters with indices n or greater. This gives us the definition
in Program 6.1.

We shall introduce more string-handling procedures as they are needed in
our discussions and see examples of how they are used.
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Program 6.1 string-insert

(define string-insert
(lambda (insrt strng n)
(string-append
(substring strng 0 n)
insrt
(substring strng n (string-length strng)))))

Exercises

FEzercise 6.1: substring?

Define a predicate substring? with two parameters, sstr and strng, that
tests whether the string sstr is a substring of strng. Hint: This can be done
using string-length, substring, and string=?. Test your predicate on the
following:

(substring? "s a s" "This is a string.") = #t
(substring? "ringer" "This is a string.") = #{
(substring? "" "This is a string.") = #t

FEzercise 6.2: string-reverse

Define a procedure string-reverse that takes a string as its argument and
returns a string that is the given string with its characters in reverse order.
Hint: You may find the following procedure useful:

(define substring-ref
(lambda (strng n)
(substring strng n (addl n))))

Test your procedure on the following:

(string-reverse "Jack and Jill") = "11iJ dna kcal"
(string-reverse "mom n dad") = "dad n mom"
(string-reverse "") = ""

Fzercise 6.3: palindrome?
A string is a palindrome if the reverse of the string is the same as the string.
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(let ((a 3) (b 4))
(begin
(writeln a)
(writeln b)
(+ a b)))

In a cond expression, each of the clauses contains a condition and a consequent
that is evaluated if the condition is true. The consequent may consist of several
expressions, which are then evaluated in sequential order as if they were in a
begin expression.

Exercise

Ezercise 6.4

An example of the use of implicit begins in cond clauses is given below:

(define mystery
(lambda (pos-int)
(letrec ((helper
(lambda (n count)
(cond

((=n 1)

(newline)

(vriteln "It took " count " steps to get to 1."))

((even? n)

(wvriteln count
". We divide " n " by 2.")

(helper (/ n 2) (addl count)))

(else

(vriteln count
", We multiply " n " by 3 and add 1.")

(helper (+ (* n 3) 1) (addl count)))))))

(helper pos-int 0))))

In this example, each cond clause uses an implicit begin. What is the output
of (mystery 9)7 Invoke mystery with a few other positive integer argu-
ments. Safe recursive programs contain a terminating condition which even-
tually halts the computation. No one has, as yet, been able to demonstrate
that mystery is safe. Nor has a positive integer argument been found for
which mystery is unsafe.

6.4 Input and Output 167



6.4 Input and Output

168

We have been using the keyboard to enter Scheme expressions, and we have
seen Scheme send its output to the screen. The Scheme expressions we enter
are evaluated after we press the <RETURN> key, and then the result is printed
out. There are programs in which we would like to enter additional data while
the evaluation is taking place or in which we would like to print out not only
the final result but some intermediate results of the computation.

As an example illustrating the desire to see intermediate results, we look at
a program to compute the square root of a number by the method of successive
averaging known as Newton’s method. If we have an estimate u for the square
root of a positive number a, a better estimate is always given by the average
of u and £, that is, by v where!

Y=

(ust =) (1)

N =

Suppose we start with the estimate u = 1 and use formula (1) to compute v.
We then substitute this value v for u in (1) to get the next value v. We continue
this process until we are satisfied with the value we get; but what criterion
should we apply to decide that we are satisfied? We decide how many decimal
places we want in the answer, say five, and stop when we get two successive
estimates that are the same to five decimal places. In particular, we shall stop
the calculation when u and v differ by less than the agreed-upon tolerance,
0.000005. To test whether u and v are closer than the given tolerance, we
shall use the predicate close-enough? defined by writing

(define tolerance 0.000005)

(define close-enough?
(lambda (u v)
(< (abs (- u v)) tolerance)))

We can describe the algorithm as follows:

1. Make an initial estimate u = 1 for the square root of a.

! To make this plausible, recall that we are looking for the number s having the property
that s X s = a. If the estimate u is too large, then 2 is too small, and their average v is a
better approximation to s. Similarly when the estimate u is too small, 2 is too large, and
their average v is a better approximation to s.
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Program 6.2 square-root

(define square-root
(lambda (a)
(letrec

((next-estimate

(lambda (u) |
(et ((v (/ (+u (/ a u)) 2)))
(if (close-enough? u v) l
v

(next-estimate v)))))) i
(next-estimate 1)))) |

2. If u is an estimate for the square root of a, then the next estimate is given
by the v calculated in (1).

3. We continue applying Step 2 with the previously calculated value of v used
as the new value of u to get the next value of v until w and v differ by less
than tolerance.

Program 6.2 is a procedure that implements this algorithm.

We use this program to compute a few square roots:

[1] (square-root 100)
10.0

[2] (sqrt 100)

10.0

[3] (square-root 1000)
31.6227766016838

[4] (sqrt 1000)
31.6227766016838

[5] (square-root 2)
1.41421356237469

[6] (sqrt 2)
1.4142135623731

In [2], [4], and [6], we called the built-in square root procedure sqrt to
compare its (presumably correct) results with our approximation. We see that
we got more than just five-decimal-place accuracy. This averaging method is
known to halve the error until the error is less than 1 in absolute value and
then to double the number of decimal-place accuracy with each successive av-
eraging. In order to see that this is actually happening, it would be interesting
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to be able to see each of the successive averages. We would like to send the
value v to the screen each time it is computed.

Scheme provides several procedures that enable us to send output to the
screen or, as we shall see in Chapter 15, to a file. We already have used the
procedure writeln to write to the screen when we traced procedures. The one
we now use is display, and later in this section we shall discuss others. The
Scheme procedure display is called with only one argument, and it has the
side effect of printing that argument on the screen. The value that it returns
in not specified in Scheme, and we shall assume that our implementation does
not print a value for display. For example:

[7] (begin

(display "Is")

(display " ")

(display 1.4142)

(display " the square root of 27"))
Is 1.4142 the square root of 27

To put a space between the items being printed with display, we have to print
a space using (display " "). Strings are printed without the double quotes.
If we want to print the string '"the square root of 27" on the next line,
we use the Scheme procedure newline, which takes no arguments and has the
effect of moving the cursor to the beginning of the next line. Scheme does not
specify a value for newline, and we again assume that our implementation
does not print a value for newline. We now use newline to print the string
"the square root of 27" on the next line instead of on the same line as
the other items.

(8] (begin
(display "Is")
(display " ")
(display 1.4142)
(newline)

(display "the square root of 27")
(newline))
Is 1.4142

the square root of 27
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Program 6.3 square-root-display

(define square-root-display
(lambda (a)
(letrec ((next-estimate (lambda (u)
(let ((v (/ (+ u (/ a uw)) 2)))
(if (close-enough? u v)
v
(begin

(newline)
(next-estimate v)))))))
(next-estimate 1))))

|
!
(display v)

We now define the square root procedure using display to print the inter-
mediate results on the screen (Program 6.3).2 When we call square-root-
display, we get the output shown in Figure 6.4. We can now observe that
the convergence of the square-root algorithm does display the convergence
behavior described.

Since we have only asked for five-decimal-place accuracy in the answer, it
would be more appropriate to print the final answer to five places. This can be
done using the Scheme procedure round, which rounds a number to the closest
integer. If we have a number like the one obtained for (square-root 2), we
round it to five places by first multiplying it by 1.0e+5 (i.e., 100000.0), to get
141421.356237469. This result is then rounded to the nearest integer using
round to get 141421, and to get the final answer, we divide by 1.0e+5, yielding
the result 1.41421, which is correct to five decimal places. In Program 6.5, we
define a general procedure round-n-places that has as parameters an integer
n and a decimal number dec-num and returns the number rounded off to n
decimal places.

Then to get the answer to (square-root 2) rounded off to five decimal

places, we write:

(round-n-places 5 (square-root 2)) = 1.41421

If we are rounding many numbers off to five decimal places, it is convenient
to define a procedure round-5-places as

2 Although the invocation of the local procedure next-estimate is within the begin ex-
pression, this is still an iterative program, since the value of the recursive invocation of
next-estimate is returned directly as the value of next-estimate.
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and then simply write

(round-5-places (square-root 2)) => 1.41421

In square-root-display, each successive value of v was printed out on a
new line. Suppose we want to print out all of the successive values on one line.
Then we would not follow each application of display with an application of
newline. We would only use newline before returning the final answer to set
it off from the intermediate values.

(if (close-enough? u v)

(begin
(newline)
v)

(begin
(display v)
(display " ")
(next-estimate v)))

Here, (display v) prints the value of v to the screen; then (display " ")
prints a blank space after the value of v. Thus the successive numbers will
be separated by blank spaces. The final answer v will be on a new line. For
example, with the procedure square-root-display redefined this way, we
get:

[12] (square-root-display 2)
1.5 1.41666666666667 1.41421568627451
1.41421356237469

The procedure display prints the string "the square root of 27" with-
out double quotes. For the occasions when we do want the double quotes to
be printed in addition to the string, we can use the Scheme procedure write
instead of display. If we use write instead of display in [8], we get

[13] (begin
(vrite "Is")

(vrite " ")
(vrite 1.4142)
(newline)

(vrite "the square root of 27?")
(nevline))

"Is"" "1.4142

"the square root of 27"
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Program 6.6 read-demo
(define read-demo
(lambda ()
(display "Enter data (enter done when finished): ")
(let ((response (read)))
(cond
((eq? response ’done) (display "Thank you. Good-bye."))
(else (display 'You entered: ')
(write response)
(newline)
(read-demo))))))

We also see that (write " ") prints a blank space with double quotes around
it, whereas (display " ") prints just the blank space.

It is also possible to enter data interactively while a procedure is running
by making use of the Scheme procedure read. When the procedure read is
invoked with no arguments, the computer stops and waits for an expression
to be entered from the keyboard. The value entered from the keyboard is
returned by (read). In Chapter 15, we shall see how read may be called
with one argument to read from a file instead of from the keyboard. In
Program 6.6, we illustrate the use of read by writing a simple program that
asks us to enter data, reads the data we enter, and then tells us what data
we entered. A statement written to the screen asking us to do something is
called a prompt. A statement that shows what we entered in response to the
prompt is said to echo what we entered.

The first thing to notice about read-demo is that it is written as a procedure
of no arguments; the parameter list in the lambda expression is the empty
list (). A procedure of no arguments is called a thunk, and it is invoked by
merely enclosing the name of the procedure in parentheses. For example, if
we write

(define greeting

(1ambda ()
(vriteln "Hello. How are you?")))

then the procedure greeting is called as follows:

[14] (greeting)
Hello. How are you?
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In the definition of read-demo, the first display expression prompts us for
data. The let expression binds the variable response to the object that is
produced by the read expression. During the evaluation, the computer pauses
and waits for us to enter a datum from the keyboard, and it is that datum that
is bound to response. We chose to use write instead of display to print the
response in order to show it exactly as it was entered. Thus when a string is
entered with double quotes, it is printed on the screen with the double quotes.
Had we used display instead of write, a string would be printed without the
double quotes. In order to stop the recursion, we enter done. The condition
terminating the recursion tests response to see if it is the same as done using
the predicate eq?. Here is a sample run using read-demo when a number,
a symbol, and a string are entered in response to the prompt asking for a
datum. The responses are presented in italics to distinguish them from the
prompts.

[16] (read-demo)

Enter data (enter done when finished): 6.5{32

You entered: 6.5432

Enter data (enter done when finished): Hello

You entered: Hello

Enter data (enter done when finished): “"How are you?"
You entered: "How are you?"

Enter data (enter done when finished): done

Thank you. Good-bye.

We now define interactive-square-root in such a way that it prompts
us for the numbers for which square roots are desired.

Program 6.7 interactive-square-root

(define interactive-square-root
(lambda ()
(writeln "Enter the number whose square root you want,"
" or enter done to quit:")
(let ((n (read)))
(if (eq? n ’done)
(writeln "That’s all, folks.")
(begin
(writeln "The square root of " n " is " (square-root n))
(newline)
(interactive-square-root))))))
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The first writeln expression provides a prompt for us to enter a number.
Then the let expression binds the value given by (read) to n. When the
expression (read) is evaluated, the computer pauses and waits for the user to
enter a datum at the keyboard. In this case the datum is a number, which is
bound to n. When n is not the symbol done, the writeln expression evaluates
its operands, which includes the expression (square-root n) and echoes n
while printing its square root. It is good practice to echo back the number
n along with its square root to be sure that you did not make the mistake
of entering a wrong number when you responded to the prompt. Next the
procedure interactive-square-root is called, and the process is repeated
until the symbol done is entered as a terminating condition. Below is an
example of an interactive session after calling interactive-square-root:

[1] (interactive-square-root)

Enter the number whose square root you want, or enter dome to quit:
100

The square root of 100 is 10

Enter the number whose square root you want, or enter dome to quit:
1000
The square root of 1000 is 31.6227766016838

Enter the number whose square root you want, or enter done to quit:
done
That’s all, folks.

The interactive-square-root example illustrates the use of prompts to
ask the user to enter something at the terminal, and it illustrates the use of a
read expression to bind a value to a variable interactively. It also shows the
echoing of input data in the result to verify that the correct data were entered.
Study this example to understand these concepts fully. In this section, we have
seen that output from our programs can be sent to the screen using the four
procedures display, write, newline, and writeln. Input from the keyboard
can be entered during the evaluation of an expression using the procedure
read.

Exercises

Ezercise 6.5
Write an interactive program that prompts for a number and then prints
the square and the square root of that number. It continues prompting for
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numbers until stop is entered. The display should include the appropriate text
to identify the input and output.

FEzercise 6.6: Making change
Write a program that prompts for an amount of money; for example

For what amount do you want change? $

and the user enters a number like 23.45. The program then tells how this
amount is made up of 100 dollar, 20 dollar, 10 dollar, 5 dollar and 1 dollar
bills and of quarters, dimes, nickels, and pennies. The output should say
something like:

Your change is:

1 twenty-dollar bill
3 one-dollar bills

1 quarter

2 dimes

The program should then ask if you want change for another amount and
terminate if the answer is “no.”

FEzercise 6.7: Weekday of a given date

A Reverend Zeller developed a formula to compute the day of the week for any
given day of the Gregorian calendar. The input to the algorithm is specified
in the following manner:

e m is the month of the year, with March as m = 1. January and February
are months 11 and 12 of the previous year.

e dis the day of the month.

e 1y is the year of the century.

e cis the previous century.

For example, for July 4, 1989, m = 5, d = 4, y = 89, and ¢ = 19, while for

January 25, 1989, m = 11, d = 25, y = 88, and ¢ = 19. The algorithm to
compute the day of the week is:

1. Take the integer part of (13m — 1)/5. Call this a.
2. Take the integer part of y/4. Call this b.

3. Take the integer part of ¢/4. Call this e.

4. Compute f =a+b+e+d+y—2c
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5. Set r equal to f modulo 7.
6. r tells us the day of the week, with Sunday corresponding to r = 0, Monday

to r = 1, etc.

Write a program that prompts for the month, the day, and the year. The
month should be entered in the usual way with January as 1 and December
as 12. The year should also be entered in the usual way (e.g., 1989). The
program should then convert these data to what is needed by the algorithm
and compute the day. The output should be a statement such as “1/13/1989
is a Friday.” The program should ask whether another day is desired and
terminate if the user responds with “no.”

6.5 Two Famous Problems
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These two problems, known by the names Tower of Hanoi and Eight Queens,
are included in this chapter to illustrate how information is displayed while the
program is running. The Tower of Hanoi® problem was apparently originated
by the French mathematician Edouard Lucas in the nineteenth century. The
following story is told in connection with the problem:

In the great Temple of Brahma in Benares, on a brass plate beneath
the dome that marks the Center of the World, there are 64 disks of
pure gold which the priests carry one at a time between three diamond
needles according to Brahma’s immutable law: No disk may be placed
on a smaller disk. In the Beginning of the World, all 64 disks formed the
Tower of Brahma on one needle. Now, however, the process of transfer
of the tower from one needle to another is in midcourse. When the last
disk is finally in place, once again forming the Tower of Brahma but on a
different needle, then will come the End of the World, and All will turn
to dust.

We shall formulate the problem so as to have three posts, labeled L (for
left), C (for center), and R (for right), and n disks of decreasing diameter (in
going from bottom to top) all on the left post. Our goal is to move the n
disks to the right post, so that at the end they will again be stacked in order
of decreasing diameter in going from bottom to top. The two rules are that
we can move only one disk at a time and we must never put a larger disk on

3 For a fuller account of the Tower of Hanoi puzzle, see Hofstadter, 1985.
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Figure 6.8 The Tower of Hanoi

top of a smaller one. Figure 6.8 illustrates the initial configuration for three
disks.

This problem lends itself to a beautiful recursive solution. The idea is that
if we have solved it for moving n — 1 disks from a source post to a destination
post (making use of the third post as a help post), we can immediately solve
it for moving n disks from a source post (say L) to a destination post (say R)
by making the following moves:

1. With n disks on the source post L, we use the fact that we know the solution
for n — 1 disks to move the top n — 1 disks to the post C. (In these moves,
the destination post R serves as the help post.)

2. Now the largest disk is the only one on the source post L and the destination
post R is empty. We move the largest disk from the source post L to the
destination post R.

3. Making use of the now-empty post L as a help post, we now move the n—1
disks from post C to the destination post R.

We have now solved the problem for n disks under the assumption that
we knew the solution for n — 1 disks. If we have only one disk (n = 1), the
solution is easy: one merely carries that one disk from the source post to the
destination post. This case serves as the base case for our recursion. To be
able to write the solution to this problem, let us represent a single move that
carries a disk from a post called source to a post called destination by a
pair (source destination). For example, the move that carries a disk from
L to C is denoted by the pair (L C). A list of these pairs gives a sequence of
moves; for example, ((L C) (L R) (C R)) says that we first move the top
disk from post L to post C, then the top disk on post L is moved to post R,
and finally the top disk on post C is moved to post R.

The procedure to solve the Tower of Hanoi problem for n disks is called
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tower-of-hanoi and its definition begins with

(define tower-of-hanoi
(lambda (n)
. )

We now define a local recursive procedure move that moves n disks from
the post denoted by source to the post denoted by destination making use
of the post called helper. Thus move takes the four arguments n, source,
destination, and helper and produces a list of pairs that is the solution of
the problem of moving n disks from the post source to the post destination.
Thus we continue the definition with

(define tower-of-hanoi
(lambda (n)
(letrec
((move
(lambda (n source destination helper)

DN

The terminating condition for the recursion on n is the case in which n
is 1. Then we merely move the disk from the source to destination, and
the solution is a list whose only member is the pair consisting of source and
destination. Thus we have

(define tower-of-hanoi
(lambda (n)
(letrec
((move
(lambda (n source destination helper)
(if (=n 1)
(1ist (list source destination))

-33)))))

Now for any n > 1, we make use of the three steps given above. Step 1 tells
us to move n — 1 disks from source to helper, so we first invoke

(move (subl n) source helper destination)
which produces a list of pairs giving the moves that carry the first n — 1 disks

from the source post to the helper post making use of the destination post.
We append to that list the list containing the single move from the source
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Program 6.9 tower-of-hanoi

(define tower-of-hanoi
(lambda (n)
(letrec
((move
(lambda (n source destination helper)
(if (=n 1)
(list (list source destination))

(append
(move (subl n) source helper destination)
(cons
(1ist source destination)
(move (subl n) helper destination source)))))))
(move n ’L 'R ’C))))

post to the destination post. The resulting list is then consed onto the list of
pairs produced by

(move (subl n) helper destination source)

which moves the n — 1 disks from the helper post to the destination post
making use of the source post. These three steps enable us to complete the
definition of the local procedure move:

(define tower-of-hanoi
(lambda (n)
(letrec
((move
(lambda (n source destination helper)
(if (=n 1)
(1ist (list source destination))
(append
(move (subl n) source helper destination)
(cons
(list source destination)
(move (subl n) helper destination source)))))))

- )

Now that the local procedure move is defined, we call it for n disks located
on the source L and with destination R with the help of the post C. Thus the
complete solution is in Program 6.9.
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Program 6.10 display-tower-of-hanoi

(define display-tower-of-hanoi
(let ((show-move (lambda (s d)
(display s)
(display " --> ")
(display d))))
(lambda (n)
(letrec
((move
(lambda (n source destination helper)
(if (=n 1
(begin
(show-move source destination)
(newline))
(begin
(move (subl n) source helper destination)
(show-move source destination)
(display ", ")
(move (subl n) helper destination source))))))
(move n ’L ’R ’C)))))

Now to solve the Tower of Hanoi problem for three disks moving them from
the post L to the post R with the help of the post C, we enter

[1] (tower-of-hanoi 3)
((LR) (LC (RC) (LR) (CL) (CR) (LR))

This shows the seven moves that solve the problem for n = 3.

A minor modification of this program will enable us to see the individual
moves as they are being generated by the local procedure move. As written
now, the local procedure move builds a list of the individual pairs (1list
source destination) and returns that as the answer. Now we ask it to
send those pairs, without parentheses, to the screen instead of building a list
of them. The code to do this is shown in Program 6.10. With this new
definition, we get the following output:

[3] (display-tower-of-hanoi 3)
L -->R

L-->C, R-->C

b o> B, @ == L

C-->R, L-->R
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It is good practice to walk through the program and explain how the output
is obtained.

The second problem we discuss in this section is that of the Eight Queens.
The challenge in this problem is to place eight chess queens on a chess board in
such a way that no queen is attacking any other queen.* How many different
solutions are there to this problem? One such is shown in Figure 6.11.

— N W S LN g

Figure 6.11 An Eight Queens Solution

Let us number the columns from 1 to 8 going from left to right and the
rows from 1 to 8 going from the bottom to the top. The data structure we
use to denote the positions of the 8 queens on the board is a list of integers
of length 8 in which the kth integer in the list denotes the row of the queen
in the kth column. This data structure is permissible since the nature of the
problem rules out the possibility of two queens being on the same column.
The queens illustrated in Figure 6.11 are represented by the position list

(5726314 8)

In general the last element in the position list denotes the row of the queen in
the eighth column, so we denote the positions of the three rightmost queens
on the board in Figure 6.11 by (1 4 8). We call a position list legal if none

4 For those not familiar with the rules of chess, a queen attacks another piece if the queen
and the other piece are on the same horizontal, vertical, or 45-degree diagonal line.
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Program 6.12 1legal?

(define legal?
(lambda (try legal-pl)
(letrec
((good?
(lambda (new-pl up down)
(cond
((null? new-pl) #t)
(else (let ((next-pos (car new-pl)))
(and
(not (= next-pos try))
(not (= next-pos up))
(not (= next=-pos down))
(good? (cdr new-pl)
(add1 up)
(sub1 down)))))))))
(good? legal-pl (addl try) (subl try)))))

(define solution?
(lambda (legal-pl)
(= (length legal-pl) 8)))

(define fresh-try 8)

of the queens in the list attacks any other queen in the list. The position list
(1 4 8) is legal, but the position lists (8 4 8) and (6 4 8) are not legal,
the first because two queens are on the same row and the second because two
queens are on the same diagonal. Naturally, a list containing just one element
is legal. Program 6.12 defines a predicate that tests whether adding a new
queen to a legal position list is legal.

When do we know that we have a solution? When we have a legal position
list that is of length 8. For this problem, we will define a predicate solution?
that returns true if its argument, a legal position list, is of length 8. We need
one other piece of information before we can start. We need a constant fresh-
try, which has the value 8.

