
Scheme and the Art

^of Programming

George Springer and

Daniel P. Friedman

'^d

Digitized by the Internet Archive

in 2012

http://archive.org/details/schemeartofproOOincs

/'

Scheme
and
The Art of Programming

George Springer

Daniel P. Friedman

Foreword by Guy L. Steele Jr.

Scheme
and
The Art of Programming

The MIT Press

Cambridge, Massachusetts London, England

McGraw-Hill Book Company
New York St. Louis San Francisco Montreal Toronto

Second Printing, 1990

® 1989 The Massachusetts Institute of Technology

All rights reserved. No part of this book may be reprodxiced in any form

by any electronic or mechanical means (including photocopying, recording,

or information storage and retrieval) without permission in writing from the

publisher.

This book was printed and botmd in the United States of America

Library of Congress Cataloging-in-Publication Data

Springer, George, 1924-

Scheme and the art of programming / George Springer. Daniel P.

Friedman.

p. cm. — (The AffTT electrical engineering and computer

science series)

Licludes bibliogriq>hical references.

ISBN 0-262-19288-8 (MIT Press) ISBN 0-07-060522-X (McGraw-Hill)

1. Electronic digital computers—Programming. 2. Object-oriented

programming. I. Friedman, Daniel P. E. Title. HI. Series.

QA76.6.S686 1990

005.1—dc20 89-12949

CIP

To our families and our students.

Contents

Foreword xiii

Preface xix

Acknowledgments xxiii

Part 1 Data

Chapter 1 Data and Operators 3

1.1 Introduction 3

1.2 The Computer 6

1.3 Numbers and Symbols 6

1.4 Constructing Lists 14

1.5 Taking Lists Apart 19

Chapter 2 Procedures and Recursion 31

2.1 Overview 31

2.2 Procedures 31

2.3 Conditional Expressions 40

2.4 Recursion ^5

2.5 Tracing and Debugging 57

Chapter 3 Data Abstraction and Numbers 13

3.1 Overview 13

3.2 Operations on Numbers 13

3.3 Exact Arithmetic and Data Abstraction SJt

Chapter 4 Data Driven Recursion 95

4.1 Overview 95

4.2 Flat Recursion 95

4.3 Deep Recursion 101

4.4 Tree Representation of Lists 108

4.5 Numerical Recursion and Iteration 115

4.6 Analyzing the Fibonacci Algorithm 120

Chapter 5 Locally Defined Procedures 129

5.1 Overview 129

5.2 Let and Letrec 129

5.3 Symbolic Manipulation of Polynomials H2

5.4 Binary Numbers 155

Chapter 6 Interactive Programming 163

6.1 Overview 163

6.2 Strings 163

6.3 Implicit begin 166

6.4 Input and Output 168

6.5 Two Famous Problems 118

Part 2 Procedures as Values 193

Chapter 7 Abstracting Procedures 195

7.1 Overview 195

7.2 Procedures as Arguments and Values 195

viii Contents

7.3 Currying 210

7.4 Procedural Abstraction of Flat Recursion 218

7.5 Procedural Abstraction of Deep Recursion 223

Chapter 8 Sets and Relations 231

8.1 Overview 231

8.2 Quantifiers 231

8.3 Sets 236

8.4 Representing Sets 249

8.5 Ordered Pairs, Functions and Relations 255

Part 3 Managing State 265

Chapter 9 Using Vectors 267

9.1 Overview 267

9.2 Vectors 267

9.3 Representing Vectors 278

9.4 Matrices 290

Chapter 10 Sorting and Searching 303

10.1 Overview 303

10.2 Sorting 303

10.3 Searching 329

10.4 Relational Calculus 332

Chapter 11 Mutation 341

11.1 Overview 341

11.2 Assignment and State 34

1

11.3 Box-and-Pointer Representation of Cons Cells 360

Chapter 12 Object-Oriented Programming 383

Contents ix

12.1 Overview 383

12.2 Boxes, Counters, Accumulators, and Gauges 383

12.3 Stacks 396

12.4 Queues 399

12.5 Circular Lists 403

12.6 Buckets and Hash Tables 409

Chapter 13 Simulation: Objects in Action 425

13.1 Overview 425

13.2 Randomness 4^^

13.3 The Gas Station Simulation 4^0

Part 4 Extending the Language ^^7

Chapter 14 Declaring Special Forms 449

14.1 Overview 44^

14.2 Declaring a Simple Special Form 4^0

14.3 Macros 454

Chapter 15 Using Streams 475

15.1 Overview ^75

15.2 Delayed Lists 475

15.3 Streams 482

15.4 Using Character Data ^P5

15.5 Files 500

Part 5 Control 513

Chapter 16 Introduction to Continuations 515

Contents

16.1 Overview 515

16.2 Contexts 516

16.3 Escape Procedures 523

16.4 Continuations from Contexts and Escape Procedures 527

16.5 Experimenting with call/cc 530

16.6 Defining escaper 538

16.7 Escaping from Infinite Loops 541

16.8 Escaping from Flat Recursions 544

16.9 Escaping from Deep Recursions 546

Chapter 17 Using Continuations 551

17.1 Overview 551

17.2 Review of call/cc 551

17.3 Making Loops with One Continuation 553

17A Experimenting with Multiple Continuations 557

17.5 Escaping from and Returning to Deep Recursions 559

17.6 Coroutines: Continuations in Action 567

17.7 Grune's Problem 57i

17.8 Final Thoughts 575

Appendices 579

Al The ASCII Character Set 579

A 1.1 The ASCII Table 579

A 1.2 Abbreviations for Control Characters 580

A1.3 How to Use the ASCII Table 580

References

Index 583

581

Contents xt

Foreword

I'm not going to spend much space talking about how great this book is, or

how much I enjoyed reading the manuscript. Dan and George are good friends

of mine, and they asked me to talk about Scheme. The book is about Scheme

and about important ideas in programming, and they wanted a foreword to

match. So I'm going to tell you what I think about Scheme.

Small is beautiful.

Small is powerful.

Small is easy to understand.

I like the Scheme programming language because it is small. It packs a

large number of ideas into a small number of features.

How small is it?

It is the business of programming language standards committees to set

on paper careful, accurate descriptions of programming languages. It is a

difficult process; a standard must be both complete and concise. While not

all committees achieve the same level of detail or brevity, nevertheless I think

we may usefully compare the approximate number of pages in the defining

standard or draft standard for several programming languages:

Common Lisp 1000 or more

COBOL 810

ATLAS 790

Fortran 77 430

PL/I 420

BASIC 360

ADA 340

Fortran 8x 300

C 220

Pascal 120

DIBOL '90

Scheme ~50

Curious, is it not, that the spectrum should be bracketed—or perhaps I

should say parenthesized—by two dialects of Lisp?

Far be it from me to suggest that size of a language description should be

the primary measure of a language's merit, whether one thinks that larger

or smaller is better. The uncertainty of this measure aside—thanks purely to

typesetting issues the figures shown above may be off by a factor of two from a

fair comparison—there is more to a language than the size of its library or the

number of syntactic forms. One must inquire what the features accomplish

for the user, how completely or how redundantly they cover the application

space, and how smoothly they interact.

Carpentry is one of my hobbies. I make wooden toys—doll houses and

trucks and blocks and jigsaw puzzles—for my children, and I rebuild the back

stairs when necessary. My shop is not particularly complete, but it contains

five hammers, six saws, thirty screwdrivers (one of them electric, with forty

interchangeable tips), and hundreds of drill bits. Each has a specific purpose,

and for precision work most cannot be replaced by any combination of the

others. (On the other hand, I have to admit that if I break a bit I can usually

come near enough in a pinch with the next closest size.) In some cases the

business ends of several tools are the same, but they have different handles.

I have a set of screwdrivers with wooden handles that I favor for long tasks,

because they are less likely to cause blisters; another set with more deeply

grooved plastic handles affords a tighter grip for greater torque.

Let me tell you, it is ajoy to stand in the middle of a well-equipped shop and,

xtv Foreword

when a particular task comes to hand, to reach out to the shelf or pegboard

and grab precisely the tool needed for the job. That is what Common Lisp,

or COBOL, or Fortran is like. But it takes years of experience to appreciate

the fine distinctions.

I also carry a Swiss army knife, the Victorinox "Craftsman" model. It is a

carpenter's shop in miniature. It has only one or two of each thing: two knives

(large and small), two flat screwdrivers (large and small) and one Phillips

screwdriver, a file, a saw, an excellent pair of scissors, a ruler (3 in/7.5 cm),

an awl, bottle opener, can opener, tweezers, and of course the traditional

plastic toothpick. It weighs five ounces (142 gm).

Now, I wouldn't want to rebuild my back stairs using only a Swiss army

knife. But let me tell you, it is a joy to wander about in my life feeling

virtually unburdened and yet, when some minor repair task comes to hand,

to reach into my pocket and have such a variety of tools at my disposal. (The

saw is only three inches long, but extremely sharp. I have used it to modify

office furniture to accommodate Ethernet cables.) And my pocket tool set is

perfectly adequate for illustrating the essence of saw-ness or screwdriver-ness

to the interested novice, such as my six-year-old.

The original Scheme, which Gerald Jay Sussman and I defined—or rather,

it seemed to me, discovered—in 1975, was a Swiss army knife. Hewing close

to the spirit of Alonzo Church's lambda calculus, it had just one of anything

if it had one at all.

The most important concept in all of computer science is abstraction. Com-

puter science deals with information and with complexity. We make complex-

ity manageable by judiciously reducing it when and where possible.

I regret that I cannot recall who remarked that computation is the art

of carefully throwing away information: given an overwhelming collection of

data, you reduce it to a useable result by discarding most of its content.

(However, I clearly recall my father telling me that life is the art of carefully

throwing away opportunities, an interesting coincidental parallel.)

Abstraction consists in treating something complex as if it were simpler,

throwing away detail. In the extreme case, one treats the complex quantity

as atomic, unanalyzed, primitive. The lambda calculus carries this to a pure,

unadulterated extreme. It provides exactly three operations, plus a principle

of startling generality. The operations are:

• Abstraction: give something a name.

• Reference: mention something by name.

• Synthesis: combine two things to make a complex.

Foreword xv

Naming is perhaps the most powerful abstracting notion we have, in any

language, for it cJlows any complex to be reduced for linguistic purposes to a

primitive atom.

The inverse of abstraction is synthesis: the building up of complexity from

lesser pieces. Industrial-strength programming languages provide dozens or

hundreds of synthesizing features, such as arithmetic operations and control

structures, that construct entities from varying numbers and kinds of others.

Part of the ingenuity of the lambda calculus is to provide a single means of

synthesis, one that combines the smallest useful number of pieces: two.

What are the things that maybe combined*^ Again, programming languages

that are truly macho (or macha. if you prefer) provide many choices: numbers

of various kinds, characters, strings, arrays, functions, records, pointers. You

cein spend a semester or two just studying data structures. But in the lambda

calculus there is only one kind of thing that may be combined. Here lies the

rest of the ingenuity, the startling generalizing principle: the objects to be

combined are instances of the abstraction mechanism itself! Abstraction is

all there is to talk about: it is both the object and the means of discussion.

Synthesis in the lambda calculus consists solely of taking a possibly already

compound abstraction mechanism and subjecting it to abstraction, giving

it a name so that it may be discussed later. That's it. But because the

named thing can then be mentioned more than once, the lambda calculus is

as powerful as any other means of computation.

For everyday purposes the lambda calculus is a bit spare. One can write the

Bible, or all the works of Shakespeare. Tolstoy. Hemingway, or Ann Landers

using only a few dozen letters and punctuation marks, but only a few of

us—regarded as rather queer ducks by the rest of society—wish to sit around

all day discussing letter forms, spelling, and rules of punctuation. More to

the pomt, these great works are not best understood at the level of spelling

and punctuation. We form words, we publish dictionaries. From words we

establish cultures of shared stock phrases, cliches, proverbs, and fairy tales

—

complex concepts that we can then treat as primitive for the purposes of

everyday discourse.

The original Scheme consisted of little more than the lambda calculus, a

single means of producing side effects, some redundant control structures for

convenience, and all the data structures and operations of Maclisp that one

cared to use, such as numbers and lists, though we regarded these as secondary.

Scheme has grown a bit in the last fourteen years, but in a very conservative

and judicious manner. I might add that I have had very little to do with the

process. I have applied most of my efforts to Common Lisp, though cheering

clIso for the good people who have been remolding Scheme, so I am in little

rvi Foreword

danger of straining my shoulder when praising the results of their efforts.

Scheme today is more than a Swiss army knife, but rather less than a full

workshop with hundreds or thousands of tools. I would call it a toolbox, a

large one, filled with a careful selection of tools that will cover most jobs well,

and a few tools whose primary purpose is to make it easy to make more tools.

It's heavy-duty, but portable. It is easily comprehended, but every tool in it

is "real," not a three-inch miniature.

Scheme is perfect for the classroom. It is small enough that the student

can grasp it all within a semester, but large enough that it addresses the most

important topics in programming language design. An important exception

is static type checking. Scheme requires no type declarations, relying instead

on run-time type discrimination. In this, Scheme certainly points up an area

on which there is little agreement and in which it may be usefully contrasted

with C, Fortran, or Pascal. Nearly everyone agrees that "+" should stand for

addition. But type checking—hoo, boy!

Scheme focuses particular attention on the concepts of abstraction and gen-

erality to an extreme unmatched by any other programming language on my
list. All objects in the language may be named, by a single uniform naming

mechanism. All objects are first class.

In Common Lisp, why are there many namespaces (variables, functions, go

tags, block names, catch tags, . .

.

)?

In Pascal, why can't you return a procedure as the value of another proce-

dure?

In Fortran 77, why can't a procedure return an array?

In C, why can't a procedure definition occur within another procedure?

Besides being useful in its own right, Scheme provides a simple, sound, and

complete design with which to compare other languages and thus shed light

on these questions.

Guy L. Steele Jr.

Cambridge, Massachusetts

July 1989

Foreword xvii

Preface

Programming should be from the beginning a creative and literate endeavor.

Our goal is to expose the reader to the exhilaration of reading and creating

beautiful programs. These programs should be concise in their expression,

general in their application, and easily understood. These goals are achieved

through creative use of abstraction techniques that capture recurrent patterns

of computation and allow them to be simply used.

We believe the programming language Scheme is superior for use in an in-

troductory programming course because it is both simple and powerful. It

is simple enough that program design can be learned with a minimum of

distraction by syntactic rules that govern the form programs must take. In

a typical introductory course the complex syntax of programming languages

such as C or Pascal must be mastered at the same time that elementary pro-

gram design techniques are being learned. Invariably syntactic concerns take

precedence over design issues, for nothing works if there are syntactic errors in

a program. As a result, students often get the impression that programming,

and computer science in general, is primarily concerned with memorizing de-

tails and unimaginatively adhering to intricate rules. Subsequent exposure

to assembly language programming reinforces this view. Hopefully at a later

time, typically in a software engineering or algorithm design course, program-

ming will be experienced as a creative activity that rewards the elegant use

of abstraction techniques and a good sense of style. But an unfortunate first

impression of programming may persist, or it may even discourage further

study of computer science altogether.

Using Scheme, we are able to focus primarily on issues of program design.

This makes programming fun, and gives a more accurate impression of where

the joys and challenges of programming lie. We also believe early attention

to design issues helps to develop a program design aesthetic. This in turn

provides a foundation for superior work and more creative fulfillment through

the student's career as a programmer. There should be plenty of time in

subsequent courses to learn the syntactic details of other languages, at which

time these details will be easier to master.

Scheme's simplicity does not come at the expense of expressive power. In-

deed, Scheme may be used to express a broader range of programming styles

than its more complex brethren. The most popular styles are imperative,

functional, and object-oriented. Scheme is flexible enough to support pro-

gramming in all of these styles. Traditional programming languages support

the imperative style, which makes frequent use of assignment statements to

change the state of the computation.

In the last decade the functional style has gained prominence. It is char-

acterized by the absence of assignment statements, and is closer in spirit to

mathematics. In many cases the functional style yields more elegant and

comprehensible programs. We feel it is important for students to learn basic

functional programming techniques, such as recursion and functional compo-

sition, so that the benefits of this style may be enjoyed when solving prob-

lems for which it is well suited. Traditional programming languages impose

restrictions that seriously restrict the use of functional programming tech-

niques. Most functional programming languages, on the other hand, do not

support assignment. This prohibits the use of the imperative programming

style when it is most appropriate. Because Scheme supports both functional

and imperative programming styles, we are able to teach both along with an

understanding of when each is appropriate.

A recent advance in programming languages has been appreciation for the

object-oriented style of programming. This style is particularly suitable for

simulating objects in the "real world" and for structuring large systems in

ways that allow recurrent patterns of computation to be shared by similar ob-

jects. Using Scheme, we are able to illustrate the principles of object-oriented

programming in terms of more basic functional and imperative mechanisms.

This book is composed of five parts. The first two are concerned with

functional programming. In the first part, both recursive and iterative pro-

gramming techniques are developed. The second part deals with procedures

whose values are procedures—so called higher-order procedures. The third

part is about imperative programming. In the last two chapters of the third

part, we take advantage of assignment and higher order procedures to de-

velop an approach to object-oriented programming. In the fourth part, we

show how we can extend the syntax of Scheme by adding new forms of ex-

pression. We use this ability to support unbounded objects, called streams.

In the fifth part, we demonstrate a unique and powerful feature of Scheme:

first class escape procedures, also called conUnuaitons. These make it possible

to control program execution in ways that are difficult or impossible in other

Preface

languages.

The exercises are an integral part of the presentation, making up one-fifth

of this book. Exercises come in two varieties. As in most textbooks, there are

exercises that reinforce the reader's understanding of the text. However, we

have also included optional exercises that present extensions of the material

in the text. These exercises are grouped in sequences and are designated as

such before the first exercise in the sequence. They should be done in order,

since each relies on the results of previous ones. A deeper understanding will

be achieved by doing these exercises.

The dependency relationships between chapters is given in the following

table. The underlined number 5 means that Chapter 5 has some information

that is required but a full understanding of the material in Chapter 5 is not

necessary. The italic number 5 means that some of the procedures defined in

Chapter 5 are used, but it is enough to know what they do rather than how

they are defined. The symbol <— may be read "depends on."

2 <—

3 ^ 1 2

4 ^ I 2 3

5 ^ I 2 3 4

6 ^ I 2 3 4 5

7 ^ J' 2 3 4 5

8 ^ J' 2 3 4 5 6 7

9 ^ j< 2 3 4 5 6 7

10 ^ J' 2 3 4 5 6 7 8 9

11 ^ J' 2 3 4 5 6 7 9

12 ^ J' 2 3 4 5 6 7 9 11

13 ^ J' 2 3 4 5 6 7 11 12

14 ^ J' 2 3 4 5 6 7 11

15 ^ J' 2 3 4 5 6 7 14

16 ^ J' 2 3 4 5 6 7 11

17 ^ J' 2 3 4 5 6 7 11 16

This book requires no previous knowledge of programming and high school

algebra is its only mathematical prerequisite. The material has been class-

tested for three years. We do not intend that the entire book be taught in

any single semester. The first eleven chapters represent a one semester course.

From the dependency table it follows that getting through Chapter 7 with or

without Chapter 6 is essential. After that point the instructor has many
choices for finishing the course. One sequence that represents an ambitious

Preface xxt

course for those on a semester system is to skip Chapter 6, and include Chap-

ters 9, 11, 12, and 15. For those on a quarter system, we recommend as a

similarly ambitious course dropping Chapters 9 and 15, and the last section

of Chapter 12. This book may be used in a two semester sequence by cover-

ing the first eight chapters (Parts 1 and 2) in the first semester and finishing

the book in the second semester. The book can be used in a self-teaching

manner as long as the reader has access to Scheme. The book can also be

used by experienced programmers who want an introduction to Scheme and

functional programming. For them, we recommend cursory reading of the

first five chapters, followed by Chapters 7, 12, and 14-17.

You are about to embark on a most exciting and rewarding experience.

Programming, especially in Scheme, is fun!

Tigger on Scheme

The wonderful thing about Scheme is:

Scheme is a wonderful thing.

Complex procedural ideas

Are ex-pressed via simple strings.

Its clear semantics, and lack of pedantics,

Help m,ake program,s run, run, RUN!
But the most wonderful thing about Scheme is:

Programming in it is fun,

Programming in it is FUN!

John Ramsdell, based on Walt Disney's

Winnie the Pooh and Tigger Too,

Random House, New York, 1975,

based on books written by A. A. Milne.

ixtt Preface

Acknowledgments

Many people contributed in various ways to the completion of this book. We
want to thank those who generously contributed ideas for organization, con-

tent, and exercises. We are grateful to our friends who served as consultants

when we needed advice. Our thanks also go to the many people who read the

manuscript in its various stages of development and offered constructive sug-

gestions. We are also indebted to those who worked the exercises in the text

to check for clarity and correctness. Our appreciation is likewise extended to

those teachers who taught from our manuscript and to their students who gave

us helpful criticisms. The input from each class testing improved the book

for the next class that used it. We also want to express our deep gratitude to

those who offered us encouragement. So we thank

Hal Abelson, David Hartley, Andrea Berger, Bhaskar Bose, Jose Blakeley,

David Boyer, Carl Bruggeman, Tom Butler, Venkatesh Choppella, Will

dinger, Olivier Danvy, Bruce Duba, Kent Dybvig, Sue Dybvig, Matthias

Felleisen, Bob Filman, Elena Fraboschi, John Franco, Mary Friedman,

Dennis Gannon, Nancy Garrett, John Gateley, Mayer Goldberg, Peter

Harlan, Anne Hartheimer, Brian Harvey, Chris Haynes, Caleb Hess, Bob

Hieb, Stan Jefferson, Steve Johnson, Rhys Price Jones, Simon Kaplan,

Roger Kirchner, Eugene Kohlbecker, Julia Lawall, Shinnder Lee, Kevin

Likes, Jim Marshall, Devin McAuley, Beverly Miller, Jim Miller, John

Nienart, Eric Ost, Donald Oxley, Michael Pearlman, Frank Prosser, John

Ramsdell, Ed Robertson, Richard Salter, Bruce Shei, John Simmons,

Annemarie Springer, Todd Starr, Guy Steele, Gerry Sussman, Dirk Van

Gucht, Mitch Wand, Mike White, John Winnie, and David Wise.

Our colleagues in the Computer Science Department at Indiana University

also have our heartfelt appreciation. They provided a congenial atmosphere

for research and writing, which made it a pleasure to be in Bloomington. We
feel fortunate to belong to a department which provided an ideal environment

for the development and use of Scheme and the writing of this book. We

also want to thank the National Science Foundation for support of research

that led to ideas used in this book. We want to acknowledge our appreciation

to those in the Scheme Community who have worked hard on informal and

formal standards for the language from its inception in 1975. Our special

thanks go to the three vendors who made available to us their Scheme systems:

Chez Scheme, MacScheme@, and PC Scheme. We found these very helpful

in developing and testing our programs.

This book was set using the TgX typesetting system with much appreciated

macros provided by Amy Hendrickson. We finally want to express our grati-

tude to Terry Ehling at the MIT Press and David Shapiro at the McGraw-Hill

Book Co. for their expert guidance through the publication maze. It was a

pleasure working with them.

xxiv Acknowledgments

Part 1

Data

Data are either individual units of information or collections of data. Before

the book really begins in earnest, we are introduced to a recursive charac-

terization of data. In Chapter 1, we study the way Scheme treats symbolic,

numerical, and logical data.

In Chapter 2, we build procedures for processing symbolic data. We can

think of the act of dining out as a procedure. We generally enter a restaurant,

read a menu, order some food, eat that food, pay a bill, and exit. We do

not think about the procedure for a particular restaurant, but we abstract

over all restaurants. A primary goal of Part 1 is to present you with enough

examples of how to abstract over data so that your procedures will be general.