The Eight Queens problem is interesting because it represents a simple
problem in backtracking. When you make guesses to find a solution, you
often make a wrong guess and follow that wrong guess with other guesses
until it becomes clear that the set of guesses you have made will lead to a
failure. The undoing of such guesses is referred to as backtracking.
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Program 6.13 build-solution

(define build-solution
(lambda (legal-pl)
(cond
((solution? legal-pl) legal-pl)
(else (forward fresh-try legal-pl)))))

Imagine that we have the position list (6 4 1 7 5 3 8) and are about to
place the last queen on the chess board. The queen we placed most recently
was the 6. Now we discover that we cannot place the last queen, so it must
be that 6 was a bad choice. Because we try the positions in a column in
decreasing order, the next possibility is 5. We try this list with 5, 4, 3, 2,
and 1, and they all fail. When we decrease it one more time we get 0, so we
backtrack. This time we use 3 and (1 7 5 3 8). Neither 3, 2, nor 1 can
be used, so once again we backtrack. Once again we get 0. The 0 indicates
that there are no queens that can be added, so we backtrack again. This
time we use 6 and (5 3 8). We discover that although we cannot use 6, 5,
4 or 3, we can use 2. Once the 2 has been placed in the position list, we
try to place another queen, starting in position 8. This means we look for
a five-position list from the possibilities: (8 2 56 3 8), (7 2 5 3 8), (6 2
538),(62538),(42538),(32538),(22538),and (12
5 3 8). If one of these works, then we will be looking for a six-position list
among eight possibilities. If none of these works, then we backtrack and try
to find a four-position list from the single possibility 1 and (5 3 8). This
process, which consists of moving forward toward a solution as far as possible
and then backing up when we have hit a dead end, terminates with a solution
if there is one and terminates with the empty list if there are no solutions.

To solve the Eight Queens problem, we use the three procedures: build-
solution, forward, and backtrack. When build-solution (defined in Pro-
gram 6.13) is called, we know that its argument is a legal position list, so that
termination follows if it is the correct length. If it is not the correct length,
we call forward with an attempt that may or may not be legal. This attempt
will use fresh-try (i.e., 8) and a legal position list.

The procedure forward (see Program 6.14) is always called with a try and
a position list. If the try is 0, then we know that we have tried all positions
in this column, and none of them works, so we must backtrack. If the try is
not a 0, then adding try might make a legal position list. If so, we invoke
build-solution with the new legal position list. If not, we try again.
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Program 6.14 forward

(define forward
(lambda (try legal-pl)
(cond
((zero? try) (backtrack legal-pl))
((legal? try legal-pl) (build-solution (cons try legal-pl)))
(else (forward (subl try) legal-pl)))))

Program 6.15 backtrack

(define backtrack
(lambda (legal-pl)
(cond
((null? legal-pl) '())
(else (forward (subl (car legal-pl)) (cdr legal-pl))))))

We next discuss backtrack (see Program 6.15). At the time backtrack is
invoked, we know that its argument is either the empty list, or it is a legal
position list that has shown no promise. If it is the empty list, that means we
have backtracked as far as is possible and could not find a solution. This is
the result when you solve the Three Queens problem on a 3 x 3 board. When
this happens, we have no solution. It is more likely, however, that the legal
position list has shown no promise. Hence, we sacrifice that position list and
try the next one. This is accomplished by subtracting one from the car of the
current position list.

With these three procedures, we can now produce a solution to the Eight
Queens problem.

[1] (build-solution ’())
(5726314 8)

Generalizing this program to get more solutions is not difficult if we notice
that how we look at a solution is a matter of judgment. When we get a
solution, we can add it to a list of solutions, but also we may imagine that
that solution has shown no promise and backtrack over it. This way, we will
be forced to search for another solution, since the one we have has shown,
in a manner of speaking, no promise. This technique is called failure-driven
backtracking. For example, if we want three solutions, we can write
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[2] (let ((so0l1l (build-solution ’())))
(let ((s0l12 (backtrack soll)))
(let ((2013 (backtrack sol2)))
(list solil sol2 s013))))
((57263148) (47526138 (5471352 8))

From here, it is an easy step to get all solutions. Each time we get a solution,
we save it in a list and backtrack over it to get another solution, until there
are no solutions left. In the experiment below, we are interested just in the
number of solutions.

[3] (define build-all-solutions
(lambda ()
(letrec
((loop (lambda (sol)
(cond
((null? so0l) ’())
(else (cons sol (loop (backtrack so0l))))))))
(loop (build-solution ’())))))
[4] (length (build-all-solutions))
92

The procedures build-solution and forward rely on three global vari-
ables: 1egal?, solution?, and fresh-try. Program 6.16 is a procedure that
frees us from concern about these three variables. By scoping these variables,
we see how to make the not-so-general procedure for solving the Eight Queens
problem work for a larger class of problems.

Just getting answers is not satisfying. Backtracking should be witnessed.
As we have done earlier in this chapter, we are going to display selected
information so that you can get a better idea of how these procedures work.
The procedure forward is uninteresting because it is just monitoring the
counting-down procedure; thus we shall not trace forward. However, we will
display the position list on entrance to backtrack and build-solution. In
the trace we reverse the lists to make the trace more readable. By placing

(vriteln "Backtrack : " (reverse legal-pl))

and

(vriteln "Build-Solution : " (reverse legal-pl))
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Program 6.16 searcher

(define searcher
(lambda (legal? solution? fresh-try)
(letrec
((build-solution
(lambda (legal-pl)
(cond
((solution? legal-pl) legal-pl)
(else (forward fresh-try legal-pl)))))
(forward
(lambda (try legal-pl)
(cond
((zero? try) (backtrack legal-pl))
((legal? try legal-pl)
(build-solution (cons try legal-pl)))
(else (forward (subl try) legal-pl)))))
(backtrack
(lambda (legal-pl)
(cond
((null? legal-pl) ’())
(else
(forward (subl (car legal-pl)) (cdr legal-pl))))))
(build-all-solutions
(lambda ()
(letrec
((loop (lambda (sol)
(cond
((null? sol) ’())
(else (cons sol (loop (backtrack so0l))))))))
(loop (build-solution ’()))))))
(build-all-solutions))))

as the first expression in backtrack and build-solution, respectively, we
get a trace. If we only want to trace until the first solution is found, as shown
below, then we replace the body of the letrec by (build-solution ’()). As
you study the trace below, remember that the position list has been reversed,
and hence the last item in each list is the one most recently entered.
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[5] (searcher legal? (lambda (x) (= (length x) 7)) 7)

Build-Solution : ()
Build-Solution : (7)
Build-Solution : (7 5)
Build-Solution : (7 5 3)
Build-Solution : (7 5 3 6)
Build-Solution : (7 5 3 6 4)
Backtrack : (7T 536 4)
Backtrack : (753 6)
Build-Solution : (7 5 3 1)
Build-Solution : (7 5 3 1 6)
Build-Solution : (7 5 3 1 6 4)
Build-Solution : (7 5 3 16 4 2)

(2461357)

Exercises

Ezercise 6.8

An interesting question we can ask is how many moves M, are needed to
move a tower of n disks from the source post to the destination post. We can
get a simple equation satisfied by M, if we recall that we first used M,_;
moves to move the top n — 1 disks to the helper post, then we used one move
to carry the largest one from the source disk to the destination disk, and
finally we used M,_; moves to take the n — 1 disks from the helper post to
the destination post. This leads to the difference equation M, = 1+ 2M,,_;.
We also know that if we have only one disk on the source post, it takes
only one move to take it to the destination post. Thus M; = 1. Then
My=1+42M; =1+2,and M3 =1+2M, =1+ 2+ 2% Show by induction
that M, =1+2+22+2%+4...4 271, Sum this geometric series for M,, by
multiplying it termwise by 2 and then computing 2M,, — M, to get the final
result M, = 2" — 1. Estimate the number of digits in the number Mg4 to
determine how many disks the priests of the Temple of Brahma must move
before All turns to dust.

FEzercise 6.9

Write a program that solves the Tower of Hanoi problem for n disks and &
posts. All of the disks are initially on the first post. They should be moved
to the kth post with a minimum number of moves, placing no disk on top of
a smaller disk in the process.

FEzercise 6.10: queens
The Eight Queens problem can be restated to apply to n queens placed on an
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n x n board so that none attacks any of the others. Write a procedure queens
that takes n as an argument and solves the problem for an arbitrary n. Test
your solution for n = 3, 4, 5, and 6.

Ezercise 6.11: The Good Sequences

The Good Sequences problem may be stated as follows: a finite list of 1’s,
2’s, and 3’s is called a good sequence if it does not contain two identical
subsequences that are adjacent. Thus (1 2 3 2 3 1) is not good because (2 3)
appears twice as adjacent subsequences. On the other hand, (12321 3) is
a good sequence. Methods similar to those used in solving the Eight Queens
problem can be used to show that for any n, one can find a good sequence of
length n. Generate all good sequences of length n.

FEzercise 6.12

Change the definition of build-all-solutions so that instead of building a
list of all the answers, it displays the answers, one per line. Redefine your
solution so that it displays five solutions per line. Redefine the previous
solution to display n per line.

FEzercise 6.13

The backtrack trace represents the search for the first solution of the Seven
Queens problem. Show what would be printed if we traced the second solution.
You may solve this by hand or by modifying the program.

FEzercise 6.14

A standard technique for improving the efficiency of programs is to remove
invocations of length. In the procedures used to solve the Eight Queens
problem, we did not integrate the solution? test into the program because
we wanted to give you a relatively general program for doing backtracking.
Given that all you are concerned about solving is the Eight Queens problem,
rewrite the set of procedures so that there are no length invocations.

Ezercise 6.15

Sets of procedures can sometimes be combined. For example, we do not
need both the backtrack and forward procedures. If we combine these two
procedures, we will be left with only two procedures: build-solution and
the combined procedure. Test build-solution and the combined procedure.
Furthermore, we can take the resultant procedure and combine it with build-
solution. This would leave us with just one procedure, build-solution.
Test this new build-solution.
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Part 2

Procedures as Values

Procedures that take numbers as arguments and have numbers as values are
called simple arithmetic operations. Examples are addition and multiplica-
tion. Procedures that take procedures as arguments and have procedures
as values are called higher-order operations. One use we will make of these
higher-order procedures will be to show how we define a procedure that com-
bines similar characteristics of several different procedures. The activity of
combining properties of several procedures is also known as abstracting over
procedures, a natural generalization of abstracting over data. Not only is the
dining out procedure that we discussed in the introduction to Part 1 an ab-
straction of the dining activity, but it can be made to work for other external
consuming activities. Instead of eating in a restaurant, we watch a movie
in a theater, and instead of reading from a menu, we read a marquee. We
still enter, pay, and exit, so we can abstract the procedures within the dining
out procedure, and now we can refer to it as the consuming procedure. If
we feed the consuming procedure the activities of reading the menu and eat-
ing, then we will once again have the dining out procedure, but if we feed it
the activities of reading the marquee and watching a movie, we will have the
mouvte-going procedure.

A predicate tests whether a value is true or false. Quantifiers tell us whether
some or all objects satisfy a predicate. Set theory is about collections of
elements and the properties of operations over such collections. In Chapter 8,






7

Abstracting Procedures

7.1 Overview

In this chapter, we first see how procedures can be passed as arguments to
other procedures and how procedures may be the values of other procedures.
We illustrate these ideas with a development of the Ackermann procedure.
We then show how a procedure of two arguments may be rewritten as a
procedure of one argument whose value is a procedure of one argument. This
process is called currying. We next look at several programs that are similar
in structure and we abstract these common features in a program that can be
used easily to generate any other program with these features. This process
is called procedural abstraction. Flat recursion on lists is often encountered
in programming, so we have selected it as the first candidate for abstraction.
That is followed by an abstraction of deep recursion.

7.2 Procedures as Arguments and Values

In this section, we shall study the use of procedures as arguments to other
procedures and as values of procedures. In Chapter 1, we included procedures
as a type of datum and have on occasion used procedures as arguments to
other procedures. For example, in the definition of max in terms of extreme-
value in Chapter 3, we passed the procedure > as an argument to the proce-
dure extreme-value. In Scheme, all procedures may be used as arguments
to other procedures and as values of procedures. This idea is illustrated by
many examples in this section.

Suppose we have a list of numbers, such as (1 3 5 7 9), and we want to



196

Program 7.1 map

(define map '
(lambda (proc 1ls)
(if (null? 1s)
')
(cons (proc (car 1ls)) (map proc (ecdr 1s))))))

produce a new list that is obtained from the old by adding 1 to each item in
the list, so that in our example, we would get (2 4 6 8 10). We can define
a procedure addi-to-each-item that takes a list 1s and returns the new list
with each number augmented by 1.

(define addi-to-each-item
(lambda (1s)
(if (null? 1s)
')
(cons (+ 1 (car 1s)) (addi-to-each-item (cdr 1s))))))

Now if we want to add 2 to each element, we have to write the definition
again but with (+ 1 (car 1s)) replaced by (+ 2 (car 1s)). Since we may
want to perform many different operations on the elements of the list, it
would be more efficient if we had a procedure that takes as arguments both
the procedure we wish to apply to each element and the list. There is a
Scheme procedure map that has the parameters proc and 1s and returns a
list that contains those elements that are obtained when the procedure proc
of one argument is applied to each element of 1s. Thus

(map add1 ’(1 357 9)) = (2 4 6 8 10)

A definition of map is given in Program 7.1. To add 2 to each element in the
list, we pass the procedure of one argument, (lambda (num) (+ num 2)), as
the first argument to map. Thus we have

(map (lambda (num) (+ num 2)) ’(1 357 9)) = (3579 11)

We can also apply map with a procedure that operates on lists as its first
argument. For example:

(let ((proc (lambda (1s) (cons ’a 1s))))
(map proc '((bc) (de) (£ gh)))) = ((abc) (ade) (afgh))
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Program 7.2 for-each

(define for-each
(lambda (proc 1s)
(if (not (null? 1s))
(begin
(proc (car 1s))
(for-each proc (cdr 18))))))

(let ((x ’a))
(let ((proc (lambda (18) (member? x 1s))))
(map proc ’((abc) (bcd (cda))) = (#t #f #t)

Observe that the elements of the list making up the second argument to map
must be of the correct type for the procedure that is applied to them. In
the first of these two examples, proc is a procedure that takes a list as its
argument and conses the symbol a onto the list. Thus each element of the
second argument to map is a list, and the list that is returned consists of
sublists, each of which begins with the a that was consed onto it.

There are procedures, such as display, that produce side effects of interest
to us rather than their returned values. If we apply such a procedure to each
item in a list, the list that is returned is not what interests us but only the side
effects produced by the procedure. In such cases, we use the Scheme procedure
for-each instead of map to apply the side-effecting procedure to the elements
of the list. When for-each is applied with a side-effecting procedure as its
first argument and a list as its second argument, the procedure is applied
to each item in the list, the desired side effects are produced, and the value
that is returned is unspecified, that is, it depends upon the implementation
of Scheme being used. A definition of for-each is given in Program 7.2. An
example using for-each is:

[1] (for-each display ’("Hello." " " "How are you?'"))
Hello. How are you?

We shall see several more examples of the use of for-each below. But first
we introduce the form of 1ambda that is used to define a procedure that takes
an arbitrary number of arguments. We use this unrestricted lambda to define
the procedures writeln and error, which we have been using.

In a lambda expression, the keyword lambda is followed by a list of param-
eters. Its syntax is
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(lambda (parameter; ...) ezrpry erpry ...)

where zero or more parameters are in the list of parameters and where the
number of arguments passed to the procedure, which is the value of this
lambda expression, must match the number of parameters. The body of the
lambda expression consists of one or more expressions, which are evaluated in
order and the value of the last one is returned. Suppose we want to define a
procedure add that can be applied to arbitrarily many numbers and returns
their sum. For example, we would like to have

(add 1 357 9) = 25
(add 1 357 9 11) = 36
(add 1 357 9 11 13) => 49

It is possible to define a procedure that can be applied to any number of
arguments using the unrestricted lambda, whose syntax is

(lambda var ezpr; ezpry ...)
and it may be applied to any number of operands by invoking
((lambda var ezpr; ezpra ...) operand; ...)
If the operands operand; ... have the values arg; ..., then the variable var is

bound to the list of arguments (arg; ...). The expressions ezpr; ezprs...
in the body are evaluated with this binding in effect.

Program 7.3 add

(define add

(letrec ((1ist-add

(lambda (1s)
(if (null? 1s)
0
(+ (car 18) (list-add (cdr 1s)))))))
(lambda args

(list-add args))))

As an example, Program 7.3 shows the definition of a procedure add that
produces the sum of its arguments. For example, (add 1 2 3 4 5) = 15.
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Program 7.4 1list

(define list (lambda args args))

Program 7.5 writeln

(define writeln
(lambda args
(for-each display args)
(newline)))

Program 7.6 error

(define error
(1ambda args
(display "Error:")
(for-each (lambda (value) (display " ") (display value)) args)
(newline)
(reset)))

The general strategy for using this form of 1ambda is to remember that args is
a list, so we define a local procedure 1ist-add that takes a list as its argument
and let it do what we want add to do. Then we call 1ist-add with the list
args as its argument.

Similarly, the procedure 1list is defined in Program 7.4 so that

(list ’a ’b ’c ’d) = (abc d)

Two procedures, writeln and error, cau also be defined using the unre-
stricted lambda. These are shown in Programs 7.5 and 7.6. The procedure
of no arguments reset in Program 7.6 returns the user to the prompt. Many
implementations of Scheme provide the procedure reset. A discussion of the
concepts used to define reset is given in Chapter 16. (See Exercise 16.6.)

Suppose we now want to find the maximum of two numbers in a list 1s.
We cannot invoke (max 1s), since the list 1s is not the correct data type for
an argument to max, which expects each of its arguments to be a number.
If 1s were, for example, (2 4), we would be looking at the expression (max
(2 4)), which has the wrong type of argument for max. We could write
a recursive program that would compute the maximum of the values in 1s.
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Program 7.7 add

(define add
(lambda args
(if (null? args)
0
(+ (car args) (apply add (cdr args))))))

However, there is the Scheme procedure, apply, that allows us to apply a
procedure of k arguments to a list of £ items, and the results are the same as
if the items in the list were passed as the k arguments. The procedure apply
has the call structure

(apply proc list-of-items)

where the procedure proc takes the same number of arguments as the number
of items in the list list-of-items. It returns the value obtained when we invoke
proc with the items in list-of-items as its arguments. For example, we can
call

(apply max (2 4)) = 4
(apply + ’(4 11)) => 15

The use of apply gives us another way to define procedures using the un-
restricted lambda. Program 7.7 illustrates it by redefining the procedure add
given in Program 7.3, this time using apply in the recursive invocation of add
on the list (cdr args). There add is defined to apply to an arbitrary number
of numbers, so it cannot be applied directly to (cdr args), which is a list
of numbers. Thus we use apply to invoke add on the items in the list (cdr
args).

The Scheme procedures + and * are also defined to take an arbitrary number
of arguments. Thus we have:

(+13579) = 25
(+ 6) = 5
(+) = 0

(* 24 6) = 48

(» 5) = 5

(x) = 1
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Similarly. the Scheme procedures max and min are defined to take one or
more arguments. Thus we have

(max 5 -10 15 -20) = 15
(min 5 =10 15 -20) = -20

An object in Scheme is said to be a first-class object if it can be passed as
an argument to procedures. can be returned by procedures, and variables may
be bound to it. We have been using data objects such as numbers, symbols,
or lists of numbers or symbols as arguments to procedures and as values of
procedures, and we have bound them to variables using define, lambda. let
and letrec. Procedures are also treated as first-class objects in Scheme. This
1s not the case in many other programming languages. We now explore further
the implications of procedures as first-class objects.

To discuss the composition of two procedures, we first look at the composi-
tion of two functions from a mathematical point of view. Assume that f and
g are functions that take one argument and that each value of the function ¢
is a valid argument of the function f. We can then speak of the composition
h of the two functions f and g to be the function of one argument defined
by h(z) = f(g(z)): that is, to get the value of h at z. we first evaluate g at
z, and then invoke f on the value g(z). This idea can be interpreted for the
procedures we use 1n our programs. Ye now define a procedure compose that
takes two procedures f and g as parameters and returns another procedure
that 1s the composition of £ and g.

Program 7.8 compose

(define compose
(lambda (f g)
(lambda (x)

f (g x)))))

The body of the first lambda expression constructs the procedure

(lambda (x)
(£ (g x)))

with one parameter x. Thus (compose f g) is a procedure of one argument,
and we invoke this new procedure on 8 by writing ((compose £ g) 8). As
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an example, let us take add1 for g and sqrt for £. Then we can define the
composition h by writing

(define h (compose sqrt addi))

The new procedure h is the procedure that adds 1 to x and then takes the
square root of the result; expressed mathematically, h(z) = vz + 1. If we
invoke h with argument 8, we get (h 8) = 3. Observe that we have passed
the procedures sqrt and add1 as arguments to the procedure compose. Fur-
thermore, the value of the procedure compose is itself a procedure of one
argument. This illustrates both the fact that we can pass procedures, such as
sqrt and addi, as arguments to a procedure and we can have the value of a
procedure be a procedure.

If we reverse the order of the two procedures add1 and sqrt as arguments
of compose in our previous example, we get the procedure

(define k (compose addi sqrt))

The procedure k so defined first takes the square root of its argument and
then adds one to the result; that is, k(z) = y/z+ 1. Thus k is quite a different
function from h.

Exercise

Ezercise 7.1
What operand do we pass to k to get the same value as (h 8)7?

We next develop several basic arithmetic procedures that lead to an inter-
esting example that illustrates the use of procedures as values. The procedure
plus may be defined in terms of addl and subil by making use of the fact
that to add two nonnegative integers x and y, we can add 1 to x repeatedly
y times. This leads to Program 7.9. Similarly, using the fact that multipli-
cation of positive integers can be considered as repeated addition, times can
be defined in terms of plus and subi as shown in Program 7.10. This says
that multiplication of positive integers x and y is the same as adding x to
itself y times. In the same way, we can consider raising x to the exponent y
as multiplying x by itself y times, so we can write the procedure exponent as
shown in Program 7.11.
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Program 7.9 plus

(define plus
(lambda (x y)
(if (zero? y)
x
(add1 (plus x (subl y))))))

Program 7.10 times

(define times
(lambda (x y)
(if (zero? y)
0
(plus x (times x (subl y))))))

Program 7.11 exponent

(define exponent
(lambda (x y)
(if (zero? y)
1
(times x (exponent x (subl y))))))

Program 7.12 super

(define super
(lambda (x y)
(if (zero? y)
1
(exponent x (super x (subl y))))))

The three procedures we have defined follow a simple pattern. Using this
pattern, we can define another procedure, which we call super, that uses
exponent and sub1, as shown in Program 7.12. What does super do? Let us
evaluate (super 2 3).
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Program 7.13 superduper

(define superduper
(lambda (x y)
(if (zero? y)
b
(super x (superduper x (subil y))))))

Program 7.14 super-order

(define super-order
(lambda (n)
(cond
((= n 1) plus)
((= n 2) times)
(else (lambda (x y)
(cond
((zero? y) 1)
(else ((super-order (subl n))

x
((super-order n) x (subi y))))))))))

(super 2 3) => (exponent 2 (super 2 2))

(exponent 2 (exponent 2 (super 2 1)))

(exponent 2 (exponent 2 (exponent 2 (super 2 0))))
(exponent 2 (exponent 2 (exponent 2 1)))

(exponent 2 (exponent 2 2))

(exponent 2 4)

16

RRARN!

Thus (super 2 3) is 22°. In the same way we get that (super 2 4) is 2222
(a tower of 4 twos), which is 65,536. We see that super yields large numbers
even with relatively small arguments like 2 and 4.

We now go to the next step and define superduper using super and subli, as
shown in Program 7.13. Then (superduper 2 3) is (super 2 4) or 65,536,
and (superduper 2 4) is (super 2 65536), which is a tower of 65,536 twos.
This is a very large number.

We can continue defining successive procedures by this process, but we must
make up a new name for each one. It would be better to define a procedure
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super-order that depends upon a number n, so that (super-order 1) is the
same procedure as plus, (super-order 2) is the same procedure as times,
(super-order 3) is the same procedure as exponent, and so forth. The
definition of super-order is given in Program 7.14. If n is 1, super-order
is the same as plus, and if n is 2, then super-order is the same as times.
For each value of n, (super-order n) is a procedure of two arguments; for
example, ((super-order 4) 2 3) is the same as (super 2 3) or simply 16.
We can now write any procedure in the sequence by selecting the appropriate
value for the parameter n in (super-order n). For example, the procedure
that comes after superduper is (super-order 6).

If all three of the arguments, n, x, and y, in super-order are the same, it
is called the Ackermann procedure. Specifically, we can define

Program 7.15 ackermann

(define ackermann
(lambda (n)
((super-order n) n n)))

Then
(ackermann 1) is the same as (plus 1 1) which is 2.
(ackermann 2) is the same as (times 2 2) which is 4
(ackermann 3) is the same as (exponent 3 3) which is 27.
44
(ackermann 4) is the same as (super 4 4) which is 4%

To get an estimate of how large (ackermann 4) is, we first note that 4% is
256. To estimate 4*' = 4256, we set z = 4% and take the logarithm to get
log10 z = 256log,,4 = 154.13. Thus we get 42°¢ =~ 10!%* as our estimate for
4%, Finally we estimate

ot
44

similarly. If we set y = (ackermann 4), then log,oy ~ 10°*log, 4 =
101540.602. Then y ~~ 101°"*’) which means that (ackermann 4) has ap-
proximately 10133 digits. Can you estimate the magnitude of (ackermann
5)? The Ackermann procedure played an important role as an example in
the general theory of recursive functions. (See, for example, Minsky, 1967.)

It certainly does grow fast as n increases.
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We see in the definition of super-order that we have a procedure with
parameter n whose value is itself a procedure with parameters x and y, il-
lustrating again how procedures are first-class objects in Scheme. We shall
explore these ideas further in the next section, which deals with procedural

abstraction.

Exercises

Ezercise 7.2: compose3
Use the procedure compose to define a procedure compose3 that takes as
arguments three procedures, f, g, and h, and returns the composition k such

that for each argument z, k(z) = f(g(h(2))).

Ezercise 7.3: compose-many
Use the unrestricted lambda to define a composition procedure compose-many
that forms the composition of arbitrarily many procedures of one argument.

Test your procedure on

((compose-many addl addl addl addi) 3) = 7

((compose-many sqrt abs subi (lambda (n) (* n n))) 0.6) => 0.8

(let ((£f (lambda (n) (if (even? n) (/ n 2) (addi n)))))
((compose-many £ £ £ £ £ £) 21)) = 4

Ezercise 7.4: subtract

Based on the technique used in this chapter to define plus, times, etc., define
the procedure subtract that has as parameters two nonnegative integers x
and y, with x > y, and returns the difference between x and y.

Ezercise 7.5
In the following experiment, fill the blanks with the values of the expressions.

[1] (let ((h (lambda (x) (coms x x))))
(map h ’((1 2) (3 4) (56))))

[
[2] (map (lambda (x) (coms x x)) '((1 2) (3 4) (5 6)))

?

[3] (map (lambda (x) (+ 5 x)) (1 2 3 4))
P L
[4] (let ((n 5))
(let ((proc (lambda (x) (+ n x))))
(map proc (1 2 3 4))))
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[5] (define iota
(lambda (n)
(letrec ((iota-helper
(lambda (k acc)
(cond
((zero? k) (cons 0 acc))
(else (iota-helper (subil k) (cons k acc)))))))
(iota-helper (subi n) ’()))))
[6] (letrec ((fact
(lambda (n)
(if (zero? n) 1 (* n (fact (subl n)))))))

(map fact (iota 6)))
-

{7] (map (lambda (x) (+ x (addl x))) (iota 5))

”?

[8] (define mystery
(lambda (len base)
(letrec
((mystery-help
(lambda (n s)
(if (zero? n)
(list s)
(let ((h (lambda (x)
(mystery-help (subl n) (cons x s)))))
(apply append (map h (iota base))))))))
(mystery-help len ’()))))
[9] (mystery 4 3)

%

Ezercise 7.6: map-first-two

Define a procedure, map-first-two, that works exactly like map except that
the procedure argument is always a procedure of two arguments instead of
just one argument. Use the first and second elements of the list as the first
pair of arguments to the procedure, then the second and third elements, then
the third and fourth elements, and so on, until the end of the list is reached.
If there are fewer than two elements in the list, the empty list is the value.
Test your procedure on:

(map-first-two + ’(2 345 7)) = (57 9 12)
(map-first-two max (24 3 5 4 1)) = (4 4 55 4)

Ezercise 7.7: reduce
Define a procedure, reduce, that has two parameters, proc and 1s. The
procedure proc takes two arguments. The procedure reduce reduces the list
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1s by successively applying this operation: it builds a new list with the first
two elements of the preceding list replaced by the value obtained when proc
is applied to them. When the list is reduced to containing only two elements,
the value returned is the value of proc applied to these two elements. If the
original list 1s contains fewer than two elements, an error is reported. Here
is how the successive stages in the reduction look when proc is + and 1s is

(357 9):

(3579) - (879) — (16 9) — 24

Test your procedure on:

(reduce + (1 3 57 9)) = 25
(reduce max (2 -4 6 8 3 1)) = 8
(reduce (lambda (x y) (and x y)) °’(#t #t #t #t)) = #t

The last example is not written as (reduce and ’(#t #t #t #t)) because
and is a keyword of a special form and not a procedure. Keywords only appear
in the first position of a list.

Ezercise 7.8: andmap

Define a predicate andmap that takes two arguments, a one-argument predicate
pred and a list 1s. The value returned by andmap is true when pred applied
to each of the elements of 1s is true. If pred applied to any one of the elements
of 1s is false, andmap returns false. The solution

(define andmap
(lambda (pred 1s)
(reduce (lambda (x y) (and x y)) (map pred 1s))))

1s unacceptable because of the extra recursion. Test your predicate on:

(andmap positive? ’(3 4 6 9)) = #t
(andmap positive? ’(3 -1 4 8)) =—> #f
(let ((not-null? (compose not null?)))
(andmap not-null? ’((a b) (c) (c d e)))) = #t

Ezercise 7.9: map2

Define map2, which is exactly like map except that its procedure argument
is always a procedure that takes two arguments, and it takes an additional
argument that is a list the same length as its second argument. The additional
list is where it gets its second argument. Test your procedure on:

(map2 + (1 2 3 4) (57 9 11)) => (6 9 12 15)
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(map2 (let ((n 5))
(lambda (x y)
(and (< x n) (< n y))))
'(13217)
’(9 11 4 7 8)) => (#t #t #f #t #f)

Ezercise 7.10: map, ormap
We now present a definition of map that accepts any number of arguments.

(map proc lsy lsg ...lsn)

where proc is a procedure that takes n arguments and each of the n lists has
the same length. This generalizes the procedures map and map2 given above.

(define map
(lambda args
(let ((proc (car args)))
(letrec ((map-helper
(lambda (a*)
(if (any-null? ax*)
'O
(cons
(apply proc (map car ax))
(map-helper (map cdr a*)))))))
(map-helper (cdr args))))))

This program, as written, is incorrect because the two invocations of map
within the definition refer to the simple map we defined earlier in the chapter.
Add a definition of the simple map to the letrec (in the same way that even?
and odd? are in the same letrec) so that no names will be changed in the
definition of map-helper, and write any-null? using the definition of ormap

given below.

(define ormap
(lambda (pred 1s)
(if (null? 1s)
#£
(or (pred (car 1ls)) (ormap pred (cdr 1s))))))

What does this version of map return when the n lists are not of equal length?

7.2 Procedures as Arguments and Values 209



FEzercise 7.11
To test your understanding of scope, determine the value of the expression

(letrec ((a (let ((a (lambda (b c)
(if (zero? b) c (a (subl b))))))
(lambda (x) (a x x)))))
(a 3))

7.3 Currying

210

The procedure + takes two numbers as arguments and returns their sum. The
procedure add1 adds 1 to its argument. We can also define a procedure adds
that adds 5 to its argument by writing

(define addS

(lambda (n)
(+ 5 n)))

This can clearly be done for any number in place of 5. Another way of
approaching this problem makes use of the fact that a procedure may return
another procedure as its value. We can define a procedure curried+ that has

only one parameter, m, and returns a procedure having one parameter n, that
adds m and n:

(define curried+
(lambda (m)
(lambda (n)
(+ m n))))

Thus (curried+ 5) returns a procedure defined by

(lambda (n) (+ m n))
where m is bound to 5. To add 5 and 7, we would then invoke

((curried+ 5) 7) = 12

We can now define add5 by writing

(define add5 (curried+ 5))
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Moreover, we can define add8 by writing

(define add8 (curried+ 8))

and we clearly can do the same for any other number in place of 8. What
underlies this method is the fact that we can take any procedure that has two
parameters, say x and y, and rewrite it as a procedure with one parameter
x that returns a procedure with one parameter y. The process of writing a
procedure of two parameters as a procedure of one parameter that returns
a procedure of one parameter is called currying the procedure.! It is often
advantageous to use a curried procedure when you want to keep one argument
fixed while the other varies, so in essence, you are using a procedure of one
argument.

We next use currying to rewrite the definitions of four procedures in a way
that demonstrates certain common structural features that they possess. In
the next section, we shall abstract these common features and write a single
procedure from which the original four and many others can be obtained. The
four procedures are member?, map, sum, and product.

The procedure member? can be defined as follows:

(define member?
(lambda (item 1s)
(if (null? 1s)
#f
(or (equal? (car 1s) item)
(member? item (cdr 1s))))))

It tests whether the object item is a top-level object in the list 1s. We are
going to apply the procedure member? with the same object item but different
lists 1s, so we define the curried procedure member?-c, which is a procedure
with parameter item and returns a procedure that has the parameter 1s and
tests whether item is a top-level member of 1s. We do that in Program 7.16.
Observe the following points in the definition of member?-c:

1. member?-c is a procedure with one parameter item.

2. The procedure member?-c returns a procedure helper that has one param-
eter 1s.

1 Conceived by Moses Schonfinkel in 1924 (See Schénfinkel, 1924) and named after the
logician Haskell B. Curry.
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Program 7.16 member?-c

(define member?-c
(lambda (item)
(letrec
((helper
(lambda (1s)
(if (null? 1s)
#f
(or (equal? (car 1s) item) (helper (cdr 1s)))))))
helper)))

3. We introduced the letrec expression to avoid having to pass the argument
item each time we make a recursive procedure call, since item does not
change throughout the program.

We can now define the original procedure member? in terms of member?-c
by writing

(define member?
(lambda (a 1s)
((member?-c a) 1s)))

As another example of currying, we look at the definition of the procedure
map, presented in Program 7.1, which has two parameters, a procedure proc,
and a list 1s. It applies the procedure proc elementwise to 1s and returns a
list of the results. For example,

(map addl ’(1 2 3 4)) => (2 3 4 5)

Its definition is:

(define map
(lambda (proc 1s)
(if (null? 1s)
0
(cons (proc (car 1ls)) (map proc (cdr 1s))))))

This can be written in curried form by using the procedure apply-to-all,
which takes one argument proc and is itself a procedure of the argument
1s. We give its definition in Program 7.17. We can write map in terms of
apply-to-all by defining
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Program 7.20 swapper-m

{
| (define svapper-m
' (lambda (x y)
I (letrec
' ((helper
(lambda (1s)
) (cond
((null? 1s) Q)
((equal? (car 1s) x) (cons y (helper (cdr 1s))))
((equal? (car 1s) y) (coms x (helper (cdr 1s8))))
(else (cons (car 18) (helper (cdr 18))))))))
helper)))

sum, assumes that the objects in the list are numbers and returns the sum of
the numbers in the list, and the second, product, assumes that the objects
in the list are numbers and returns the product of the numbers in the list.
We write their definitions in Programs 7.18 and 7.19 in such a way that they
demonstrate the same structure as the preceding definitions of member?-c
and apply-to-all. We could have written the procedures sum and product
without the letrec expressions, but we have chosen to do it this way to be
able to compare the structure of these two procedures with the structure of
member?-c and apply-to-all when we abstract this structure in the next
section.

We close this section with an example that is similar to currying, this time
modifying a procedure with three parameters to get a procedure with two
parameters that returns a procedure with one parameter. We look at the
procedure swapper introduced in Program 2.8. Its definition is:

(define swapper
(lambda (x y 1s)
(cond
((null? 1s) *(Q))
((equal? (car 1s) x) (cons y (svapper x y (cdr 1s))))
((equal? (car 1s) y) (cons x (svapper x y (cdr 1s))))
(else (cons (car 1ls) (svapper x y (cdr 1s)))))))

We modify it to get a procedure swapper-m (we use -m for “modified”) that
has the two parameters x and y and that returns a procedure of one parameter
1s. Its definition is given in Program 7.20. To swap the numbers 0 and 1 in
the list (0 1 2 0 1 2), we would invoke
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((svapper-m 0 1) (01 2012)) =>(102102)

This example illustrates that a generalization of currying can be used to re-
define a procedure with n = m + k parameters to become a procedure with
m parameters that returns a procedure with k& parameters. The term curry-
ing refers to redefining a procedure with n parameters to be expressed as n
procedures, each having only one parameter.

In this section, we have introduced the concept of currying a procedure of
two arguments to get a procedure of one argument that returns a procedure of
one argument. This technique is useful when we want to consider the behavior
of the procedure as the second argument varies while the first argument is
fixed. More generally, a procedure of n = m + k arguments may be modified
to get a procedure of m arguments that returns a procedure of k¥ arguments.

Exercises

FEzercise 7.12: curried#

Curry the procedure * to get a procedure curried* and use it to define the
procedure times10 that multiplies its argument by 10. Test your procedures
on:

((curried* 25) 5) => 125
(times10 125) == 1250

Ezercise 7.13: swapper-c

Curry the procedure swapper-mso that the curried procedure swapper-c has
one parameter x. It returns a procedure with one parameter y, which in turn
returns a procedure with one parameter 1s. That procedure swaps x and y
in 1s.

FEzercise 7.14: round-n-places

In Program 6.5, the procedure round-n-places was defined to take two pa-
rameters, n and dec-num, and returned the number dec-num rounded off to
n decimal places. Rewrite the definition of round-n-places so that it takes
one parameter, n, and returns a procedure with one parameter, dec-num, that
rounds the number dec-num off to n decimal places. We can then write

(define round-5-places (round-n-places 5))

to get the procedure that rounds a given number off to five decimal places.
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Ezercise 7.15: subst-all-m

Modify the deeply recursive procedure subst-all, which has the parameters
new, old, and 1ls, to get a procedure subst-all-m with the two parameters
new and old, which returns a procedure with the parameter 1s, which replaces
each occurrence of old in 1s by new. Test your procedure on:

((subst-2ll1-m 1 0) (01 2012)) = (11211 2)
((subst-all-m 1 0) (01 2 ((012)))) = (112 ((112)))

Ezercise 7.16: extreme-value-c

In Program 3.19, the procedure extreme-value was defined and then it was
used to define the procedures rmax and rmin by passing it the appropriate
predicate. Write the definition of the procedure extreme-value-c, which
takes the predicate pred and returns a procedure that finds the maximum
of its two arguments or the minimum of its two arguments, depending upon
pred. Then express rmax and rmin in terms of extreme-value-c.

Ezercise 7.17: extreme-value-c

In the previous exercise, the procedure (extreme-value-c pred) expects
only two arguments. Rewrite the definition of extreme-value-c using the
unrestricted lambda so that (extreme-value-c pred) is a procedure that
takes arbitrarily many numbers as arguments and returns the extreme value
(maximum or minimum) depending upon the predicate pred.

Ezercise 7.18: between?, between?-c

Define a predicate between? that has three numbers x, y, and z, as parameters
and returns true when y is strictly between x and z, that is, when x < y <
z. Then define between?-c, a curried version of between?, where each of the
procedures has only one parameter. That is, between?-c has the parameter
x and returns a procedure that has the parameter y, which in turn returns
a procedure with the parameter z, that tests whether y is strictly between x
and z. Test your procedure on:

(((between?-c 5) 6) 7) => #¢t

(((between?-c 5) 5) 7) => #f
(((between?-c 5) 4) 7) => #f

Ezercise 7.19: andmap-c, ormap-c
Consider this definition of andmap-c:
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(define andmap-c
(lambda (pred)
(letrec
((and-help
(lambda (1s)
(cond

((null? 1s) #t)
(else (and (pred (car 1s)) (and-help (cdr 1s))))))))

and-help)))

Fill in the blanks below.

[1] (define all-positive? (andmap-c positive?))

[2] (all-positive? ’(3 4 8 9))

[PA—— R

[3] (all-positive? ’(3 -1 4 8))

y=— S8 B

[4] ((andmap-c (compose not null?)) ’((a b) (c) (c d e)))

¥

Now define the procedure ormap-c, which takes a predicate as an argument
and returns a predicate that accepts a list as a value. We can define ormap
(see Exercise 7.10) using ormap-c as follows:

(define ormap
(lambda (pred 1s)
((ormap-c pred) 1ls)))

Test ormap-c by filling in the blanks below.

[5] (define some-positive? (ormap-c positive?))

[6] (some-positive? (3 4 8 9))

A = L

[7] (some-positive? (3 -1 4 8))

.

[8] ((ormap-c (compose not null?)) (() () (a b) (c) (c d e)))
?

Ezercise 7.20: is-divisible-by?, prime?
Consider the definition

(define is-divisible-by?
(lambda (n)
(lambda (k)
(zero? (remainder n k)))))
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A prime number is a positive integer greater than 1 that is not divisible by any
positive number other than 1 and itself. Using is-divisible-by?, write a
definition of the procedure prime? that tests whether a positive integer n > 2
is prime by first testing whether it is odd and greater than 1 and then testing
whether it is not divisible by any of the odd integers from 3 to the largest odd
integer less than or equal to the square root of n. Why is it necessary only to
try integers less than the square root of n?

Ezercise 7.21
Justify the statement “If we restrict ourselves to using only lambda expressions

having only one parameter in its list of parameters, we can still define any
procedure, regardless of how many parameters it has.” Note that the currying
examples in this section show how to define procedures having two and three
parameters using only lambda expressions with one parameter.

7.4 Procedural Abstraction of Flat Recursion
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In this section, we show how to abstract the structure of flatly recursive pro-
cedures to obtain a general procedure in terms of which the various special
cases can be defined. We illustrate this idea by looking for common structural
features in the four procedures member?-c, apply-to-all, sum, and product
defined in Section 7.3. A comparison of the code for these four procedures
yields the fact that the four lines

(letrec
((helper
(lambda (1s)
(if (nuid? 1s)

and the last line
helper

are identical in all four programs. Furthermore, in all four, we do something
to (car 1s) and make the recursive call to helper on (cdr 1s). We want
to define a procedure flat-recur that abstracts the structure of these four
programs; that is, it embodies the common features of these programs, and
they can all be derived from it by using suitable parameters. Let us see how
much of flat-recur we can write based on the above observations.
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(define flat-recur
(lambda ( )
(letrec
((helper
(lambda (1s)
(if (null? 1s)

)
helper)))

How do we fill in the blanks? Let us first look at the blank that is the
consequent of the if expression. It is the action taken when 1s is empty.
We call this consequent of the test (null? 1s) the seed and denote it by the
variable seed. This will be the first parameter in the outer lambda expression.
Table 7.21 shows the seed for each of the four cases.

Procedure seed
member?-c #f
apply-to-all @)
sum
product 1

Table 7.21 Seeds for the four procedures

The other blank in the if expression is in the action taken on (car 1s) and
(helper (cdr 1s)) when (null? 1s) is false. The action taken on (car
1s) and (helper (cdr 1s)) is a procedure that takes (car 1s) and (helper
(cdr 1s)) as arguments, and we call this procedure 1ist-proc. We write
list-proc as a procedure with the parameters x and y. When list-proc is
invoked, x will be bound to (car 1s) and y will be bound to (helper (cdr
1s)) to give us the alternative action when (null? 1s) is false. For example,
the alternative action in the case of apply-to-all is

(cons (proc (car 1s)) (helper (cdr 1s)))
If 1ist-proc is the value of
(lambda (x y) (cons (proc x) y))

then
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(list-proc (car 1s) (helper (cdr 1s)))

is the desired alternative action. We pass 1ist-proc as the second parameter
in the outer lambda expression. Table 7.22 gives 1ist-proc for each of the
four programs.?

Procedure list-proc
member?-c (lambda (x y) (or (equal? x item) y))
apply-to-all (1ambda (x y) (coms (proc x) y))
sum +
product &

Table 7.22 The four list procedures

We are now ready to define the procedure flat-recur, which takes seed
and list-proc as arguments and produces precisely the procedure with pa-
rameter 1s that abstracts the structure of the four procedures. (See Pro-
gram 7.23.) We can then write each of the four procedures in terms of this
new procedure. Furthermore, we can use it to write any procedure using
recursion on a list of top-level items.

We can now write the four procedures using flat-recur as follows:

(define member?-c
(lambda (item)
(flat-recur #f (lambda (x y) (or (equal? x item) y)))))

(define apply-to-all
(lambda (proc)
(flat-recur ’() (lambda (x y) (cons (proc x) y)))))

(define sum (flat-recur 0 +))

(define product (flat-recur 1 *))

2 The procedure that we selected for list-proc in the case of member?-c does more pro-
cessing than is necessary, for it loses the benefit of the behavior of or. Generally when the
first argument to or is true, the value #t is returned without evaluating the second argu-
ment. However, when list-proc is called, both arguments are first evaluated, and then
the or expression is evaluated, so the argument to which y is bound is always evaluated.
Even though the resulting version of member?-c is less efficient, it illustrates the principle
of procedural abstraction and a feature that one should be aware of when applying it.
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Program 7.23 flat-recur

(define flat-recur w
(lambda (seed list-proc) "
(letrec
((helper
(lambda (1s)
l (if (null? 1s)
seed
(list-proc (car 1s) (helper (cdr 1s)))))))
helper)))

You may be concerned that the procedure list-proc in these last two ex-
amples has a different structure from those in the first two examples. This is
really not the case, since we could also have used (lambda (x y) (+ x y))
in place of the variable +, and we could have used (lambda (x y) (* x y))
in place of the variable *.

The process we have used here looks for common features in several pro-
grams and then produces a procedure that embodies the code that is similar
in all of these programs. It enables us to express each of the original proce-
dures more simply. This process is called procedural abstraction. This is a very
powerful programming tool that should be exploited when it is applicable.

The procedure flat-recur can be used whenever a program does recursion
on the top-level objects in a list. We now see an example of how we can use
1t to define the procedure filter-in-c. Let 1s be a list and suppose that
we have a predicate pred that we want to apply to each top-level object in
the list. If the result of applying pred to an object in the list is false, then
the object is to be dropped from the list. Thus the procedure filter-in-c
returns a list consisting of those objects from 1s that “pass” the test. This
program involves recursion on the top-level objects in the list 1s, and if 1s is
empty, filter-in-c returns the empty list, so seed is (). To get 1ist-proc
we shall again use x for the (car 1s) and y for (helper (cdr 1s)). Then
if pred applied to x is true, we cons x to y; otherwise we just return y. Thus
the list-proc of flat-recur can be written as

(lambda (x y)
(if (pred x)
(cons x y)

y))
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Program 7.24 filter-in-c
; il

| (define filter-in-c
f (lambda (pred) [
(flat-recur
'O
(lambda (x y)
(if (pred x)
(cons x y)

¥)))))

and we can define filter-in-c as shown in Program 7.24. If we do not want
to use filter-in-c in curried form, we can define the procedure filter-in
as:

(define filter-in
(lambda (pred 1s)
((filter-in-c pred) 1s)))

Here are some examples using filter-in:

(filter-in odd? (1 2 3456 7 89)) = (1357 9)
(filter-in positive? ’(1 0 2 0 3 0 4)) => (1 2 3 4)
(filter-in (lambda (x) (< x 5)) (123 456789)) = (123 4)

In this section, we have illustrated the process of procedural abstraction of
flat recursion. We defined a procedure flat-recur from which procedures
that use flat recursion can be derived by passing flat-recur the appropriate
arguments. This is a powerful tool that can often be used to make programs
easier to write and to understand.