While developing your intuition for handling symbolic data, we introduce

recursive procedures. Recursion is at the heart of Part 1. Not only are the

data described recursively, but also the procedures, which process the data,

are recursive.

In Chapter 3, we study numbers and operations over numbers. We intro-

duce iterative processes as a special case of recursive processes. We conclude

this chapter with the development of a rational number (fraction) abstract

data type. Much of the theme of this book is the understanding of program-

ming with abstract types and this is the first such example.

In Chapter 4, we continue building your intuition about recursion and it-

eration. Here we combine the various data types into different structures and

characterize the procedures that process them.

We introduce local variables in Chapter 5. In order to package privately

computational objects that work together, we introduce lexical scope.

Finally, in Chapter 6, we show some of the advantages of displaying infor-

mation and entering data while a computation proceeds.

Data

Data and Operators

. . .it is not the thing done or made which is beautiful, but the doing. If we

appreciate the thing, it is because we relive the heady freedom of making it.

Beauty is the by-product of interest and pleasure in the choice of action.

Jacob Bronowski,

The Visionary Eye

Computing is an art form. Some programs are elegant, som,e are exquisite,

some are sparkling. My claim, is that it is possible to write grand programs,

noble programs, truly magnificent program,s.

Donald E. Knuth,

from an article by William Marling

in Case Alumnus

1.1 Introduction

Computer programming is many faceted.

It is engineering. Computer programs must be carefully designed. They

should be reliable and inexpensive to maintain. Like any other engineer-

ing discipline, computer programming has special challenges. The foremost

challenge is managing complexity. As programs grow larger, the number of

possible interactions between their pieces tends to grow much faster than the

volume of code. Abstraction is the primary technique for managing complex-

ity. An abstraction hides unnecessary detail and allows recurring patterns to

be expressed concisely. In this book we emphasize several powerful techniques

for building abstractions.

It is a craft. A program made with craftsmanship is both more serviceable

and more satisfying. Programming requires proficiency born of practice (hence

the many exercises in this book!). It requires great dexterity, though of a

mental rather than a manual sort. As woodworkers enjoy working with their

hands and fine tools, so programmers enjoy exercising their minds and working

with a fine programming language.

It is an art. Fine programs are the result of more than routine engineering.

They require a refined intuition, based on a sense of style and aesthetics that

is both personal and practical. As an artistic medium, programming is highly

plastic, unconstrained by physical reality. In programming, perhaps more

than in other arts, less is more. Simplicity is nowhere more practical than in

programming, where the bane is complexity. When just the right abstraction

for a problem has been found, it may be a thing of beauty. We hope you take

pleasure in the programs of this book.

It is not a science, but it is based on one: computer science. Though

our primary concern in this book is with the techniques of programming, we

will have occasion to introduce a number of important scientific results. We
hope you find the language and style of this book to be vehicles for deeper

understanding and appreciation throughout your study of computer science.

It is a literary endeavor. Of course, programs must be understood by

computers, which requires mastery of a programming language. But that

is not enough! Programs must be analyzed to understand their behavior,

and most programs must be modified periodically to accommodate changing

needs. Thus it is essential that programs be intelligible by humans as well as

by computers. The challenge is to convey the necessary details without losing

sight of the overall structure. This in turn requires creative use of abstrac-

tions and a good sense of style—habits we attempt to instill by example in

this book.

But this book is ultimately about more than the craft of engineering artistic

and literate programs. Programming teaches an algorithmic (step by well-

specified step) approach to problem solving, which in turn encourages an

algorithmic approach to gaining knowledge. This view of the world is pro-

viding numerous fresh insights in fields as diverse as mathematics, biology,

and sociology, as well as providing tools that assist and extend our minds in

almost every field of study. Thus programming ability, like mathematical and

writing ability, is an asset of universal value.

Programming ability and literary ability have another thing in common.

An essay or short story can be correct grammatically and can convey the

information that the author intended and still not be a literary work of art.

Computer programming has its own aesthetic, and good programmers strive to

produce programs that evoke appreciative responses in their readers. Writing

such programs requires both inspiration and the application of craftsmanship

that employs a thorough command of the programming language and the

metaphors it can support.

There are many languages from which to choose when designing a course

to teach the principles of programming. Scheme was selected because it is

an expressive language that provides powerful abstraction mechanisms for ex-

pressing the solutions to computational problems. This facilitates the writing

of clear and satisfying programs. It is especially good as a vehicle for teaching

Data and Operators

programming because the student is not required to learn unnecessary rules

and prohibitions before being able to write meaningful programs.

The programming language LISP (which stands for List Processing) was

developed around 1960 by John McCarthy. (See McCarthy, 1960.) Scheme

was derived from LISP by Gerald Jay Sussman and Guy Lewis Steele Jr.

around 1975. (See Sussman and Steele, 1975.) A number of people have been

involved in the evolution of Scheme since its inception and these developers

of the language have published a series of reports describing the current state

of the language. For the first such report, see Steele and Sussman, 1978. The

third revised report appeared in 1986. (See Rees and dinger, 1986.) The

fourth revision is expected in 1989. There is also a working group preparing

for an IEEE Standard for Scheme. A number of books about Scheme have

appeared since then, including:

• Structure and Interpretation of Computer Programs by Abelson and Suss-

man with Sussman, MIT Press and McGraw-Hill Book Company, 1985.

• The Little LISPer by Friedman and Felleisen, MIT Press, 1987 and SRA
Pergamon, 1989.

• The Scheme Programming Language, by Dybvig, Prentice-Hall, 1987.

• Programming in Scheme by Eisenberg, Scientific Press, 1988.

• An Introduction to Scheme by Smith, Prentice-Hall, 1988.

The following two publications are manuals for Scheme that accompany the

implementations of Scheme on microcomputers:

• Afac^cAeme-froo/smiM^'^, Semantic Microsystems, 1987.

• PC Scheme, by Texas Instruments, Scientific Press, 1988.

We encourage you to read them because each presents its own programming

philosophy. We are all using the same language, but we have somewhat dif-

ferent stories to tell.

As you read these pages, remember that you should care how elegant your

programs are. The task that confronts you is not only to learn a programming

language but to learn to think as a computer scientist and develop an aesthetic

about computer programs. Enjoy this as an opportunity to understand the

creative process better. Solve problems not only for their solutions but also

for an understanding of how the solutions were obtained.

1.2 The Computer

1.2 The Computer

We begin by briefly describing the components of a computer. At this stage,

it suffices to think of the computer as being composed of four components:

1. The input deuce, in this case the keyboard with the standard typewriter

keys and some additional ones. Each key can perform several functions.

On both the typewriter and the computer keyboard, we choose between

lower and upper case by depressing the Shift key. On the computer, we

can also hold down the Control (CTRL) key while pressing another key to

get another behavior, and on some computers, we can similarly hold down

the Alternate (ALT) key while pressing another key to get yet another

behavior. Finally, pressing and releasing the Escape (ESC) key before

pressing another key gives still another behavior. When a key is pressed,

the result is usually shown on the screen.

2. The processor, in which the computing is done. This contains the internal

memory of the computer, the arithmetic logic unit, and the registers where

the computations take place.

3. The output devices: the video monitor on which the interactive computing

is viewed, which we refer to as the screen, and the printer where printed

copy of the output is produced.

4. The external storage device. In microcomputers, this often consists of two

floppy disk drives. The user places diskettes into these drives and either

reads files from a diskette into the computer's internal memory or writes

from the internal memory to a file on a diskette. Many microcomputers

and all larger computers have an internal disk on which files can be stored

and accessed.

Implementations of Scheme are available on a wide variety of computers

ranging from larger mainframe computers that support many users to indi-

vidual workstations or personal computers.

1.3 Numbers and Symbols

In order to make a computer do something for us. we must communicate with

the computer in a language that it "understands." The English language,

which we are using for our communication m this paragraph, makes use of

words and certain grammatical rules that enable us to combine words into

Data and Operators

sentences. The words themselves consist of certain strings of characters, that

is, characters written one after the other with no blank spaces between them.

The computer languages also have their analogs of words, which we call sym-

bols. The characters used to make up the symbols are the same characters on

a standard typewriter keyboard, with a few additions and deletions. We shall

generally use the letters of the alphabet, the digits from through 9, and some

of the other characters on the keyboard. A few of the other characters on the

keyboard have special meaning, just as certain characters like the period and

comma have special meaning in English. In Scheme, the characters

()[]{};."''# \

have special meaning and cannot appear in symbols. Similarly, the characters

+ -
.

are used in numbers and may occur anywhere in a symbol except as the first

character. The following list contains examples of symbols in Scheme:

abed r cdr p2q4 bugs? one-two *nowft

Numbers are not considered to be symbols in Scheme; they form a separate

category. Thus, as you would expect, 10, -753, and 31 . 5 are Scheme numbers.

In the English language, not every combination of letters gives us a meaningful

word. We keep words that are meaningful in our minds or in a dictionary,

and when we see or hear a word, we retrieve its meaning in order to use it.

In much the same way, symbols may be assigned some meaning in Scheme. A
symbol used to represent some value is called a variable. The computer must

determine the meaning of each variable or number it is given. It recognizes

that the numbers have their usual meaning. Scheme also keeps the meaning

of certain variables that have been assigned values, and when it is given a

symbol, it checks to see if it is one of those that has been kept. If so, it can

use that meaning. Otherwise it tells us that the symbol has not yet been

given a meaning.

To carry the analogy with the English language a step further, words are

put together in sentences to express the thoughts you want to convey. The

Scheme analog of a sentence is an expression. An expression may consist of

a single symbol or number (or certain other items to be defined later), or a

list, which is defined to consist of a left parenthesis, followed by expressions

separated by blank spaces, and ending with a right parenthesis. We first

1.3 Numbers and Symbols 7

discuss the use of expressions involving symbols or numbers, and return to

discussing other types of data in Section 1.4.

When you turn on the computer and call up Scheme, you usually get a

message telling what implementation of Scheme you are using. Then a prompt

appears on the screen, prompting you to enter something. The nature of the

prompt depends on the implementation you are using. The prompt we use

in this book to simulate the output on the screen is a pair of square brackets

surrounding a number. Thus the first prompt will be

[1]

If you type a number after the prompt and then press the <RETURN> key

(sometimes referred to as the <ENTER> key),

[1] 7 <RETURN>

Scheme recognizes that the meaning of the character that you typed is the

number 7. We say that the value of the character you typed is the number 7

or that what you type has been evaluated to give the number 7. Scheme then

writes the value of what you type at the beginning of the next line and moves

down one more line and prints the next prompt:

[1] 7 <RETURN>

7

[2]

Let us review what we have just seen. At the first prompt, you enter 7 and

press <RETURN>. In general, an expression (or a collection of such expressions)

you enter in response to the prompt and before pressing <RETURN> is called

a program. In this example. Scheme reads your program, evaluates it to the

number 7, prints the value 7 on the screen at the beginning of the next line,

and then prints the next prompt one line lower. Thus Scheme does three

things in succession: it reads, it evaluates, and it prints. We refer to this

sequence of events performed by Scheme as its read-eval-print loop. After

printing the prompt, Scheme waits for you to type the next program. In the

example, when you press <RETURN>, Scheme completes one cycle of the loop

and begins another.

What happens when a symbol is typed after the prompt? Suppose first that

you type the symbol ten and press <RETURN>. If Scheme has not previously

been given a meaning for the symbol ten, we say that ten has not been bound

to a value. In the evaluate phase of the read-eval-print loop, no value is found

Data and Operators

for ten, and a message is printed informing you that an error was maxie and

describing the nature of the error. For example,

[2] ten <RETURN>

Error: variable ten not bound.

(The actual message printed depends on the implementation of Scheme you

are using.) How then do we assign a meaning or value to a symbol? Suppose

we want to assign the value 10 to the symbol ten. For this purpose we use

a define expression. (A define expression is an example of a special form: a

form of expression identified by a special symbol called a keyword, which in

this case is define.) The define expression is entered after the next prompt

as follows:

[3] (define ten 10) <RETURN>

In this example, Scheme evaluates the third subexpression, which has the value

10, assigns that value to the symbol ten, and finally, in our implementation

of Scheme, prints the next prompt. Since the value returned by a define

expression is never used, that value is not prescribed in the specification of

the language. For convenience in writing this book, we opt to suppress the

value returned by a define expression.

Now let's see what happens when we enter the symbol ten:

[4] ten <RETURN>

10

This time, Scheme successfully evaluates the variable ten, so it prints the

value 10.

We have seen that a variable is a symbol to which a meaning (i.e., a value)

can be given. When a value is given to a variable, we say that the variable is

bound to that value. In our previous example, the symbol ten is a variable

bound to the value 10. In general, if var represents a variable and expr

represents an expression whose value we would like to bind or assign to var,

we accomplish the assignment by writing

(define var expr)

The define expression is made up of a keyword, a variable name var, and an

expression expr.

Now let's suppose that ten is bound to 10 and we want Scheme to print not

the value 10 but instead to print the symbol ten. We want to have some way

1.3 Numbers and Symbols

of telling Scheme not to evaluate ten but to print its literal value ten. The

mechanism that Scheme provides for doing this is called quoting the symbol.

We quote a symbol by enclosing in parentheses the word quote followed by

the symbol:

(quote symbol)

For example, you quote the symbol ten by writing (quote ten). If you type

(quote ten) and then <RETURN> in response to a Scheme prompt, you see

[5] (quote ten) <RETURN>

ten

From now on, we shall omit the <RETURN> notation. It is understood that

each line that we type must be followed by <RETURN>. We use the word enter

when we want to indicate that something is to be typed in response to the

Scheme prompt. The value that Scheme prints in response to what we enter is

said to be the value that the expression "evaluates to" or that is "returned."

For example, we could have said, "If the symbol ten is bound to 10, and you

enter (quote ten), then Scheme evaluates it to ten, while if you enter ten,

Scheme evaluates it to 10."

In all cases, whether a symbol is bound to some value or not, when a

quoted symbol is entered, the literal symbol is returned. Thus if we enter

(quote abc3). Scheme returns abc3. It is not necessary to quote numbers,

for the value of a number as an expression is the number itself.

[6] (quote abc3)

abc3

[7] (quote 12)

12

An object whose value is the same as the object itself is called a constant. At

this point, the only constants we have seen are numbers.

It is somewhat inconvenient to have to type so much each time we want to

quote a symbol, so an abbreviation for the quoting process is also available

in Scheme. In order to quote a symbol, we need only place an apostrophe

immediately before the symbol. Thus to quote the symbol ten, we simply

write 'ten. The apostrophe is referred to as "quote," and the expression

'ten is verbalized as "quote ten." Thus the responses to the prompts [6]

and [7] can also be made as follows:

10 Data and Operators

[6] 'abc3

abc3

[7] '12

12

We can also assign to a variable a value that is the literal value of a symbol.

For example, if we enter the following:^

[8] (define Robert 'Bob)

we bind the variable Robert to the symbol Bob. When we next enter Robert,

we get

[9] Robert

Bob

so that Scheme has evaluated Robert and returned the value Bob.

We have two types of data so far, numbers and symbols. How are they used?

The use of numbers should be no surprise, since we usually think of doing

arithmetic operations on numbers to get answers to problems. We shall take

a brief look at how we do arithmetic in Scheme in this section and then return

for a more complete look at using numbers in Chapter 3. To perform the

arithmetic operations on numbers, Scheme uses prefix notation; the arithmetic

operator is placed to the left of the numbers it operates on. The numbers on

which it operates are called the operands of the operator. Furthermore, the

operator and its operands are enclosed in a pair of parentheses. Thus to add

the two numbers 3 and 4, we enter (+3 4) and Scheme evaluates it and

returns the answer 7. On the computer screen it looks like this:

[10] (+ 3 4)

7

^ We are mixing lower and uppercase letters in ovir symbols and showing that Scheme

returns the same mix of lower and uppercase letters as their literal values. Thus, if we

enter 'Bob, Scheme retvims Bob. An implementation of Scheme that preserves the case of

letters is called case preserving, and in this book, we are assuming that the implementation

is case preserving. There are some implementations that are not case preserving, which

means that the case is changed to either all lowercase or all uppercase letters. Thus, in

some implementations, all letters are returned in lowercase, and when we enter ' Bob, Scheme

evaluates it to bob. Other implementations that are not case preserving return all uppercase

letters, so that if we enter 'Bob, Scheme evaluates it to BOB.

1.3 Numbers and Symbols 11

Multiplication is performed with the operator *, subtraction with — , and

division with /. How do we compute the arithmetical expression 3 x (12 — 5)?

In prefix notation, we place the multiplication operator * first followed by the

first number 3. The second operand to the operator * is the difference between

12 and 5, which itself is written as (- 12 5). Thus the whole arithmetic

expression is entered as

[11] (* 3 (- 12 5))

21

[12] (+ 2 (/ 30 15))

4

In general, Scheme uses this prefix notation whenever it applies any kind

of operator to its operands. We shall return to a more complete discussion

of numerical computations in Chapter 3. A number of experiments with

numerical operations are included in the exercises at the end of this section.

In summary, a symbol can be bound to a value using a special form that

begins with the keyword define. When a variable that has been bound to

a value is entered in response to a Scheme prompt, its value is returned. If

we want Scheme to return the literal value of the symbol instead of the value

to which it is bound, we quote the variable. The value of a quoted symbol is

just the literal value of the symbol.

It is possible to keep a record of the session you have in Scheme. The

particular mechanism for doing so depends on the implementation of Scheme

you are using. If you are using a version of Scheme that uses the windowing

capability of the computer, you may be able to send what is in the window

to a file. In some implementations, it is possible to run Scheme in an editor

and use the saving capability of the editor to preserve what you want from

the session in a file. Some versions offer a transcript facility that you turn

on at the beginning of the session and give it a filename, and then turn off

at the end of the session. The session is then preserved in the named file.

The manual for the Scheme you are using should identify the facility you have

available to save your Scheme sessions.

We strongly recommend that you try each of the things discussed in this

book at the computer to see how they work. Feel free to experiment with

variations on these ideas or anything else that occurs to you. You get a

much better feeling for computers and for Scheme if you "play around" at the

keyboard.

12 Data and Operators

Exercises

Exercise 1.1

Find out what method your implementation of Scheme has for recording your

Scheme session in a file. Bring up Scheme on the computer and record this

session in a file called "sessionl.rec." Enter each of the following to successive

prompts: 15, -200, 12345678901234, (quote alphabet -soup), 'alphabet-

soup, ' 'alphabet-soup. (Note: Experiment with entering even larger posi-

tive and negative whole numbers and decimals and see what is returned.)

Exercise 1.2

Assume that the following definitions have been made in the given order:

(define big-number 10500900)
(define small-number 0.00000025)

(define Cheshire 'cat)

(define number 1 big-number)
(define number2 'big-number)

What values are returned when the following are entered in response to the

prompt?

a. big-number b. small-number

c. 'big-niunber d. Cheshire

e. 'Cheshire f. number 1

g. number

2

h. ' number

1

Conduct the experiment on the computer in order to verify your answers.

Exercise 1.3

What is the result of entering each of the following expressions in response to

the Scheme prompt? Verify your answer by performing these experiments on

the computer.

a. (- 10 (- 8 (- 6 4)))

b. (/ 40 (* 5 20))

c. (/ 2 3)

d. (+ (* 0.1 20) (/ 4 -3))

Exercise I.4

Write the Scheme expressions that denote the same calculation as the following

arithmetic expressions. Verify your answers by conducting the appropriate

experiment on the computer.

1.3 Numbers and Symbols 13

a. (4x 7) -(13 + 5)

b. (3x(4 + (-5--3)))

c. (2.5^(5 X (1^10)))

d. 5 X ((537 X (98.3 + (375 - (2.5 x 153)))) + 255)

Exercise 1.5

If a, /?, and 7 are any three numbers, translate each of the following Scheme

expressions into the usual arithmetical expressions. For example:

(+ a (+ /9 7)) translates into a + (,3 + 7)

a. (+ a (- (+ /? 7) a))

b. (+ (* a /?) (* 7 /?))

c. (/ (- a /?) (- Q 7))

1.4 Constructing Lists

So far, we have seen two data types, symbols and numbers. Another important

data type in Scheme is lists. We all use lists in our daily lives—shopping lists,

laundry lists, address lists, menus, schedules, and so forth. In computing, it

is also convenient to keep information in lists and to be able to manipulate

that information. This section shows how to build lists and how to perform

simple operations on lists. In Scheme, a list is denoted by a collection of items

enclosed by parentheses. For example, (1 2 3 4) is a list containing the four

numbers 1, 2, 3, and 4. A special list that we make frequent use of is the

empty list, which contains no items. We denote the empty list by ().

Scheme provides a procedure to build lists one element at a time. This

procedure is called cons, a shortening of "constructor." We refer to cons as a

constructor of lists. We now look at how cons works. We shall first perform

a number of experiments and then describe its general behavior. Suppose we

want to build a list that contains only the number 1. We enter the following:

[1] (cons 1 '())

(1)

We see from this example that we enclosed three things in parentheses: the

variable cons, the number 1, and the empty list '(). The first entry tells us

1.^ Data and Operators

the name of the procedure we are applying, and the remaining two entries

tell what the procedure cons is operating on. The entries following the name

of the procedure are called the operands of the procedure. The values of

the operands are called the arguments of the procedure. In our case, the

first argument is the first item in the list we are constructing, and the second

argument is a list that contains the rest of the items in the list we are building.

Scheme first reads what we enter. In its evaluation phase, the operands are

evaluated, and the desired list is built. It then prints the list (1). (Note the

parallel between the application of cons and the application of the arithmetic

operations such as (+ 3 4). We again see that the operator is placed to the

left of the operands, using prefix notation.) Let us bind the variable Isl to

the list containing the number 1 by writing

[2] (define Isl (cons 1 '()))

[3] Isl

(1)

The define expression we entered at the prompt [2] binds the variable Isl

to the value obtained by evaluating the subexpression (cons 1 '()). That

subexpression evaluates to the list (1). Thus Isl is bound to the list (1).

Thus when the variable Isl is entered at the prompt [3], its value (1) is

returned.

We now create a list with 2 as its first element and the elements of Isl as

the rest of its elements. To accomplish this we write

[4] (cons 2 Isl)

(2 1)

[5] Isl

(1)

Once again, the two operands are evaluated—2 evaluates to itself and Isl

to the list (1) . Then a new list is formed having 2 as its first item and the

items of Isl as the rest of its items, giving us (2 1) . This is the value that is

returned. At prompt [5], we verify that Isl is unchanged. Let us next bind

the variable ls2 to a list like the one in [4]

.

[6] (define ls2 (cons 2 Isl))

[7] l82

(2 1)

[8] Isl

(1)

t.4 Constructing Lists 15

The expression entered at the prompt [9] binds the variable c to the literal

value of the symbol three. We can now create a list containing three as its

first element and the elements of ls2 as the rest of its elements by writing

[9] (define c 'three)

[10] (cons c ls2)

(three 2 1)

When we apply cons to its two operands, the operands are both evaluated.

The first operand, c, evaluates to three, and the second operand, ls2, evalu-

ates to the list (2 1). Then a new list is built with three as its first item and

the elements of the list (2 1) as the rest of its elements. The value (three

2 1) is returned.

Continuing our experiment, we bind the variable ls3 to the value of (cons

c ls2) using a define expression:

[11] (define ls3 (cons c ls2))

We now perform another experiment with cons. Let us build a list that

has as its first item the list ls2 and as the rest of its items the same items

as those in ls3. This is done by making ls2 the first operand and ls3 the

second operand of cons:

[12] (cons ls2 ls3)

((2 1) three 2 1)

[13] ls3

(three 2 1)

[14] (define ls4 (cons ls2 ls3))

The first operand of cons evaluates to the list (2 1), and the second operand

of cons evaluates to (three 2 1). Thus the procedure cons produces a new

list that has as its first item the list (2 1). followed by the elements in IsS.