Exercises

Ezercise 7.22: mult-by-scalar

In Exercise 3.1, we called a list of numbers an n-tuple. Using flat-recur,
define a procedure mult-by-scalar that takes as its argument a number ¢ and
returns a procedure that takes as its argument an n-tuple ntpl and multiplies
each component of ntpl by the number c. Test your procedure on:

((mult-by-scalar 3) ’(1 -2 3 -4)) => (3 -6 9 -12)
((mult-by-scalar 5) *()) = ()
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Ezercise 7.23: filter-out

The procedure filter-out takes two arguments, a predicate pred and a list
1ls. It removes from the list 1s all of its top-level elements that “pass” the
test, that is, it removes those top-level objects item for which (pred item)
is true. Write the definition of filter-out using a local procedure filter-
out-c that is defined using flat-recur.

Ezercise 7.24: insert-left

Starting with the procedure insert-left described in Exercise 4.1 and using
flat-recur, define the modified version insert-left-m that takes as pa-
rameters the new and old values and returns a procedure with the list as its
parameter. Then define insert-left using insert-left-m.

Ezercise 7.25: partial
Let proc be a procedure of one numerical argument with numerical values.

a. Define a procedure partial-sum that computes the sum of the numbers
(proc ?) for i ranging from k to n, where k < n. For example,
(partial-sum (lambda (m) (* m m)) 3 7) = 135

b. Define a procedure partial-product that computes the product of the
numbers (proc %) for i ranging from k to n, where k£ < n. For example
(partial-product (lambda (m) (* m m)) 3 7) => 6350400

c. Define an abstraction of partial-sum and partial-product named par-
tial so that partial-sum and partial-product can be defined as

(define partial-sum (partial O +))
(define partial-product (partial 1 *))

7.5 Procedural Abstraction of Deep Recursion

The deeply recursive procedures defined in Chapter 4 use recursion on nested
sublists rather than being limited to top-level objects of lists. They also
display a common structure that can be abstracted in a procedure deep-
recur. We now look at some deeply recursive procedures to find their common
structure and then formulate the definition of deep-recur.

We start with filter-in-all-c, which takes a pred as its argument and
returns a procedure that has a list 1s as its parameter and, when applied to
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1s, drops from the list those items that do not “pass” the test. For example,
if pred is odd? and 1s is ((4 5) 2 (3 5 (8 7))) we have

((filter-in-all-c o0dd?) 1s) => ((5) (3 5 (7)))

The code for filter-in-all-c is given in Program 7.25. We define filter-
in-all as the procedure of two arguments, pred and 1s, in terms of filter-
in-all-c as shown in Program 7.26.

In the same way, we define sum-all as a procedure of one argument 1s,
which is a list of numbers, such that (sum-all 1s) is the sum of all of the
numbers in 1s. For example

(sum-all ’(3 (1 4) (2 (-3 5)))) = 12

The code for sum-all is presented in Program 7.27. Both of these procedures,
sum-all and filter-in-all-c, share the following lines:

(letrec
((helper
(lambda (1s)
(if (null? 1s)
(let ((a (car 1s)))
(if (or (pair? a) (null? a))

..............................

We are going to define a procedure deep-recur to abstract the structure
of these two procedures. Let us see how much of the code we can fill in from
the above observations.

(define deep-recur
(lambda ( )
(letrec
((helper
(lambda (1s)
(if (null? 1s)

(let ((a (car 1s)))
(if (or (pair? a) (null? a))

7))

helper)))

22 Abstracting the Structure of Procedures



Program 7.25 filter-in-all-c

(define filter-in-all-c
(lambda (pred)
(letrec
((helper
(lambda (1s)
(if (null? 1s)
*O)
(let ((a (car 1s)))
(if (or (pair? a) (null? a))
(cons (helper a) (helper (cdr 1s)))
(if (pred a)
(cons a (helper (cdr 1s)))
(helper (cdr 1s)))))))))
helper)))

Program 7.26 filter-in-all

(define filter-in-all
(lambda (pred 1s)
((filter-in-all-c pred) 1s)))

Program 7.27 sum-all

(define sum-all
(letrec ((helper
(lambda (1s)
(if (mull? 1s)
0
(let ((a (car 18)))
(if (or (pair? a) (null? a))
(+ (helper a) (helper (cdr 1s)))
(+ a (helper (cdr 18)))))))))
helper))
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Once again, we use the variable seed to denote the consequent of the first
if expression with test (null? 1s). In the case of sum-all, seed is 0, and
in the case of filter-in-all-c, seed is (). We take seed to be the first

parameter for the outer lambda expression.
In the consequent of the second if expression with test (or (pair? a)
(null? a)), the local procedure helper for filter-in-all-c invokes

(cons (helper a) (helper (cdr 1s)))
and the local procedure helper for sum-all invokes
(+ (helper a) (helper (cdr 1g)))

We refer to the procedure that is applied to (helper a) and (helper (cdr
1s)) as list-proc. We fill the blank with the application

(list-proc (helper a) (helper (cdr 1s)))

and to generate the expression needed for filter-in-all-c, we bind list-
proc to cons, and to generate the expression needed for sum-all, we bind
list-proc to +. We take list-proc as the third parameter to the outer
lambda expression. We next consider what to use as the second parameter.

In both of our examples, the alternative of the second if expression with
test (or (pair? a) (null? a)) is a procedure invocation that involves a
and (helper (cdr 1s)). For filter-in-all-c, we want to generate the
expression

(if (pred a) (cons a (helper (cdr 1s))) (helper (cdr 1s)))
while for sum-all, we need
(+ a (helper (cdr 1s)))

We can generate both of these using a procedure item-proc that has two
parameters, x and y. If we fill the blank with

(item-proc a (helper (cdr 1s)))

then to get what we need for sum-all, we bind item-proc to +. To get what
we need for filter-in-all-c, we bind item-proc to
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In this chapter, we looked at the definitions of the four procedures sum,
product, member?-c, and filter-in-c, all of which performed flat recur-
sion, and abstracted from them their common structural features. We then
defined the procedure flat-recur. which incorporated those common fea-
tures and took as arguments the things that produced the features of the four
procedures that were not common to them all. This enabled us to recover the
original four procedures and others that do flat recursion from flat-recur
by passing to flat-recur the appropriate arguments. We then did a similar
thing with procedures that performed deep recursions. We abstracted from
the two procedures filter-in-all-c and sum-all their common features
and defined the procedure deep-recur. We were able to recover the original
two procedures by passing to deep-recur the appropriate arguments. This
process of defining a procedure incorporating the common structural features
of a class of procedures. and then obtaining the procedures in that class by
passing the abstraction the appropriate arguments, is what we called proce-
dural abstraction.

Exercises

Ezercise 7.26: remove-all-c, product-all

Write the definitions of remove-all-c and product-all for arbitrary lists.
The procedure remove-all-c takes an object item as its argument and re-
turns a procedure of the list 1s, which removes all occurrences of item in 1s.
The call (product-all 1s) returns the product of all of the numbers in the
list of numbers 1s. In both procedures, preserve the structure displayed in
the above definitions of sum-all and filter-in-all-c using letrec.

Ezercise 7.27: remove-all-c, product-all (continued)
Define the two procedures product-all and remove-all-c described in the
previous exercise using deep-recur.

Ezercise 7.28: filter-out-all

In a manner analogous to that used in Exercise 7.23, use deep-recur to define
the deeply recursive procedure filter-out-all-c, and then use it to define
filter-out-all.

Ezercise 7.29: subst-all-m
The procedure subst-all-m was described in Exercise 7.15. Define it using
deep-recur.
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Sets and Relations

8.1 Overview

Sets play a fundamental role in the development of mathematics and logic.
In this chapter, we show how sets may be introduced as a data structure in
Scheme. We first define various procedures that give information about how
many elements satisfy certain given conditions. These procedures are called
quantifiers. We then present an implementation of set theory; that is, we
define sets as a data type and develop the usual set operations. In the last
section, we apply sets to a discussion of functions and relations. Throughout
the discussion, we make use of the fact that procedures are first-class objects.
We use them as values and pass them as arguments.

8.2 Quantifiers

We study various procedures in this section that we shall use later in our
discussion of sets. If we are given two items, these procedures are used to
tell whether both, at least one, or neither of the items satisfy some condition.
In a sense, they give an idea of how many of the items satisfy the condition;
hence these procedures are called quantifiers. In this section, we introduce the
quantifiers both, at-least-one, and neither; after sets have been introduced
in the next section, we add to this list the quantifiers for-all, there-exists,
and none.

The first of these is a procedure both that has a predicate pred as its
parameter and returns another predicate that has two parameters, argl and
arg2. It is true if and only if pred is true for both argl and arg2. It is easy
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to write the definition of both:

Program 8.1 both

(define both
(lambda (pred)
(lambda (argil arg2)
(and (pred argl) (pred arg2)))))

For example, if we want to test whether two lists are both nonempty, we
can invoke the predicate

(both (lambda (1s) (not (null? 1s))))
on the two lists. Then
((both (lambda (1s) (not (null? 1s)))) ’(a b c) ’(d e)) = #t
Incidentally, the predicate in this case can also be written as
(both (compose not null?))
Thus
((both (compose not null?)) ’(a b c) ’(d e)) = #t

We similarly define a procedure neither that has as parameter a predicate
pred. It returns another predicate that has two parameters, argi and arg2.
Its value is true if and only if neither (pred argi) nor (pred arg2) is true.
Here is its definition:

Program 8.2 neither

(define neither
(lambda (pred)
(lambda (argl arg2)
(not (or (pred argi) (pred arg2))))))

Thus
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((neither null?) ’(a b c) ’(d e)) = #t

Another useful procedure is at-least-one, which has as its parameter a
predicate pred. It returns another predicate that has two parameters, argi
and arg2. Its value is true when either (pred arg1) or (pred arg2) is true.
Below is its definition:

Program 8.3 at-least-one

(define at-least-one
(lambda (pred)
(lambda (argl arg2)
(or (pred argl) (pred arg2)))))

Here is how it works:

((at-least-one even?) 1 3) = #f
((at-least-one even?) 1 2) => #t

We can play with logic a little to show that we can take one of these three
procedures as basic and express the other two in terms of it. For example, let
us take neither as the basic one and try to express both and at-least-one
in terms of neither. Given two lists, if we want to say that both lists are
empty, we can also say that neither of the lists is not empty. In general, saying
that both items satisfy a predicate is the same as saying that neither of them
does not satisfy the predicate. Thus we can write

(define both
(lambda (pred)
(lambda (argl arg?2)
((neither (lambda (arg) (not (pred arg)))) argl arg2))))
Suppose we have a procedure definition of the form

(define name (lambda (argl ...) (proc argl ...)))

where corresponding arguments are exactly the same in both places. We can
often simplify the definition to be

(define name proc)
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since in both versions, (name z...) is the same as (proc z...). For example,
this simplification rule tells us that the expression

(lambda (a 18) (cons a 1ls))

evaluates to a procedure that behaves the same as cons.
Observe next that we can rewrite the expression

(lambda (arg) (not (pred arg)))
which appears in the last line of the definition of both, to be
(lambda (arg) ((compose not pred) arg))
which, according to the above simplification rule, has the same value as
(compose not pred)
We can therefore rewrite the definition of both to be
(define both
(1ambda (pred)

(lambda (argl arg2)
((neither (compose not pred)) argl arg2))))

We can apply the simplification rule again to see that
(lambda (argl arg2) ((neither (compose not pred)) argl arg2))

is the same as
(neither (compose not pred))

so we obtain the final version of both to be

(define both
(lambda (pred)
(neither (compose not pred))))
This kind of simplification was possible because we curried out the parameter

pred when we decided on the form of the definitions. This kind of simplifi-
cation actually leads to a definition that reflects the way we verbalize it in
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English. We said above that both satisfy the predicate when neither does not
satisfy it. We see here another advantage of currying.

In a similar manner, we can show that at-least-one can be defined in
terms of neither by

(define at-least-one
(lambda (pred)
(lambda (argt arg?2)
(not ((neither pred) argl arg2)))))

This says that at least one of the two satisfies the predicate when it is not
true that neither satisfies the predicate.

Exercises

FEzxercise 8.1
Show that the procedure both can be taken as the basic quantifier and that
the other two, neither and at-least-one, can be defined in terms of both.

FEzercise 8.2
Start with at-least-one as the basic quantifier, and define neither and both
in terms of at-least-one.

Fzercise 8.3: equal?

Use the procedures of this section to write a definition of the Scheme predicate
equal? that tests whether two expressions are the same. If neither of the ex-
pressions is a pair, it uses eqv? to test their equality. Otherwise it recursively
tests the car and the cdr of the expressions until it can use eqv?. Test your
predicate on

(equal? ’(a (bc (de) £f)) ’(a(bc (de) £))) = #t

(equal? (a ((b d) c) e) ’(a (b d) c e)) => #f
(equal? ’(a ((b d) c) e) ’(a ((d b) c) e)) = #f
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In this section, we develop a data type called sets. We treat sets as an abstract
data type that has certain basic operators whose existence we first assume and
later implement when we choose a representation of sets. An implementation
of sets must begin with the specification of the kinds of objects that are
allowed as the basic building blocks. The collection of all such base objects is
called the universe of discourse or simply the universe.

The objects contained in a set are referred to as elements or members of the
set. In talking about sets, we use the notation of the mathematical logicians
and enclose the elements of sets in braces. Thus a set containing the elements
a, b, and c is written as {a, b,c}. A set may contain other sets as elements, as
illustrated by the set {{a, b}, {b,c}, {d, e}}, which contains the three elements
{a, b}, {b,c}, and {d,e}. There is a set called the empty set that contains no
elements. Logicians write it as 0.

Either an element is in a set or it is not; it makes no sense to speak of
multiple occurrences of an element in a set. This is an important distinction
between lists and sets, since (a a) and (a) are two different lists, while we
never write {a, a}, since {a} is the set containing the element a, and repetition
of the element a is superfluous. Furthermore, the order in which the elements
of a set are written is immaterial. Thus {a, b,c} and {b,c,a} represent the
same set, whereas (a b c) and (b ¢ a) represent different lists.

We now consider how we implement sets. We denote the empty set by the-
empty-set. There is a predicate to test whether a set is empty: empty-set?.
We also use a predicate set? that tests whether an object is a set. The base
elements of our sets belong to some universe for which there is a sameness
predicate, which we assume is equal?.

We now introduce the selectors and a constructor for use with sets. There
are two selectors, pick and residue. The selector pick takes a set as its
argument and returns an element of that set. Since order of elements is not
meaningful in sets, we cannot say that pick selects the first member of a set.
If obj is an object and s is a set, then the invocation ((residue obj) s)
returns a set that contains all of the elements of s except obj. If obj is not
in the set s, then ((residue obj) s) returns the set s. The constructor
is called adjoin. If obj is an object and s is a set, then (adjoin obj s)
returns a set that contains obj and all of the members of s. With these basic
operators, we now proceed to develop additional operations on sets.
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We begin with the definition of a procedure make-set that takes any num-
ber of arguments and returns a set containing those arguments as elements.
Thus the invocation (make-set ’a ’b ’c) returns the set {a,b,c}. We use
the unrestricted lambda to define this procedure that takes an arbitrary num-
ber of arguments. If there are no arguments, the-empty-set is returned.
Otherwise we apply make-set to all but the first of the arguments and then
add the first to that set using the constructor adjoin. This is just our usual
flat recursion when using the unrestricted lambda.

Program 8.4 make-set

(define make-set
(lambda args
(letrec
((1ist-make-set
(lambda (args-list)
(if (null? args-list)
the-empty-set
(adjoin
(car args-list)
(list-make-set (cdr args-list)))))))
(list-make-set args))))

In Section 8.2, we introduced the three quantifiers both, at-least-one, and
neither, each of which took two arguments. We now define analogs of these
that take a set as their argument. The analog of neither is the quantifier
none, the analog of at-least-one is the quantifier there-exists, and the
analog of both is the quantifier for-all. We start with the procedure none
that takes a predicate pred as its parameter. It returns a predicate that has
a set s as its parameter and is true when pred is false for all elements in s.
For example,

(let ((8 (make-set 2 4 6 8 10 12)))

((none o0dd?) s)) = #t
(let ((8 (make-set 1 2 34 5 6)))
((none odd?) s)) => #f

Here is the definition of none:
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Program 8.5 none

(define none
(lambda (pred)
(letrec
((test
(lambda (s)
(or (empty-set? 8)
(let ((elem (pick 8)))
(and (not (pred elem))
(test ((residue elem) 8))))))))
test)))

Again, if pred is a predicate and s is a set, the expression
((there-exists pred) s)

is true when there is at least one element in s for which pred is true. We can
define there-exists in terms of none using the fact that there is an element
of s satisfying pred only when it is not the case that none of the elements of
s satisfies the predicate.

(define there-exists
(lambda (pred)

(lambda (8)
(not ((none pred) 8)))))

The expression in the last line of this definition of there-exists can be
written as

((compose not (none pred)) s)

Then the simplifying rule of Section 8.2 can be used to give us the following
form of the definition:

Program 8.6 there-exists

(define there-exists
(lambda (pred)
(compose not (none pred))))
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The procedure for-all is called with the call structure ((for-all pred)
s) and is true only when pred is true for all of the elements in s. We can
again express for-all in terms of none if we observe that pred is true for all
of the elements in s only when there are no elements in s for which pred is
not true. Thus we can write

(define for-all
(lambda (pred)
(lambda (s8)
((none (lambda (x) (not (pred x)))) s))))

Once again, we can use compose in the expression in the last line and the
simplifying rule to give Program 8.7.

Program 8.7 for-all

(define for-all
(lambda (pred)
(none (compose not pred))))

We can test for the sameness of objects or sets with a sameness procedure
called set-equal. We define set-equal so that it can be used to test for the
equality of both elements of sets and sets themselves. We use set-equal in a
curried form, so that if obj1 and obj2 are objects, then ((set-equal obj1)
obj2) is true when obj1 is the same as obj2. You may have expected the
name set-equal? instead of set-equal. We use set-equal because when it
is passed an operand, its value is a procedure and not a truth value. We can
define the predicate set-equal? in terms of set-equal by writing:

(define set-equal?
(lambda (objl obj2)
((set-equal obj1) obj2)))

If obj1 and obj2 are base elements of a set, they belong to a universe, and
their sameness can be tested with the predicate equal?. On the other hand, if
the objects are sets, we use the criterion of sameness used in set theory. First,
it says that a set S is a subset of a set T if each element of S is also an element
of T. Then if S is a subset of T and T is a subset of S, the two sets must
contain exactly the same elements and hence are equal sets. The definition
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Program 8.8 set-equal

(define set-equal
(lambda (obj1)
(lambda (obj2)
(or (and ((neither set?) objl obj2)
(equal? obj1 obj2))
(and ((both set?) objl obj2)
((subset objl) obj2)
((subset obj2) obj1))))))

of set-equal makes mutually recursive use of the procedure subset, which
is defined later. Program 8.8 shows the code for set-equal.

We now define a procedure element that tests whether an object is an
element of a given set. If the object is denoted by obj and the set is denoted
by s, then ((element obj) s) is true when obj is an element of s. We have
again chosen to curry the procedure because it simplifies some of the programs
that make use of it. We want to see whether there is an element in the set
s that is equal to obj. We thus want to use the quantifier there-exists
with an argument that tests whether a given member of the set s is equal to
obj. But (set-equal obj) is precisely that predicate, for it tests whether its
argument is the same as obj. This is a good illustration of how currying can
help us. If we had the ordinary predicate set-equal?, with two arguments,
we wouldn’t be able to create the obj-specific version so easily. We’d have to
say (lambda (s) (set-equal? s obj)) instead, and that’s harder to read.
We then have

(define element

(lambda (obj)

(lambda (s)
((there-exists (set-equal obj)) s))))

Using the simplifying rule of Section 8.2, we may rewrite the definition of
element to be

(define element
(lambda (obj)
(there-exists (set-equal obj))))

We now see that the last line is merely the composition of the two procedures,
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there-exists and set-equal. We can then rewrite the definition of element
to be

Program 8.9 element

. -

‘ (define element (compose there-exists set-equal))

These steps in rewriting the definition of element again show us how the use
of currying can enable us to express our ideas in more compact and convenient
form.

The invocation ((element obj) s) tests for the set-theoretic relation

obj € s

which says that the object obj is a member of the set s. The set-theoretic
relation
s D obj

which says that the set s contains the object obj as a member, is tested for
by the predicate (contains s). For example, b € {a,b,c} and {a,b,c} 3 b.
Program 8.10 shows the definition of contains.

Program 8.10 contains

|

(define contains
(lambda (set)
(lambda (obj)
((element obj) set))))

A set s1 is a subset of a set s2 if each member of s1 is also a member of s2.
This subset relation is denoted by s1 C s2. For example, {a,c} C {a,b,¢c,d}.
We also say that a set s1 is a superset of s2 if s2is a subset of s1. The superset
relation is denoted by s1 D s2. Thus {a,b,c,d} D {a,c}. We first define the
procedure superset such that if s1 and s2 are sets, then ((superset s1)
s2) tests whether s1 is a superset of s2. We want to determine whether
all elements of s2 are contained in s1. The predicate (contains s1) tests
whether its argument is a member of s1, so we can use it as the argument to
for-all to test whether all of the elements of s2 are contained in s1. Thus
we get Program 8.11. We define the procedure subset using superset, as
shown in Program 8.12.
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Program 8.11 superset

(define superset
(lambda (s1)
(lambda (s2)
((for-all (contains s1)) s82))))

Program 8.12 subset

(define subset
(lambda (s1)
(lambda (s82)
((superset s2) s1))))

The number of elements in a set is called the cardinal number of the set.
For example, the cardinal number of the set {a,b, ¢, d} is 4, and the cardinal
number of the set {{a, b}, {c,d}, {e, f}} is 3, while each of the elements of this
set is itself a set with cardinal number 2. It is an easy matter to define the
procedure cardinal, which determines the cardinal number of its argument
set. To do so, we use recursion on the elements of the set. The cardinal
number of the-empty-set is 0, which gives us our terminal condition. If the
set s is not empty, we pick out one element and compute the cardinal number
of the rest of the set. To get the cardinal number of s, we have to add 1 to
the cardinal number of the rest of the set. Here is the definition:

Program 8.13 cardinal

(define cardinal
(lambda (s)
(if (empty-set? s)
0
(let ((elem (pick s)))
(add1l (cardinal ((residue elem) 8)))))))

The structure of this definition is typical of programs that perform recursion
over the elements of a set s. We pick an element out of s, then apply the
procedure to the rest of the set, and perform the appropriate operation on it
to get the result of applying the procedure to s.
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Program 8.14 intersection

(define intersection
(lambda (s1 s2)
(letrec
((helper
(lambda (s1) |
(if (empty-set? s1) |
the-empty-set
(let ((elem (pick s1)))
(if ((contains s2) elem)
(adjoin elem (helper ((residue elem) s1)))
(helper ((residue elem) s1))))))))
(helper s1))))

The intersection of two sets s1 and s2 is the set consisting of those ele-
ments of s1 that are also elements of s2. The intersection of s1 and s2 is
denoted by s1 N s2. For example, {a,b,c,d} N {b,d, e} = {b,d}. We define a
procedure intersection that returns the intersection of its two arguments.
This definition uses recursion on the elements of s1. Since s2 is not affected
in each recursive call, we define a local procedure helper that has only the
one parameter si. When s1 is empty, the intersection is the-empty-set.
Otherwise, we select an element elem from s1 and take the intersection of
the rest of the set s1 with s2. If elem is contained in s2, we adjoin it to the
intersection of the rest with s1. Otherwise, we simply return the intersection
of the rest with s1. The definition is given in Program 8.14.

The union of the sets s1 and s2 is the set consisting of all of the elements
that are either in s1 or in s2. It is denoted by s1 U s2. For example,
{a,b,c,d}U{b,d,e} = {a,b,c,d,e}. We define a procedure union that takes
two sets as arguments and returns their union. We again use recursion on the
set s1. This time, when s1 is empty, the union is s2. This is our terminal
condition. The recursion proceeds as in the case of intersection, but now
we want to adjoin elem to the union of the rest of the set s1 with s2 when
elem is not contained in s2. Thus we get the definition in Program 8.15.

The difference between the sets s1 and s2 is the set consisting of those
elements of s1 that are not in s2. It is denoted by s1 \ s2. For example,
{a,b,c,d}\ {b,d,e} = {a, c}. We define a procedure difference in a manner
similar to that used to define intersection and union. This time, when s1
is empty, the-empty-set is returned. And when elem is not contained in s2,
it is adjoined to the difference between the rest of s1 and s2. This leads us
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(define union
(lambda (s1 s2)
(letrec
((helper
(lambda (s1)
(if (empty-set? s1)
s2
(let ((elem (pick s1)))
(if (not ((contains s2) elem))
(adjoin elem (helper ((residue elem) s1)))
(helper ((residue elem) s1))))))))
\ (helper s1)))) i

Program 8.16 difference
S bttt ,

‘ (define difference

(lambda (s1 s2)
(letrec
((helper
(lambda (s1)
(if (empty-set? si)
the-empty-set
(let ((elem (pick s1)))
(1if (not ((contains s2) elem))
(adjoin elem (helper ((residue elem) s1)))
(helper ((residue elem) s1))))))))
(helper s1))))

to the definition of difference in Program 8.16.

The structural similarity of the definitions of intersection, union, and
difference is striking. This common structure is an obvious candidate for
procedural abstraction. The three programs differ in what set is returned
when the terminal condition is true. We call that set the base-set. And they
differ in the predicate that is applied to decide whether to adjoin the element
elem picked from the set s1. We call that predicate pred. We use base-set
and pred as parameters to the procedure set-builder, which abstracts the
structure of the three preceding programs. (See Program 8.17.)
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Program 8.17 set-builder

(define set-builder
(lambda (pred base-set)
(letrec
((helper
(lambda (s)
(if (empty-set? s)
base-set
(let ((elem (pick s)))
(if (pred elem)
(adjoin elem (helper ((residue elem) s)))
(helper ((residue elem) s))))))))
helper)))
Procedure base-set pred
intersection | the-empty-set (contains s2)
union s2 (compose not (contains s2))
difference the-empty-set | (compose not (contains s2))

Table 8.18 Base sets and predicates for abstraction

We can now rewrite the definitions of intersection, union, and differ-
ence using set-builder. Table 8.18 shows the values taken on by base-set

and pred in the definitions of these three procedures. With these correspon-
dences, we get

(define intersection
(lambda (=1 s2)
((gset-builder (contains 82) the-empty-set) =1)))

(define union
(lambda (=1 82)
((set-builder (compose not (contains 82)) s2) s1)))

(define difference
(lambda (s1 82)
((set-builder (compose not (contains s2)) the-empty-set) =81)))
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Program 8.19 family-union

(define family-union
(lambda (s)
(if (empty-set? s)
the-empty-set
(let ((elem (pick s)))
(union elem (family-union ((residue elem) s)))))))

Program 8.20 family-intersection

(define family-intersection
(lambda (s)
(if (empty-set? s)
the-empty-set
(letrec
‘ ((fam-int
(lambda (s)
(let ((elem (pick s)))
(let ((rest ((residue elem) s)))
(if (empty-set? rest)
elem
(intersection elem (fam-int rest))))))))
(fam-int s)))))

If the set S has as its members other sets, we can ask for the union of the
member sets. The union of the sets that are members of the set S is called
the family union of S. We represent it symbolically by |JS. For example,
U{{a,b},{b,c,d}, {a,e}} = {a,b,c,d,e}. We define (in Program 8.19) a pro-
cedure family-union that takes as its parameter a set s whose elements are
sets and returns the union of all of the elements of s.

In a similar manner, the family intersection of a set S whose elements are
sets is the intersection of all of the elements of S. It is denoted by (S and
is illustrated by ({{a,b, ¢}, {a,c,e},{a,b,c, f}} = {a,c}. We define (in Pro-
gram 8.20) the procedure family-intersection that takes the parameter s,
which is a set whose elements are sets, and returns the intersection of all of
the sets in s.

Why is family-intersection more complicated than family-union? In
family-union, the use of the~empty-set acts as an identity for union in
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Program 8.21 set-map

(define set-map
(lambda (proc s)
(if (empty-set? s)
the-empty-set
(let ((elem (pick s)))
(adjoin (proc elem)
(set-map proc ((residue elem) s)))))))

the same way as 0 acts as an identity for plus (see Program 7.9) and 1
acts as an identity for times (see Program 7.10). For intersection, there
is no computable identity. Moreover, the-empty-set acts as an annihilator
for intersection in the same way that 0 acts as an annihilator for x. We
must avoid passing the-empty-set to intersection. This is accomplished
by terminating the recursion when we reach a set that contains a single set.

The next procedure we define before looking into how we represent sets
is set-map, which takes two parameters, a procedure proc and a set s. It
returns the set consisting of those elements that are obtained when proc is
applied to each of the elements of s. For example, if proc is the procedure
cardinal and s is the set {{a}, {b,c}, {d,e},{a,c, f}}, then (set-map proc
s) evaluates to the set {3,2,1}. Similarly, if s is {—1,0,1}, then (set-map
add1 s) evaluates to the set {0,1,2}. We define set-map in Program 8.21.

Suppose we have a list of objects and we want to convert it into a set
containing the same objects. All we have to do is use the procedure apply to
apply make-set to the list. Thus we define a procedure 1ist->set as

Program 8.22 1list->set
[

(define list->set
(lambda (1s)
(apply make-set 1s)))

In a similar way, we can ask for a procedure that takes the elements of a set
and builds a list containing those elements. This is done by picking elements
out of the set and consing them onto a list. Program 8.23 shows how the
procedure set->1list can be defined.

We have now included enough of the procedures for manipulating sets for
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Program 8.23 set->list

(define set->list
(lambda (s)
(if (empty-set? s)
()
(let ((elem (pick s)))
(cons elem (set->list ((residue elem) 8)})))))

you to get an idea of how to define set operations. We are now ready to
consider ways of representing sets. This is done in the next section.

Exercises

Ezercise 8.4

In this section, we showed that there-exists and for-all can be defined
in terms of none. Show that we could have taken there-exists as the basic
one and defined the other two in terms of it. Similarly, show that we could
have taken for-all as the basic one and defined the other two in terms of it.

FEzercise 8.5: for-one

Consider the definition of the three-parameter procedure for-one, given be-
low. Its first parameter is a predicate, pred. Its second parameter is a proce-
dure of one argument, found-proc, and its third parameter is a procedure of
zero arguments, not-found-proc. It returns a procedure that takes a set s
as its parameter. If s is empty or if the predicate pred is false for all items in
s, then the procedure not-found-proc is invoked. If s contains an element
for which pred is true, then the procedure found-proc is invoked on that
element.

(define for-one
(lambda (pred found-proc not-found-proc)
(letrec ((test
(lambda (s)
(if (empty-set? 8)
(not-found-proc)
(let ((v (pick 8)))
(if (pred v)
(found-proc v)
(test ((residue v) 8))))))))
test)))
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Here is an example of how it works:

((for-one
(lambda (x) (> x 7))
(lambda (v) (+ v 8))
(lambda () "Not found"))
(make-set 2 4 6 19 21 7))

returns the value 27 (or possibly 29, depending upon which element was se-
lected first). Define there-exists and for-alil using for-one.

Ezercise 8.6
Show, using a discussion analogous to that used with element in this section,
that we can also write the definition of superset as

(define superset (compose for-all contains))

8.4 Representing Sets

We have now defined the set procedures that enable us to manipulate sets as
a data type. These definitions all depend upon the six basic representation-
dependent terms: the-empty-set, empty-set?, set?, pick, residue, and
adjoin. We now show how these can be defined.

We first specify that the universe contains only objects for which equal?
i1s the sameness predicate. The first representation that we use for a set of
elements is a tagged list of those elements. A tag is a unique string that is
placed in the car position of a pair which enables us to distinguish tagged
objects from other ones. We define the tag for sets to be:

(define set-tag "set")

We make this distinction in order to define the predicate set? which will
determine whether its argument is a pair and its car is that unique tag. For
example, we represent the set {a,b,c} as the tagged list ("set" a b ¢). In
this first representation, we allow repeated elements in the lists. However, if
an element occurs once in a list, that element belongs to the set represented
by the list, and any other occurrences of that element in the list are ignored.
Thus the lists ("set" a b ¢) and ("set" a b a ¢ b b) represent the same
set {a,b,c}. We divide the six basic definitions into two groups, the first
of which is used in both of our representations. This shared group includes
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Program 8.24 The shared basic definitions for sets

(define the-empty-set (cons set-tag ’()))

(define empty-set?
(lambda (s)
(eq? 8 the-empty-set)))

(define set?
(lambda (arg)
(and (pair? arg) (eq? (car arg) set-tag))))

(define pick
(lambda (s)
(let ((1s (cdr s)))
(if (null? 1s)
(error "pick: The set is empty.")
(list-ref 1s (random (length 18)))))))

the-empty-set, empty-set?, set?, and pick (see Program 8.24). We use
the procedure random in defining pick in order to select some element from
the list. The procedure random takes a positive integer n as an argument and
returns some randomly selected integer k in the range 0 < k < n. We chose
to use a randomly selected element from the list rather than the car of the list
or any other specific element of the list in order to convey the idea that the
set 1s unordered. Random number generators are discussed in Footnote 1 of
Section 10.2.5 and the procedure described there is defined in Exercise 13.3.
The definitions in Program 8.25 of the remaining two basic procedures,
adjoin and residue, reflect the fact that we allow repetitions in the repre-
sentation. We make use of the procedure remove (see Program 4.6).

Here are some examples of how the procedures behave using our represen-
tation that allows repetitions of items in the lists.

((set-equal (list->set ’(a b a b)))
(list->set (b a a))) => #t
((element ’a) (make-set (list=->set ’(a))

(list->set ’(a a))

(list->set ’(a a a)))) ==> #f
((element ’a) (make-set (list->set ’(a))

‘a

(list->set ’(a a)))) = #t
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Program 8.25 adjoin, residue (Version I)

(define residue
(lambda (elem)
(lambda (s)
(let ((1s (remove elem (cdr s))))
(cond
((null? 1s) the-empty-set)
(else (cons set-tag 1s)))))))

(define adjoin
(lambda (elem s)
(cons set-tag (cons elem (cdr s)))))

(union (make-set 1 1 2 3 4)
(make-set 3 4 4 5 6 6)) = ("set" 1 23445 6 6)
(intersection (make-set 1 2 3 3 4 5)
(make-set 3 4 4 5 6 7)) = ("set" 3 4 5)
(difference (make-set 1 1 2 3 3 4 5)
(make-set 3 4 4 5 6 7)) = ("set" 1 2)
(set-map cardinal (make-set (list->set ’(a b c))
(list->set ’(a b a))
(list->set ’(a a a))
(list->set ’()))) => (“"set" 3 2 1 0)
(family-intersaction (make-set (list->set ’(a b c d d))
(list->set ’(a c d e))
(list->set ’(c d e £))))
=> ("set" c d)

Another representation for a set s is a list that contains the elements of s but
does not allow repetition of elements. The selector residue now has to remove
only the first occurrence of its first argument from the set since there are no
repetitions. Thus it uses remove-1st (Program 2.4) instead of remove. The
constructor adjoin must now test to determine whether its first argument,
the object, is already an element of its second argument, the set. It adds the
object to the set only if it is not already a member of the set. Program 8.26
shows the definitions of adjoin and residue for the representation with no
repetitions.

Here are some examples of how some of the procedures defined in Section 8.3
look when using the second representation of sets:
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Program 8.26 The basic definitions for sets (Version II)

(define residue
(lambda (elem)
(lambda (s)
(let ((1s (remove-1st elem (cdr g))))
(cond
((null? 1s) the-empty-set)
(else (cons set-tag 1s)))))))

(define adjoin
(lambda (elem s)
(cond
((member? elem (cdr s)) s)
(else (cons set-tag (cons elem (cdr s)))))))

(union (make-set 1 2 3) (make-set 2 3 4)) = ("set" 1 2 3 4)
(intersection (make-set 1 2 3) (make-set 2 3 4)) => ("set" 2 3)
(difference (make-set 1 2 3) (make-set 2 3 4)) => ("set" 1)

You now might ask, “Which representation is better?” Each has its advan-
tages. For example, in the first representation, the selector residue does
more work than its counterpart in the second representation since it has to
remove all occurrences of the element that was picked, while in the second
representation, it only has to remove the first occurrence. In the second rep-
resentation, adjoin does more work since it has to check whether the element
to be added is already in the tagged list. The lists involving no repetitions
represent the sets more compactly. Thus there is a trade-off when choosing
between these two representations.

We have built into our universe, not only symbols, numbers, and booleans,
but any data for which equal? works, and that includes lists. Here are some
examples using this tagged-list representation of sets where some elements are
lists.

(union (make-set 1 ’(1 2) ’(2 3))
(make-get 1 2 ’(1 2) (3 4)))
= ("set" (2 3) 12 (12) (34))
(union (make-set 1 (make-set 1 2) (make-set 2 3))
(make-set 1 2 (make-set 1 2) (make-set 3 4)))
=> ("set" ("set" 2 3) 1 2 ("set" 1 2) ("set" 3 4))
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(family-union
(make-set
(make-set 1 2) (make-set 2 3) (make-set 3 4)))
=> ("set" 1 2 3 4)

We have now seen another application of data abstraction in this devel-
opment of the set data type. We defined all of the set operations using six
basic definitions, and only these six depend upon the specific representation
of the sets that we use. We then showed how to define these six using two
different representations of sets. The extensive use we made of currying in the
definitions of many of the set operations made it possible to use composition
of procedures to simplify several definitions. It also enabled us more easily to
define new procedures in terms of others with certain arguments fixed. For
example, if we want to remove the number 0 from sets of numbers, we can
apply (residue 0) to any such set of numbers and get the desired result. We
also saw another example of the abstraction of the structure of several proce-
dures in set-builder. In the next section, we shall apply sets to a discussion
of functions and relations.

Exercises

Fzercise 8.7
Use this definition of pick to implement sets with lists having repetitions:

(define pick
(lambda (8)
(car (cdr 8))))

In the following exercises, use only operations on sets. Do not use operations
on sets that depend upon the representation of the sets.

Fzercise 8.8

The procedures union and intersection defined in this section each took two
sets as arguments. Rewrite these definitions using the unrestricted lambda so
that both take an arbitrary number of sets as arguments. Test your procedures
on the following examples:

(union
(make-set 1 2 3 4)
(make-set 1 3 4 5)
(make-gset 2 1)) => ("set" 12 3 4 §5)
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(intersection
(make-set 1 2 3 4)
(make-set 1 3 4 5)
(make-set 1 5 6 3 7)) == ("set" 1 3)

Abstract the structure of these two definitions to get a procedure from which
union and intersection can both be obtained by passing the procedural
abstraction appropriate arguments.

Erercise 8.9: symmetric-difference

Define the set procedure symmetric-difference that has two sets s1 and s2
as parameters and returns the set consisting of those elements that are either
in s1 but not in s2 or in s2 but not in s1. For example,

(symmetric-difference
(make-set 1 2 3 4 5)
(make-set 3 4 56 7)) => ("set" 1 2 6 7)

Ezercise 8.10: power-set
Define a set procedure power-set that has a set s as parameter and returns
the set consisting of all subsets of s. For example,

(pover-set (make-szet ’a ’b ’c))
= ("zet" ("set" a b c) ("set" a b) ("set" a c)
("set" a) ("set" b c) ("set" b) ("set" c) ("set"))

Hint: Assume that power-set is defined for the rest of the set when an element
1s picked out.

Ezercise 8.11: select-by-cardinal

Let s be a set whose elements are sets. Define a set procedure select-by-
cardinal that has an integer int as its parameter and returns a procedure
with parameter s that builds the set of all of those elements of s that have
cardinal int. For example,

((select-by-cardinal 2)
(make-get (make-set ’a) (make-set ’a ’b) (make-set ’a ’b ’c)
(make-set ’b ’c) (make-set ’b)))
= ("get" ("set" a b) ("set" b ¢))
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8.5 Ordered Pairs, Functions, and Relations

As an application of sets, we show how ordered pairs and the Cartesian prod-
uct of two sets are defined and use these ideas to develop the logical concepts
of functions and relations. We present a development of ordered pairs based
upon the development of sets presented in the preceding sections.

An ordered pair is a pair of elements in which the order is significant; that is,
(z,y) and (y, z) represent different ordered pairs as long as ¢ and y are not the
same. We again treat ordered pairs as an abstract data type and introduce
the basic operations that apply to ordered pairs and then look at possible
representations of ordered pairs. Ordered pairs have two selectors and one
constructor. There is a selector called op-1st that takes an ordered pair as
its argument and returns the first element in the ordered pair. Similarly, there
1s a selector called op-2nd that returns the second element in the ordered pair.
Finally, there is a constructor that is called make-op such that (make-op x
y) is the ordered pair containing x as its first member and y as its second
member. There 1s also a predicate op? that tests whether its argument is an
ordered pair.

We now consider ways of representing ordered pairs. We present three dif-
ferent representations in this section: sets, two-element lists, and dotted pairs.
Logicians usually start with sets and build other concepts from them. In our
first representation, we show how this can be carried out in Scheme. Com-
pared to the last two representations, the first is quite complicated. It shows
the natural advantage the list or dotted-pair representations have for repre-
senting ordered pairs. If you are not interested in the set theory development
of ordered pairs, you can skip over the next two paragraphs and go on to the
list and dotted-pair representations.

We first represent ordered pairs as sets. A naive first attempt would repre-
sent the ordered pair (z,y) with the set {z,y}. However, there is a problem:
if z # y, then (z,y) # (v, z), but {z,y} = {y, z} since order is immaterial in
sets. We can get around this difficulty by representing the ordered pair (z,y)
by the set {{z}, {z,y}}. Then the ordered pair (y, z) is represented by the
set {{y},{y,z}}, which is not the same set as that used to represent (z,y),
as long as z is not the same as y. We identify the first element of the ordered
pair represented by {{z}, {z,y}} by noting that it is the only element in the
intersection {z} N {z,y} of the two member sets. Similarly, if = and y are not
equal, the second element of the ordered pair is the only element in the set
difference between (J{{z},{z,y}} and N{{z}, {z,y}}. If z and y are equal,
pick the first element of the ordered pair. It should be observed that the same
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Program 8.27 Basic definitions for ordered pairs (Version I)

(define make-op
(lambda (x y)
(make-set (make-set x) (make-set x y))))

(define op?
(lambda (set)
(and (set? set)

((for-all set?) set)

(= (cardinal (family-intersection set)) 1)

(or (= (cardinal set) 1)
((both (lambda (x) (= (cardinal x) 2)))
set
(family-union set))))))

(define op-1st
(lambda (op)
(pick (family-intersection op))))

(define op-2nd
(lambda (op)
(let ((fam-int (family-intersection op)))
(let ((diff (difference (family-union op) fam-int)))
(pick (if (empty-set? diff) fam-int diff))))))

ordered pair is represented by {{z}, {z, y}}, {{z}, {v, z}}, eand {{y, 2}, {z}}.

Using this representation in terms of sets, the definitions of the four basic
procedures for ordered pairs are given in Program 8.27. Given the first element
z and the second element y of the ordered pair, the constructor make-op
produces the ordered pair {{z}, {z,y}}. To understand the definition of op?,
observe that it is possible for the cardinal number of an ordered pair to be
equal to one. This is illustrated by {{a}, {a, a}}, which represents the ordered
pair (a,a). We have {{a},{a,a}} = {{a},{a}} = {{a}}, so its cardinal
number is one.

There are other ways of representing ordered pairs that we can also use.
For example, we can let an ordered pair containing the elements x and y be
represented by (1ist x y). This is using a representation by proper lists.
Then we have the definitions given in Program 8.28.

Another representation that is also a reasonable one to use represents the
pair containing x and y as a dotted pair containing those two elements, that
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Program 8.28 Basic definitions for ordered pairs (Version II)

(define make-op
(lambda (x y)
(1ist x y))) \

(define op?
(lambda (1s)
(and (pair? 1s) (pair? (cdr 1s)) (null? (cddr 1s)))))

(define op-1st
(lambda (op)
(car op)))

(define op-2nd
(lambda (op)
(cadr op)))

Program 8.29 Basic definitions for ordered pairs (Version III)

(define make-op
(lambda (x y)
(cons x y)))

(define op?
(lambda (pr)
(pair? pr)))

(define op-1st
(lambda (op)
(car op)))

(define op-2nd
(lambda (op)
(cdr op)))

is, as (cons x y). We then have the definitions given in Program 8.29. The
definitions in Programs 8.28 and 8.29 can be simplified using the simplification
rule of Section 8.2. See Exercise 8.12.

The Cartesian product of the two sets S; and S is the set of all ordered pairs
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Program 8.30 cartesian-product

(define cartesian-product
(lambda (s1 s2)
(if (empty-set? sl)
the-empty-set
(let ((elem (pick s81)))
(union (set-map (lambda (x) (make-op elem x)) 82)
(cartesian-product ((residue elem) s1) 82))))))

(z,y) with z € S; and y € S2. The mathematical notation for the Cartesian
product of S; and Sy is S; X Ss. For example, the Cartesian product of the
two sets {a,b,c} and {d, e} is the set of pairs

{(a,d),(a,e),(b,d), (b, ), (c,d), (c,€)}

The set procedure that forms the Cartesian product of two sets is defined in
Program 8.30.

A relation R from a set X to a set Y is defined to be a subset of the
Cartesian product of the two sets X and Y. Thus the relation R is a set of
ordered pairs in which the first element 1s in X and the second element is
in Y. The empty set is also a relation having no elements. For example, if
X is the set (make-set a b ¢) and Y is the set (make-set 0 1), then the
following is a relation from X to Y:

(make-set (make-op ’a 0) (make-op ’a 1) (make-op ’c 1))

The domain of the relation R from X to Y is defined to be the subset of X
consisting of all elements of X that appear as first elements of some ordered
pair in R. In our example above, the domain of the relation is the set {a,c}.
The range of the relation R is defined to be the subset of Y consisting of
all elements of Y that appear as second elements of some ordered pair in R.
Given a relation rel, we can define procedures domain and range that return
the domain and the range of rel, respectively. (See Program 8.31.)

A binary relation on a set S is a subset of the Cartesian product of S
with itself. For example, if bob, tom, and jim are members of the set boys,
then a binary relation is-older-than-relation on the set boys is given by
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Program 8.31 domain, range

(define domain
(lambda (rel)
(set-map op-1st rel)))

(define range
(lambda (rel)
(set-map op-2nd rel)))

(define is-older-than-relation
(make-get (make-op ’tom ’bob)
(make-op tom ’jim)

(make-op ’bob ’jim)))

We can define a predicate is-older-than? that has as its two parameters two
members b1 and b2 of the set boys and returns true if the ordered pair (make-
op bl b2) is an element of the binary relation is-older-than-relation.
For example, we can write

(define is-older-than?
(lambda (b1 b2)
((containe is-older-than-relation) (make-op bl b2))))

Suppose we are given a relation rel from one set to another. We now write
the definition of a procedure subrelation/ist that builds a new relation
consisting of all pairs from the relation rel that have a given element as their
first elements. Using our example above, when we enter

((subrelation/1st is-older-than-relation) ’tom)

the subrelation consisting of the two ordered pairs starting with tom is re-
turned. See Program 8.32.