This gives us the value that was returned by Scheme: ((2 1) three 2 1).

Notice that when ls3 was entered in response to the prompt [13] . (three 2

1), the original value of ls3, was returned, so cons did build a new list and

did not affect the list ls3.

We are now in a position to summarize the facts that we observed in the

experiments. The procedure cons takes two operands. We apply the proce-

dure cons to these operands by enclosing the procedure name cons followed

by its two operands in parentheses. In general, a procedure name followed by

its operands, all enclosed in a pair of parentheses, is called an application, and

16 Data and Operators

we say that the operator is applied to its operands. When an application is

evaluated by Scheme, all of the expressions in the list are evaluated in some

unspecified order. The value of the first expression (the operator) informs

Scheme of the kind of computation that is to be made (in our case, cons in-

forms Scheme that a list is to be constructed). Then the computation defined

by the procedure (the value of the operator) is performed on the arguments,

which are the values of the operands. We assume for now that the second

operand of cons evaluates to a list (which may be the empty list). Then a

new list is created containing the value of the first operand as its first item

followed by all of the items in the list to which the second operand evaluated.

It is this new list that is returned as the value of the application. Since cons

first evaluates its operands, the lists contain only values. So far, these values

may be numbers, the literal value of symbols, and lists of these items. As

we progress through the chapters of this book, we shall encounter other data

types, all of which can be included in lists.

We have assumed in the discussion that the second operand of the cons

application evaluates to a list. This is the usual situation that we shall en-

counter, but it is also possible for the second argument to cons not to be a

list. We shall discuss this case in the next section. Furthermore, we see in ls4

that a list may contain in it other lists. We say that the inner list is nested

within the outer list. The nesting may be several levels deep, for a nested

list may itself contain nested lists. Suppose we have a given list. Items that

are not nested within lists contained in the given list are called the top-level

items of the given list. Thus, if the given list is ((a b (c d)) e (f g) h),

the top-level items are the list (a b (c d)), the symbol e, the list (1 g),

and the symbol h.

We can also build the list (2 1) in one step by applying cons twice as the

next experiment illustrates:

[15] (cons 2 (cons 1 '()))

(2 1)

To construct the list ((2 1) three 2 1), we could write

[16] (cons (cons 2 (cons 1 '())) (cons 'three (cons 2 (cons 1 '()))))

((2 1) three 2 1)

The second and third cons's build the list (2 1), and the fourth, fifth, and

sixth build the list (three 2 1). Then the first cons constructs the desired

list.

1.4 Constructing Lists 17

We have used parentheses in writing several types of expressions—in the

application of a procedure to its arguments, in the special form with keyword

define, and in a list of values. When Scheme sees an expression enclosed

in parentheses, it assumes that the first item following the left parenthesis

evaluates to a procedure such as cons or is a keyword such as define. ^ It

then evaluates the expression according to what the first item tells it to do.

What happens when we enter an expression such as (2 1) in response to a

Scheme prompt?

[17] (2 1)

Error: bad procedure 2

This experiment shows that Scheme expected to see an application or special

form, and when the first item in the list is not an operator or a keyword, it

returned a message saying it detected an error. In this case it tried to treat

the list as an application but discovered as its first item the number 2, which

is not a procedure.

Is there some way to enter a list of items that is to be taken literally? The
answer is yes. Suppose we want to enter a list containing the following items:

three. 2. 1. We use the quote symbol (apostrophe) and place it in front of

the left parenthesis. This indicates that each of the items included in the

parentheses is to be taken with its literal value. Thus to get a list containing

the desired three items, we would enter '(three 2 1). The symbol three

should not be quoted within the parentheses since the outer quote already

indicates that it should be taken with its literal value. Let's look at some

more examples:

[18] '((2 1) three 2 1)

((2 1) three 2 1)

[19] '(a b (c (d e)))

(a b (c (d e)))

[20] (cons '(a b) ' (c (d e)))

((a b) c (d e))

We now have a way of indicating whether a list we enter consists of literal

values. If the expression beginning with a parenthesis is not quoted, Scheme

^ We shall use sever£il special forms in the coming chapters and then study their properties

more fvilly in Chapter 14. They are ceilled special because their operands are not evaluated

as in procedure applications. If (define ten 10) were evciluatedcis a procedure application,

the operands ten and 10 would first be evaluated, but since ten has not yet been bound,

an error would result. In this special form, the symbol ten is not evaluated.

18 Data and Operators

assumes that the expression is not a quoted list, and the first item in the list

is examined to determine the nature of the expression and the computation

that should follow. If the expression in parentheses is quoted, Scheme assumes

that each item is to be taken literally.

We have now seen several procedures: the arithmetic operators +, *, -, and

/, and the list-manipulating operator cons. Procedures form another type

of data in Scheme. We have now encountered four types of data: numbers,

symbols, lists, and procedures.

Exercises

Exercise 1.6

Using the symbols one and two and the procedure cons, we can construct the

list (one two) by typing (cons 'one (cons 'two '())). Using the symbols

one, two, three, and four and the procedure cons, construct the following

lists without using quoted lists (you may use quoted symbols and the empty

list):

a. (one two three four)

b. (one (two three four))

c. (one (two three) four)

d. ((one two) (three four))

e. (((one)))

Exercise 1.1

Consider a list Is containing n values. If a evaluates to any value, how many
values does the list obtained by evaluating (cons a Is) contain?

Exercise 1.8

What is the result of evaluating '(a 'b)? (Try it!) Explain this result.

1.5 Taking Lists Apart

We have seen how to build lists using the constructor cons. We now consider

how to take a list apart so that we can manipulate the pieces separately and

build new lists from old. We accomplish this decomposition of lists using two

1.5 Taking Lists Apart 19

selector procedures, cax and cdr.' If Is represents a nonempty list of items,

car applied to Is gives the first item in Is, while cdr applied to Is gives the

list consisting of all items in Is with the exception of its first item. Both car

and cdr take one operand that must evaluate to a nonempty list. Both car

and cdr are not defined on an empty list, and applying them to an empty list

produces an error.

Let's look at the behavior of the selector catr. When its argument is a

nonempty list, it returns the first top-level item in the list. Thus we have

[1] (car '(1 2 3 4))

1

It is rather space consuming to indicate what a procedure returns by repro-

ducing what is seen on the computer screen. We sheill adopt a more efficient

notation in which we express the above by

(car '(1 2 3 4)) => 1

The double arrow "^^" is read as "evaluates to" or "returns." Here are some

other examples of applying the procedure car (As in the previous section, ls4

is bound to the list ((2 1) three 2 1).)

(car * (a b c d)) =^ a

(car ls4) => (2 1)

(car '((1) (2) (3) (4))) => (1)

(car '(ab (cd ef) gh)) => ab

(car '(((hen cow pig)))) ^^ ((hen cow pig))

(car •(())) =>

When the selector cdr is applied to an argument that is a nonempty list,

the list returned is obtained when the first item (the caur) of the eirgument

list is removed. Thus

(cdr '(1 2 3 4)) => (2 3 4)

(cdr ls4) =* (three 2 1)

' The symbol cdr is pronoiinced "coiild-er." The nsmies car and cdr had their origin in the

way the hst-processing language LISP wa^ originally implemented on the IBM 704, where

one could reference the "address" and "decrement" parts of a memory location. Thus car

is an acronym for "contents of address register," and cdr is an acronym for "contents of

decrement register."

20 Data and Operators

(cdr '(a (b c) (d e f))) =* ((b c) (d e f))

(cdr '((ant hill) (bee hive) (wasp nest)))

=* ((bee hive) (wasp nest))

(cdr '(!)) =>
(cdr '((1 2))) =* ()

(cdr '(())) =» ()

We now have three list-manipulating procedures: the constructor cons and

the two selectors car and cdr. By applying these in succession, we can do

almost anything we want with lists. For example, if we want to get the second

item in the list (a b c d), we first apply cdr to get (b c d) and then apply

car to the result to get b. We combine these applications of cdr and car into

one expression by writing

(car (cdr '(a b c d))) =* b

For the next example, let list-of-names be bound to the list ((Jane Doe)

(John Jones)). We look at how we retrieve Jane Doe's last name from this

list. If we first apply car to list-of-names, we get the list (Jeme Doe). We
now get the list (Doe) by applying cdr, and finally, we get Doe by applying

car. We want to emphasize the distinction between the list (Doe) containing

one item and the item Doe itself. All of these steps are combined in the

following expression:

(ccir (cdr (car list-of-names))) => Doe

In this example, we see that the procedures car and cdr are applied in

succession a number of times. The successive applications of car's and cdr's

is facilitated by the use of the procedures caar, cadr, caddr, . .
.

, cddddr. The

number of a's and d's between the c and r tells us how many times we apply

car or cdr, respectively, in order from right to left. For example, (cadr ' (a

b c)) is equivalent to (car (cdr '(a b c))) and is b. Similarly, (caddr

'(a b c)) is equivalent to (car (cdr (cdr '(a b c)))) and is c. We can

put up to four letters (a's or d's) between the c and r. We make use of these

procedures in the next example.

Consider the following situation. We ask our helper to prepare a menu that

has on it the two items: chicken soup and ice cream. He prepares the menu

by using a define expression to bind the variable menu to the list (chicken

soup ice cream):

(define menu '(chicken soup ice cream))

1.5 Taking Lists Apart 21

We find this unsatisfactory and want to use the items in the list menu to

produce the list ((chicken soup) (ice cream)), which groups together the

related items. We build the new list one step at a time:

(car menu) =^ chicken

(cadr menu) =^ soup

(cons (cadr menu) '()) =* (soup)

(cons (car menu) (cons (cadr menu) '())) ^^ (chicken soup)

(cddr menu) =^ (ice cream)

We now have the two items that will make up our final list. We use cons to

build the final answer. We first use cons to build a list around the list (ice

cream) to get ((ice cream)) and then use cons again to build a list that

has (chicken soup) as its first item and (ice cream) as its second item.

(cons (cddr menu) '()) =^ ((ice cream))

(cons (cons (ceir menu) (cons (cadr menu) '())) (cons (cddr menu) '()))

=* ((chicken soup) (ice cream))

The process shown here can be used to build and manipulate lists in just

about any way we want. As we learn more about Scheme, we shall discover

shortcuts that facilitate the manipulation of lists.

Up to now, we have assumed that the second argument to cons is a list. If

it is not a list, we can still apply cons; the result, however, is not a list but

rather a dotted pair. A dotted pair is written as a pair of objects, separated by

a dot (or period) and enclosed by parentheses. The first object in the dotted

pair is the car of the dotted pair, and the second object in the dotted pair

is the cdr of the dotted pair. Thus (cons 'a 'b) =* (a . b), and (car

'(a . b)) => a, while (cdr '(a . b)) =* b. Much of the work in this

book involves lists, which are built out of dotted pairs. For example, ' (a .

()) => (a), and ' (a . (be)) => (a b c). Thus any item built with

the constructor cons is referred to as a pair.

Exercise

Exercise 1.9

If a and /? evaluate to any values, what is

a. (ccir (cons q /?))

b. (cdr (cons q /?))

22 Data and Operators

The procedures cons, car, and cdr do not alter their operands. Let us

demonstrate this with an experiment.

[1] (define a 10)

[2] (define Is-b '(20 30 40))

[3] (car Is-b)

20

[4] (cdr Is-b)

(30 40)

[5] (cons a Is-b)

(10 20 30 40)

[6] a

10

[7] Is-b

(20 30 40)

After all of these operations involving car, cdr, and cons, the values of the

operands a and Is-b stayed the same when they were entered in [6] and [7]

as they were when they were defined in the beginning.

So far, we have encountered three procedures—car, cdr, and cons—that

help us manipulate lists and four procedures—+, *, -, and /—that allow us to

operate on numbers. Another group of procedures, called predicates, applies

a test to their arguments and returns true or false depending on whether the

test is passed. Scheme uses #t to denote true and #f to denote false. The

value of #t is #t and the value of #f is #f , so both of these are constants.* #t

and #f , representing true and false, are known as boolean (or logical) values.

They form a separate type of data to give us five distinct types: numbers,

symbols, booleans, pairs (including lists), and procedures. More data types

will be introduced in later chapters. We now look at several predicates that

apply to these five data types.

The first predicate tests whether its argument is a number, and its name is

number?. Like most other predicates, the name ends with a question mark,

signaling that the procedure is a predicate. Thus if we apply the predicate

number? to some object, #t is returned if the object is a number, and otherwise

#f is returned. If we make the following definitions,

(define num 35.4)

(define twelve 'dozen)

* In some implementations of Scheme, the empty hst () is returned instead of tf to indicate

false.

1.5 Taking Lists Apart 23

we get the following results:

(number? -45.67) =» #t

(number? '3) =* #t

(number? num) =^ #t

(number? twelve) ^^ #f

(number? 'twelve) ==* #f

(number? (+2 3)) => #t

(number? #t) ==* #f

(number? (car '(15.3 -31.7))) =» #t

(number? (cdr '(15.3 -31.7))) => #f

In the last example, the operand evaluates to (-31.7), which is a list, not a

number.

The predicate symbol? tests whether its argument is a symbol. With the

definitions of num and twelve given above, we get the following results:

(symbol? 15) => #f

(symbol? num) ^^ #f

(symbol? 'num) =^ #t

(symbol? twelve) =^ #t

(symbol? 'twelve) ^^ #t

(symbol? #f) => #f

(symbol? (car '(banana creeim))) =^ #t

(symbol? (cdr ' (banaina creaun))) ^^ #f

In the Icist example, (cdr ' (beuieina cream)) evaluates to a list, not a symbol.

There is also a predicate boolean? to test whether its argument is one of

the boolean values #t or #f

.

(boolean? «t) ==* «t

(boolean? (number? 'a)) =^ #t

(boolean? (cons 'a '())) => #f

A pair is an object built by the constructor cons, and the predicate pair?

tests whether its argument is a pair. For example, nonempty lists are con-

structed by cons, so they are pairs. We have

(pair? '(Ann Ben Carl)) ^ «t

(pair? '(!)) =^ #t

(pair? '()) => »f

(pair? '(())) => «t

24 Data and Operators

(pair? '(a (b c) d)) =» «t

(pair? (cons 'a '())) =* #t

(pair? (cons 3 4)) =» #t

(pair? 'pair) =* #f

There is also a predicate null? which tests whether its argument is the

empty list.

(null? '()) =* #t

(null? (cdr '(cat))) => «t

(null? (car '((ab)))) => #f

Exercises

Exercise 1.10

If the operands oc and evaluate to any values, what is

a. (symbol? (cons a /?))

b. (pair? (cons oc 0))

c. (null? (cons o; /?))

d. (null? (cdr (cons a '())))

Exercise 1.11

If a list Is contains only one item, what is (null? (cdr Is))?

We have given tests to determine whether an object is a number, a symbol,

a boolean, or a list, but we have not given a test to determine whether it is

a procedure. There is also a predicate procedure? which tests whether its

argument is a procedure.

(procedure? cons) ==* #t

(procedure? +) ==* #t

(procedure? 'cons) ^^ #f

(procediire? 100) =» #f

At this point, we have introduced five data types: numbers, symbols,

booleans, pairs, and procedures. As we progress through the book, we shall

meet other data types, such as strings, characters, vectors, and streams. A
question that we often ask is whether two objects are the same. Scheme offers

t.5 Taking Lists Apart 25

several different predicates to test for the sameness of its arguments. Which

predicate you use depends upon the information you seek and the data type

of the objects. We list a number of these sameness predicates below and in-

troduce others as the need arises. When both objects are numbers, we use the

predicate = to test whether its arguments represent the same number. The

predicate = is used only to test the sameness of numbers. It is safe to use it

only on integers, since the representation of nonintegers in the computer can

lead to undesirable results.

(= 3 (/ 6 2)) =^ #t

(= (/ 12 2) (* 2 3)) => »t

(= (car '(-1 ten 543)) (/ -20 (• 4 5))) => #t

(= (* 2 100) 20) ==> #f

There is also a predicate eq? to test the sameness of symbols. If its operands

evaluate to the same symbol, #t is returned. For this example, assume that

Garfield has been bound to 'cat.

(eq? 'cat 'cat) ^ #t

(eq? Garfield 'cat) ^ #t

(eq? Garfield Gcirf ield) =» #t

(eq? 'Garfield 'cat) ^ #f

(eq? (car ' (Garfield cat)) 'cat) =» #f

(eq? (car ' (Garfield cat)) 'Garfield) =^ «t

The predicate eq? returns #t if its two arguments are identical in all re-

spects; otherwise it returns #f . Symbols have the property that they are

identical if they are written with the same characters in the same order. Thus

we use eq? to test for the sameness of symbols. On the other hand, each appli-

cation of cons constructs a new and distinct pair. Two pairs constructed with

separate applications of cons will always test #f using eq? even if the pairs

they produce look alike. For example, let us make the following definitions:

[1] (define Is-a (cons 1 '(23)))

[2] (define Is-b (cons 1 '(23)))

[3] (define Is-c Is-a)

Then we have

26 Data and Operators

[4] (eq? (cons 1 '(2 3)) (cons 1 '(23)))

«f

[5] (eq? Is-a '(cons 1 '(23)))

#f

[6] (eq? Is-a Is-b)

ftf

[7] (eq? Is-a Is-c)

#t

In [4] , cons is applied twice to build two distinct pairs, so #f is returned

even though both of the pairs look alike as lists (1 2 3). In [5] , the variable

Is-a refers to the pair defined in [1] , which is distinct from the pair defined

by the cons in [5], so #f is returned. In [6], Is-b refers to the pair built

by the cons in [2] , which is distinct from that built in [1] , so eq? again

evaluates to #f . Finally, Is-c is defined to be the value of Is-a, which is the

pair built by the cons in [1] , so both Is-a and Is-c refer to the same pair,

and eq? evaluates to #t.

When we want to include numbers, symbols, and booleans in the types of

objects the predicate tests for sameness, we use the predicate eqv?. We shall

later see that eqv? also tests vectors, strings, and characters for sameness.

(eqv? (+ 2 3) (- 10 5)) => #t

(eqv? 5 6) =» «f

(eqv? 5 'five) =* #f

(eqv? 'cat 'cat) =* «t

(eqv? 'cat 'kitten) => «f

(eqv? (ccir '(a a a)) (car (cdr '(a a a)))) =* #t

We have not included lists among the data types we can test for sameness

using the predicates discussed. If we want a universal sameness predicate

that can be applied to test numbers, symbols, booleans, procedures, and lists

(and strings, characters, and vectors), we use the predicate equal?. In the

case of pairs constructed using separate applications of cons, equal? tests the

corresponding entries, and if they are the same, #t is returned. Thus equal?

tells us that the two lists (cons 'a '(be d)) and (cons 'a '(be d))are

the same, whereas eq? and eqv? claim that they are diff"erent.

(equal? 3 (/ 6 2)) => #t

(equal? 'cat 'cat) ==* #t

(equal? ' (a b c) (cons 'a ' (b c))) => #t

(equal? (cons 1 '(2 3)) (cons 1 '(2 3))) => «t

(equal? '(a (b c) d) '(a (b c) d)) => #t

1.5 Taking Lists Apart 27

(equal? '(a (b c)) '(a (c b))) =» #f

(equal? (cdr '(a c d)) (cdr '(b c d))) =» #t

Now for the obvious question: How do we know which one to use? When
a predicate must first test to determine the type of its arguments, it is less

efficient than one designed specifically for the type of its arguments. Thus for

numbers, = is the most efficient sameness predicate. Similarly, for symbols,

eq? is the most efficient predicate. For testing only numbers or symbols, eqv?

is more efficient than equal?. When we know that we shall be using numbers

or symbols, then eqv? is the sameness predicate we use. When the discussion

is limited to numbers, we use =.

When we respond to a prompt with a number or a quoted symbol, we

have seen that the number or symbol is returned. If we enter a symbol that

has been bound to a value, that value is returned. If we apply a procedure

such as car to a list (1 2 3) by entering (car ' (1 2 3)), the expression is

evaluated and the value 1 is returned and printed on the screen. On the other

hand, not every Scheme object is printable. If we enter only the name of a

procedure, such as car, the procedure, which is the value of car, is returned,

but not printed; instead a message is displayed, which indicates a procedure.

In this book, we indicate a procedure by printing angle brackets surrounding

the name of the procedure in italics. Thus, when we enter car, <car> is

displayed. In general, when we use <som€-symbol>, it denotes a procedure.

We now summarize our discussion of cons, car, cdr, and predicates by

writing some facts that apply to their use. The list is certainly not all inclusive,

and we recommend that you add your own entries to it to reinforce your

understanding of the use of predicates. Let a and /? be operands such that a

evaluates to any value and f3 evaluates to any nonempty list. We then have:

The number of items in (cons a /?) is one greater than the number of

items in /?.

(eq? a /?) => #t

implies

(eqv? a /?)==> #t

implies

(equal? a /?) =* #t

(eq? (cons a f5) (cons a (3)) ==> #f

(eqv? (cons a 0) (cons a /?)) =* #f

(equal? (cons a /3) (cons a /?)) =* #t

(boolean? (eqv? a /?)) =* #t

Data and Operators

(null? (cdr (cons a '()))) => #t

(equal? (cons (car /?) (cdr /?)) /3) => #t

(equal? (car (cons a (3)) a) ^^ #t

(equal? (cdr (cons a (3)) (3) =i* #t

(null? 13) => #f

(pair? 13) => #t

(pair? (cons a (3)) =i> #t

(pair? (cons a\ Q2)) =^ #t

We have been introduced to five basic data types (numbers, symbols, bool-

eans, pairs, and procedures), and we have seen a number of procedures to

manipulate and test the data. In Chapter 2 we shall develop the tools to

compute with lists, and in Chapter 3 we shall do the same for numbers.

Exercises

Exercise 1.12

Evaluate each of the following.

a. (cdr '((a (b c) d)))

b. (car (cdr (cdr '(a (b c) (d e)))))

c. (car (cdr '((1 2) (3 4) (5 6))))

d. (cdr (car '((1 2) (3 4) (5 6))))

e. (car (cdr (car '((cat dog hen)))))

f. (cadr '(a b c d))

g. (cadar '((a b) (c d) (e f)))

Exercise 1.13

We can extract the symbol a from the list (b (a c) d) using car and cdr

by going through the following steps:

(cdr '(b (a c) d)) => ((a c) d)

(car (cdr ' (b (a c) d))) => (a c)

(car (car (cdr ' (b (a c) d)))) ^^ a

For each of the following lists, write the expression using car and cdr that

extracts the symbol a:

1.5 Taking Lists Apart 29

a. (b c a d)

b. ((b a) (c d))

c. ((d c) (a) b)

d. (((a)))

Exercise 1.1

4

Decide whether the following expressions are true or false:

a. (symbol? (car ^(cat mouse)))

b. (symbol? (cdr '((cat mouse))))

c. (symbol? (cdr '(cat mouse)))

d. (pair? (cons 'hound '(dog)))

e. (pair? (car '(Cheshire cat)))

f. (pair? (cons '() '()))

Exercise 1.15

Decide whether the following expressions are true or false:

a. (eqv? (car '(a b)) (car (cdr ' (b a))))

b. (eqv? 'flea (car (cdr '(dog flea))))

c. (eq? (cons 'a ' (b c)) (cons 'a ' (b c)))

d. (eqv? (cons 'a ' (b c)) (cons 'a ' (b c)))

e. (equal? (cons 'a ' (b c)) (cons 'a ' (b c)))

f. (null? (cdr (cdr '((a b c) d))))

g. (null? (car '(())))

h. (null? (car '((()))))

30 Data and Operators

Procedures and Recursion

2.1 Overview

2.2 Procedures

In Chapter 1 we used several Scheme procedures such as those bound to the

numerical operators +, *, -, and /, the list-manipulating procedures bound to

cons, car, and cdr, and the predicates that test their arguments and return

#t or #f . One of the advantages of using the programming language Scheme

is that the number of procedures provided by the language is relatively small,

so we do not have to learn to use many procedures in order to write Scheme

programs. Instead, Scheme makes it easy for us to define our own procedures

as we need them. In this chapter, we discuss how to define procedures to

manipulate lists. In Chapter 3, we shall see how to define procedures to do

numerical computations. In this chapter, we also discuss how a procedure

can call itself within its definition, a process called recursion. Finally, we

introduce an elementary tracing tool to help us in debugging programs.