A function from a set X to a set Y is defined to be a relation from X to
Y in which no two ordered pairs with the same first elements have different
second elements. Since functions are relations, domain and range are already
defined for functions. This definition of a function as a set of ordered pairs
is equivalent to the definition we have been using throughout the book. If
we have a function denoted by y = f(z) with z in the domain X and y in
the range Y, this is the relation consisting of the ordered pairs (z,y) sat-
isfying y = f(z). With this view of functions, the factorial function is the
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Program 8.32 subrelation/ist

(define subrelation/ist
(lambda (zrel)
(lambda (arg)
((set-builder
(1ambda (x) ((set-equal (op-ist x)) arg))
the-empty-set)
rel))))

Program 8.33 function?

(define function?
(lambda (rel)
(or (empty-set? rel)
(let ((subrel ((subrelation/ist rel) (op-1ist (pick rel)))))
(and (= (cardinal subrel) 1)
(function? (difference rel subrel)))))))

set {(0,1),(1,1),(2,2),(3,6),...}. We now write the definition of a predicate
function? that tests whether a relation is a function. (See Program 8.33.) If
the given relation rel is nonempty, this procedure looks at the subset of all
ordered pairs in rel that have the same first element as some ordered pair
(pick rel) in rel. If the number of distinct second elements in this subset is
greater than 1, false is returned. Otherwise the procedure is repeated on the
relation obtained by removing that subset from rel. This process continues
until no more ordered pairs are left to test, in which case true is returned.

The value of a function f at an element z in the domain of f is the second el-
ement in the ordered pair in f that has z as its first element. In Program 8.34,
we define a procedure value that takes a function fun as its parameter and
returns a procedure that takes as its parameter an element arg in the domain
of fun and returns the value of fun at arg.

Let us summarize what we have accomplished. In Chapter 1, we introduced
lists as a data type having the constructor cons and the two selectors car
and cdr. Here we have developed sets as a data type having the constructor
adjoin and the two selectors pick and residue. Using these, we defined many
procedures that manipulate sets. We used lists in several representations of
sets. We then proceeded to define ordered pairs using sets. Ordered pairs
are another data type having the constructor make-op and the two selectors
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Program 8.34 value

(define value
(lambda (fun)
(lambda (arg)
(op-2nd (pick ((subrelation/1st fun) arg))))))

op-1st and op-2nd. These were used to define relations and functions on
sets. It is interesting to observe that if we start with sets as our basic data
type, we can use sets as we did to define ordered pairs, and then we can use
ordered pairs as a representation of lists. For any two elements, x and y, we
define (cons x y) to be (make-op x y). We then define car to be op-1st
and cdr to be op-2nd. The empty list () is represented by the-empty-set.
Using these definitions of cons, car, cdr, and (), we can proceed to define
all of the procedures on lists that were defined in the earlier chapters. Thus
we have come full circle. We can take sets as our basic data type and develop
lists in terms of sets, or we can take lists as our basic data type and develop
sets in terms of lists.

We leave it to the reader to develop more of the theory of functions and
relations in the exercises. The many examples in this chapter should make
it clear how powerful a tool it is to be able to pass procedures as arguments
to other procedures and to be able to have procedures whose values are pro-
cedures. We have seen how convenient it is to be able to curry procedures.
All of this 1s possible because procedures are treated as first-class objects in
Scheme.

Exercises

Ezercise 8.12

In Programs 8.28 and 8.29, we can rewrite the definition of op-1st as (de-
fine op-ist car) using the simplifying rule of Section 8.2. Redefine all of
the procedures in Programs 8.28 and 8.29 for which the simplifying rule is
applicable.

In the following exercises, use the set operations developed in this chapter.
Make your programs independent of the representation of sets being used.
Many of the problems in this list use the results of previous problems, so do
them in order.
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Ezercise 8.13: relation?
Define a predicate relation? that tests whether a set is a relation.

FEzercise 8.1/: inverse-relation

The inverse of an ordered pair (a,b) is the ordered pair (b, a). The inverse of
a relation R is the relation obtained when each ordered pair is replaced by its
inverse. Define a procedure inverse-relation that takes as its argument a
relation and returns its inverse relation.

Fzercise 8.15: one-to-one?
A function is called one-to-one if its inverse relation is also a function. Write
the definition of a predicate one-to-one? that tests whether a function is

one-to-one. See the preceding exercise.

Ezercise 8.16: make-relation

A convenient way of defining a relation rel is to give an arbitrary number
of pairs (x y) that corresponds to the ordered pairs (make-op x y) in rel.
Thus (make-relation (1 2) *(1 3) ’(2 3)) corresponds to the relation
{(1,2),(1,3),(2,3)}. Define the procedure make-relation.

Ezercise 8.17: reflexive?

A binary relation R on a set S is called reflezive if for each z in S, the
ordered pair (z,z) is an element of R. Define a predicate reflexive? that
tests whether a given relation rel is reflexive.

Ezercise 8.18: symmetric?

A binary relation R on a set S is called symmetric if it is equal as a set to its
inverse relation. See Exercise 8.14. Define a predicate symmetric? that tests
whether a given relation rel is symmetric.

Ezercise 8.19: function-compose

Suppose that f and g are functions such that the range of g is a subset of
the domain of f. The composition of f with g is the function consisting of
all ordered pairs (z,y) with z in the domain of g and y in the range of f and
for which there exists an element z such that (z,z) € g and (2,y) € f. Define
the procedure function-compose such that (function-compose £ g) is the
composition of £ with g. Your procedure should first test whether the range
of g is a subset of the domain of £.
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Ezercise 8.20: relation-compose

If @ and R are binary relations on a set S, then the composition of Q with R
is the relation composed of all ordered pairs (z,y) such that for some z € S,
there exists an ordered pair (z,2) € R and an ordered pair (z,y) € Q. Define
the procedure relation-compose such that (relation-compose q r) is the
composition of the relation q with the relation r.

Ezercise 8.21: transitive?

A binary relation R on a set S is called transitive if the composition of R
with R is a subset of R. Define a predicate transitive? that tests whether
a relation rel is transitive. See the preceding exercise.

(transitive?

(make-relation (1 2) (1 3) (1 4) (2 3) '(2 4) '(3 4))) = #t
(transitive?

(make-relation (0 0) ’(1 1) ’(2 2) ’(3 3) ’(4 4))) => #t
(transitive?

(make-relation (1 1) (1 2) ’(3 2) ’(2 1))) = #f

Ezercise 8.22: equivalence-relation?
A binary relation rel on a set S is called an equivalence relation if it is
reflexive, symmetric, and transitive. Write the definition of the predicate
equivalence-relation? that tests whether a given relation is an equivalence
relation. See Exercises 8.17, 8.18, and 8.21.

(equivalence-relation?

(make-relation (0 0) ’(1 1) ’(2 2) ’(3 3))) = #t
(equivalence-relation?

(make-relation (0 0) (0 1) ’(1 0) ’(1 1))) = #t
(equivalence-relation?

(make-relation (0 0) ’(0 1) °(1 1) ’(2 2))) => #f
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Part 3

Managing State

What is change? If we think further about the dining experience of Part 1’s
introduction, changes took place. Eating left you full, lessened the world’s
food supply, enriched the purse of the restaurant’s proprietor, and depleted
your buying power. All of these are changes. The state of the world after you
left the restaurant changed. Managing state means that all the effects of a
change must be taken into account.

Part 3 is about combining the management of state with the style of pro-
gramming that we have so far developed. In Chapter 9, we introduce a new
data structure, the vector. A vector is like a list, except that we access it
with operations that use the elements’ indices, which are nonnegative inte-
gers, instead of with operations that find the first element and the rest of
the elements. In addition to the formal operations on vectors, we introduce
an operation that permanently changes the contents of a portion of a vector.
We use this operation to show the role of such state-changing operations in
general in enhancing the efficiency of correct procedures.

In Chapter 10, we use changing of state to develop some efficient procedures
for sorting and searching data stored in vectors. In Chapter 11, we strengthen
your intuition about writing procedures that use state-changing operations
by introducing such operations over lists and local variables. This leads to
Chapter 12, where we build an object-oriented system by merging higher-order
procedures with state-changing operations. In Chapter 13, we use object-
oriented programming to build a gas station simulation.






Using Vectors

9.1 Overview

We have been using lists as our basic data type, and for most of the ap-
plications we have had so far, lists have been adequate. They do have one
disadvantage that is apparent when we have a long list 1s. Let’s say it contains
1000 elements, and we want to know what the element with zero-based index
900 is. One way we can access that information is by applying cdr 900 times
and then applying car. That seems like a lot of work, so we use the Scheme
procedure list-ref defined in Program 3.7, which does the cdring for us,
and we invoke (list-ref 1s 900). But the computer is doing just as much
work to access the 900th element of the list for us. It would be nice to have a
data type in which we could store elements and look directly into the 900th
(or any other) place and see what is there. Being able to access any element
in a list using the same amount of computer resources is called random access
into the list. What we now have available to us in lists is sequential access, in
which we have to cdr from the beginning of the list to the desired element. In
this chapter, we study a data type called vectors. Like lists, vectors are used
to store data. We discuss several possible implementations of vectors, the last
of which will provide data storage with random access.

9.2 Vectors

In mathematics, a vector is a function defined on a set of integers, say from
0 to n — 1, which assigns to each such integer a value that is said to be the
element with that integer as its index. A mathematical representation of a
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vector with three elements, say a with index 0, b with index 1, and ¢ with
index 2, is (a, b, ¢} The word vector is also used as a data type in Scheme that
associates an element with each integer from zero to some given number. The
elements stored in a vector can be data of any type—for example, numbers,
symbols, lists, or procedures. For the external representation of a vector with
elements a, b, and c, Scheme uses #(a b c). In general Scheme’s external
representation of a vector is a sharp symbol, #, followed by the elements
enclosed in parentheses.

As with the other data types we have studied, we begin with certain basic
procedures in terms of which we define the rest of the procedures involving
vectors. The actual representation of the vectors and the basic procedures
will be defined in several ways after we develop the other procedures in a
representation-independent fashion. The first of our four basic procedures is
the predicate vector?, which tests whether its argument is a vector. The sec-
ond one is the procedure vector-length, which takes a vector as its argument
and returns the number of elements in the vector.

The selector for vectors is called vector-ref. It has the call structure
(vector-ref vec k), where vec is a vector and k is a nonnegative integer
less than the length of vec. It returns the element in vec that has index k. To
illustrate the use of this selector, we define a procedure view (See Program 9.1
and Exercise 9.2.) that takes a vector and displays its external representation.
If vec is the vector with the elements 1, 2, 3, and 4, we have

(view vec) displays #(1 2 3 4)

The indices of the elements of the vector vec go through the range from zero
to one less than the length of the vector vec. Thus we locally define highest-
index to be one less than (vector-length vec). The local procedure loop
displays in order the elements of vec, each, except for the last one, followed
by a space. Thus the desired output is obtained by first displaying "#(",
then invoking (loop 0) to display the elements of vec, and finally displaying
")". In our implementation, we assume that the value returned by a display
expression is suppressed, so the same is true of view.

The constructor vector-generator, which we use for vectors, is a curried
procedure with the call structure

((vector-generator gen—proc) size)

The operand size is a nonnegative integer that is the length of the vector
we are constructing. The generating procedure gen-proc is a procedure that
takes an index as its argument and returns the value to be associated with
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Program 9.1 view

(define view
(lambda (vec)
(let ((highest-index (subi (vector-length vec))))
(letrec ((loop (lambda (i)
(display (vector-ref vec i))
(if (< i highest-index)
(begin
(display " ")
(loop (addi i)))))))
(display "#(")
(loop 0)
(display ")")))))

that index in the vector we are constructing. The index is any integer in the
range from zero to one less than size. When passed a generating procedure,
vector-generator returns a procedure. When that procedure is passed an
integer specifying the vector’s length, it returns a vector having the specified
size and whose elements are determined by the generating procedure. As an
example of the use of vector-generator, if we want to construct a vector of
length 6 having 0 for each of its elements, we can write

[1] (view ((vector-generator (lambda (i) 0)) 6))
#(00 000 0)

Here are some additional examples:

[2] (view ((vector-generator addl) 6))
#(1 2345 6)
[3] (view ((vector-generator (lambda (i) i)) 5))

#(01 23 4)
[4] (view ((vector-generator (lambda (i) *())) 4))

$8(O O O O)

[5] (define squares (vector-generator (lambda (i) (* i i))))
[6] (view (squares 4))

#0149

[7] (view (8quares 6))

#(0 1 4 9 16 25)

Later we shall give ways of representing vectors and defining these basic
procedures. We now show how to define the other procedures that we need,
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making use of the four basic procedures. The first one is the Scheme procedure
make-vector, which builds a vector of a prescribed size and fills all of its
elements with the same specified value. If a fill value is not given, all of the
elements of the vector are filled with something, say (), although this fill
value is not specified by Scheme. Thus we define the procedure make-vector
that takes either one or two arguments. Its first argument is always the size
of the vector we are building, and the optional second argument is the value
we use to fill the elements of the vector. To accomplish the definition of a
procedure with an optional second argument, we use the unrestricted lambda
in its definition. Thus make-vector has as its parameter a symbol denoted by
args. We distinguish between the two cases by testing whether (cdr args) is
empty. If it is, we construct a vector of length (car args) and fill it with ().
Never rely upon this fill value in your programs because the Scheme procedure
make-vector does not specify the fill value if you do not include it as a second
argument. Thus you may be surprised to find the implementation providing
something other than (), and your program will not run correctly. If you
want to use the fill value in your program, specify it as the second argument
to make-vector, and that value is used to fill the vector that is constructed.
Here is the code for make-vector:

Program 9.2 make-vector

(define make-vector
(lambda args
(let ((fill-value
(if (singleton-list? args)
0]
(cadr args))))
((vector-generator (lambda (i) fill-value)) (car args)))))

A convenient way of building a vector with given elements is to start with
a list containing those elements and converting the list into a vector using
the Scheme procedure list->vector that takes a list 1s as its parameter.
The size of the vector being created is then the length of 1s, and the gen-
erating procedure is simply (lambda (i) (list-ref 1s i)). We then get
Program 9.3. Because 1ist-ref is doing a recursion from the beginning of the
list for each index i, this is a very inefficient way of defining 1ist->vector.
We consider a more efficient definition later.
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Program 9.3 1list->vector

(define list->vector
(lambda (1s)
((vector-generator (lambda (i) (list-ref 1s i))) (length 18))))

Another convenient way of building a vector with given elements is pro-
vided by the Scheme procedure vector, which takes an arbitrary number of
arguments and returns a vector having those arguments as its elements. The
length of the vector returned is the same as the number of arguments. Since
the number of arguments is arbitrary, we must use the unrestricted lambda.
The definition of vector is:

Program 9.4 vector

(define vector
(lambda args
(list->vector args)))

Here are some experiments illustrating the use of these procedures:

[1] (view (make-vector 5))

2O O O O O

[2] (view (list->vector (1 2 3 (4 5 6))))
#(1 2 3 (456))

[3] (view (vector ’a ’b ’(a b ¢)))

#(ab (ab <))

[4] (view (vector 6 ’symbol 5))

#(6 symbol 5)

The length of a vector is fixed when it is defined. Suppose we have defined
a vector vec of length k, and we find that we need a longer vector, say one of
length n, that has its first k elements the same as those of vec. We say that the
new vector is an eztension of vec of length n. We now use vector-generator
to define the procedure vector-stretch that takes as its parameters a vector
vec and a number new-size and returns an extension of vec of length new-
size. Its code is in Program 9.5. Although we use the name vector-stretch,
the new vector may also be the same length as or shorter than the original
vector.
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Program 9.5 vector-stretch

(define vector-stretch
(lambda (vec new-gize)
(let ((size (vector-length vec)))
(let ((gen-proc (lambda (i)
(if (< i size)
(vector-ref vec i)
()

((vector-generator gen-proc) new-size)))))

If the extension of a vector vec is the same size as vec, the extension
is a copy of vec. Thus we define the procedure vector-copy as shown in

Program 9.6.

Program 9.6 vector-copy

(define vector-copy
(lambda (vec)
(vector-stretch vec (vector-length vec))))

The procedure vector-copy gives us a copy of its argument with none of
its elements changed. Suppose we want a copy of the vector vec with the
element with index k replaced by the value val. We can define a new copying
procedure that has the kth element changed, as shown in Program 9.7.

Program 9.7 vector-update

(define vector-update
(1ambda (vec k val)
(let ((gen-proc (lambda (i)
(if (=i k)
val
(vector-ref vec i)))))
((vector-generator gen-proc) (vector-length vec)))))

We can now give another version of the Scheme procedure list->vector,
this time using vector-update. In this version, we first build a vector vec
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Program 9.8 1list->vector

(define list->vector
(lambda (1s)
(let ((vec (make-vector (length 1s))))
(letrec
((convert (lambda (1s* v i)
(if (null? 1ls=*)
v
(let ((new-v (vector-update v i (car 1ls#))))
(convert (cdr ls*) new-v (addl i)))))))
(convert 1s vec 0)))))

having the same length as the list 1s that we are converting into a vector.
Then we form a loop using a letrec expression in which we start with the
vector vec and successively use vector-update to give us a new vector new-v
that has the appropriate element changed to the corresponding element in
the list. This new vector is passed to the local procedure convert, which
continues this process until all of the elements of vec have been updated. Its
definition is given in Program 9.8. We make an improvement in the procedure
list->vector later in this section. At that time, we shall eliminate the need
to pass the vector new-v as an argument to convert and shall produce an
O(n) version instead of O(n?).

Suppose we have a vector vec and want to construct a new vector whose
elements are obtained by applying the procedure proc to the corresponding
elements of vec. To accomplish this, we use a vector analog of the list proce-
dure map. We call the vector version vector-map, and we define it by:

Program 9.9 vector-map

(define vector-map
(lambda (proc vec)
((vector-generator (lambda (i) (proc (vector-ref vec i))))
(vector-length vec))))
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For example,

[1] (view (vector-map addil (vector 10 11 12 13)))
#(11 12 13 14)
[2] (view (vector-map even? (vector 10 11 12)))
#(nt #f #t)
[3] (view (vector-map
(lambda (elem) (list ’a elem))
(vector 10 11 12 13)))
#((a 10) (a 11) (a 12) (a 13))

In the language used with vectors, one usually refers to numbers as scalars.
We call a vector a numerical vector if all of its elements are numbers. The
product of a scalar ¢ and a numerical vector (@i, as,...,an)is the vector
(cay, caz,...,can). The procedure multiply-by-scalar takes as parameters
a scalar ¢ and a numerical vector vec and returns their product. It is defined

by

Program 9.10 multiply-by-scalar

(define multiply-by-scalar
(lambda (c vec)
(vector-map (lambda (elem) (* c elem)) vec)))

We define an analog to vector-map, called vector-apply-elementwise-
to-both, for a binary procedure proc and two vectors of the same length,
which applies proc to the corresponding elements of the two vectors.

Program 9.11 vector-apply-elementwise-to-both

(define vector-apply-elementwise-to-both
(lambda (proc)
(lambda (veci vec2)
(let ((gen-proc
(lambda (i)
(proc (vector-ref vecl i) (vector-ref vec2 i)))))
((vector-generator gen-proc) (vector-length veci))))))

The sum of two numerical vectors vec1 and vec2 of the same length is the
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vector whose elements are the sums of the corresponding elements of vec1 and
vec2. We define the vector operator vec+ that adds two vectors by simply
using vector-apply-elementwise-to-both with + as its operand. Similarly
we define the vector operator vec#* that multiplies two vectors elementwise by
applying vector-apply-elementwise-to-both with * as its operand.

Program 9.12 vec+, vecx

(define vec+ (vector-apply-elementwise-to-both +))

(define vec* (vector-apply-elementwise-to-both *))

The use of vec+ and vec#* is illustrated by:

[1] (view (vec+ (vector 1 3 5 7 9) (vector 975 3 1)))
#(10 10 10 10 10)

[2] (view (vec* (vector 1 3 57 9) (vector 97 5 3 1)))
#(9 21 25 21 9)

We now look at the problem of adding all of the elements of a numerical
vector. We first need the length of the vector, which we locally define to be
size. Then we set up a local recursion on the index, starting with index 0.
When the index reaches size, there are no more elements to add. We define
vector-sum to be:

Program 9.13 vector-sum

(define vector-sum
(lambda (vec)
(let ((size (vector-length vec)))
(letrec
((helper
(lambda (i)
(if (= i size)

0
(+ (vector-ref vec i) (helper (addl i)))))))

(helper 0)))))

In a similar way, we define vector-product, which takes the product of
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the elements of a numerical vector:

Program 9.14 vector-product

(define vector-product
(lambda (vec)
(let ((size (vector-length vec)))

(letrec
((helper
(lambda (i)
(if (= i size)

1
(x (vector-ref vec i) (helper (addl i)))))))
(helper 0)))))

Here are some examples:

(vector-sum (vector 1 3 57 9)) = 25
(vector-product (vector 1 3 5§ 7 9)) => 945

It should occur to you when looking at the last two definitions that they are
very similar in structure, and that they are ideal candidates for abstraction.
Let’s define a procedure vector-accumulate that abstracts the structure of
those two procedures. There are just two essential differences: the value re-
turned when the terminating condition is true, which we call the seed, and
the operator applied in the alternative, which we call proc. Then the defini-
tion of vector-accumulateis given in Program 9.15. We can now rewrite the
definitions of vector-sum and vector-product using vector-accumulate:

(define vector-sum (vector-accumulate + 0))

(define vector-product (vector-accumulate * 1))

We defined 1ist->vector, but we have not yet defined the Scheme proce-
dure vector->list that produces a list with the same elements as a given
vector. But that is just a recursion on the index with the procedure cons and
the seed (). We can then use vector-accumulate to define vector->list
as shown in Program 9.16. Then

(vector->list (vector 1 2 3 4)) => (1 2 3 4)
(vector->list (vector ’abc 3 4)) => (abc 3 4)
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Program 9.15 vector-accumulate

(define vector-accumulate
(lambda (proc seed)
(lambda (vec)
(let ((size (vector-length vec)))
(letrec
((helper
(lambda (i)
(if (= i size)

seed |
(proc (vector-ref vec i) (helper (addl i)))))))

(helper 0))))))

Program 9.16 vector->list

|
|
(define vector->list (vector-accumulate cons ’()))

Suppose that the elements of the vector (15.50, 8.95, 12.00) represent the
price of items we want to buy and the elements of the vector (2, 5, 3) represent
the number of each of those items we want. The total amount of money we
spend on the purchases is 2 x $15.50 + 5 x $8.95 + 3 x $12.00 = $111.75.
We found it by taking the products of the corresponding elements in the two
vectors and then summing the products. This type of computation involving
two vectors is used so often that it is given a name. It is called the dot-product
of the two vectors. In general, if u is the numerical vector {ag, a1, ..., Gn_1)
and v is the numerical vector (bo, b1, ..., bn—1), the dot product u - v of
v and v is the number agbg + a1b1 + ... + an_1bn_1. We already have a
procedure vec* that computes the vector whose elements are the products
of the corresponding elements of two vectors of the same length. We also
have a procedure vector-sum that sums the components of a vector. The
composition of these two procedures gives us the dot product:

(define dot-product (compose vector-sum vec*))

where we use a more general version of compose that allows its second argu-
ment to be a procedure of arbitrarily many arguments. It is defined by
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(define compose
(lambda (f g)
(lambda args
(£ (apply g args)))))

Although this is the dot product of two vectors, it is not an efficient way of
getting it. In the process of computing the dot product, the first procedure
applied, vec*, constructs a vector containing the products of corresponding
elements of the original two vectors. This is a rather costly and unnecessary
construction, since we can just make one pass down the elements of the two
vectors and accumulate the sum of the products as they are formed. The
definition of dot-product using this process is

(define dot-product
(lambda (vecl vec?2)
(let ((size (vector-length veci)))
(letrec ((loop (lambda (i)
(cond
((= i size) 0)
(else (+ (x (vector-ref vecl i)
(vector-ref vec2 i))
(loop (addi i))))))))
(loop 0)))))

An even more efficient way of computing the dot product of two vectors
uses an accumulator to store the intermediate sums. Its code is given in
Program 9.17.

9.3 Representing Vectors

278

We have gone a long way without discussing the actual representation of
vectors we use in the computations and the definitions of the basic procedures.
It is now time to address these questions. Since a vector is mathematically
characterized as a function from the index to the element with that index, we
can first look at a representation of a vector as a tagged pair. The car of the
pair is the tag vector-tag whose value is "vector".

(define vector-tag "vector")

The cdr of the pair is another pair whose car is the vector’s length, and
whose cdr is a procedure. That procedure takes an index as a parameter and
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Program 9.17 dot-product

(define dot-product
(lambda (veci vec2)
(let ((size (vector-length veci)))
(letrec
((1oop
(lambda (i acc)
(if (= 1 size)
acc
(loop (addi i)
(+ acc (* (vector-ref vecl i)
(vector-ref vec2 i))))))))

| (loop 0 0)))))

returns the element of the vector with that index. We make the convention
that the indices are zero based. With these conventions, we define vector?
and vector-length in Program 9.18.

Program 9.18 vector?, vector-length

(define vector?
(lambda (arg)
(and (pair? arg) (eq? (car arg) vector-tag))))

(define vector-length
(lambda (vec)
(car (cdr vec))))

The constructor vector-generator has the generating procedure gen-proc
as its parameter. It returns a procedure that has the vector’s length size as
its parameter. That in turn returns the vector being constructed, which is a
tagged pair containing the size and the procedure gen-proc. The definitions
of vector-ref and vector-generator are given in Program 9.19.

A tagged pair containing a list in place of a procedure can also be considered
as a representation of a vector. This is the second representation of vectors
we develop. We only need to redefine vector-ref and vector-generator as
in Program 9.20. As we mentioned in the Overview, the elements in such lists
are accessed with 1ist-ref. vector-generator contains a loop that invokes
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other question raised in the Overview, random access. It is clear that the list
representation does not provide random access to the elements, for we have
to cdr down the list until we find the element with the desired index, and the
computer resources used in this cdring increase with the index. It may appear
as though the representation of the vector using a procedure that assigns an
element to each index gives true random access to the elements, but consider
the following situation where vectors are represented as procedures:

(let ((a (make-vector 4 5)))
(let ((b (vector-update a 1 10)))
(let ((c (vector-update b 2 20)))
(let ((d (vector-update c 3 30)))
(vector-ref d 0))))) =5

In order to compute (vector-ref d 0), we first invoke the procedure rep-
resenting the vector d with argument 0 to find that it invokes the procedure
representing the vector ¢ with argument 0, which in turn invokes the pro-
cedure representing b with argument 0, which in turn invokes the procedure
representing a with argument 0, which returns the value 5. If we had asked
for (vector-ref 4 3), the value 30 would have been returned with just the
one procedure invocation. Thus, the resources needed to access the different
elements of d depend upon the indices of the elements.

We do not have to give up on random access because Scheme has an imple-
mentation of vectors that does provide it. The third representation we discuss
is that provided by Scheme. The external representation of a vector in Scheme
as a list preceded by a sharp sign, #, is how we have been displaying vectors
with the procedure view. Thus the vector with elements 20, 30, 40, and 50 is
written as #(20 30 40 50). This is a representation, not an expression that
evaluates to a vector. Like lists, vector constants must be quoted, so that
when we enter a quoted vector, we get

[1] #(10 u (+ 2 3) "Mary")

#(10 u (+ 2 3) "Mary")

[2] (writeln ’#(10 20 (+ 10 20) 40 50))
#(10 20 (+ 10 20) 40 50)

[3] (vector 10 20 (+ 10 20) 40 50)
#(10 20 30 40 50)

The basic procedures vector?, vector-length, and vector-ref are pro-
vided by Scheme. Our fourth basic procedure, vector-generator, is not in
Scheme, but we can use the two Scheme procedures make-vector and vector-
set! to define it. We have already discussed make-vector, but vector-set!

9.3 Representing Vectors 281



282

is new. With the list and procedure representation of a vector, when we want
to change an element with index k in a vector vec to the new value c, we
invoke (vector-update vec k c), which makes a copy of the vector with a
given element changed. The original vector vec still has its original elements,
and only the copy has the element with index k changed to c. With the proce-
dure vector-set!, we invoke (vector-set! vec k c), and we do not create
a new vector, but instead we change the element with index k in vec to have
the value c. Thus vector-set! is not a constructor, since it does not create a
new vector. Instead, we call such procedures mutators or mutation procedures
that cause a mutation or change in the original vector. Its call structure is
(vector-set! vec 7 obj), where vec is a vector, 7 is an index, and obj is
an object that becomes the element with index ¢ in vec. The element that
previously had index ¢ in vec is replaced with obj. The value returned by
an invocation of vector-set! is not specified, so do not use the returned
value since it depends upon the implementation of Scheme. Programs that
do use such values are not portable; that is, they cannot be used with other
implementations of Scheme. The purpose of an invocation of vector-set! is
to change a vector, which is a side effect. As such, it can be used in begin
expressions where side effects are done. It is a convention in Scheme to place
an exclamation mark, !, at the end of the names of mutation procedures. The
exclamation mark is read as “bang,” so we read vector-set! as “vector set

’ We follow our convention of not displaying whatever is returned by

bang.’
side-effecting procedures. As with define, writeln, and the others, we shall
not display what a vector-set! expression returns.

As an example of the use of vector-set!, consider

1] (define v1 (vector 0 2 4 6 8))
[2] v1

#(0 2 4 6 8)

[3] (vector-set! v1 2 5)

[4] v1

#(0 2 5 6 8)

Using vector-set!, we now present the definition of our basic constructor
vector-generator. The program for vector-generator first constructs a
vector vec of the desired length size (> 0), with unspecified elements. Then
it enters a loop with index i going from 0 to size. For each i less than
size, it changes the ith element of vec to be the generating procedure gen-
proc applied to i. When the index i reaches its upper limit size, the vector
vec has had all of its entries changed, and since the if expression has only a
consequent, some value (unspecified in Scheme) is returned. But this value is
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ignored, since the letrec expression is the first expression in an implicit begin
expression. The value returned by the whole begin expression is the vector
vec. The structure of this program makes use of the fact that the vector
vec is changed by side effects. The mutation is done in the loop within the
letrec expression, and when its work is finished, the vector vec is returned.
Program 9.21 contains the code for vector-generator.

Program 9.21 vector-generator

|
|

(define vector-generator
(lambda (gen-proc)
(lambda (size)
(let ((vec (make-vector size)))
(letrec
((loop (lambda (i)
(if (< i size)
(begin
(vector-set! vec i (gen-proc i))
(loop (add1 i)))))))
(loop 0)J
vec))))

L.. e —— =] — S—

When we use vector-set!, we are interested in its side effects, and we do
not use the value that it returns. If we do want to use the updated vector that
has been reset by an invocation of vector-set!, we can use a mutating version
of vector-update, which we call vector-update!. It first uses vector-set!
to set the element with the given index to a new value and then returns the
vector. It is defined in Program 9.22.

Program 9.22 vector-update!

(define vector-update!
(lambda (vec i ¢)
(vector-set! vec i c) ’

vec)) |

When we presented the second definition of list->vector, we mentioned
that we would give another version in which it would not be necessary to pass
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the newly created vector as an argument to the local procedure convert. We
can now do it using vector-set!. We first create a vector having the same
length as the list using make-vector. Then we cdr down the list, changing
the entry in the vector to be the corresponding entry in the list. The code is
in Program 9.23.

Program 9.23 1list->vector

(define list->vector
(lambda (1s)
(let ((vec (make-vector (length 1s))))
(letrec
((convert
(lambda (1s 1)
(if (not (null? 1s))
(begin
(vector-set! vec i (car 1s))
(convert (edr 1s) (addl i)))))))
(convert 1s 0))

vec)))

In this program, we again see that vector-set! is used in a begin expression
for its side effect of changing an element in a vector. The mutation of the
vector is accomplished in the body of the local procedure convert. When the
letrec expression is finished, the vector vec is returned.

When mutation is introduced, we must adopt a different point of view about
computing than when we use functional programming. Programs that make
use of mutation are referred to as imperative-style programs. In functional
programming, an object is passed as an argument to a procedure and a new
object is created, but the original one does not change. If we start with a
vector a, which is (vector 2 4 6), and let b be (vector-update a 1 5),
then the vector 2 has not been changed, and we have

(1] (let ((a (vector 2 4 6)))
(let ((b (vector-update a 1 5)))
(view a) (newline)
(view b) (newline)))
#(2 4 6)
#(2 5 6)

On the other hand, if we use the mutator vector-update! instead of
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vector-update, we actually do change the vector a, and we have

(2] (Qet ((a (vector 2 4 6)))
(let ((b (vector-update! a 1 5)))
(writeln a)
(vriteln b)))
#(2 5 6)
#(2 5 6)

In the first let expression in [2], the vector a has a certain state that is
determined by its elements. When vector-update! is invoked in the second
let expression, the state of a is changed. When objects change over time, we
say that at any given time the object is in a certain state that is determined by
certain state variables (in our example, they are the elements of the vector).
If we know the state of an object, we know its behavior at that time. When
using mutators, one must be conscious of the fact that each object has a
certain state and that an invocation of a mutation procedure causes a change
in the state of the object. We shall introduce other mutators in Chapter 11
and discuss the changes in state they cause. At this point, we give another
illustration comparing programming in functional style using vector-update
with programming in imperative style using the mutator vector-update!.

We next look at the problem of reversing the elements of a vector. To do so,
we define a procedure vector-reverse that has a vector vec as its parameter
and returns a vector having the same elements as vec but in reverse order. We
first define a vector-reversing procedure in functional style without mutation.
We use either of the first two representations of vectors (either as tagged
procedures or as lists). The idea that we use in writing this definition is to
use two indices, i and j. The lower index i starts at 0, and the upper index
j starts at the index of the last element. The elements with indices i and
j are swapped, and then i is increased by 1 and j is decreased by 1. The
swapping and changing indices continue until either the two indices coincide
(this happens when the length of the vector is odd) or until i is greater than
j (this happens when the length of the vector is even). The resulting vector is
returned. The swapping is done with a helping procedure called swap-maker
that has a vector vec as its parameter and returns a procedure that has two
indices index1 and index2 as parameters and returns a copy of vec that has
its elements with indices, index1 and index2, interchanged. The code for
vector-reverse is in Program 9.24.

We now give the definition of swap-maker in Program 9.25. We first store
the element with index index1 in a local variable temp. Then vector-update
is invoked on vec and returns a new vector having its element with index
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Program 9.24 vector-reverse (functional version)

(define vector-reverse
(lambda (vec)

(letrec
((switch
(lambda (v i j)
(if (>=1 j)

v
(let ((swapv (swap-maker v)))
(switch (swapv i j) (addl i) (subl j)))))))

(switch vec 0 (subl (vector-length vec))))))

Program 9.25 swap-maker (functional version)

(define swap-maker
(lambda (vec)
(lambda (index1 index2)
(let ((temp (vector-ref vec index1)))
(vector-update

(vector-update vec indexl (vector-ref vec index2))
index2

temp)))))

index1 changed to the element with index index2. Now vector-update is
again invoked, this time on the vector that was returned. It returns a new
vector that has its element with index index2 changed to temp, completing

the swap.
We illustrate the use of vector-reverse with the following experiment:

[1] (let ((a (vector 1 2 3 4 5)))
(let ((b (vector-reverse a)))
(view a) (newline)
(view b) (newline)))
#(1 2 3 4 5)
#(5 4 32 1)

We now write the definitions of corresponding procedures with mutations.
Program 9.26 gives the code for vector-reverse!. We are able to make
a few optimizations in the program, taking advantage of the fact that the
vectors have state that changes with invocations of the mutators. Now we
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do not have to pass the vector vec as an argument to the local procedure
switch and switch does not have to return a value. We can also define the
local procedure swapv! before the letrec expression defining switch. This
time, the helping procedure (swap-maker vec) (see Program 9.27) returns a
mutator that uses vector-update! actually to interchange the elements with
indices index1 and index2 in the vector vec itself. When switch finishes its
work, the vector vec has its elements in reverse order. After the invocation
of switch, the altered vector vec is returned as the value of the procedure
vector-reverse!. Thus using mutation reduces the need to pass vectors as
arguments to procedures and for procedures to return vectors as values. In
general, mutation provides for efficient communication between procedures
and faster running, more efficient programs.

We repeat the experiment, this time using the mutating version:

[2] (let ((a (vector 1 2 3 4 5)))
(let ((b (vector-reverse! a)))
(vriteln a)
(vriteln b)))
#(54321)
#(54321)

Notice that this time, the invocation of vector-reverse! on the vector a
actually changed the vector a itself, whereas in the previous version not in-
volving mutation, the vector a remained unchanged.

Program 9.26 vector-reverse! (imperative version)

(define vector-reverse!
(lambda (vec)
(let ((swapv! (swap-maker vec)))

(letrec
((switch (lambda (i j)
(if (< i j)
(begin
(swapv! i j)

(switch (addl i) (subl j)))))))
(switch 0 (subl (vector-length vec))))
vec)))
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Program 9.27 swap-maker (imperative version)

|
‘ (define swap-maker
4 (lambda (vec)
‘ (lambda (index1 index2)
‘ (let ((temp (vector-ref vec index1)))
(vector-update!
(vector-update! vec indexl (vector-ref vec index2))
index2
temp)))))

Comparing these two versions of vector-reversing procedures, we see that
when we are willing to abandon the original elements occupying various posi-
tions in a vector, we may use the same vector and update individual positions.
The values associated with the indices are changing, but they are in the same
vector, not a copy of the vector. Imagine a vector of length N to be a set
of N transparent shoe boxes fastened together at the sides and as elements
use billiard balls with values written on them. Then when we use vector-
update!, we open the lid, take out the ball that is in the box, and replace that
ball with a different ball. We always use the same shoe boxes. The vector
itself is not changing, but its contents are. The shoe boxes did not change;
only their contents did. By using vector-update! we have shown that the
communication structure associated with vectors as arguments and values can
be lessened. What makes mutation really important, however, has to do with
random access and the way virtually all computers are designed. Random ac-
cess provides constant time; that is, the time required to access any element
in the vector is the same. Sequential access in lists provides linear time in
which the time i1s proportional to the index of the element. Thus we see that
using mutation considerably improves the running time of programs.

In summary, we have now seen three approaches to implementing vectors.
In the first two representations, mutations are not used. When we want to
change an element with a given index in a vector, we use vector-update,
which constructs a new vector that has the new element, and the original
vector is left unchanged. Such programming without mutations is called func-
tional programming. In our third approach to vectors, we use the mutator
vector-set! to change an element with a given index in a vector, and this
actually makes the changes in the original vector itself so as to change the
state. Such programming with mutations is called imperative programming.
We gain using mutation because the way it is implemented in Scheme gives

Using Vectors



us random access to the elements in the vector. The price we pay is that we
actually change elements in the original vector when we use vector-set!,
so if we need it for some reason after the invocation of vector-set!, we
must first make a copy of the original vector using vector-copy and apply
the mutation procedures to the copy. The vector data type has analogs in
other programming languages where they are often called one-dimensional ar-
rays. In the rest of this book, unless we state otherwise, we use the Scheme
implementation of vectors with the mutator vector-set!.

Exercises

FEzercise 9.1: successive-powers

Define a procedure successive-powers that constructs a vector of length n
whose entries are the successive powers of the number base. The element with
index 0 is the Oth power of base. The procedure should be curried so that its
first parameter is base, and the procedure that is returned has parameter n.
Test your procedure on

((successive-powers 2) 8) = #(1 2 4 8 16 32 64 128)
((successive-powers 3) 5) = #(1 3 9 27 81)

Ezercise 9.2
A vector of zero length can be displayed by #(). Rewrite the definition of
view to support vectors of zero length.

Ezercise 9.3: vector-view

We defined a procedure view when we used the procedural representation of
a vector to display the vector in the notation using a sharp sign followed by a
list of elements. Define a procedure vector-view that works like view, except
that it displays the vector using angle bracket notation with commas as used
in mathematics. Take into account the observation of Exercise 9.2. With all
three representations of vectors given in this chapter, (vector-view (vector
10 20 30)) should display <10, 20, 30>. A similar program, set-view can
be defined using braces instead of angle brackets.

Ezercise 9.

Let v1 be the vector (vector 1 2 3 4) and let v2 be (vector-copy v1).
What does each of the following expressions return? Test them with each of
the three representations of vectors.

a. (eq? vl v2), (eq? v1 v1)
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b. (eqv? v1 v2), (eqv? v1 v1)
c. (equal? vi v2), (equal? vi vi)

What conclusions can be drawn about the use of these predicates?

Ezercise 9.5: vector-linear-search

The vectors under consideration in this exercise contain elements that can be
tested for sameness with the predicate equal?. Define a procedure vector-
linear-search that has as its parameters a vector vec and an object obj. It
returns the smallest index whose element is the same as obj. If the object is
not in the vector, an appropriate message is returned. Test your program on:

(vector-linear-search ’#(gnpr ad 1l bs) ’a) => 4
(vector-linear-search ’#(29 13 96 -5 24 11 9 -15 0 2) 11) => 5§

Ezercise 9.6: vector-append, vector-reverse
Use vector-generator to define vector analogs of append and reverse.

9.4 Matrices

290

We have used lists and vectors to store data. In both of these, the elements
are sequentially organized, so that we can index the elements starting with
zero and increasing the index by one for each successive element. We often use
this way of organizing information, but there are also occasions where such
a sequential organization is not the best way of organizing the information.
Many times a table is @ more convenient way of presenting data. For example,
in a telephone book, each person has several entries: a name, an address, and
a phone number. The data are entered in rows, each row containing the
information for one person. If we take the first entries in all of the rows, we
get the first column; the second entries of all rows form the second column;
and in general, the nth entries in all rows form the nth column. The table
in Figure 9.28 contains four rows and three columns. Each entry in the table
can be located if we are given two indices, the zero-based index of the row
and the zero-based index of the column. Thus in our table, “3314 Valley Dr.”
is the item with row index 2 and column index 1.

A matriz is a table in which each of the entries has two indices, the first
being the zero-based row index and the second being the zero-based column
index. In our discussion, we refer to the element in the matrix A having row
index 7 and column index j as the element a;;. If the matrix has m rows and n
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“Jones, John” “2117 Plum St.” “412-8421”

“Jones, M. S.” “1392 First Ave.” “424-7773”
“Jose, Michael W.” “3314 Valley Dr.” “421-0035”
“Joslin, Joan P.” “2550 Western Blvd.” “412-5531”

Figure 9.28 A table with four rows and three columns

columns, we call it an “m by n matrix.” This is sometimes written as “m x n
matrix.” For example, if A denotes the table given in Figure 9.28, then A is
a 4 x 3 matrix, and “424-7773” is the value of element a;5.

Unlike vectors, matrices are not a Scheme data type, so we have to decide
upon a representation for matrices, and we have to define the building blocks
in terms of which the matrix procedures are defined. We begin with two
procedures, num-rows and num-cols, that take a matrix as argument and
return the number of rows and the number of columns, respectively. We also
use a selector matrix-ref that has the call structure

((matrix-ref mat) row-indezx column=-inder)

where mat is a matrix and row-index and column-index are nonnegative
integers. It returns the element of the matrix mat with indices row-indez
and column-indez. Thus, if A represents the matrix in Figure 9.28, we can
write

[1] (define A-ref (matrix-ref A))
(2] (A-ref 1 2)

"424-T7773"

[3] (A-ref 2 1)

13314 Valley Dr."

We also use a constructor that is an analog of vector-generator. We call
it matrix-generator, and it has the call structure

((matrix-generator gen-proc) nrows ncols)
where nrows and ncols are the number of rows and columns, respectively, of
the matrix we are constructing. The procedure gen-proc takes as its argu-

ments two indices and produces the element with those indices in the matrix
being constructed.
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We now decide how to represent a matrix. Let us assume that we are
defining an m x n matrix A. There are m rows and n columns in A, and
altogether there are m x n elements in A. FEach of the m rows contains
n elements. One way of representing A is as a vector V that contains the
m x n elements of the matrix. But we must have a way of knowing the
correspondence between elements of V' and elements of A. It will be clearer
if we look at a concrete example first and then generalize the method we
develop. Consider the matrix in Figure 9.29.

>

Il
QO = Ot
L N
== "]
N Ov

Figure 9.29 A 3 x 4 matrix

We have followed the usual mathematical convention of writing such nu-
merical matrices (or tables) enclosed by large parentheses. This matrix, A,
has three rows and four columns. There are two ways of writing the elements
of a matrix sequentially, both of which are used in practice. One is to write
the rows one after the other, to get the sequence of elements

§23714058312

This way 1s called row major order. The other way is to write the columns
one after the other, to get the sequence of elements

§18243301752

This way of writing the elements is called column major order. We arbitrarily
choose to use the row major order in our representation of matrices.

Now that we are agreed on row major order, we must have a way of knowing
where one row ends and the next begins. In our example, there are in all 12
elements in the matrix, as we can see by counting the number of elements in
the sequence. Since we know that there are 4 elements in each row, we can
divide 12 by 4 to get that there are 3 rows. We need someplace to store the
number 4, which tells us the number of elements in each row. Let us agree to
put it at the end of the sequence of numbers and store the whole sequence in
a vector. Thus we represent the matrix A as the value of

(vector 523714058312 4)
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Program 9.30 num-cols

(define num-cols
(lambda (mat)
(let ((size (subl (vector-length mat))))
(vector-ref mat size))))

Consider the element 0 in this vector. It has index 6 in the vector. What
indices does it have in the matrix A? Here is how we can compute them using
information we can extract from the vector A. The vector A has length 13,
and the last element is a 4. We use this last element to conclude that the
matrix has rows of length 4. Thus it has four columns. If we remove the
last element, there are 12 elements left, so the matrix has 12/4 = 3 rows.
Now if we start at the beginning of the vector and collect the elements in
groups of four, we see that 0 is in the second group and is the third element in
that group. Thus 0 is in the second row and third column. Using zero-based
indices, we see that 0 has row index 1 and column index 2. We can get these
indices easily by noting that the row index is the quotient when the index 6
is divided by the row length 4, and the column index is the remainder when
6 is divided by 4.

Now let’s reverse the process and start with the element in A having row
index 1 and column index 2. We find its index in the vector representing A by
multiplying the row index 1 by 4, which is the number of elements in each row
of A, and then adding the column index 2. Thus the index of that element in
the vector is (1-4) +2 = 6.

In general, we represent an m x n matrix, mat, by a vector containing mn+1
elements, the last of which is a number telling us the number of columns of
mat, which is the same as the number of elements in each row of mat. The
elements of the matrix are enumerated in row major order, making up the first
mn elements. We can define the procedure num-cols for this representation
as shown in Program 9.30, for all we have to do is access the last element in
the vector representing the matrix.

To get the number of rows of the matrix, we merely divide one less than
the length of the vector representing the matrix by the number of columns.
Thus we get Program 9.31.