The notation f{x,y) is used in mathematics to denote a function; it has the

name / and hcis two variables, x and y. We call the values that are given to

the variables the arguments of the function. To each pair of arguments, the

function associates a corresponding value. In computing, we are concerned

with how that value is produced, and we speak about the sequence of com-

putational steps that we perform to get the value returned by the function as

an algorithm for computing the function's value. The way we implement the

algorithm on the computer to get the desired value is called a procedure for

computing the desired value. Iff is the name of the procedure with variables

X and y, we use a list version, (f x y), of the prefix notation f{x,y) used

in mathematics. In general, prefix notation places the procedure or function

name in front of the variables. In the list version of prefix notation, the whole

expression is surrounded by parentheses, and within the parentheses, the name
of the procedure comes first, followed by the variables separated by spaces.

Although we used a procedure taking two arguments in this illustration, the

number of arguments depends on the procedure being used. For example, we

have already seen the procedure cons takes two arguments, and the procedure

car takes one.

Procedures such as those bound to the values of +, cons, car, cdr, null?,

eqv?, and symbol? are provided by the system as standard routines. It is

impossible for the system to provide all procedures needed. Therefore, it

is important to be able to define procedures as they are needed. Scheme

provides an elegant way of defining procedures based upon the lambda calculus

introduced by the logician Alonzo Church. (See Church, 1941.) We illustrate

this method with an example.

When we write (cons 19 '()), we get a list with one number in it, (19). If

we write (cons 'bit '()), we get a list with one symbol in it, namely (bit).

Now let's write a procedure of one variable that returns a list containing the

value given to that variable as its only element. We do it with a lambda

expression,

(leuabda (item) (cons item '()))

A lambda expression is an example of a special form: a form of expression

identified by a special symbol called a keyword, in this Ccise lambda.^

If the procedure defined by this lambda expression is applied to 19, the

parameter item, which is in the list following the keyword lambda, is assigned

(bound to) the value 19. Then the following subexpression (known as the

body of the lambda expression) is evaluated with the parameter item bound

to 19. The value of the body so obtained is returned as the value of the

application. In this case, it returns the value of (cons item '()), which is

(19). In summary, when a procedure that is the value of a lambda expression

is applied to some value, the parameter is bound to that value, and the body

^ Speciad forms look like applications but are not, and in order to recognize them, we have

to memorize the keywords, such as lambda and define. We shadl see other keywords later,

but the list of keywords we have to memorize is small.

S2 Procedures and Recursion

of the lambda expression is evaluated with this parameter binding. The value

of the body is returned as the value of the application of the procedure.

The lambda expression has the syntax

(Icimbda (parameteT . . .) body)

The keyword lambda is followed by a list that contains the parameters. The

ellipsis (three dots) following parameter indicates that the list contains zero

or more parameters. The next subexpression is the body of the lambda expres-

sion. The value of a lambda expression is the procedure, which can be applied

to values appropriate for the evaluation of the body. These values must agree

in number with the number of parameters in the lambda expression's param-

eter list. When the procedure is applied, the parameters are bound to the

corresponding values, and the body is evaluated. The value of the body is

then the value of the application.

In general, when a procedure is applied, the syntax is

(operator operand . . .

)

where operator is a subexpression that evaluates to the procedure being ap-

plied, and the operands are subexpressions that evaluate to the arguments to

which the procedure is applied. We stress that the arguments are the values

of the operands. For example, in the application (* (+ 2 3) (-7 1)), the

operator * evaluates to the multiplication procedure, the two operands are

(+ 2 3) and (- 7 1), and the two arguments are 5 and 6. The value of the

application is then 30, the product of 5 and 6.

Thus to apply the procedure we defined above to build a list containing the

symbol bit, we enter

(dcimbda (item) (cons item '())) 'bit)

and we get as the result (bit). Similarly,

((lambda (item) (cons item '())) (* 5 6)) =J> (30)

It is awkward to write the whole expression

(lambda (item) (cons item '()))

each time we want to apply the procedure. We can avoid this by giving the

procedure a name and using that name in the procedure applications. This

2.2 Procedures S3

is done by choosing a name, say maike-list-of-one, for this procedure and

then defining make-list-of-one to have the desired procedure as its value.

We write

(define make-list-of-one (lambda (item) (cons item '())))

This is easier to read if we display the parts more clearly on separate lines as

follows:

(define make-list-of-one

(leimbda (item)

(cons item '())))

Scheme ignores any spaces in excess of the one space needed to separate

expressions. Scheme also treats <RETURN>'s as spaces until the one following

the last right parenthesis that is entered to close the first left parenthesis in

the expression. Thus Scheme reads the two ways of writing this definition

of make-list-of-one as the same Scheme expression. The indentation sets

off subexpressions, making the structure of the program easier to understand

at a glance. 2 To apply the procedure m«ike-list-of-one, we enter the

application

(make-list-of-one 'bit)

and (bit) is returned.

We have now written a program that builds a list containing one item.

Computer programs to perform various tasks are written by defining the ap-

propriate procedure to accomplish the desired tasks. As the tasks become

more complicated, there are usually different ways of defining the procedures

to achieve the desired results. It is the aim of this book to lead you through

a series of learning experiences that will prepare you not only to be able to

write such programs but to do so in a way that is efficient, elegant, and clear

to read.

A word is in order about the choice of names for procedures and parameters.

Since a symbol can have as many characters in it as we wish, programs will be

easier to read if we choose names that describe the procedure or parameter.

^ To make entering expressions easier, some implementations of Scheme provide automatic

indenting eind peirenthesis matching. The automatic indenting places the cursor in the

proper position for the steirt of the next line, and the parenthesis matching indicates the

left peu'enthesis that a right p£irenthesis is closing.

$4 Procedures and Recursion

Thus we used the name raeike-list-of-one for the procedure that converted

a value into a list containing the value. In the lambda expression in the

definition of the procedure make-list-of-one, we selected the name item

for the parameter to indicate that it is expecting to be bound to the item that

is to be included in the list.

Now let's write a procedure called make-list-of-two that takes two ar-

guments and returns a list whose elements are those two arguments. The

definition is:

(define make-list-of-two ; This procedure creates

(lambda (iteml item2) ; a list of two items,

(cons iteml (make-list-of-one item2))))

The parameter list following the keyword leiinbda consists of two parameters,

iteml and item2. You may be wondering about the semicolons in the first and

second lines of the program and the statements following them. When Scheme

reads an expression, it ignores all semicolons and whatever follows them on a

line. This allows us to make remarks about the program so that the reader

looking at it will know the intent of the programmer. Such remarks are called

documeniaiion and can make understanding programs easier. By choosing

the names of variables carefully, you can reduce the amount of documentation

necessary to understand a program. The documentation can also precede or

follow the program if each line is preceded by a semicolon. In the programs

in this book, we try to select variable names that make such documentation

unnecessary. When we wish to make points of clarification, we shall state

them in the accompanying discussion.

We apply the procedure maike-list-of-two to the two symbols one and

two by writing

(mcJce-list-of-two 'one 'two) =* (one two)

When we defined the procedure make-list-of-two, we used the parameters

iteml and item2. When we applied the procedure meike-list-of-two, its

two arguments were the values of the operands 'one and 'two.

In Section 1.5, we saw how to take a list containing four items (menu was

bound to the list (chicken soup ice cream)) and build a new list containing

the same items but grouped into two lists, each containing two items. We can

use the procedure make-list-of-two to give us another way of doing that

grouping. We define a procedure called regroup that has as its parameter

list-of-4, which will be bound to a list of four items. It returns a list with

the items in list-of-4 regrouped into two lists of two items each. In the

2.2 Procedures 35

course of writing the definition of regroup, we shall find it clearer to make

use of certain other procedures, which express what we want to appear in the

list of the two items we create. We use these procedures in the definition of

regroup and then define them afterward. The order in which the definitions

are written does not matter, and it is often more convenient to use a procedure

in a definition where it is needed, and then to define it later. In the definition

that follows, we make use of two such helping procedures, first-group and

second-group.

(define regroup

(lambda (list-of-4)

(mcike-list-of-two

(first-group list-of-4)

(second-group li8t-of-4))))

The procedure meike-list-of-two is used to create a list of two items, the

first item being a list consisting of the first two items in list-of-4 and the

second consisting of the last two items in list-of-4. To construct the first

grouping, we use a helping procedure first-group that we define as:

(define first-group

(lambda (Is)

(meike-list-of-two (car Is) (cadr Is))))

We define the helping procedure second-group as:

(define second-group

(lambda (Is)

(cddr Is)))

When first-group is applied to list-of-4, the parameter Is is bound to

the list of four items and the helping procedure make-list-of-two is applied

to build the desired list consisting of the first two items in the list of four

items. Similarly, the helping procedure second-group produces the rest of

the list of four items following the first two, that is, the list consisting of the

last two items.

Now to get the new menu, we simply apply the procedure regroup to menu,

and we get the desired list:

(regroup menu) =* ((chicken soup) (ice cream))

36 Procedures and Recursion

What is gained by using these procedures over the method used in Chap-

ter 1 in which everything was expressed in terms of cons, car, cdr, and so

forth? The version in Chapter 1 is hard to understand when it is scanned, for

we have to pause to work out what the constructors and selectors are doing.

In the new version, you can look at the code for regroup and see immediately

that it is making a list of two items; the first group is again a list of two

items, the first two items in the list of four items, and the second group is a

list consisting of the remaining two items in the list of four items. By carefully

choosing the names of the procedures and parameters, we can make the pro-

grams easy to read and understand. In our case, the use of the three helping

procedures, maJte-list-of-two, first-group, and second-group, make the

program easier to understand. Often the helping procedures can be used in

many programs. In reality, helping procedures are ordinary procedures that

we happen to want to make use of in writing some program. Any procedure

can be used as a helping procedure.

We have defined procedures to build lists containing one item and two items.

Scheme provides a procedure list, which takes any number of arguments and

constructs a list containing those arguments. For example,

(list 'a 'b 'c 'd) => (a b c d)

(list '(1 2) '(3 4)) =* ((1 2) (3 4))

(list) =* ()

We shall see how list is defined in Chapter 7.

There are two styles of writing programs, top-down and bottom-up program-

ming. In both, we are looking for the solution of some problem and want to

write a procedure that returns the desired solution as its value. For now, we

refer to this as the main procedure. In top-down style, we first write the defi-

nition of the main procedure. The main procedure often uses certain helping

procedures, so we write the definitions of the helping procedures next. These

in turn may require other helping procedures, so we write those, and so on. In

bottom-up style, we first write the definitions of the helping procedures that

we anticipate using, and at the end, we write the main procedure. We shall

use both styles of programming in this book.

We summarize this discussion by observing that the value of a lambda

expression with the syntax

(lambda (parameter . . .) body)

is a procedure. The ellipsis after parameter means that this is a list of zero or

more parameters. When the procedure is applied, the parameters are bound

to the arguments (i.e., the values of the operands), and the body is evaluated.

2.2 Procedures 37

We can give the procedure a name by using a define expression with the

structure

(define procedure-name lambda-expression)

where procedure-name is the variable used as the name of the procedure.'

We apply {call or invoke) such a named procedure by writing the application

{procedure-name operand . . .

)

where the number of operands matches the number of parameters in the def-

inition of the procedure. In general, when an application of the form

{operator operand . . .)

is evaluated, the operands and the operator are all evaluated in some un-

specified order. The operator must evaluate to a procedure. The values of

the operands are the arguments. The procedure binds the parameters to the

arguments and evaluates the body, the value of which is the value of the ap-

plication. Because the operands are first evaluated and it is their values, the

arguments, that the procedure receives, we say the operands are passed by

value to the procedure.

We have also encountered two expressions that are called special forms:

those with the keywords define and lambda. These expressions are not ap-

plications because not all the items in the expressions are evaluated initially.

For example, in a lambda expression, the parameter list is never evaluated

and its body is not evaluated initially. Most computer languages have some

keywords that have special meaning and cannot be used for other purposes.

In Scheme the number of such keywords for special forms is relatively small.

In Chapter 14, we shall see how we can add to Scheme our own special forms.

' Scheme also supports

(define {procedure-name parameter ...) body)

as a syntax for a define expression.

38 Procedures and Recursion

Exercises

When doing these exercises, you may find it convenient to save the defini-

tions of the procedures in a file. These procedures can then be used again.

They can be entered into Scheme from a file in which they were saved either

by using a transfer mechanism or by invoking a loading procedure. In some

implementations of Scheme, this is done with (load "filename'')

.

Exercise 2.1: second

Define a procedure called second that takes as its argument a list and that

returns the second item in the list. Assume that the list contains at least two

items.

Exercise 2.2: third

Define a procedure called third that takes as its argument a list and that

returns the third item in the list. Assume that the list contains at least three

items.

Exercise 2.3: f irsts-of-both

The procedure f irsts-of-both is defined as follows:

(define f irsts-of-both

(lambda (list-1 list-2)

(make-list-of-two (car list-1) (ceur list-2))))

Determine the value of the following expressions:

a. (f irsts-of-both '(1357) '(246))

b. (f irsts-of-both '((a b) (c d)) '((e f) (g h)))

Exercise 2.4-' juggle

Define a procedure juggle that rotates a three-element list. The procedure

juggle returns a list that is a rearrangement of the input list so that the

first element of this list becomes the second, the second element becomes the

third, and the third element becomes the first. Test your procedure on:

(juggle '(jump quick spot)) ==* (spot jump quick)

(juggle '(dog bites mEm)) =^> (man dog bites)

2.2 Procedures 39

Exercise 2.5: switch

Define a procedure switch that interchanges the first and third elements of a

three-element list. Test your procedure on the examples given in the previous

exercise.

2.3 Conditional Expressions

Suppose we want to define a predicate that tests whether a value is a number,

a symbol, an empty list, or a pair, and returns a symbol indicating its type.

The structure of the test can be written in natural language as:

If the value is a pair, return the symbol pair.

If the value is an empty list, return the symbol empty-list.

If the value is a number, return the symbol niuaber.

If the value is a symbol, return the symbol symbol.

Otherwise, return the symbol some-other-type.

This description of the procedure using English gives a sequence of steps that

we follow to carry out the computation. Such a sequence of steps describing a

computation is called an algorithm. We implement the kind of "case analysis"

given in tl s algorithm using a cond expression (the special form with keyword

cond). The keyword cond is derived from the word conditional. Using cond,

we write a procedure called type-ol that tests its argument and returns the

type of the item as described above:

(define type-of

(leUDbda (item)

(cond

((pair? item) 'pair)

((null? item) 'empty-list)

((number? item) 'niimber)

((symbol? item) 'symbol)

(else 'some-other-type))))

Let us analyze the cond expression. In this case, the cond expression has

five clauses, each represented by two expressions enclosed in parentheses. The

first clause, ((pair? item) 'pair), has as its first expression (pair? item),

which is a boolean or logical expression with the value #t or #f depending on

whether the value bound to item is or is not a pair. We shall also refer to the

boolean expression as the condition. If the condition evaluates to true, then

the second expression in the clause (the consequent), 'pair, is evaluated and

pair is returned. If the condition in the first clause evaluates to false, the

40 Procedures and Recursion

condition in the second clause ((null? item) 'empty-list) is evaluated.

If one of the subsequent conditions is true, then its consequent is evaluated

and that value is returned. The last clause has the keyword else as its

first expression, and if all of the preceding conditions are false, the expression

following else is evaluated, and its value is returned. The expression following

else is referred to as the alternative.

In general, the syntax of a cond expression is

(cond

{conditiorii consequenti)

{condition2 con3equent2)

iconditioun consequentn)

(else alternative))

where for each k = l,...,n, the expressions iconditiouk consequentk) and

(else alternative) are called clauses. The conditiorik and consequentk^ for

k = l,...,n, and the alternative are expressions, and else is a keyword.

Each of the conditional parts of the clauses is evaluated in succession until

one is true, in which case the corresponding consequent is evaluated, and

the value of the cond expression is the same as the value of the consequent

corresponding to the true condition. If none of the conditions is true, the

cond expression has the same value as the alternative, which is in the last

cond clause, known as the else clause.*

Scheme has another way of handling conditional expressions that have only

two cases. We can also use the special form with keyword if. Suppose we

want to write a procedure car-if-pair that does the following:

If its argument is a pair, return the car of the pair.

Otherwise, return the argument.

Here is the procedure car-if-pair using cond:

(define car-if-pair

(lambda (item)

(cond

((pair? item) (car item))

(else item))))

* The else clause is optional. Hit is omitted and all of the conditions are false, then Scheme

does not specify the value that is returned as the value of the cond expression. We shall

avoid using cond expressions that return unspecified values.

2.3 Conditional Expressions 4.I

or using an if expression, it can be written as:

(define ceur-if-pair

(leunbda (item)

(if (pair? item)

(c2u: item)

item)))

In general, the syntax of an if expression is

(if condition consequent alternative)

or

(if condition consequent)

In the first case, if condition is true, the value of consequent is returned as

the value of the if expression; if condition is false, the value of alternative

is returned as the value of the if expression. In the second case, the alter-

native is not present. In this "one-armed if," if condition is true, the value

of consequent is returned as the value of the if expression. If it is false, an

unspecified value is returned.

If expressions can be nested, enabling us to write the procedure type-of

given above as follows:

(define type-of

(lambda (item)

(if (pair? item)

'pair

(if (null? item)

'empty-list

(if (niimber? item)

'number

(if (symbol? item)

'symbol

' some-other-type)))))

)

Any cond expression can be written as nested if expressions, but as the num-

ber of cases increases, the nesting of the if expressions gets deeper, and the

meaning of the whole conditional expression is obscured. Thus, using a cond

expression is often advantageous when there are several cases.

42 Procedures and Recursion

The use of conditional expressions with either if or cond depends upon first

evaluating a condition. The condition may be simple, such as (null? Is),

or it may involve something like testing whether Is is a pair and whether its

020" is some symbol such as cat. A condition that involves a combination

of two or more simple conditions is called a compound condition. We build

compound conditions by combining simple conditions with the logical compo-

sition operators amd, or, and not. The compound condition mentioned above

can be written using and as follows:

(and (pair? Is) (eq? (car Is) 'cat))

The syntax of each of these logical operators is given below:

(etnd expri expr2 ... exprn)

(or expri expr2 ... exprn)

(not expr)

The and expression evaluates each of the subexpressions expri, expr2, . . .,

exprn in succession. If any one of them is false, it stops evaluating the rest

of the subexpressions, and the value of the and expression is #f . If all of the

subexpressions have true values, the value of the last subexpression is returned

as the value of the and expression.^

The or expression evaluates each of the subexpressions expri, expr2, ,

exprn in succession. If any one of them is true, it stops evaluating the rest

of the subexpressions, and the value of the or expression is the value of that

first true subexpression. If all of the subexpressions are false, the value of the

or expression is #f

.

The value of the not expression is #1 when expr has a true value, and it is

#t when expr is false.

We illustrate the use of and and or in the following examples:

(define s-eind-n-list?

(lambda (Is)

(euid (pair? Is)

(symbol? (car Is))

(pair? (cdr Is))

(number? (cadr Is)))))

^ Scheme has a convention of treating einy value that is not false as true. Thus (if 'cat

'kitten 'puppy) ^^ kitten, since the condition 'cat evaluates to cat, which is not false.

It is good programming style, however, for the conditions to be boolean expressions that

evaduate to either tt or tf

.

2.3 Conditional Expressions 4^

The predicate s-and-n-list? takes a list as its argument. The value of

the expression (s-aind-n-list? some-list) is #t if:

some-list is a pair,

and the first item in some-list is a symbol,

and the cdr of some-list is a pair,

and the second item in some-list is a number.

Otherwise, the value of (s-and-n-list? some-list) is #f . For example,

(s-and-n-list? '(a 1 b)) =* «t

while

(s-and-n-list? '(a b D) =» #f

The test to determine whether the list is a pair is necessary since we can only

take the Ceo: of a pair. If the list is empty, the evaluation of the car of the

list never takes place. The evaluation terminates on the first false value.

(define s-or-n-list?

(lambda (Is)

(and (pair? Is)

(or (symbol? (cau: Is))

(number? (car Is))))))

The predicate s-or-n-list? takes a list as its argument. The expression

(s-or-n-list? some-list) =^ #t if:

some-list is a pair,

and either the first item in some-list is a symbol or it is a number.

Otherwise (s-or-n-list? some-list) =* #f

.

There are occasions when we want to test whether a list contains precisely

one item, that is, whether the list is a singleton list. It is easy to define

a predicate singleton-list? that tests whether its argument is a pair and

whether it contains just one element. To test whether a pair contains just one

element, it is enough to test whether its cdr is empty. Thus we can write

Program 2.1 singleton-list?

(define singleton-list?

(lambda (Is)

(and (pair? Is) (null? (cdr Is)))))

44 Procedures and Recursion

This definition makes use of the fact that the empty list is not a pair. Thus

the nonempty list whose cdr is empty must contain just one item and is thus

a singleton list.

Exercises

Exercise 2.6

Assume that a, b, and c are expressions that evaluate to #t and that e and f

are expressions that evaluate to #f. Decide whether the following expressions

are true or false.

a. (and a (or be))

b. (or e (cmd (not f) a c))

c. (not (or (not a) (not b)))

d. (and (or a f) (not (or be)))

Exercise 2.1

Decide whether the following expressions are true or false if expr is some

boolean expression.

a. (or (symbol? expr) (not (symbol? expr)))

b. (amd (null? expr) (not (null? expr)))

c. (not (and (or expr #f) (not expr)))

d. (not (or expr #t))

Exercise 2.8

Decide whether the following expressions are true or false using s-cind-n-

list? as defined in this section.

a. (s-2uid-n-list? *(2 pair 12 dozen))

b. (s-and-n-list? '(b 4 u c a j))

c. (s-aoid-n-list? '(a ten))

d. (s-and-n-list? '(a))

Exercise 2.9

Decide whether the following expressions are true or false using s-or-n-list?

as defined in this section.

a. (s-or-n-list? '(b))

2.3 Conditional Expressions ^5

b. (s-or-n-list? '(c 2 m))

c. (s-or-n-list? '(10 10 10 10))

d. (s-or-n-list? '())

2.4 Recursion

We saw in Section 2.2 that certain procedures use other procedures as helping

procedures. In this section, we define procedures that use themselves as help-

ing procedures. When a procedure calls itself within the body of the lambda

expression defining it. we say that the procedure is recursive. To introduce the

idea of a recursive procedure, we set as our goal the definition of a procedure

last-item. that, when applied to a nonempty list, returns the last top-level

item in the list. Here are some examples of applications of last-item:

(last-itea '(12345)) =* 5

(last-item '(a b (c d))) =^ (c d)

(last-item '(cat)) => cat

(last-item '((cat))) =^ (cat)

It is a good idea to begin with the simplest cases of the arguments to which

the procedure is applied. In this case, the simplest nonempty list is a list

containing only one item. For example, if the list is (a), then the last item is

also the first item, and applying cair to this list produces the last item. This

would work with any list containing only one top-level item, for the car of the

list is both its first and its last toi>-level item. Let us use the variable Is as

the parameter in the definition of last-item. How can we test whether Is

contains only one top-level item? When Is contains only one top-level item,

its cdr is the empty list. Thus the boolean expression (null? (cdr Is))

returns #t when—and indeed only when—the nonempty list Is contains only

one top-level item. Thus, we may use a cond expression to test whether we

have the case of a one-item list and return the car of the list if that is the

case. We can then begin our program as follows:

(define last-item

(lambda (Is)

(cond

((null? (cdr Is)) (car Is))

...)))

46 Procedures and Recursion

If we now consider a list Is containing more than one top-level item, the cdr

of that list contains one fewer top-level items, but still includes the last item

of the original list. Each successive application of cdr reduces the number of

top-level items by one, until we finally have a list containing only one top-level

item, for which we have a solution. In this sense, application of cdr to the

list reduces the problem to a simpler case. This leads us to consider the list

obtained by evaluating (cdr Is),^ which contains all of the items of Is except

its first item. The last item in (cdr Is) is the same as the last item in Is. For

example, the list (a b c) and the list (b c), which is its cdr, have the same

Icist item, c. Thus if we call the procedure last-item as a helping procedure

to be applied to (cdr Is), we get the desired last item of the original list,

and that solves our problem. Thus to complete the definition of last-item,

we add the else clause to handle the case where the list contains more than

one item:

Progreun 2.2 last-item

(define last-item

(lambda (Is)

(cond

((null? (cdr Is)) (car Is))

(else (last-item (cdr 1 s))))))

To see that this docs define the procedure last-item so that it returns the

correct result for any nonempty list Is, we consider first a list (a) containing

only one item. Then the condition in the first cond clause is true, and (ceir

Is) does give us the last (which is also the first) item, a, in the list. Thus last-

item works on any list containing only one item. Now let's consider the case

in which Is is a list (a b) containing two items. Then its cdr, (b), contains

one item, so the procedure last-item does work on (cdr Is), allowing us to

use it as a helping procedure in the else clause to get the correct result. Thus

last-item solves the problem for any list of two items. Now we use the fact

that last-item works on the cdr of any three-item list to conclude that it

^ It is common practice, when the context is clear, not to include the phraise obtained by

evaluating. We say, "the hst (cdr Is)" instead of "the list obteuned by evaJuating (cdr

Is)" whenever the context makes it clear that we want the value of (cdr Is) rather thain

the litereJ hst whose first iten> is cdr euid whose second item is Is. When we weint the

Utereil list, eind the context is not cleair, we indicate so by quoting it.

2.4 Recursion 4^

works on the three-item list itself. We can continue this process of increasing

by one the number of items in the list indefinitely, showing that last-item

solves the problem for any list.

Since the procedure last-item called itself as a helping procedure, last-

item is a recursive procedure. Our strategy in general in designing a recursive

procedure on a list is first to identify the "simplest case" and write the expres-

sion that solves the problem for that case as the consequent in the first cond

clause. We call this simplest case the base case or terminattng condition. We
then identify a simplifying operation, which on repeated application to the

list produces the base case. Then in each of the other cases, we solve the

problem with some expression that calls the recursive procedure as a help-

ing procedure applied to the simplified list. In our example, the base case is

the list consisting of only one item. The simplifying operation is cdr, and in

the other cases, we see that the expression that solves the problem applies

last-item to the simplified list (cdr Is).

To give us a better intuition about how last-item works, we shall apply

last-item to the list (a b c). What is (last-item '(a b c))? We shall

walk through the evaluation of this expression. The parameter Is is bound

to the argument (a b c), and the cond expression is evaluated. In this case,

(cdr Is) is not empty, so the alternative in the else clause is evaluated.

This tells us to apply last-item to (cdr Is). Since (cdr Is) is (b c),

we must evaluate (last-item ' (b c)). We thus bind the parameter Is to

the argument (be) and enter the cond expression. Once again, (cdr Is)

is not empty, so we evaluate the alternative in the else clause. This tells us

to apply last-item to (cdr Is), which now is (c). Thus we must evaluate

(last-item ' (c)). We now bind the parameter Is to the argument (c) and

enter the cond expression. This time (cdr '(c)) is the empty list. Thus the

consequent is evaluated to give (car ' (c))

—

c as the value of the expression.

The recursion in the illustration stops when the list is simplified to the

base case. In that case, the condition in the first cond clause is true. We
call the condition used to stop the recursion the ierminaUng condition. In

our example, the terminating condition is (null? (cdr Is)). Generally,

whenever a recursive procedure is defined, a terminating condition must be

included so that the recursion will eventually stop. (In Chapter 15 on streams,

we shall see examples in which a terminating condition is not needed.) We
usually begin the definition of a recursive procedure by writing the terminating

condition as the first cond clause. We then proceed with the rest of the

definition.

In the preceding discussion we introduced the substitution model. Using the

substitution model, we can determine the value of an expression by substitut-

48 Procedures and Recursion

ing values for parameters. Through the first eight chapters, the substitution

model suffices. From Chapter 9 on, however, there will be times when the

substitution model does not work. From time to time, we use it to clar-

ify a computation; most of the time, however, we use the general approach:

the environment model. In that approach we just remember the bindings of

variables and avoid any substitutions.

Let us next define a procedure member? that decides for us whether its first

argument is equal? to one of the top-level items in the list that is its second

argument. For example,

1. (member? 'cat '(dog hen cat pig)) ==> #t

2. (member? 'fox '(dog hen cat pig)) =* #f

3. (member? 2 '(1 (2 3) 4)) =* #f

4. (member? ' (2 3) ' (1 (2 3) 4)) => #t

5. (member? 'cat '()) =* #f

In Example 3, 2 is not a top-level item in the list (1 (2 3) 4), so #f is

returned. We begin the definition of member? by determining the base case.

Regardless of what item is, if Is is the empty list, #f is returned. This is the

simplest case and will be taken as our base case. To test for the base case,

we use the predicate null? so the terminating condition is (null? Is). The

consequent for the terminating condition is #f . We can therefore begin the

definition of member? as a procedure having two parameters, item and Is:

(define member?

(leunbda (item Is)

(cond

((null? Is) «f)

...)))

Now given any list, what is the simplifying operation that simplifies Is to

the empty list? It is again the procedure cdr. Assume that Is is not empty.

If we know the value of (member? item (cdr Is)) , how do we get the value

for (member? item Is)? Well, when is the latter statement true? It is true

if either the first item in Is is the same as item or if item is a member of

the rest of the list following the first item. This can be written as the or

expression:

(or (equal? (car Is) item) (member? item (cdr Is)))

Thus in the case when Is is not empty, the above expression is true exactly

2.4 Recursion 4^

when the expression (member? item Is) is true. We then complete the defi-

nition of member? with

Program 2.3 member?

(define member?

(lambda (item Is)

(cond

((null? Is) «f)

(else (or (equal? (car Is) item)

(member'' item (cdr Is)))))))

The procedure member? is recursive since it calls itself. Let us review the

reasoning used in the program for member?. If the terminating condition

(null? Is) is true, then item is not in Is, and the consequent is false. Oth-

erwise we look at the alternative, which is true if either item is the first item

in Is or if item is in (cdr Is) and is otherwise false.

When member? calls itself with argument (cdr Is), its parameter is bound

to the value of (cdr Is), which is a shorter list than the parameter's previous

binding to Is. In each successive recursive procedure call, the list is shorter,

and the process is guaranteed to stop because of the terminating condition

(null? Is).

In order to use a list as the first argument to member? (as in Example 4),

we used the predicate equaJ.? to make the sameness test in the else clause. If

we know that the items to which item is bound will always be symbols, we

can use eq? in place of equsd.?. The procedure so defined using eq? is named

memq? to distinguish it from member?, which is defined using equatl? for the

sameness test. Similarly, if we know that the items to which item is bound

will always be either symbols or numbers, we can use eqv? for the sameness

test and call the procedure so defined memv?.''

We have now defined the procedure last-item, which picks the last top-

level item out of a list, and the procedure member?, which tests whether ein

item is a top-level element in a given list. We continue illustrating how to

define recursive procedures with the definition of another useful procedure

^ Scheme provides the three procedures member, nemq, and memv, written without the ques-

tion mark. These behave somewhat differently from the ones we defined with the question

mark in that if item is not found, false is returned, but if item is found in Is, the subUst

whose car is item is returned. For example, (memq 'b '(a b c)) ^^ (b c).

50 Procedures and Recursion

for manipulating lists. The procedure remove-lst removes the first top-level

occurrence of a given item from a list of items. For example,

1. (remove-lst 'fox '(hen fox chick cock))

^* (hen chick cock)

2. (remove-lst 'fox '(hen fox chick fox cock))

=> (hen chick fox cock)

3. (remove-lst 'fox '(hen (fox chick) cock))

=* (hen (fox chick) cock)

4. (remove-lst 'fox '()) =*
5. (remove-lst '(1 2) '(1 2 (1 2) ((1 2))))

—> (1 2 ((1 2)))

In general, the procedure remove-lst takes two arguments, an element item

and a list Is. It builds a new list from Is with the first top-level occurrence of

item removed from it. We again begin looking at the simplest case, in which

Is is the empty list. Since item does not occur at all in the empty list, the

list we build is still the empty list. The test for the base case is then (null?

Is), and the value returned in its consequent is (). Thus the definition of the

procedure remove-lst begins with

(define remove-lst

(Isunbda (item Is)

(cond

((null? Is) '())

...)))

If Is is not empty, the procedure that simplifies it to the base case is again

cdr. If we already know (remove-lst item (cdr Is)), that is, if we have

a list consisting of the first top-level occurrence of item removed from (cdr

Is), how do we build up a list that is obtained by removing the first top-level

occurrence of item in Is? There are two cases to consider. Let's first consider

the example in which we remove the first occurrence of a from the list (a b

c d). Since a is the first item in the list, we get the desired result by merely

taking the cdr of the original list. This is the first case we consider. If the first

top-level item in Is is the same as item, then we get the desired list by simply

using (cdr Is). This case can be added to the definition of remove-lst by

writing

2.4 Recursion 51

(define reaove-lst

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

...)))

The only case left to be considered is when Is is not empty, and its first

top-level item is not the same as item. Consider the example in which we

apply remove-lst to remove the letter c from the list (a b c d). The list

is not empty and its first item is not c. Thus the list we build begins with

a and continues with the items in (b d). But (b d) is just the list obtained

by removing c from (b c d). The final result is then (a b d). which was

obtained by building the list

(cons (car ' (a b c d)) (remove-lst 'c (cdr '(a b c d))))

In general, the list we are building now begins with the first element of Is

and has in it the elements of (cdr Is) with the first top-level occurrence of

item removed. But this is obtained when we cons* (car Is) onto (remove-

lst item (cdr Is)) , so the final case is disposed of by adding the else clause

to the definition, which is given in Program 2.4.

Program 2.4 remove-lst

(define remove-lst

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

(else (cons (car Is) (remove-lst item (cdr Is)))))))

To get a better understanding of how recursion works, let's walk through

the evaluation of an application of the procedure remove-lst; for example

(remove-lst 'c '(abed))

* Scheme programmers use the verb cons, which has am infinitive "to cons", tenses "cons,

cons'd, has cons'd" , participle "consing" , and conjugation "I cons, he conses, etc." We shall

make frequent use of these words.

52 Procedures and Recursion

Since the list (a b c d) is not empty and the first entry is not c, the alter-

native in the else clause is evaluated. This gives us

(cons 'a (remove-lst 'c '(bed)))

To get the value of this expression, we must evaluate the remove-lst subex-

pression. Once again, the list (b c d) is not empty, and the first item in the

list is not the same as c. Thus the alternative in the else clause is evaluated.

This gives us as the value of the whole expression above:

(cons 'a (cons 'b (remove-lst 'c '(c d))))

Once again, to get the value of this expression, we must evaluate the remove-

lst subexpression. Now the list (c d) is not empty, but its first item is the

same as c. Thus the condition in the second cond clause in the definition of

remove-lst is true and the value of its consequent is (d). Thus the above

expression has the value

(cons 'a (cons 'b '(d)))

which can be simplified to give the value

(a b d)

This is the value returned by the procedure call. In the next section, we shall

see how the computer can help us walk through a procedure application.

In order to be able to remove a sublist from a given list, as in Example

5, the predicate equal? was used to test for sameness in the second cond

clause. If we know that all of the arguments to which item will be bound are

symbols, we can use eq? to test for sameness. The procedure defined using eq?

instead of equal? is named remq-lst. Similarly, if we restrict the arguments

to which item will be bound to symbols or numbers, we can use eqv? to test

for sameness in the second cond clause, and we name the procedure so defined

remv-lst.

Exercises

Exercise 2.10

Rewrite the definitions of the three procedures last-item, member? and

remove-lst with the cond expression replaced by if expressions.

2.4 Recursion 53

Exercise 2.11

The definition of member? given in this section uses an or expression in the

else clause. Rewrite the definition of member? so that each of the two subex-

pressions of the or expression is handled in a separate cond clause. Compare

the resulting definition with the definition of remove-lst.

Exercise 2.12

The following procedure, named mystery, takes as its argument a list that

contains at least two top-level items.

(define mystery

(Icunbda (Is)

(if (null? (cddr Is))

(cons (car Is) ')

(cons (car Is) (mystery (cdr Is))))))

What is the value of (mystery ' (1 2 3 4 5))? Describe the general behav-

ior of mystery. Suggest a good name for the procedure mystery.

Exercise 2.13: subst-lst

Define a procedure subst-lst that takes three parameters: an item new, an

item old, and a list of items Is. The procedure subst-lst looks for the first

top-level occurrence of the item old in Is and replaces it with the item new.

Test your procedure on:

(subst-lst 'dog 'cat '(my cat is clever))

^=* (my dog is clever)

(subst-lst 'b 'a ' (c a b a c)

)

^=> (c b b a c)

(subst-lst '(0) '() '((*) (1) () (2)))

=« ((0) (1) (•) (2))

(subst-lst 'two 'one '()) ^
In order to be able to include lists as possible arguments to which the param-

eters new and old are bound, use equal? to test for sameness. Also define

procedures substq-lst and substv-lst that use eq? and eqv? respectively,

instead of equal? to test for sameness.

54 Procedures and Recursion

Exercise 2.14: insert-right-lst

The procedure insert-right-lst is like remove-lst except that instead of

removing the item that it is searching for, it inserts a new item to its right.

For example,

(insert-right-lst 'not 'does '(my dog does have fleas))

=> (my dog does not have fleas)

The definition of insert-right-lst is

(define insert-right-lst

(lambda (new old Is)

(cond

((null? Is) '())

((equal? (car Is) old)

(cons old (cons new (cdr Is))))

(else (cons (car Is)

(insert-right-lst new old (cdr Is)))))))

Define a procedure insert-left-lst that is like insert-right-lst except

that instead of inserting a new item to the right of the item it is searching

for, it inserts it to its left. Test your procedure on

(insert-left-lst 'hot 'dogs '(I eat dogs))

^^ (I eat hot dogs)

(insert-left-lst 'fun 'games '(some fun))

=^ (some fiin)

(insert-left-lst 'a 'b '(a b c a b c))

^^ (a a b c a b c)

(insert-left-lst 'a 'b '()) => ()

Exercise 2.15: list-of-first-items

Define a procedure list-of-first-items that takes as its argument a list

composed of nonempty lists of items. Its value is a list composed of the first

top-level item in each of the sublists. Test your procedure on:

(list-of -first-items '((a) (b c d) (e f))) ^=> (a b e)

(list-of-first-items '((1 2 3) (4 5 6))) ==» (1 4)

(list-of-f irst-items '((one))) ^^ (one)

(list-of-first-items '()) =* ()

2.4 Recursion 55

Exercise 2.16: replace

Define a procedure replace that replaces each top-level item in a list of items

Is by a given item new-item. Test your procedure on:

(replace 'no '(sill you do ae a favor))

=^^ (no no no no no no)

(replace 'yes '(do you like ice creaa))

^^ (yes yes yes yes yes)

(replace 'shy '(not)) ^^ (shy)

(replace 'maybe '()) ^^ ()

Exercise 2.17: remove-2iid

Define a procedure reinove-2nd that removes the second occurrence of a given

item a from a list of items Is. You may use the procedure remove-lst in

defining reiBove-2iid. Test your procedure on:

(re2cve-2iid 'cat '(my cat loves cat food))

^^ (my cat loves food)

(reB0Te-2nd 'cat '(my cat loves food))

=* (my cat loves food)

(reBove-2nd 'cat '(my cat and your cat love cat food))

=^ (my ca- and your love ca- food)

(remove-2nd 'cat '()) ^ ()

Exercise 2.18: remove-last

Define a procedure remove-last that removes the last top-level occurrence

of a given element item in a list Is. Test your procedure on:

(remove-last 'a '(bananas)) =»> (b a n a n s)

(remove-last 'a '(banana)) ^^ (b a n a n)

(remove-last 'a '()) ^^

Exercise 2.19: sandwich- 1st

Define a procedure sandwich- 1st that takes two items, a and b. and a list

Is as its arguments. It replaces the first occxirrence of two successive b's in

Is with b a b. Test your procedure on:

(sandsich-lst 'mea- 'bread '(bread cheese bread bread))

=^> (bread cheese bread meat bread)

(sandwich-lst 'meat 'bread '(bread jam bread cheese bread))

=^ (bread jas bread cheese bread)

(sandHich-lst 'meax 'bread '()) =^

56 Procedures and Recursion

Exercise 2.20: list-of-symbols?

Define a procedure list-of-symbols? that tests whether the top-level items

in a given list Is are symbols. Write your definitions in three ways, first using

cond, then if, and finally and and or. Test your procedures with:

(list-of-symbols? '(one two three four five)) =^ #t

(list-of-symbols? '(cat dog (hen pig) cow)) =* #f

(list-of-symbols? ' (a b 3 4 d)) =» #f

(list-of-symbols? '()) =J> #t

Exercise 2.21: all-same?

Define a procedure all-same? that takes a list Is as its argument and tests

whether all top-level elements of Is are the same. Test your procedure with:

(all-same? '(a a a a a)) => #t

(all-same? '(a b a b a b)) ^ #f

(all-same? '((a b) (a b) (a b))) => »t

(all-same? '(a)) => #t

(all-same? '()) ^ #t

2.5 Tracing and Debugging

We have now walked through several programs to understand their behavior.

We had to evaluate expressions ourselves and make decisions as to which

branches of conditional expressions to follow. The computer is able to do

both of these, so we can take advantage of its power to relieve us of this kind

of work. The tool we develop here enables us to walk through or, as it is

technically known, trace our programs. We can also use this tool to find and

correct errors in our programs, a process called debugging.

The computer can help us walk through or trace our programs if we make

use of a procedure writeln (read as "write-line") that prints its arguments

directly to the computer screen. Some Scheme implementations provide the

procedure writeln, and if the one you are using does not make it available,

you can enter its simple definition.® The procedure writeln takes any number

of arguments. When we evaluate

® A more complete discussion of writeln and related procedures that write to the screen

is presented in Chapter 7. You may enter the definition of writeln given in Program 7.5 if

your implementation of Scheme does not provide it.

2.5 Tracing and Debugging 57

(writeln ezpri expr2 ... exprn)

the expressions expri expr2 . . exprn are all evaluated; then their values are

printed on the screen in order from left to right with no blank spaces between

them. When the last value is printed, the cursor moves to the beginning of

the next line. Like every other procedure, writeln must return a value, but

we are not concerned with this value. In fact, different implementations of

Scheme may return different values. Since it is unspecified in Scheme what

value writeln returns, we shall assume in our implementation that the value

returned is not printed on the screen.

For example, if the variable Jack is bound to the value Jill and the variable

Punch is bound to the value Judy, the evaluation of (writeln Punch Jack)

will print

JudyJill

on the screen with no space between the words. If we evaluate the expression

(writeln 'Punch 'Jack), then the screen shows

PunchJack

We can control the spacing and print sentences on the screen if we use

another type of data called strings. A string is any sequence of keyboard

characters. In Scheme, a string is written as a sequence of characters enclosed

with double quotes: ". Thus "This is a string. " is an example of a string.

If we want to include a double quote or a backslash in a string, we must precede

it by a backslash. ^'^ Thus, we can write the string "He said \"Hello\".",

which hcis "Hello" within double quotes. If we evaluate the expression

(writeln "This is a string.")

then

This is a string.

appears on the screen. Note that the double quotes are not printed with the

string. Thus the evaluation of the expression

^° A cheu-acter, such as a backslash, which is used to change the normal meaning of what

follows it is referred to €is an escape character.

58 Procedures and Recursion

(writeln "He said \"Hello\".")

prints

He said "Hello".

A string is another example of a constant in Scheme. Thus if we enter a

string in response to a prompt, the string is returned, including the double

quotes.

[1] "This is a string."

"This is a string."

If we evaluate

(writeln "My friends Jack and " Jack ".")

we see on the screen:

My friends Jack emd Jill.

The first occurrence of Jack is in the string, so it is printed literally as Jack.

The second occurrence of Jack is not in a string, so it is evaluated, and its

value Jill is printed. This time we have a space between the words and and

Jill, since the blank space is included after the word eind in the string. The

la^t string in the writeln expression contains only the period.

The procedure writeln is usually evaluated as one of a sequence of ex-

pressions that are evaluated consecutively. This is accomplished by using the

special form with keyword begin. A begin expression has any number of

subexpressions following the keyword begin. Each of these subexpressions is

evaluated consecutively in the order that it appears and the value of the last

subexpression is returned as the value of the begin expression. For example,

[2] (begin

(writeln "The remove-lst expression")

(writeln "is applied to the list (1 2 3 4)")

(writeln "to build a new list without the number 2.")

(remove-lst 2 '(1 2 3 4)))

The remove-lst expression

is applied to the list (12 3 4)

to build a new list without the number 2.

(1 3 4)

2.5 Tracing and Debugging 59

When the preceding begin expression is evaluated, the four subexpressions are

evaluated consecutively. The first three are writeln expressions, which print

their arguments on the screen, with a new line starting after each writeln

expression is evaluated. The values returned by the writeln expressions are

ignored. The value of the last expression is the only value returned—that is

the (13 4) that appears on the last line.

We want to stress that what is printed on the screen is not the value of the

writeln expressions. Instead, what is printed on the screen is done as a side

effect. A side effect causes some change to take place (in this case, the change

was printing on the screen), but it is not a value that is returned. When using

a begin expression, all of the subexpressions before the last one are included

for their side effects and not for the values that they return. The value of

the last subexpression is the only one returned. Here is another example to

illustrate that only the value of the last subexpression is returned.

[3] (begin

(+ 3 4)

(- 5 11)

(* 10 10))

100

The values of the first two subexpressions are ignored. In this case, the first

two subexpressions did not produce any side effects, so although they were

evaluated, we do not see any evidence of it and there really was no point in

putting them there!

The syntajc of the begin expression is

(begin expri expr2 ... exprn)

where the expressions expri, expr2, ... exprn are evaluated in their given

order, and the value of the last one, expTn, is returned.

We now have all the tools we need to use writeln to help us walk through

an application of remove- 1st to remove the letter c from the list (a b c

d). We "wrap" a helping procedure entering around the condition of each

cond clause as we enter it and wrap a helping procedure leaving around the

consequent (or alternative) as we leave the cond clause. The definitions of

these helping procedures are given after the main program. The procedure

entering takes three arguments: the value of the condition, the value of Is,

and the identifying number of the cond clause: 1 for the first, 2 for the second,

and 3 for the last. It tells us, using a writeln statement, which cond clause we

are entering and the value of Is. The procedure leaving takes two arguments:

60 Procedure3 and Recursion

the value of the consequent (or alternative) and the identifying number of the

cond clause. It tells us which cond clause we are leaving and the value of the

consequent. When we run the program, we thus get a written record each

time we enter or leave a cond clause. Inserting such writeln expressions into

the definition of a procedure to study the evaluation of the procedure is one

way of tracing the procedure. Program 2.5 contains the code for the procedure

that traces remove-lst. The definition of the helping procedure entering is

in Program 2.6, and of the helping procedure leaving is in Program 2.7.