We now define matrix-ref that has the matrix mat as its parameter and
returns a procedure that has as its parameters the row index i and the column
index j, and it in turn returns the element of mat with those indices. To find
the element in the vector representation of the matrix, we must multiply the
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Program 9.31 num-rows

(define num-rows
(lambda (mat)
(let ((size (subl (vector-length mat))))
(/ size (vector-ref mat size)))))

row index i by the number of columns in the matrix mat and add to that
product the column index j. This gives us:

Program 9.32 matrix-ref

(define matrix-ref
(lambda (mat)
(let ((ncols (num-cols mat)))
(lambda (i j)
(vector-ref mat (+ (* i ncols) j))))))

Exercise

Ezercise 9.7

The selector matrix-ref should contain in its definition a range test for the
indices i and j and return an error if either is out of range. Rewrite the
definition so that it contains such a test.

We now turn our attention to the constructor matrix-generator, which
1s defined using vector-generator. We first have to build the generating
procedure of one argument that generates the vector representing the matrix.
If we are given the index k of an element e in the vector representation, the
corresponding row index is the quotient obtained when k is divided by ncols,
and the corresponding column index is just the remainder obtained when k 1s
divided by ncols. Recall that ncols is the number of elements in each row
of the matrix. Then to get the row index, we can count the number of groups
of ncols elements we can remove before including the element e with index
k. The number of such groups is the zero-based row index of the element e
in the matrix. But that number of groups is what we mean by the quotient
obtained when k is divided by ncols. The next such group of ncols elements
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contains e, and its zero-based index in that group is the column index of e
in the matrix. But that zero-based index is also the remainder when k is
divided by ncols. Thus we can take as the vector-generating procedure of
one argument

(lambda (k)

(gen-proc (quotient k ncols) (remainder k ncols)))

The length of the vector representing the matrix is one more than the product
of nrows and ncols. We can then write:

Program 9.33 matrix-generator

(define matrix-generator
(lambda (gen-proc)
(lambda (nrows ncols)
(let ((size (* nrows ncols)))
(let ((vec-gen-proc
(lambda (k)
(if (< k size)
(gen-proc (quotient k ncols)
(remainder k ncols))
ncols))))
((vector-generator vec-gen-proc)

(addl size)))))))

As an example, we construct a 3 x 5 matrix having all of its elements zero
by writing (make-zero-matrix 3 5) where

(define make-zero-matrix (matrix-generator (lambda (i j) 0)))

In mathematics, the rows and the columns of a matrix are considered to
be vectors. We adopt this point of view and define the procedures row-of
and column-of that are used to select a row or a column of a matrix. It is
convenient to curry the procedures row-of and column-of. To get the row of
the matrix mat with zero-based index i, we invoke ((row-of mat) i), and
to get its column with zero-based index j, we invoke ((column-of mat) j).
These two procedures are defined by:
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Program 9.34 row-of

(define row-of
(lambda (mat)
(let ((mat-ref (matrix-ref mat))
(number-of-columns (num-cols mat)))
(lambda (i)
(let ((gen-proc (lambda (j) (mat-ref i j))))
((vector-generator gen-proc) number-of-columns))))))

and

Program 9.35 column-of

(define column-of
(lambda (mat)
(let ((mat-ref (matrix-ref mat))
(number-of-rows (num-rows mat)))
(lambda (j)
(let ((gen-proc (lambda (i) (mat-ref i j))))
((vector-generator gen-proc) number-of-rows))))))

-1 L2 DN D
OV O = =
N = WO 0o

Figure 9.36 The transpose of the matrix in Figure 9.29

The transpose of an m x n matrix A is an n X m matrix whose rows are the
columns of A. The transpose of the matrix in Figure 9.29 is the 4 x 3 matrix
given in Figure 9.36. To find the transpose of a matrix, we use the procedure
matrix-transpose (see Program 9.37) that takes as its argument a matrix
and returns its transpose. The key to writing the program is the observation
that the element with indices 7, in the transpose of A is the same as the
element with indices j, i in A. It is easily defined using matrix-generator.
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Program 9.37 matrix-transpose

(define matrix~-transpose
(lambda (mat)
(let ((mat-ref (matrix-ref mat)))
(let ((gen-proc (lambda (i j) (mat-ref j i))))
((matrix-generator gen-proc)
(num-cols mat)
(num-rows mat))))))

The elements of matrices can be any of the data types we have been using
in Scheme. For numerical matrices, that is, matrices whose elements are
numbers, we can define useful arithmetic operations. For example, if A and
B are two matrices of the same size (same number of rows and same number
of columns), we can define the sum A + B to be the matrix whose elements
are the sums of the corresponding elements of A and B. Similarly, we can
multiply the matrix A by a scalar (number) ¢, and the resulting product cA is
the matrix whose elements are ¢ times the corresponding elements of A. It is
also possible to define a useful multiplication rule for certain pairs of matrices.
It is not customary to define the product to be the matrix whose elements are
the products of corresponding elements of the two matrices. The following
example illustrates the multiplication rule normally used.

A factory produces four products, W, X, Y and Z, at each of two sites, R
and S. Each product uses steel, plastic, and rubber. Product W uses 4 units
of steel, 2 units of plastic, and 2 units of rubber. Product X uses 5 units of
steel, 2 units of plastic, and 2 units of rubber. Product Y uses 4 units of steel,
3 units of plastic, and 1 unit of rubber. Product Z uses 3 units of steel, 5 units
of plastic, and 2 units of rubber. The cost of the steel, plastic, and rubber at
site R is $8, $4, and $5 per unit, respectively, and at site S is $7, $5, and $4
per unit, respectively. To find the material costs of making one unit of each
product at each of the two sites, we set up the following matrices:

Units Used Cost Per Unit
Steel Plastic Rubber Site R Site S
i g E » Steel $8 $7
X 5 2 2 |
Plastic $4 $5
2 4 . : Rubber 35 $4
%7 3 5 2

Let’s consider the cost of making a unit of Product Y at Site R. We multiply
the number of units of each material by the corresponding cost at that site
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and add these products. This is the dot product of the third row of the Units
Used matrix and the first column of the Cost Per Unit matrix. The result is
4.88 +3-84+1-85 = 849. We compute the cost of making a unit of each
product at each of the sites by finding the dot product of the appropriate row
of the Units Used matrix and the appropriate column of the Cost Per Unit
matrix. This leads to the following tabulation of the results:

Site R Site S
w 850 $46
X 858 $53
Y $49 $47
Z $54 $54

From this example, we make the following observations about the way the
product of two matrices is defined. In order to be able to find the product AB
for two matrices, they must be compatible, which means that the number of
columns of A must be the same as the number of rows of B. If two matrices
A and B are compatible, then the rule for computing their product AB is: if
A 1s an m x n matrix and B is an n X k matrix, then their product AB is an
m x k matrix. The element with indices 7,7 in AB is the dot product of the
1th row vector of 4 and the jth column vector of B.

We have developed the tools that enable us to translate this rule directly
into the definition of the procedure matrix-product that takes two compat-
ible matrices as arguments and returns their matrix product.

(define matrix-product
(lambda (mat-a mat-b)
(let ((a-row (row-of mat-a))
(b-col (column-of mat-b)))
(let ((gen-proc
(lambda (i j) (dot-product (a-row i) (b-col j)))))
((matrix-generator gen-proc)
(num-rows mat-a) (num-cols mat-b))))))

This way of defining matrix-product follows directly from the rule describ-
ing matrix multiplication, but it is not an efficient way of doingit. Before actu-
ally taking the dot product, the row and column vectors had to be constructed.
However, the answer does not require having these vectors. We can take the
product of two elements at a time and accumulate their sum directly from the
matrices without building the row and column vectors. Each element in the
tth row of A has first index 7, and each element in the jth column of B has
second index j. Thus the ith row of A has the elements a; 0, ai1,...,8in_1,
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Program 9.38 matrix-product

(define matrix-product
(lambda (mat-a mat-b)
(let ((ncols-a (num-cols mat-a))
(a-ref (matrix-ref mat-a))
(b-ref (matrix-ref mat-b)))
(if (not (= ncols-a (num-rows mat-b)))
(error '"matrix-product:"
"The matrices are not compatible.')
(let
((gen-proc
(lambda (i j)
(letrec
((1loop
(lambda (r acc)
(if (= r ncols-a)
acc
(loop (addl r)
(+ acc (* (a-ref i 1)
(b-ref r 3))))))))
(Loop 0 0)))))
((matrix-generator gen-proc)
(num-rows mat-a) (num-cols mat-b)))))))

and the jth column of B has the elements bg ;, b1 ;,...,bn_1,;. Thus to form
the dot product of the ith row and jth column, we must add all products
of the form a; .b,; where r takes all integer values from 0 to n — 1. In Pro-
gram 9.38, we redefine matrix-product to do this summation of products
directly and include a test for compatibility.

So far this treatment of matrices has not involved mutation. If we use a
purely functional representation of vectors and their procedures, all of the
procedures defined for matrices are purely functional. We can introduce a
mutator matrix-set! that is similar to vector-set!. When we do so, the
matrix must be considered as having state with the state variables the ele-
ments in the matrix. matrix-set! performs a mutation on the elements of
the matrix. It has the call structure

((matrix-set! mat) row-indez column-indez obj)

where mat is a matrix whose element with indices given by row-indez and
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Program 9.39 matrix-set!

(define matrix-set!
(lambda (mat)
(let ((ncols (num-cols mat)))
(lambda (i j obj)
(vector-set! mat (+ (* i ncols) j) obj)))))

column-indez is changed to the value of obj. Continuing the previous example
from Figure 9.28, we have

[4] (define A-set! (matrix-set! A))
(5] (A-set! 2 1 "1922 River St.")
[6] (A-ref 2 1)

1922 River St."

The mutator matrix-set! is defined in terms of vector-set! in Pro-
gram 9.39.

In this section, we saw how matrices can be implemented using vectors.
In a vector, each element has one index, and we refer to a vector as be-
ing one-dimensional. In a matrix, each element has two indices, the row
index and the column index. We refer to a matrix as being two-dimensional.
In some languages, the analogs of vectors and matrices are called one- and
two-dimensional arrays. In Exercise 9.14, three-dimensional arrays are im-
plemented, and the extension to higher-dimensional arrays is carried out in a
similar manner. We use vectors to provide random access to stored data in
our next chapter, which is on sorting and searching.

Exercises

Ezercise 9.8: matrix

Define a procedure matrix that takes two arguments, m and n, and returns a
procedure that takes as its m x n arguments the elements of the m x n matrix
it creates. (Hint: Use an unrestricted lambda.) For example, to create the
matrix in Figure 9.29, we write

((matrix 3 4) 5§ 2 3 7
1405
S8

N

)

Using Vectors



Ezercise 9.9: mat+

Define a procedure mat+ that takes matrices A and B as arguments and
returns their sum A 4+ B. A and B must have the same number of rows and
the same number of columns. If a;; is the element of A with indices ¢, j, and
b;; is the element of B with indices %, j, then the element of A+ B with indices
i,j 1s a;j -+ bij.

Ezercise 9.10: matrix-multiply-by-scalar

Define a procedure matrix-multiply-by-scalar that takes as arguments a
number ¢ and a matrix A and returns the matrix cA, which has as elements
c times the corresponding elements of A.

Ezercise 9.11: matrix-view

Define a procedure matrix-view that takes an m x n matrix as its argument
and prints the matrix in the format shown below. If m is the matrix given in
Figure 9.29 an invocation of (matrix-view m) should print

Next, include a tag matrix-tag and generalize the procedure view to dis-
play a vector, set, or matrix depending on the type of its argument. (See
Exercise 9.3)

Ezercise 9.12: Column major order

Suppose we had used the column major order for listing the elements of a
matrix in the vector representation. Write the definitions of the following
procedures using column major order: num-rows, num-cols, matrix-ref,
matrix-set!, and matrix-generator.

Ezercise 9.13: Vector of vectors
An m x n matrix can also be represented as a vector of length m in which the
element with index ¢ is a vector of length n containing the elements in row ¢

of the matrix. Thus the matrix
2 1 -3
4 -2 -1

is represented as the vector
(vector (vector 2 1 -3) (vector 4 -2 -1))

For this representation of matrices, define the procedures num-rows, num-
cols, matrix-ref, matrix-set!, and matrix-generator.
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Ezercise 9.14

The method used in this chapter for representing an m xn matrix as a vector of
length mn+ 1 can be extended to higher-dimensional arrays. For example, an
element a;;x, in a three-dimensional array A is indexed with three indices, ¢, j,
and k, where : =0,1,...,m;—1,7=0,1,...,ma—1,and k = 0,1,...,m3—1.
We would then represent A as a vector of length m; - ma - m3 + 2. The integer
m,, for n = 1,2, 3 is the size of the matrix in dimension n and we say that A is
an m; X my X mg array. The last two entries in the vector representation can
be taken to be ms and the product msmg. Using this information, describe
the vector representation more completely, and define the procedures size-
dim-1, size-dim-2, and size-dim-3 that are the analogs of num-rows and
num-cols and return the values my, ms, and m3, respectively. Also define the
procedures array-ref, array-set! and array-generator, which are analogs
of the corresponding matrix procedures. These considerations can be extended
to give arrays of any dimension.
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Sorting and Searching

10.1 Overview

The process of rearranging the data in a list to put them in some specified
order, such as alphabetical order or increasing numerical order, is called sort-
ing the list. The process of locating a given item in a list is called searching
the list for the given item. In this chapter, we develop routines for sorting
and searching both lists and vectors. We also develop a relational calculus for
retrieving from a table those items that satisfy some specified conditions.

10.2 Sorting

We use tables to store many kinds of data, such as names, grades, or salaries.
It 1s more convenient to access data in tables if the data are arranged in some
increasing or decreasing order. For example, names are most conveniently
arranged in alphabetical order, and test grades are often most conveniently
arranged in decreasing order. There are many different methods for sorting a
table into a desired order. We shall look at a few of them in this section.

10.2.1 Insertion Sort

Our first sorting technique is called an insertion sort. Suppose we are given
a nonempty list 1s of numbers that are not ordered and that we wish to rear-
range to be in increasing order. We first think about the problem recursively.
If the list of numbers contains only one number, the list is already sorted, and
we are done. If the list contains at least two numbers, and if we recursively
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Program 10.1 insertsort

| (define insertsort
| (lambda (1s)
(if (singleton-1list? 1s)
1s
| (insert (car ls) (insertsort (cdr 1s))))))

Program 10.2 insert
S 108 e

(define insert
(lambda (a 1ls)
(cond
((null? 1s) (coms a ’()))
((< a (car 1s)) (cons a 1s))
(else (cons (car ls) (insert a (cdr 1s)))))))

invoke insertsort on (cdr 1s), we get a correctly sorted list containing all
but the first number. To get the completely sorted list, all we have to do is in-
sert (car 1s) into its correct position in the already sorted part (insertsort
(cdr 1s)). For this insertion, we afterward define a procedure insert that
inserts a number a into the correct place in a sorted list 1s. Program 10.1
contains the definition of insert-sort, and Program 10.2 contains that of
insert.

While (cdr 1s) is not empty, insertsort invokes insert to insert (car
1s) into (insertsort (cdr 1s)). Until (cdr 1ls) is empty, the value of
(insertsort (cdr 1s)) is not known, so a return table is built. When 1s
is finally reduced to contain a single number, then (insertsort (cdr 1s))
is just the “sorted” list containing that single number. Then each of the
insertions that has been waiting in the return table can be evaluated, and the
final sorted list is built up. Figure 10.3 shows how the recursive insertion sort
routine sorts a list of numbers. We start with the list (50 40 30 20 10).
When we reach the invocation of insertsort on (10), the sorted sublist
(10) is returned, and the invocations of insert that have been waiting in the
return table are evaluated with sorted sublists as their second arguments.

We also write an iterative instead of recursive version of insertion sort. This
version will be written using Scheme vectors to store the data. We define a
mutation procedure called vector-insertsort! that takes as its argument a
vector containing the numbers to be sorted into ascending order and changes
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(insertsort ’(50 40 30 20 10))

(insert 50 (insertsort ’(40 30 20 10)))

(insert 50 (insert 40 (insertsort ’(30 20 10))))

(insert 50 (insert 40 (insert 30 (insertsort ’(20 10)))))

(insert 50 (insert 40 (insert 30 (insert 20 (insertsort ’(10))))))
(insert 50 (insert 40 (insert 30 (insert 20 ’(10)))))

(insert 50 (insert 40 (insert 30 ’(10 20))))

(insert 50 (insert 40 ’(10 20 30)))

(insert 50 ’(10 20 30 40))

(10 20 30 40 50)

Figure 10.3 Return table for insertsort

that vector into one with the same elements sorted as desired. The value it
returns is unspecified, as is the case with many mutators. It is more convenient
to insert the numbers to the left instead of to the right when using vectors. Our
sort of the vector #(60 50 30 40 10 20) proceeds as shown in Figure 10.4.
At each stage, we can picture the process as removing the next item to be
inserted and shifting those before it to the right until we come to the place
where the item belongs.

The sort is accomplished by applying the following algorithm. We assume
that all elements to the left of the element with index k have been sorted.
We then save the element with index k in a variable val, freeing up the kth
position so that we can shift into it. The element with index k is then inserted
into the correct position by successively testing each element to its left and
shifting it one place to the right until a smaller element is encountered. To do
this, procedure vector-insertsort! uses a local procedure, sortloop, which
is first invoked with the index 1, since that is the index of the first element
to be inserted. The local procedure sortloop calls the procedure vector-
insert! to do the insertion for each successive index. Each time it is called,
say with index k, all of the elements with indices less than k have already been
sorted, and vector-insert! inserts the element with index k in the correct
place relative to the first k elements. Now the elements with indices less than
k+ 1 are in the correct order. This insertion process continues until the index
k reaches the length of the original vector, by which time all of the elements
have been inserted. When k is equal to size, the condition in the if expression
is false, and the if expression returns some unspecified value. We assume in
this book that the implementation of Scheme we are employing does not print
the value returned on the screen. The code for vector-insertsort! is given

in Program 10.5.
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We now consider the definition of vector-insert!. The procedure vector-
insert! is applied with first argument k when those elements of the vector
with indices less than k have already been sorted. It inserts the element with
index k into the correct place in the sorted part, so that those elements with
indices less than k + 1 are now sorted. Here is how vector-insert! works.
If it is called with index k, it lets val be the element with index k. The
local procedure insert-h is then called with index x. When insert-h is
called with some index m as argument, it compares val with the element comp
having index m— 1. If val is less than comp, we still have not found the correct
place for val, so comp is moved up to have index m, and insert-h is called
again with argument m— 1 to compare val with the element with index m — 2.
On the other hand, if val is not less than comp, m is the correct index for
val, and we assign it with (vector-set! vec m val). Each time insert-h
is invoked, its argument is one less than on the previous invocation. If its
argument is zero, then there are no more elements to the left to which to
compare it, and val must be the first element in the vector. Thus (zero? m)
is the terminating condition for the recursion. The code for vector-insert!
is in Program 10.6.

Program 10.6 vector-insert!
e
; (define vector-insert!
(lambda (k vec)
(let ((val (vector-ref vec k)))
(letrec ((insert-h
(lambda (m)
(if (zero? m)

(vector-set! vec 0 val)
(let ((comp (vector-ref vec (subi m))))
(if (< val comp)
(begin
(vector-set! vec m comp)
(insert-h (subi m)))
(vector-set! vec m val)))))))
(insert-h k)))))

Throughout this definition, we used the fact that vector-set! is a mutation
procedure that changes the vector v as a side effect. When a vector v is passed
as an argument to vector-insertsort!, its elements are actually reordered
within that vector, so when we look at v after the sorting, its elements are
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sorted. This is a different behavior from the procedure insertsort, which
returns a sorted copy of the original list and the original list is not affected.
If we want a procedure to apply insertion sort to a vector and return a sorted
copy of that vector but leave the original vector unaffected, we can use the
following procedure, vector-insertsort:

(define vector-insertsort
(lambda (vec)
(let ((v (vector-copy vec)))
(vector-insertsort! v)

)
Here is an example of how these sorting procedures work:

[1] (define numlist (list 60 50 40 30 20 10))
[2] (insertsort numlist)

(10 20 30 40 50 60)

[3] numlist

(60 50 40 30 20 10)

[4] (define numvec (vector 60 50 40 30 20 10))
[5] (vector-insertsort numvec)

#(10 20 30 40 50 60)

[6] numvec

#(60 50 40 30 20 10)

[7] (vector-insertsort! numvec)

[8] numvec

#(10 20 30 40 50 60)

We next perform an operation count on insertsort to study its efficiency
in sorting a list of length n. The procedure insert successively inserts the
kth number into the already sorted list of numbers with indices from k + 1
to n — 1. The process starts with k equal to n — 2 and decreases k by 1 after
each insertion. When the sorted list to the right of the kth number has m
members, inserting the kth number in the correct place can require up to m
comparisons between the kth number and the numbers in the sorted list. In
applying insertion sort to a list of n numbers, the first insertion is done on
a list of one number, the second insertion is done on a list of two numbers,
and so on, with the kth insertion done on a list of ¥ numbers. There will be
n — 1 such insertion loops, so the total number of comparisons needed will be
at most 14+ 2+ 3+ ---+(n—1) = n(n — 1)/2. This formula represents the
worst possible situation, in which one has to go to the end of the sorted list
in each case to put the inserted number in the correct place. This was the
case in the example above. But in general, we can say that on the average,
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we would have to search halfway through the list to find the correct place to
insert the number, so the expected number of comparisons in insertion sort
is n(n — 1)/4. Because the expected number of comparisons is O(n?), we call
this a method of order n? or simply a quadratic method. If the list is already
sorted, the first comparison in each insertion determines the correct place, so
for a list of n correctly sorted numbers, only n comparisons are required.

10.2.2 Mergesort

The insertion sort discussed in the previous section is a quadratic method
requiring on the order of n? comparisons to sort a list or vector of n elements.
We have seen that on the average it takes about 2,500 comparisons to sort a
list of 100 items. There are several methods of order nlog, n that reduce this
number considerably, so that a list of 100 items can be sorted with fewer than
700 instead of the approximately 2,500 comparisons of the previous method.
For a list of 1,000 numbers, insertion sort takes approximately 250,000 com-
parisons, while the nlog, n method takes about 10,000 comparisons. This
is a substantial improvement, and we now look at one such method, called
natural mergesort. In Program 4.3, we defined the procedure merge, which
takes two sorted lists and merges them into a single sorted list. The nat-
mergesort procedure takes advantage of whatever order already exists in the
list by grouping the original list into a list of sublists, each sublist consisting of
those elements that are already correctly ordered. For example, if the original
listis (2 3 4 1 2 3 2 1), the first step is to insert parentheses to group the
members into the four sublists ((2 3 4) (1 2 3) (2) (1)). Then each of
the successive pairs of sublists is merged to give half as many sublists, each of
which is still correctly ordered. In our example, the next step produces ((1
2 2 3 3 4) (1 2)). This process of merging successive pairs of sublists is
continued until there is only one correctly ordered list, at which point the sort
is completed. In our example, the next merge operation yields ((1 1 2 2 2
3 3 4)), and the car of this list is the desired sorted list.

In the grouping phase of our sorting procedure, we made the sublists as
large as possible so that each sublist is sorted. This grouping method is what
adds the adjective natural to the name mergesort. Another grouping method,
which leads to the procedure called mergesort without the adjective natural
is the following. We group the elements of our original list so that there is one
element in each sublist. Thus in the example above, our initial grouping yields
((2) (3) (4) (1) (2) (3) (2) (1)). Since each sublist of one element is
sorted, we can merge successive pairs of sublists to get ((2 3) (1 4) (2 3)
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Program 10.7 make-groups

(define make-groups
(lambda (1s)
(cond

((null? 1s) ()

((null? (cdr 1s)) (list 1s))

(else (let ((a (car 1s))
(gps (make-groups (cdr 1s))))

(if (< (cadr 1s) a)

(cons (1list a) gps)
(cons (cons a (car gps)) (cdr gps))))))))

(1 2)). Then successive sorted lists are merged to give ((1 2 3 4) (1 2 2
3)) and then ((1 1 2 2 2 3 3 4)). The development of this version of the
mergesort procedure is left as an exercise.
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