When we enter a cond clause, the condition is the entering expression whose

parameter test is bound to the value of the original condition of remove-lst.

If test is true, it writes the fact that we are entering the cond clause with

the appropriate identifying number and the current value of the variable Is.

In any event, test is returned as the value of the condition. If test is false,

the next cond clause is entered. If test is true, the consequent of that cond

clause is evaluated. If the else clause is entered, we use the quoted symbol

else as the first argument of entering. Scheme treats the symbol else as

true (since it is not false) so the alternative is evaluated.

The consequent (or alternative) in each cond clause of remove-lst-trace

is a leaving expression. It has the value of the original consequent (or alter-

native) of the cond clause of remove-lst as the binding of its first parameter,

result. When the leaving expression is evaluated, it tells us the identifying

number of the cond clause and the value to which result is bound. It then

returns result.

Now let's apply remove-lst-trace to see how this tracing information

helps us see what is happening during the evaluation.

[1] (remove-lst-trace 'c '(a b c d))

Entering cond-clause-3 with Is = (a b c d)

Entering cond-clause-3 with Is = (b c d)

Entering cond-clause-2 with Is = (c d)

Leaving cond-clause-2 with result = (d)

Leaving cond-clause-3 with result = (b d)

Leaving cond-clause-3 with result = (a b d)

(a b d)

This output tells us that we first entered the third cond clause with Is bound

to (a b c d). With this binding, the leaving expression in the alternative is

evaluated, so that its first operand

(cons 'a (remove-lst-trace 'c '(b c d))) (1)

2.5 Tracing and Debugging 61

Progrson 2.5 remove-lst-trace

(define remove-lst-trace

(lambda (item Is)

(cond

((entering (null? Is) Is 1)

(leaving '()!))

((entering (equal? (car Is) item) Is 2)

(leaving (cdr Is) 2))

((entering 'else Is 3)

(leaving

(cons (car Is) (remove-lst-trace item (cdr Is)))

3)))))

Program 2.6 entering

(define entering

(lambda (test input cond-clause-number)

(begin

(if test (writeln " Entering cond-clause-"

cond-clause-number " with Is = " input))

test)))

Program 2.7 leaving

(define leaving

(leuobda (result cond-clause-number)

(begin

(writeln "Leaving cond-clause-"

cond-clause-number " with result = " result)

result)))

62 Procedures and Recursion

is evaluated. Thus remove- Ist-trace is called again, and a is waiting to be

consed onto the value obtained before we can leave cond clause 3. The next

message on the screen tells us that we are entering the third cond expression

again with argument (b c d). This time, the alternative

(cons 'b (remove-lst-trace 'c '(c d))) (2)

is evaluated, and b is waiting to be consed onto its value before we can leave

cond clause 3. As before, remove-lst-trace is called again before the leaving

writeln expression is evaluated. This time, the first item in (c d) is the same

as c, and we are told that we entered the second cond clause with Is bound

to (c d). When we enter the consequent, the first operand in the leaving

expression evaluates to (d). Then the writeln expression prints on the screen

that we are leaving the second cond clause with the result bound to (d),

and the value (d) is returned.

Cons expression (2) is waiting for the value of the remove-lst-trace call,

and now that value is (d) . With this value, the cons expression in (2) evaluates

to (b d). We can now complete the evaluation of the leaving expression,

which tells us that we are leaving cond clause 3 with result bound to (b

d). But this is just the value that cons expression (1) is waiting for as the

value of its remove-lst-trace invocation. Using the value (b d) as its last

argument, cons expression (1) evaluates to (a b d). It was the first operand

in the application of leaving in the third cond clause. Now that it has

been evaluated, the writeln expression writes its message, which says that

we are leaving cond clause 3 with result bound to (a b d). The leaving

invocation now returns the value to which result is bound, (a b d), and

that becomes the value of the original procedure call. The trace we made
here illustrates well the order in which we enter and leave the cond clauses.

We see that we do not leave the cond clause until a value is found for the

recursive invocation of remove-lst-trace, and the evaluation of the cons

expression can be completed.

In the previous example, we entered only the second and third cond clauses.

If we invoke remove-lst-trace to remove an item from a list that does not

contain it, we enter only the first and third cond clauses, eis the following trace

illustrates:

2.5 Tracing and Debugging 63

[2] (remove-lst-trace 'e ' (a b c d))

Entering cond-clause-3 with Is = (abed)
Entering cond-clause-3 with Is = (b c d)

Entering cond-clause-3 with Is = (c d)

Entering cond-clause-3 with Is = (d)

Entering cond-clause-1 with Is =

Leaving cond-clause-1 with result =

Leaving cond-clause-3 with result = (d)

Leaving cond-clause-3 with result = (c d)

Leaving cond-clause-3 with result = (b c d)

Leaving cond-clause-3 with result = (a b c d)

(abed)

Analyze the trace to be sure you can explain it in a manner similar to that

used in the previous example.

We have used writeln expressions to trace a program by printing certain

information about places in the program where the evaluation is being made

and the values of certain variables at that place. This helps us understand

how programs work. It is also an excellent tool for finding errors in programs.

If a program is not doing what you expect it to do, you can put a writeln

expression at certain places in the program where you think the error may be

and look at the values of variables to compare them with what you expect at

that place. By studying these values, you can frequently pinpoint the source

of the error and make the appropriate changes to cause the program to work

correctly. When the program is corrected and runs as you want, the writeln

expressions used to locate the errors should be removed. Tracing a program

with the writeln expressions placed at strategic points is a helpful and often

used debugging tool.

Exercise

Exercise 2.22

In the first trace, the second and third cond clauses were entered. In the

second trace, the first and third cond clauses were entered. Can you give

a remove-lst-trace invocation that enters only the first and second cond

clauses? Explain.

64 Procedures and Recursion

The last example of recursion in this chapter is the procedure snapper,

which takes three arguments: an item x, an item y, and a list Is. It builds

a new list in which each top-level occurrence of x in Is is replaced by y, and

each top-level occurrence of y in Is is replaced by x. We are "swapping" x

and y in Is. For example,

(swapper 'cat 'dog '(my cat eats dog food))

^=> (my dog eats cat food)

(swapper 'John 'mary '(John loves mary)) ^^ (mary loves John)

(swapper 'a 'n '(b n a n a n)) =^ (banana)
(swapper 'a 'b ' (c (a b) d)) =* (c (a b) d)

(swapper 'a 'b '()) =^> ()

In the fourth example, the a and b in the list are not at top level, so they are

not swapped.

In order to define swapper, we begin with an analysis of the base case.

What is the simplest case for this problem? If Is is empty, there is nothing

to swap and the empty list is returned. Thus we take cis the base case for Is

the empty list, and we begin the definition as follows:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

...)))

A nonempty list is simplified to the base case using the simplifying oper-

ation cdr. What is returned if we invoke (swapper x y (cdr Is))? The

result will be (cdr Is) with the items x and y interchanged. But this differs

from (snapper x y Is) only in that the first item in (swapper x y Is) is

missing. We will get (swapper x y Is) from (swapper x y (cdr Is)) by

consing the correct first item onto (swapper x y (cdr Is)). There are three

possibilities for this first item: it can be x, y, or neither. First, if (car Is) is

X, we should cons y onto (swapper x y (cdr Is)), so the next cond clause

in our definition can be added:

(define swapper ,

(leunbda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x)

(cons y (swapper x y (cdr Is))))

...)))

2.5 Tracing and Debugging 65

Program 2.8 swapper

(define swapper

(lanbda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x)

(cons y (swapper X y (cdr Is))))

((equal? (car Is) y)

(cons X (swapper X y (cdr Is))))

(else

(cons (car Is) (swapper x y (cdr Is)))))))

Second, if (car Is) is y, we should cons x onto (swapper x y (cdr Is)),

so the next cond clause can be added:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x)

(cons y (swapper x y (cdr Is))))

((equal? (car Is) y)

(cons X (swapper x y (cdr Is))))

...)))

Finally, if (car Is) is neither x nor y, then we just cons (ceir Is) itself

onto (swapper x y (cdr Is)), giving us the else clause and completing the

definition given in Program 2.8.

If we invoke the procedure swapper with the arguments 'b, 'd, and '(a

b c d b). it should return the list (a d c b d) in which b and d have been

interchanged. Let's walk through the program to see how it constructs this

answer. In the first procedure call, Is is bound to (a b c d b). This list is

not empty, and its car is neither b nor d, so the else clause is evaluated and

gives as the answer the cons expression:

(cons 'a (swapper 'b 'd ' (b c d b))

)

Let's refer to the value of this cons expression as answer- J , and that is the

value that we are looking for to solve the problem. At this point, however.

66 Procedures and Recursion

we have not yet evaluated the recursive invocation of swapper, so let's give

its value the name answer-2. We can now rewrite answer- 1 as

answer- 1 is: (cons 'a answer-2)

answer-2 is: (swapper 'b 'd '(bed b))

We see that answer- 1 is waiting for the value of answer-2, so we move on to

evaluating answer-2 and we shall return to get the value of answer-1 when

answer-2 is known.

To evaluate answer-2, we observe that the list (b c d b) begins with b, so

the second cond clause is the one with the true condition, and evaluating its

consequent gives us

answer-1 is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer- 3 is: (swapper 'b 'd '(c d b))

We still do not have a value for answer-3, so we once again set aside answer-2

until we have a value for answer-3. Note that we are making a table of these

various answers, with each successive entry placed below the preceding one.

We shall often refer to this table, so we give it the name return table.

To evaluate answer-3, we see that (c d b) is not empty, and does not

begin with b or d, so the alternative in the else clause is evaluated. We get

for answer-3

(cons 'c (swapper 'b 'd '(d b)))

and we give the invocation of swapper within answer-3 the name answer-4-

This gives us the return table:

answer-1 is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer-3 is: (cons 'c answer-^)

answer-4 is: (swapper 'b 'd ' (d b))

We have added answer-3 to our return table to wait until we have the value

of answer-4 •

For the invocation of swapper in answer-4 1 ^^^ condition in the third cond

clause is true, so our return table now becomes

answer-1 is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer-3 is: (cons 'c answer-4)

answer-4 is: (cons 'b answer-5)

answer- 5 is: (swapper 'b 'c '(b))

We have added answer-4 to our return table to wait for a value for answer-5.

2.5 Tracing and Debugging 67

For the invocation of swapper in answer-5, the condition in the second

cond clause is true, so the return table now becomes

answer-} is: (cons 'a answer-2)

answer-2 is: (cons 'd answer-3)

answer-3 is: (cons 'c answer-4)

answer-4 is: (cons 'b answer-5)

answer-5 is: (cons 'd answer-6)

answer- 6 is: (swapt>er 'h 'd '())

Once again we have added answer-5 to the return table to wait until we

have a value for answer-6. In the invocation of swapper in answer-6, the

terminating condition in the first cond clause is true, and the value () is

returned for answer-6.

What effect does this termination have on the return table? Although we

have a value for answer-6 , the computation does not stop, for we have to get

the values of each of the waiting variables in our return table. Until now,

on each recursive invocation of swapper, a new row was added to the return

table waiting for a value. This time we got a value for answer-6 , so we do

not have to add a row to the return table. Instead we replace the swapper

expression in the last row by its value () . We can now work our way back up

the table one row at a time, replacing each variable on the right side by the

value it has on the next row below. We shall write these replacements in a

new table, starting with the value for answer-6.

answer-6 is: ()

answer-5 is: (d)

answer-4 is: (b d)

answer-3 is: ([c b d)

answer-2 is: (d c b d)

answer- 1 is: (a d c b d)

The last row gives us the anticipated value for our invocation of swapper.

Let's take another look at the definition of the procedure swapper. In the

last three cond clauses, something is consed onto

(swapper x y (cdr Is))

What that something should be is determined by testing the value of (ceo-

Is). We can write a helping procedure swap-tester that makes the test and

returns the correct value to be consed onto

(swapper x y (cdr Is))

68 Procedures and Recursion

Assuming that we have such a test procedure, we can rewrite the definition

of swapper as follows:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

(else (cons (swap-tester x y (car Is))

(swapper x y (cdr Is)))))))

We now define the helping procedure swap-tester to distinguish the three

cases for us:

(define swap-tester

(Icunbda (x y a)

(cond

((equal? a x) y)

((equal? a y) x)

(else a))))

When swap-tester is called within swapper, the arguments x, y, and icax

Is) are substituted for the parameters x, y and a, respectively, and swap-

tester returns the correct value to be consed onto

(swapper x y (cdr Is))

The use of such helping procedures often simplifies the writing and reading of

programs. We shall make frequent use of this technique.

We could also have achieved the same effect without using the helping

procedure swap-tester by using in swapper the cond expression of swap-

tester in place of calling swap-tester. This leads to another version of

swapper:

(define swapper

(lambda (x y Is)

(cond

((null? Is) '())

(else (cons (cond

((equal? (car Is) x) y)

((equal? (car Is) y) x)

(else (car Is)))

(swapper x y (cdr Is)))))))

2.5 Tracing and Debugging 69

In this section, we have seen how to use writeln expressions to trace or

debug a program. We have also seen how a return table is created when a

recursive procedure is evaluated.

Exercises

Exercise 2.23

Identify what is printed on the screen and what is returned in each of the

following:

a. (begin

(writeln "(* 3 4) = " (• 3 4))

(= (3 4) 12))

b. (begin

(writeln "(cons 'a '(be)) has the value " (cons 'a ' (b c)))

(writeln "(cons 'a ' (b c)) has the value " ' (a b c))

(writeln "(cons 'a ' (b c)) has the value (a b c)")

(cons 'a '(be)))

c. (begin

(writeln "Hello, how aure you?")

(writeln "Fine, thanX you. How are you? " 'Jack)

(writeln "Just great! It is good to see you again, " 'Jill)

"Good-bye. Have a nice day.")

Exercise 2.24-' describe

With describe defined as

(define describe

(lambda (s)

(cond

((null? s) (quote '()))

((nunber? s) s)

((synbol? s) (list 'quote s))

((pair? s) (list 'cons (describe (ceir s)) (describe (cdr s))))

(else s))))

evaluate each of the following expressions:

a. (describe 347)

b. (describe 'hello)

70 Procedures and Recursion

c. (describe '(12 button my shoe))

d. (describe ' (a (b c (d e) f g) h))

Describe what describe does in general.

Exercise 2.25

Write a trace similar to the one used in remove-lst-trace to trace the pro-

cedure swapper, showing the binding of the parameter Is each time the cond

expression is entered and whenever a cond clause is exited. Invoke the traced

procedure swapper-trace on the arguments b, d, and (a b c d b) used in

the example in this section.

Exercise 2.26

In the return table built for the invocation of swapper in this section, the

computation did not stop when the terminating condition was true and the

first cond clause returned () . Instead, the variables in the table were evaluated

one by one until the value of the first was obtained to provide the value of

the original invocation. This program behaved in this way because after each

invocation of swapper, a cons still had to be completed. There was still

an operation to perform after swapper was invoked. Do a similar analysis,

building the return tables, on the two procedures last-item in Program 2.2

and member? in Program 2.3. In the first case, consider (last-item ' (a b

c)), and in the second case, consider (member? 'c '(abed)). In these

two examples, there is no procedure waiting to be done after the recursive

invocations of the procedure. Such programs are called iterative. We shall

discuss the behavior of iterative programs more thoroughly in the chapter on

numerical recursion.

Exercise 2.27

Does the answer change if cond clause 2 and cond clause 3 are interchanged

in the definition of swapper? Does the same thing hold if cond clauses 1 and

2 are interchanged in swap-tester?

Exercise 2.28: tracing, test-tracing

A more generally applicable tracing tool than the procedure leaving given

in Program 2.7 is the procedure tracing defined by

(define tracing

(lambda (message result)

(begin

(writeln message result)

result)))

2.5 Tracing and Debugging 71

Similarly, the procedure test-tracing defined by

(define test-tracing

(lambda (test message input)

(begin

(if test (tracing message input))

test)))

is useful for tracing the test part of a conditional expression. Rewrite the

definition of remove-lst-trace using test-tracing and tracing instead of

entering and leaving in such a way as to produce exactly the same output

as that generated using entering and leaving.

72 Procedures and Recursion

Data Abstraction and Numbers

3.1 Overview

Many of the procedures we studied in Chapters 1 and 2 operated on lists

and symbols. Another interesting area of applications deals with numerical

computations. In this chapter, we study procedures that perform arithmetic

operations on numbers. We also develop a program to do exact arithmetic us-

ing fractions instead of decimals, which are usually associated with computers.

This will provide our ^rst illustration of data abstraction.

3.2 Operations on Numbers

We shall discuss two types of numbers, integers and real numbers. The inte-

gers are the usual positive and negative counting numbers and zero:

...,-4,-3,-2,-1,0,1,2,3.4,...

where, in this case, the ellipsis means that the list continues indefinitely in

both directions.

The set of real numbers includes both positive and negative decimal num-

bers and zero. For example, 34.56, —3.456, 0.00034, and 17.0 are all real

numbers. The integers are also considered to be real numbers, so we may also

refer to the real number 5 or 5.0. We write real numbers with up to fifteen

significant figures,^ so | will be written as 0.333333333333333 and | multi-

plied by 10000 is written as 3333.33333333333. When the decimal point moves

^ The number of significant figures represented is system dependent.

beyond the fifteenth digit, Scheme may switch over to scientific notation. For

example, 0.333333333333333e45 represents the number one-third multiplied

by 10 raised to the forty-fifth power—that is, by a one followed by forty-five

zeros. Let's look at some simpler examples of scientific notation. The number

2.735e2 is the same as 273.5, since the e2 means that 2.735 is multiplied by

a one followed by two zeros—that is, by 100. Another way of saying this is

that the e2 means that the decimal point is moved two places to the right.

Another example is 2.735e-2, which is the same as 0.02735, since e-2 means

that 2.735 is multiplied by .01, or that the decimal point is moved two places

to the left.

We use two predicates, integer? and real?, to test the type of a number.

The expression (integer? mim) is true if num is an integer and false other-

wise. The expression (real? num) is true if num is any real number, including

integers, and is otherwise false. Three other useful predicates are zero?, pos-

itive?, and negative?, which make the obvious tests to see whether their

arguments are zero, positive, or negative, respectively.

The four basic arithmetic operations are given by the procedures associated

with the variables + for addition, - for subtraction, * for multiplication, and

/ for division. These are applied to numbers with applications, as were the

list operations in Chapter 2. For example, to add the two numbers 5 and 7,

we enter the expression (+ 5 7), and the answer 12 is returned. Similarly^

(- 4 32) ==> - 28

(* -15 -3) 45

(/ -15 -3) 5

(/ -16 -3) 5. 33333333333333

We recommend that you play around with these arithmetic operations on

various kinds of numbers and see what results appear.

In many programs, the successor of a given integer n is desired, and rather

than entering (+ n 1), we can use the successor procedure addl and write

(addl n). Thus

(addl 7) => 8

(addl -37) =* -36

^ When division is performed with two integers, some implementations of Scheme return

a fraction instead of a decimed. For example, (/ 2 3) is either displayed as 2/3 or as

0.66666666666666.

74 Data Abstraction and Numbers

Program 3.1 addl

(define addl

(IckBbda (n)

(+ n 1)))

Program 3.2 subl

(define subl

(lembda (n)

(- n 1)))

Not all implementations of Scheme provide the procedure addl, so we include

its definition in Program 3.1.

Similarly the predecessor procedure subl can be used to get the integer

that precedes a given integer. For example, instead of writing (- n 1), we

can write (subl n). Thus

(subl 7) => 6

(subl -37) =^ -38

The definition of subl is included in Program 3.2 in case the implementation

of Scheme you are using does not provide it.

There are many more Scheme procedures defined on numbers. We present

a brief list of these procedures in Figure 3.3 and make some short remarks

about each. When the objects to be tested for sameness may or may not be

numbers, eqv? and equal? both determine the type and apply the appropriate

sameness test. When it is known that the objects to be tested for sameness

are numbers, it is better to use =, which is specifically designed to apply to

numbers and should be used only to compare numbers. When testing for 0,

you should use zero?.

The computer's decimal representation 0.333333333333333 for the quo-

tient (/ 1 3) is not the same as the fraction 1/3 but is, rather, an approxi-

mation to it, the use of which is made necessary by the way real numbers are

represented in the computer. Thus we would not expect = to return true if

we test (/ 1 3) and 0.333333333333333. In general, because the internal

representation of certain numbers in the computer is only an approximation

to the actual number, we refer to such numbers as inexact numbers. We con-

sider numbers written with explicit use of a decimal point as being inexact,

3.2 Operations on Numbers 75

Expression

(= m n)

(< m n)

«» m n)

(> m n)

(>= m n)

(abs n)

(ceiling n)

(floor n)

(round n)

(truncate n)

(expt n /:)

(sqrt n)

(meuc n . . .) , (nin n .

(exp n) , (log n)

(sin n) , (cos n)

(asin n) , (acos n)

(tan n)

(atan n)

(quotient n k)

(remainder n k)

(modulo n k)

..)

Remarks

Tests whether the exact numbers m and n are equal.

Tests whether m is less than n.

Tests whether m is less than or equal to n.

Tests whether m is greater than n.

Tests whether m is greater than or equal to n.

Gives the absolute value of n. (abs 5) ^^ 5 and

(abs -5) =^ 5.

Gives the smciUest integer (inexact) which is > n.

(ceiling 5.3) =^ 6. (ceiling -5.3) - -5.

Gives the largest integer (inexact) which is < n.

(floor 5.3) ^ 5. (floor -5.3) =» -6.

Rounds n to the nearest integer (inexact). If n is

exactly halfway between two integers, it rounds it

to the nearest even integer.

Gives the integer (inexact) obtained by chopping off

the decimal part of n.

Raises n to the power k.

The square root of n, n > 0.

The maximum <ind minimum of n . . ., respectively.

The exponential of n and logarithm of n to the base

e, respectively.

The trigonometric sine and cosine, respectively, of n

(n in radians).

The arc sine and arc cosine of n, respectively.

The tangent of n (n in radians).

The ajc tangent of n.

The quotient of n divided by k.

The remainder of n divided by k with the sign of the

dividend.

The remainder of n divided by k with the sign of the

divisor.

Figure 3.3 Some of Scheme's mathematical operators

76 Data Abstraction and Numbers

for example, 3.25, —0.05. Integers, written without decimal points, are exact

numbers, and certain operations, such as + and *, preserve the exactness of

numbers. One should use only the predicate = to test for the sameness of

exact numbers.

We close this section with the definitions of several procedures that illustrate

the use of arithmetic operations in recursive programs. The first procedure

harmonic-sum sums the first n terms of the harmonic series, that is, it sums

the series of the form
1 1 1 1

2 3 n

Our strategy again is to simplify the problem by reducing the number of terms

n that are being summed. If n is zero, no terms are summed, and the sum is

zero. This will serve as the terminating condition for our recursion.

(define harmonic-sun

(lambda (n)

(cond

((zero? n) 0)

...)))

To make the recursive step, we observe that we get (harmonic-sum n) from

(hau:monic-sum (subi n)) by adding the nth term. For any positive n,

(harmonic-sum n) is the same as

(+ (/ 1 n) (harmonic-suffl (subl n)))

so we complete the definition with

Program 3.4 harmonic-sum

(define harmonic-sum

(lambda (n)

(cond

((zero? n) 0)

(else (+ (/ 1 n) (harmonic-sum (subl n)))))))

In programs dealing with numbers, it is often the case that the recursion is

accomplished by reducing the numerical argument each time the procedure

calls itself, and the smallest value of the numerical argument (in this caise, n is

zero) provides the terminating condition. Another simple illustration of this

3.2 Operations on Numbers 77

idea is the construction of a list containing a specified number of zeros. We
define list-of-zeros which has parameter n and builds a list contedning n

zeros. Its code is given in Program 3.5.

Progr2un 3.5 list-of-zeros

(define list-of-zeros

(laabda (n)

(cond

((zero? n) '())

(else (cons (list-of-zeros (subl n)))))))

The procedure length takes as its argument a list of items Is and then

tells how many top-level items are in the list. For example,

(length '(a b c d e)) ^ 5

(length '(1 (2 3) (4 5 6))) =^ 3

(length '(one)) ^ 1

(length '()) =>

The procedure length is provided in all implementations of Scheme. We shall

show the definitions of many of the procedures provided by Scheme because

you will learn programming better by knowing how these basic procedures

are defined. When you test our definitions of these procedures, it is good

practice to use a different name for the procedure you define so that you do

not override the definition of the procedure provided by Scheme. Thus for

the procedure length, you can use the name =length= when you enter your

definition.

To define length, we use recursion. The base case is the empty list whose

length is zero, and the operation cdr is used to simplify longer lists. We begin

the definition with the terminating condition:

(define length

(laabda (Is)

(if (null? Is)

...)))

Suppose we know (length (cdr Is)); then we get (length Is) by simply

adding one to (length (cdr Is)). This recursive step completes the last

line of the definition:

78 Data Abstraction and Numbers

Program 3.6 length

(define length

(lambda (Is)

(if (null? Is)

(addl [length (cdr Is))))))

The next procedure we define is list-ref , which takes as arguments a list

of items Is and a (nonnegative) integer n and gives us the (n + l)st top-level

item in Is. For example

(list-ref '(a b c d e f) 3) ==> d

(list-ref '(a b c d e f) 0) =» a

(list-ref '(a b c) 3)

=> Error: list-ref: Index 3 out of zange for list (a b c)

(list-ref '((1 2) (3 4) (5 6)) 1) ==> (3 4)

(list-ref '() 0)

=* Error: list-ref: Index out of range for list ()

The number n is called the index of the item extracted from the list Is by

(list-ref Is n). If the index is greater than or equal to the length of the

list of items Is, an error is announced. Since the first item in the list Is has

index 0, we say that the indexing is zero based.

The strategy we use in this recursion is based on the observation that if we

are looking for the nth item in the list, that item becomes the (n — l)st item

in the cdr of the list. Thus we shall successively remove the first item from

the list and simultaneously reduce the index of the desired item by one. If

the index reaches zero and the list is not empty, the first item in the list is

the item returned. We can determine whether the list will not become empty

before or when the index becomes zero by testing whether the length of the

list is larger than the index. If that is not the case, we signal an error. This

enables us to write the first version of the definition of the Scheme procedure

list-ref as follows:

(define list-ref

(lambda (Is n)

(cond

(«= (length Is) n)

(error "list-ref: Index" n "out of range for list" Is))

((zero? n) (car Is))

(else (list-ref (cdr Is) (subl n))))))

3.2 Operations on Numbers 79

The procedure error employed here to signal an error uses a procedure sim-

ilar to writeln to print its arguments on the screen and then returns to

the Scheme prompt. Most Scheme systems provide an error procedure. A
definition of the procedure error is given in Chapter 7.

In the program for list-ref , the test for whether the length of Is is less

than or equal to n is made on each recursive call. However, if the test is false

on the first call, it will remain false in each successive recursive call, since

both the length of the list and the index are reduced by one in each successive

call. It would be a much better program if the test were made only once, and

if it were false, then a helping procedure would be called that produces the

desired item. We give such a definition next.

(define list-ref

(lambda (Is n)

(cond

(«= (length Is) n)

(error "list-ref: Index" n "out of range for list" Is))

(else (list-ref -helper Is n)))))

with the helping procedure defined as

(define list-ref-helper

(lambda (Is n)

(if (zero? n)

(car Is)

(list-ref-helper (cdr Is) (subl n)))))

In general, it is good practice to avoid redundant computations when recur-

sive calls are made. The use of a helping procedure, as illustrated in this

definition of list-ref, is a way of avoiding this kind of inefficiency. Once it

is established that the length of the list is greater than the index, the helping

procedure does the rest of the computation to find the item without calling the

procedure list-ref again and determining the length of each Is repeatedly.

Another approach to defining list-ref derives from observing that if, dur-

ing the recursive calls, the list Is becomes empty while the index n is non-

negative, the index must have been too large for the list. Thus the program

can be written as:

80 Data Abstraction and Numbers

Progrcun 3.7 list-ref

(define list-ref

(lambda (Is n)

(cond

((null? Is)

(error "list-ref: Index" n "out of range for list" Is))

((zero? n) (car Is))

(else (list-ref (cdr Is) (subl n))))))

Exercises

We refer to a list of numbers as an n-iuple. Thus (1 3 5 7), (-1.3 2.5),

(3), and () are examples of n-tuples. The numbers in an n-tuple are called

components. In Exercises 3.1-3.4, you are asked to define several procedures

on n-tuples. In all of the exercises in this section, you may use procedures

you have already defined as helping procedures.

Exercise 3.1: sum

Define a procedure sum that finds the sum of the components of an n-tuple.

Test your procedure on:

(sum '(12 3 4 5)) —» 15

(sub '(6)) »^ 6

(sub '()) -
Exercise 3.2: pairwise-sum

Define a procedure pairvise-sum that takes two n-tuples of the same length,

ntpl-1 and ntpl-2, as arguments and produces a new n-tuple whose compo-

nents are the sum of the corresponding components of ntpl-1 and ntpl-2.

Test your procedure on:

(pairwise-sum ' (1 3 2) » (4 -1 2)) »=* (5 2 4)

(pairwise-sum '(3.2 1.5) '(6.0 -2.5)) => (9.2 -1.0)

(pairwise-sum '(7) '(11)) —^ (18)

(pairwise-sum '() '()) ^*

In an analogous way, define a procedure pairwise-product that produces an

n-tuple whose components are the products of the corresponding components

of ntpl-1 and ntpl-2.

S.2 Operations on Numbers 81

Exercise 3.3: dot-product

Define a procedure dot -product that takes two n-tuples of the same length,

multiplies the corresponding components, and adds the resulting products.

This exercise can be done either directly or by using the procedures defined

in Exercises 3.1 and 3.2. Consider the advantages and disadvantages of each

approach. Test your procedure on:

(dot-product '(3 4 -1) '(1 -2 -3)) =» -2

(dot-product '(0.003 0.035) '(8 2)) =^ 0.094

(dot-product '(5.3e4) '(2.0e-3)) =S> 106.0

(dot-product ' () '()) =>

Exercise 3.4-' mult-by-n

Define a procedure mult-by-n that takes a number num and an n-tuple ntpl

as arguments and multiplies each component of ntpl by num. Test your pro-

cedure on:

(mult-by-n 3 ' (1 2 3 4 5)) ==> (3 6 9 12 15)

(mult-by-n ' (1 3 5 7 9 11)) => (000000)
(mult-by-n -7 '()) => ()

Exercise 3.5: index

Define a procedure index that has two arguments, an item a and a list of

items Is, and returns the index of a in Is, that is, the zero-based location of

a in Is. If the item is not in the list, the procedure returns -1. Test your

procedure on:

(index 3 '(12345 6))=>2
(index 'so '(do re me fa so la ti do)) =^ 4

(index 'a ' (b c d e)) => -1

(index 'cat '())=> -1

Exercise 3.6: make-list

Define a procedure make-list that takes as arguments a nonnegative integer

num and an item a and returns a list of num elements, each of which is a. Test

your procedure on:

(make-list 5 'no) =^ (no no no no no)

(meJce-list 1 'maybe) ==* (maybe)

(make-list 'yes) ^^ ()

(length (make-list 7 'any)) ==* 7

(all-same? (make-list 100 'any)) ^ «t

8t Data Abstraction and Numbers

Exercise 3.7: count-background

Define a procedure count-background that takes an item a and a list of items

Is as arguments and returns the number of items in Is that are not equal?

to a. Test your procedure on:

(count-background 'blue '(red white blue yellow blue red)) =» 4

(count -backgroiind 'red '(white blue green)) =^ 3

(count -background 'white '()) ^^

Exercise 3.8: list-front

Define a procedure list-front that takes as arguments a list of items Is and

a nonnegative integer num and returns the first num top-level items in Is. If

num is larger than the number of top-level items in Is, an error is signaled.

Test your procedure on:

(list-front ' (a b c d e f g) 4) =^ (abed)
(list-front ' (a b c) 4) ^^ Error: length of (a b c) is less than 4.

(list-front ' (a b c d e f g) 0) => ()

(list-front '() 3) ^^ Error: length of () is less than 3.

Exercise 3.9: wrapa

Define a procedure wrapa that takes as arguments an item a and a nonnegative

integer num and wraps num sets of parentheses around the item a. Test your

procedure on:

(wrapa 'gift 1) => (gift)

(wrapa 'semdwich 2) ^^ ((sandwich))

(wrapa 'prisoner 5) =^* (((((prisoner)))))

(wrapa 'moon 0) ^^ moon

Exercise 3.10: multiple?

Define a predicate multiple? that takes as arguments two integers ra and n

and returns #t if m is an integer multiple of n. (Hint: Use remainder.) Test

your procedure on:

(multiple? 7 2) => «f

(multiple? 9 3) =^ #t

(multiple? 5 0) =* #f

(multiple? 20) => #t

(multiple? 17 1) => #t

(multiple? 0) => #t

3.2 Operations on Numbers 83

Exercise 3.11: sum-ol-odds

It can be shown^ that the sum of the first n odd numbers is equal to n^ . For

example,

1 + 3 + 5 + 7= 16 = 4^

Write a procedure sum-of-odds that sums the first n odd integers. Test your

procedure by evaluating it for all values of n from 1 to 10 to see that each is

the perfect square of the number of terms.

Exercise 3.12: n-tuple->integer

Define a procedure n-tuple->integer that converts a nonempty n-tuple of

digits into the number having those digits. Test your program on the following:

(n-tuple->integer '(3 1 4 6)) =* 3146

(n-tuple->integer '(0)) -^
(n-tuple->integer '()) ""^ Error: bad arg\ment () to n-tuple->integer

((n-tuple->integer '(1 2 3)) (n-tuple->integer '(3 2 1))) «- 444

Exercise 3.13

If Is is a list of length 1000, how much "cdring" in Is is necessary in each

of the three programs for list-ref presented in this section in order to find

(list-rel Is 4)? Which of the three programs is most efficient?

3.3 Exact Arithmetic and Data Abstraction

The numbers discussed above were either integers for which the arithmetic

operations of +, -, and * give exact results or are inexact numbers, which may

be rounded decimal representations and for which the arithmetic operations

give approximations. For division, even if the numerator and denominator

are exact integers, the result may be an approximation; for example, (/ 1 3)

might return the inexact number 0.33333333333333, which is not i. It is

possible to do arithmetic with fractions (rational numbers) and get answers

as exact fractions when arithmetic operations are performed. In this section,

we shall develop such an exact arithmetic.

^ Let S = 1 + 3 + 5+ t-(2n-l). We get the szmie sum if we aAd the numbers in reverse

order, so 5 = (2n - 1) + (2n - 3) H h 3 + 1. Adding the first terms of eeich sum, we get

2n. Adding the second terms of each sima, we get 2n and in general adding corresponding

terms in the two svuns, we get the seune siun, 2n. There ese n such corresponding pairs of

terms, so 25 = n(2n) and S = v?

,

84 Data Abstraction and Numbers

Recall that a fraction (or rational number) j is composed of two integers: a

is its numerator, and 6, which must be different from zero, is its denominator.

For the moment, we do not concern ourselves with how the rational number or

fraction is represented. We shall come back to that later in this section. For

the time being, we use the fact that a rational number has a numerator and

a denominator and cissume that we have access to these two parts by means

of two procedures niunr and denr. Thus if rtl represents a rational number,

then (numr rtl) is its numerator and (dear rtl) its denominator. These

are called the two selector procedures for rational numbers, just as cslt and

cdr were the two selector procedures for lists. We shall also assume that we

have a constructor procedure that reassembles the rational number from its

numerator and denominator. We call this constructor procedure njJce-ratl

because it builds (or makes) a rational number from its parts. Thus for a

rational number rtl, the expression

(eJte-ratl (nvimr rtl) (denr rtl))

is just the rational number rtl again. For example, (make-ratl 3 6) is the

rational number with numerator 3 and denominator 5.

With these selector and constructor procedures, we proceed to build up the

arithmetic of rational numbers without concerning ourselves with the repre-

sentation of the rational numbers. We begin with the definition of a predicate

rzero?, which tests whether a rational number rtl is equal to zero. We use

the fact that a rational number is equal to zero only when its numerator is

equal to zero. Thus we have:

Program 3.8 rzero?

(define rzero?

(lambda (rtl)

(zero? (nuMr rtl))))

Now we recall how two fractions are combined by the various arithmetic

operations. For example, the sum of the fractions j and ^ has the numerator

{a*d) + (fe*c) and the denominator b*d. Thus if x and y are two rational

numbers, we define the sum procedure, say r+, in Program 3.9. The first

argument to maJte-ratl is the numerator of the sum, and the second argument

to maike-ratl is the denominator of the sum.

3.8 Exact Arithmetic and Data Abstraction 85

Program 3.9 r+

(define r+

(laabda (x y)

(ake-ratl

(+ (* (numr x) (denr y)) (* (n\i«r y) (denr x)))

(* (denr x) (denr y)))))

Since the product of two fractions j and | is the fraction having numerator

a*c and denominator b*d, we can define the product procedure r* for rational

numbers as follows:

Progreun 3.10 r*

(define r*

(lasbda (x y)

(eJce-ratl

(* (nxoar x) (numr y))

(* (denr x) (denr y)))))

Similarly, the difference procedure r- is defined by

Program 3.11 r-

(define r-

(laabda (x y)

(ake-ratl

(- (* (n\i«r x) (denr y)) (* (numr y) (denr x)))

(* (denr x) (denr y)))))

If we invert a nonzero rational number j, we get ^. The procedure rinvert in

Program 3.12 carries out this operation . We now define the division operator

r/ in Program 3.13. The definition of r/ reflects the familiar rule, "invert the

divisor and multiply."

Another useful procedure is the predicate r= that tests whether two rational

numbers are equal. Two rational numbers j and | are equal if ad = 6c. Thus

we can write the definition of r= given in Program 3.14.

86 Data Abstraction and Numbers

Program 3.12 rinvert

(define rinvert

(lambda (rtl)

(if (rzero? rtl)

(error "rinvert: Cannot invert " rtl)

(sJce-ratl (denr rtl) (nuar rtl)))))

Program 3.13 r/

(define r/

(laabda (x y)

(r* X (rinvert y))))

Progr€m[i 3.14 r=

(define r«

(laabda (x y)

(((niiar x) (denr y)) ((nuar y) (denr x)))))

Program 3.15 rpositive?

(define rpositive?

(laabda (rtl)

(or (and (positive? (niuu: rtl)) (positive? (denr rtl)))

(and (negative? (nuBr rtl)) (negative? (denr rtl))))))

We can similarly define a predicate rpositive? by using the fact that a

rational number j is positive if a and 6 are both positive or both negative.

Thus we get Program 3.15.

The predicate r> tests whether a rational number x is greater than a ra-

tional number y by testing whether their difference is positive. This leads to

Program 3.16. The definition of the predicate r<, which tests whether x is less

than y is obtained by interchanging x and y in the last line of the definition

of r>.

Many other familiar procedures can be built up in terms of these, and

we can go on to develop an extensive arithmetic for rational numbers using

S.S Exact Arithmetic and Data Abstraction 87

Program 3.16 r>

(define r>

(lambda (x y)

(rpositive? (r- x y))))

Program 3.17 meix

(define BcLX

(lanbda (x y)

(if (> X

X

y)))

y)

Program 3.18 maix

(define max
(lanbda (x y)

(if (r> X

X

y)))

y)

what we have constructed up to this point. For example, we can define the

procedure nneix, which selects the larger of its two arguments, or its second

argument if they are equal. Before defining rmaa, we show in Program 3.17

how the Scheme procedure max for two numbers can be defined. Similarly, we

can define rmajc as shown in Program 3.18.

The definition of the procedure nnin, which returns the smaller of its two

arguments or the second if they are equal, is obtained from the definition

of nnaix by changing the r> to r<. We are now in a position to make an

important observation. When two procedure definitions are as similar as

nnajc and nnin, we could have written one definition from which both could

be obtained by peissing the predicate r> or r< as an argument to the procedure.

To demonstrate how this is done, let us use the parameter pred to stand for

either of these predicates. Then we define the procedure extreme-vailue in

Program 3.19.

88 Data Abstraction and Numbers

Program 3.19 extreme-value

(define extreme -value

(lambda (pred X y)

(if (pred x y)

X

y)))

Now we can simply write

(define rmax

(lambda (x y)

(extreme-value r> x y)))

and

(define rmin

(leunbda (x y)

(extreme-value r< x y)))

We get as a bonus the fact that max and min can also be obtained from

extreme-value, for if x and y are real numbers, we can write

(define msix

(laimbda (x y)

(extreme-value > x y)))

and for min we have

(define min

(lambda (x y)

(extreme-Veilue < x y)))

The predicates that were parsed as arguments to the procedure extreme-

value are procedures themselves. The ability to pass procedures as arguments

to other procedures is a powerful tool in Scheme, and we shall make use of it

many times. In Chapter 7, when we talk about procedures that return other

procedures, we shall see a better way of writing these definitions.

We can also define a procedure rprint that prints the results of our calcu-

lations in the familiar form as a fraction by using the procedure writeln.

3.3 Exact Arithmetic and Data Abstraction 89

Program 3.20 rprint

(define rprint

(lambda (rtl)

(writeln (nuar rtl) "/" (denr rtl))))

Thus if rtl represents the fraction |, (rprint rtl) displays 2/3.

We have gone a long way in our exact arithmetic using the selector proce-

dures numr and denr and the constructor procedure make-ratl without ever

saying what they are. Using the arithmetic operations for the rationals r+,

r*, r-, and r/ and the other procedures that we have defined, we can write

many complicated programs using exact arithmetic on rational numbers. If

someone were to give us the three procedures numr, denr, and make-ratl, we

would not have to know how they are defined in order to use them, and other

procedures depending on them, in programs we write.

If. in the course of writing a program, we need a rational number with

numerator 2 and denominator 3, we simply write (make-ratl 2 3) for that

number. Thus if we were writing a rational number package for someone else

to use, all we would have to provide the user with are the procedures numr,

denr, make-ratl, and the other procedures defined in terms of these and the

user can compute with the package without ever being concerned about how

the procedures numr, denr, and msike-ratl themselves are defined. We have

treated the rational numbers as abstract data. We are now free to choose any

representation of the rational numbers we wish and to define the selectors and

constructor procedures appropriately for the data representation we choose.

What is especially nice about this approach is that we are free to change the

data representation any time we wish, and when we only redefine the three

procedures numr, denr. and make-ratl, the rest of the procedures we have

written still work and do not have to be changed in any way. That is the

power of abstraction.

So far, we have been able to write all of our procedures, but we have not

been able to test them because we have not been given the constructor and

the selectors. We have reached the point where we choose a representation

of the rational numbers and define the selector and constructor procedures.

For the first method of defining them, let us take the representation of the

rational number with numerator a and denominator b to be (list a b),

where b is never to be zero. We can then define the selectors numr and denr

for the rational number rtl and the constructor make-ratl for the integers

intl and int2 as shown in Program 3.21. With these definitions, all of the

90 Data Abstractton and Numbers

Program 3.21 numr, denr, meike-ratl

(define numr

(lambda (rtl)

(car rtl)))

(define denr

(lambda (rtl)

(cadr rtl)))

(define make-ratl

(lambda (intl int2)

(if (zero? int2)

(error "make-ratl: The denominator cannot be zero.")

(list intl int2))))

procedures we previously defined can be used with no modifications to make

up our package for rational arithmetic.

To find the denominator of a rational number using the given list represen-

tation, we have to take the car of the cdr of the list representing the number.

It is possible to have a representation that makes the denominator operation

more efficient and uses less storage space if we use a dotted pair to represent

the rational number. Thus the rational number that has numerator a and

denominator b is represented by the dotted pair (a . b). Then the selectors

are

(define numr

(lambda (rtl)

(car rtl)))

(define denr

(lambda (rtl)

(cdr rtl)))

and the constructor is

(define make-ratl

(lambda (intl int2)

(if (zero? int2)

(error "make-ratl: The denominator cannot be zero.")

(cons intl int2))))

3.3 Exact Arithmetic and Data Abstraction 91

Another natural representation to consider for the rational number with nu-

merator 3 and denominator 4 is the symbol 3/4. We do not have the tools to

define the selectors and the constructor for this representation yet. A knowl-

edge of how to operate with string and character data types is necessary to

do so. However, each of the possibilities for representing the rational numbers

gives rise to different definitions of the procedures numr, denr, and make-ratl,

but none of the other procedures defined in our rational arithmetic package

has to be changed in any way. They are all representation independent. If you

want to change representations, only the constructor and selector procedures

would have to be changed: the rest of the procedures would still be valid with

no alterations. We defined only the three procedures numr, denr. and make-

ratl in terms of the data objects (lists or dotted pairs in the examples) used

by the computer; the rest of the procedures were defined in terms of these se-

lector and constructor procedures with no reference to the data objects. Since

the data objects were not specified in advance, we treat the data abstractly

and develop the rest of the procedures using the abstract data. We can then

specify concrete realizations of the data objects (or data structures) to run

the procedures. This is data abstraction.

Exercises

Use the procedures defined in this chapter for rational arithmetic in defining

the following procedures.

Exercise 3.14- rminus

Define a procedure rminus that takes a rational number as its argument and

returns the negative of that number.

Exercise 3.15: same-sign?

Consider this definition of rpositive?:

(define rpositive?

(lambda (rtl)

(same-sign? (numr rtl) (denr rtl))))

Define same-sign? so that rpositive? is correct.

Exercise 3.16: rabs

Define a procedure rabs that takes a rational number and returns its absolute

value.

92 Data Abstraction and Numbers

Exercise 3.17: make-ratl

Scheme has a procedure gcd that takes as arguments two integers and returns

their greatest common divisor, that is, the largest positive integer, which

divides into the two given integers. For example.

(gcd 8 12) =* 4

(gcd 8 -12) ==^ 4

(gcd 5) ^^ ^i

Write the definition of the procedure make-ratl so that (make-ratl a b) is

a list (p q) in which p/q = a/b and p/q is reduced to lowest terms (so that

1 is the greatest common divisor of p and q) and in which q is positive. Test

your procedure with:

(make-ratl 24 30) =» (4 5)

(make-ratl -10 15) => (-2 3)

(make-ratl 8 -10) =^ (-4 5)

(make-ratl -6 -9) =^ (2 3)

(make-ratl 8) =^ (0 1)

Using this version of make-ratl ensures that the internal representation of

each rational number is unique.

3.3 Exact Arithmetic and Data Abstraction 93

Data Driven Recursion

4.1 Overview

In this chapter, we continue our study of recursion over the top-level items in

lists. Then we make the extension to recursion over the items in the nested

sublists as well, giving us tree recursion. In certain of our computations, a

return table is built while operations that have yet to be performed wait for

recursive procedure calls to return values. We discuss another way of doing

the computations, called iteration, in which there are no operations waiting

for procedure calls to return values, and hence no return table need be con-

structed. The factorial procedure and Fibonacci sequences are introduced. To

compare the efficiency of various methods for computing them, we investigate

the growth of execution time as the argument grows, demonstrating linear

and exponential growth rates.

4.2 Flat Recursion

We begin with three more examples of recursive procedures, with the recursion

being done over the top-level items in lists. In our examples of recursion

involving lists, we made the recursive step by applying the procedure to the

cdr of the list. The car of the list was then treated as a unit, which is why the

recursion was over the top-level items in the list. We refer to a recursion over

the top-level items of a list as aflat recursion, and we say that the procedure

so defined is flatly recursive or simply a flat procedure.

The first procedure we define is the two-argument version of the Scheme

procedure append, which has as parameters two lists, Isl and ls2 and builds

a list that consists of the top-level items in Isl followed by the top-level items

in ls2. We say that we are appending ls2 to (the end of) Isl. For example,

(append '(a b c) ' (c d)) ^ (a b c c d)

(append ' () ' (a b c)) ^ (a b c)

We define append using recursion on the first list. Isl. Cdring on Isl ulti-

mately produces the base case in which Isl is empty. In the base case, when

Isl is empty. Is2 is returned. Thus we can begin the definition with the base

case:

(define append

(laabda (Isl ls2)

(if (null? Isl)

ls2

...)))

To express (append Isl ls2) in terms of (append (cdr Isl) ls2). observe

that (append (cdr Isl) ls2) differs from (append Isl ls2) only in the

absence of the first top>-level item in Isl. For example, if Isl is (a b c) and

ls2 is (d e), then (append (cdr Isl) ls2) gives us (b c d e). and only

(car Isl) remains to be included. Thus when Isl is not empty, (append

Isl ls2) is the same as (cons (car Isl) (append (cdr Isl) ls2)). We
can therefore complete the definition of append.

Program 4.1 append

(define append

(lambda (Isl ls2)

(if (null?

Is2

Isl)

(cons ('car la 1) (append (cdr Issi) l82)))))

Another procedure often used is the Scheme procedure reverse, which

takes a list as its argument and builds a list consisting of the top-level items

in its argument list taken in reverse order. For example,

(reverse ' (1 2 3 4 5)) =* (5 4 3 2 1)

(reverse '((1 2) (3 4) (5 6))) =^ ((5 6) (3 4) (1 2))

96 Data Drtien Recursion

We again use recursion and look at what reverse does to the cdr of the list

Is. In the first example above,

(reverse ' (2 3 4 5)) =^ (5 4 3 2)

To get reverse of (1 2 3 4 5) from (5 4 3 2), we must put the 1 into the

last position in the list. We can do this with the procedure append if we make

the 1 into a list (1) and then append (1) to the end of (5 4 3 2). This is

the key to writing the definition of the procedure reverse.

We take the empty list as the base case and note that if we reverse the

items in the empty list, we still have the empty list. Thus we can begin the

definition with the terminating condition, which says that if the list is empty,

the empty list is returned.

(define reverse

(lambda (Is)

(if (null? Is)

'()

...)))

To get (reverse Is) from (reverse (cdr Is)), we must append the list

that is the value of (reverse (cdr Is)) to the front of the list that is the

value of (list (car Is)). We then complete the definition with

Program 4.2 reverse

(define reverse

(leunbda (Is)

(if (null? Is)

'()

(append (reverse (cdr Is)) (list (car Is))))))

A list of numbers (or n-tuple) is said to be sorted in increasing order if each

number in the list is less than or equal to the number following it in the list.

For example, (2.3 4.7 5 8.1) is sorted in increasing order. If we have two

lists, each sorted in increasing order, we can merge them into a single list in

increasing order. For example, if the list given above is merged with the list

(1.7 4.7), we get the list (1.7 2.3 4.7 4.7 5 8.1).

Let us now write a procedure merge, which takes two n-tuples, sorted-

ntpll and sorted-ntpl2, which have already been sorted in increasing order.

4.2 Flat Recursion 97

and builds the list obtained by merging them into one sorted n-tuple. If either

list is empty, merge returns the other list. Otherwise we compare the car of

the lists and cons the smaller one onto the list obtained by merging the rest

of the two lists. This analysis leads to the following definition:

Program 4.3 merge

(define merge

(lambda (sorted-ntpll sorted-ntpl2)

(cond

((null? sorted-ntpll) sorted-ntpl2)

((null? sorted-ntpl2) sorted-ntpll)

((< (car sorted-ntpll) (car sorted-ntpl2))

(cons (car sorted-ntpll)

(merge (cdr sorted-ntpll) sorted-ntpl2))

)

(else (cons (car sorted-ntpl2)

(merge sorted-ntpll (cdr sorted-ntpl2))))))

)

We shall use merge in Chapter 10 when we discuss the sorting of lists.

The definition of reverse used the procedure append, which was defined

earlier. It does not matter which was defined first, as long as both are defined

when the procedure reverse is invoked.

The test of whether a nonnegative integer is even or odd gives us another

good example of one procedure using another in its definition. There are many
more direct ways of defining the predicates even? and odd?, but the one we

present now was chosen because it illustrates how each of two procedures

invokes the other in its definition. We use the fact that an integer is even if

its predecessor is odd and odd if its predecessor is even. Starting with any

nonnegative integer, reducing it successively by 1 will eventually bring it to

0. which is even. This analysis leads us to the following definitions:

Program 4.4 even?

(define even?

(lambda (int)

(if (zero'

ft

? int)

(odd? (subl int))))

)

98 Data Dnven Recursion

and

Program 4.5 odd?

(define odd?

(lanbda (int)

(if (zero?

«f

int)

(even? (subl int)))))

In the definition of the procedure even?, the procedure odd? is called, and in

the definition of odd?, the procedure even? is called. This is an example of

mutual recursion in which each procedure calls the other. The two procedures

are said to be mutually recursive.

The procedure remove-lst defined in Chapter 2 removed the first top-level

occurrence of an item from a list of items. Let us now define a procedure

remove that removes all top-level occurrences of item from a list Is. As

before, the recursion will be flat, but now we continue the recursion until all

top-level occurrences of item have been removed from Is. The base condition

is (null? Is), and when it is true, the empty list is returned. Thus we begin

our definition with:

(define remove

(leunbda (iten Is)

(cond

((null? Is) '())

...)))

Next, if Is is not empty, (remove item (cdr Is)) is exactly the same as

(remove item Is) when the first item in Is is item, for that item is removed.

On the other hand, when the first item in Is is not item, then we must cons

it onto (remove item (cdr Is)) in order to get (remove item Is). Thus

we complete the definition, which is presented in Program 4.6.

The definition of remove differs from that of remove-lst in the middle

clause of the cond expression. In remove-lst the recursion stopped when the

first occurrence of item was found, whereas in remove the recursion continues.

This difference is typical of what we see if we compare the definitions of

procedures that stop after the first occurrence of an item to those that continue

to the end of the list. The procedure remove uses equal? to test for sameness.

You could write a version named remq that uses eq? to test for sameness and

4.2 Flat Recursion 99

Program 4.6 remove

(define reaove

(lambda (it en Is

(cond

((null? Is) '())

((equal? (car Is) item) (remove item (cdr Is)))

(else (cons (ceir Is) (remove item (cdr Is)))))))

a version named remv that uses eqv? to test for sameness. The exercises

contain other procedures involving flat recursion that go to the end of the

lists instead of stopping after the first occurrence of a given item.

Exercises

Exercise 4'^-' insert-left

Define a procedure insert-left with parameters new, old, and Is that builds

a list obtained by inserting the item new to the left of each top-level occurrence

of the item old in the list Is. Test your procedure on:

(insert-left 'z 'a '(abaca)) ^^ (z a b z a c z a)

(insert-left 1 '(0 1 1)) ^(001001)
(insert-left 'dog 'cat '(my dog is fun)) ^=* (my dog is fun)

(insert-left 'two 'one '()) ^ ()

Exercise 4-^' insert-right

Define a procedure insert-right with parameters new, old. and Is that

builds a list obtained by inserting the item new to the right of each top-level

occurrence of the item old in the list Is. Test your procedure on:

(insert-right 'z 'a '(abaca)) =^ (a z b a z c a z)

(insert-right 1 '(0 1 D) ==* (0 1 1 0)

(insert-right 'dog 'cat '(my dog is fun)) =^ (my dog is fun)

(insert-right 'two 'one '()) =* ()

Exercise 4-3: subst

Define a procedure subst with parameters new, old. and Is that builds a list

obtained by replacing each top-level occurrence of the item old in the list Is

by the item new. Test your procedure on:

100 Data Driven Recursion

(subst 'z 'a '(abaca)) => (z b z c z)

(subst 1 '(0 1 D) =^ (0 0)

(subst 'dog 'cat '(my dog is fun)) =^ (my dog is fun)

(subst 'two 'one '()) =^ ()

Exercise 4-4' deepen-l

Define a procedure deepen-1 with parameter Is that wraps a pair of paren-

theses around each top-level item in Is. Test your procedure on:

(deepen-1 '(abed)) => ((a) (b) (c) (d))

(deepen-1 '((a b) (c (d e)) f)) => (((a b)) ((c (d e))) (f))

(deepen-1 '()) => ()

4.3 Deep Recursion

In this section, we consider recursion over all the sublists of a list. We say

that the sublist (b c) is nested in the list (a (b c)). It is convenient to have

some way of describing how deep the nesting is. If an item is not enclosed by

parentheses, that item has nesting level 0. For example, the item bird has

nesting level 0. The elements of a list such as (a b c) have nesting level 1.

Thus b has nesting level 1 while the whole list (a b c) has nesting level 0.

Then each additional layer of parentheses adds 1 to the nesting level, so that

the nesting level of the item c in (a (b (c d))) is 3. The objects in the list

that have nesting level 1 are the top-level objects of the list. The top-level

objects in the list (a (b c) (d (e f))) are a, (b c), and (d (e f)).

We define a procedure count-all with parameter Is that counts those

items in the list Is that are not pairs. For example

1. (count-all '((a b) c ((d (e))))) => 6

2. (count-all '(() ())) =^ 3

3. (count-all '((()))) => 1

4. (count-all '()) =*•

To simplify our discussion, we use the adjective atomic to describe an item

that is not a pair. In this case, all of the atomic items in the list were counted,

not just the top-level items. Since the empty list is not a pair, the empty lists

that are included as items within the lists of Examples 1,2, and 3 are counted

as atomic items in the lists.

4-S Deep Recursion 101

The base case for the recursion is the empty Ust, for in that case, count-all

returns zero. Thus the definition begins with:

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

...)))

If Is is not empty, we proceed eis we did in our previous examples and consider

how we can get (count-all Is) from (count-all (cdr Is)). The two

diff'er by the number of atomic items in (ceu: Is). If (car Is) is atomic,

then (count-all Is) has a value that is just one greater than the value of

(count-all (cdr Is)). Thus we can continue the definition with:

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

((not (pair? (car Is))) (addl (count-all (cdr Is))))

...)))

When (car Is) is a pair (as is the case in Examples 1 and 3), we must count

the atomic items in (.cax Is) and add that amount to the value of (count-

all (cdr Is)) to get the value of (count-all Is). Thus we complete the

definition with:

Program 4.7 count-all

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

((not (pair? (car Is))) (addl (count-all (cdr Is))))

(else (+ (count-all (car Is)) (count-all (cdr Is)))))))

In fact, we can combine the last two cond clauses if we write the definition as

follows:

102 Data Driven Recursion

(define count-all

(leunbda (Is)

(cond

((null? Is) 0)

(else (+ (if (pair? (car Is))

(count-all (car Is))

1)

(count-all (cdr Is)))))))

The recursion described differs from flat recursion in that when the car of the

list is a pair, we apply the procedure being defined both to the car and to the

cdr of the list. In flat recursion, the procedure being defined was applied only

to the cdr of the list. When the recursion is over all of the atomic items of a

list, so that in the recursive step the procedure is applied to the car of the

list and to the cdr of the list, we call it a deep recursion. A procedure defined

using a deep recursion will be referred to as a deeply recursive procedure or

simply a deep procedure to distinguish it from a flat procedure. Deep recursion

is also called tree recursion.

Before leaving the definition of count-all, we should observe that we could

have avoided the use of the not in the second cond clause by changing the

order in which we considered the last two cases. That would give us the

definition:

(define count-all

(lambda (Is)

(cond

((null? Is) 0)

((pair? (car Is))

(+ (count-all (car Is)) (count-all (cdr Is))))

(else (+ 1 (count-all (cdr Is)))))))

Many of the flat procedures defined earlier have analogs that are deep pro-

cedures. To illustrate this, we consider the procedure remove-all, which is

analogous to remove. The procedure remove-all removes all occurrences of

an item item from a list Is. For example,

(remove-all 'a '((a b (c a)) (b (a c) a))) => ((b (c)) (b (c)))

The base case is the empty list, and when Is is empty, the empty list is

returned. Thus we begin the definition of remove-all with:

4-3 Deep Recursion 103

(define remove-all

(lambda (item Is)

(cond

((null? Is) '())

...)))

We next express (remove-all item Is) in terms of (remove-all item

(cdr Is)). If (equal? (car Is) item) returns true, then (remove-all

item Is) is the same as (remove-all item (cdr Is)), and we have:

(define remove-all

(Icifflbda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (remove-all item (cdr Is)))

...)))

If (cax Is) is a pair that is not the same as item, then we remove all occur-

rences of item from (car Is) and cons the result onto (remove-all item

(cdr Is)). Thus,

(define remove-all

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (remove-all item (cdr Is)))

((pair? (ccir Is))

(cons (remove-eill item (ceir Is)) (remove-all item (cdr Is))))

...)))

Finally, if (car Is) is atomic and is not the same as item, we must cons it

back onto (remove-all item (cdr Is)) in order to get (remove-all item

Is). We wrap up the definition in Program 4.8. We can combine the last two

cond clauses if we rewrite the definition as follows:

(define remove-all

(leimbda (item Is)

(cond

((null? Is) '())

((equal? (c«ur Is) item) (remove-all item (cdr Is)))

(else (cons (if (pair? (ceir Is))

(remove-all item (car Is))

(car Is))

(remove-all item (cdr Is)))))))

104 Data Driven Recursion

Program 4.8 remove-all

(define remove-all

(laj&bda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (remove-all item (cdr Is)))

((pair? (car Is))

(cons (remove-all item (car Is)) (remove-all item (cdr Is))))

(else (cons (car Is) (remove-all item (cdr Is)))))))

In this example, we again see that when (car Is) is a pair not equal to item,

the procedure remove-all is applied recursively to both the car and the

cdr of Is. Thus remove-all displays this characteristic behavior of deeply

recursive procedures.

We used equal? to test for sameness in the definition of remove-all. If

the arguments to which item is bound are always symbols, we can use eq? to

test for sameness. In this case, we know that the item that is the same as the

symbol we are removing is never a pair, so it is expedient to test for pair?

first. We can write the definition of remq-all as shown in Program 4.9. We
can similarly define remv-all, which uses eqv? in place of eq?.

Program 4.9 remq-all

(define remq-all

(leifflbda (symbl Isi)

(cond

((null? Is) •())

((pair? (car Is))

(cons (remq--all symbl (car Is)) (remq-all symbl (cdr Is.))))

((eq? (car Ifi) symbl) (remq -all symbl (cdr Is)))

(else (cons [car Is) (remq-.all symbl (cdr Is)))))))

When the flat procedure reverse is applied to a list, we get a new list with

the top-level objects in reverse order. Thus,

(reverse '(a (b c) (d (e f)))) => ((d (e f)) (b c) a)

We can also define a procedure reverse-all that not only reverses the order

4'3 Deep Recursion 105

of the top-level objects in the list but also reverses the order of the objects at

each nesting level with the sublists. We would then have:

(reverse-all ' (a (b c) (d (e f))))=* (((f e) d) (c b) a)

For the base case, the list is empty, and (reverse-all '()) returns the

empty list. Thus the definition begins with:

(define reverse-zdl

(lambda (Is)

(cond

((null? Is) '())

...)))

To carry out the recursion, we build (reverse-all Is) from (reverse-all

(cdr Is)). In the latter, all of the elements of (reverse-all (cdr Is))

are already in the correct order. We have to see how to include the items of

(car Is). If (cax Is) is a pair, we have to reverse its elements and place

them at the end of (reverse-all (cdr Is)) with the procedure append.

Thus we have:

(define reverse-all

(lambda (Is)

(cond

((null? Is) '())

((pair? (ceur Is))

(append (reverse-cill (cdr Is))

(list (reverse-all (cau: Is)))))

...)))

In the remaining case, (car Is) is not a pair, so we merely place it at the

end of (reverse-all (cdr Is)).

(define reverse-all

(lambda (Is)

(cond

((null? Is) '())

((pair? (car Is))

(append (reverse-all (cdr Is))

(list (reverse-all (car Is)))))

(else

(append (reverse-adl (cdr Is))

(list (car Is)))))))

106 Data Driven Recursion

Once again, in this recursion we see the typical form of a deep recursion. We
applied reverse-all to both the car and the cdr of the list in the second

cond clause.

It is instructive to look back at this definition of reverse-all and observe

the similarity between the two alternatives that begin with append in the

last two cond clauses. They differ only in the application of reverse-all

to (car Is) in the last line. Because of this similarity, we can combine the

two append expressions into one expression by putting the conditional branch

after (reverse-all (cdr Is)) . We get the following version of the definition

of reverse-all:

Program 4.10 reverse-all

(define reverse-all

(lambda (Is)

(if (null? Is)

'0

(append (reverse-all (cdr Is))

(list (if (pair? (car Is))

(reverse-all (car

(car Is)))))))

Is))

In this section, we have seen how to write deeply recursive procedures.

These have the characteristic property that a recursive step applies the pro-

cedure being defined to both the car and the cdr of the list.

Exercises

Exercise 4-5: subst-all, substq-all

Define a procedure subst-all with call structure (subst-all new old Is)

that replaces each occurrence of the item old in a list Is with the item new.

Test your procedure on:

(subst-all 'z 'a '(a (b (a c)) (a (d a))))

=> (z (b (z c)) (z (d z)))

(subst-all '(1) '(((1) (0)))) => ((0 (0)))

(subst-all 'one 'two '()) =>

Also define a procedure substq-all in which the parameters new and old are

only bound to symbols, so that eq? can be used for the sameness test.

4-3 Deep Recursion 107

Exercise 4-6: insert-left-all

Define a procedure insert-left-all with call structure (insert-left-all

new old Is) that inserts the item new to the left of each occurrence of the

item old in the list Is. Test your procedure on:

(insert-left-all 'z 'a '(a ((b a) ((a (c))))))

=> (z a ((b z a) ((z a (c)))))

(insert-left-all 'z 'a '(((a)))) ==> (((z a)))

(insert-left-all 'z 'a '()) =^

Exercise 4-7: sum-all

Define a procedure sum-all that finds the sum of the numbers in a list that

may contain nested sublists of numbers. Test your procedure on:

(sum-all '((1 3) (5 7) (9 11))) => 36

(sum-all '(1 (3 (5 (7 (9)))))) => 25

(sum-all '()) =>

4.4 Tree Representation of Lists

There is a convenient way of thinking of a list graphically as a tree that has

its root at the top and grows by branching downward. The original list is

a node that is located at the root. Each top-level object in the list forms a

new node connected to the root node by a branch. Each sublist itself then

becomes the root of a subtree, and the tree grows downward. For example,

the tree representing the list (a (b c d) ((e f) g)) is given in Figure 4.11.

Each item or sublist of the original list is a node of this tree. Each sublist is

itself the root of a subtree of the original tree. Thus ((e f) g) corresponds

to the subtree given in Figure 4.12.

An item at the lower end of a branch that is not the top end of another

branch is called a leaf of the tree. We can readily see how deeply an item

is nested in the list by looking at its nesting level in the tree. For example,

in Figure 4.11, the leaf a is at nesting level 1 and the leaf e at nesting level

3. We say that the depth of a list is the maximum of the nesting levels of all

of its items. The list (a (b c d) ((e f) g)) has depth 3. With the tree

growing downward, we can say that the depth of a list is the nesting level of

its lowest leaves.

To traverse a tree, that is, to move down the tree from one node to another,

we use the procedures cau: and cdr. Taking the car of a list corresponds to

108 Data Driven Recursion

(a (b c d) ((e f) g))

((e f) g)

Figure 4.11 Tree representation of the list (a (b c d) ((e f) g))

((e f) g)

Figure 4.12 The subtree ((e f) g)

moving down one node on the leftmost branch of the tree. Taking the cdr

of a list corresponds to considering the tree that is left when the leftmost

branch is omitted. Thus when taking the car, we move down one level on

the tree. When taking the cdr, we stay at the same level of the tree. With

an appropriate sequence of car and cdr applications, we can reach any node

of a tree. For example, in the tree in Figure 4.11, the node (e f) is reached

using caaddr.

We define a procedure depth that takes item as its argument and returns

its depth. The item may be either atomic or a list. If item is atomic, we

4-4 Tree Representation of Lists 109

Program 4.13 depth

(define depth

(lambda (item)

(if (not (pair? item))

(max (addl (depth (car item))) (depth (cdr item))))))

assign it depth 0. Since the empty list is atomic, it also has depth 0. We take

as the base case for the recursive definition the test (not (pair? item)), for

that corresponds to being at a leaf of the tree. We begin the definition of

depth with:

(define depth

(lambda (item)

(if (not (pair? item))

...)))

The depth of the whole tree is the larger of the depth of its leftmost branch

and the depth of the rest of its branches. Taking the cair of the list moves

down one node on the leftmost branch, so that the depth of the whole leftmost

branch is one greater than the depth of (car item). The depth of the rest

of the branches is just the depth of (cdr item). This gives us the definition

displayed in Program 4.13.

The procedure depth gives us the maximum number of levels in a tree

representing its argument. We next define a procedure that gives us a list of

the leaves on the tree as a list of atomic items, where each leaf is raised out

of its sublist to be at top level. We call this procedure flatten. When we

apply it to the list (a (b c d) ((e f) g)), we get (a b c d e f g). The

parameter of the procedure flatten will be Is. The base case is the empty

list, which flattens into itself. Thus we begin the definition of flatten with:

(define flatten

(leunbda (Is)

(cond

((null? Is) '())

...)))

When Is is not empty, we build (flatten Is) from (flatten (cdr Is))

by first determining whether (car Is) is a pair. If it is, we flatten (car Is)

110 Data Driven Recursion

and append the already flattened (flatten (cdr Is)) to it to get (flatten

Is). This gives us

(define flatten

(lEunbda (Is)

(cond

((null? Is) '())

((pair? (car Is))

(append (flatten (car Is)) (flatten (cdr Is))))

...)))

In the remaining case, (car Is) is atomic, so we cons it onto (flatten

(cdr Is)), and we complete the definition with

Program 4.14 flatten

(define flatten

(lambda (Is)

(cond

((null? Is) '())

((pair? (car Is))

(append (flatten (car Is)) (flatt<an (cdr Is))))

(else (cons (car]-s) (flatt<sn (cdr Is)))))))

We have discussed flat and deep recursion. A flat recursion is over the

top-level items of a list. This is equivalent to a recursion over the nodes of

the corresponding tree, which are one level below the root. A deep recursion

is over all of the items in the list. This is equivalent to a recursion over the

leaves of the corresponding tree. That is why deep recursion is also referred

to as tree recursion.

We conclude this section with an example of a procedure that removes an

item from a list but only the first (leftmost) occurrence of that item in the

list. Let us name the procedure remove-leftmost and look at a couple of

examples.

1. (remove-leftmost 'b '(a (b c) (c (b a))))

=> (a (c) (c (b a)))

2. (remove-leftmost ' (c d) '((a (b c)) ((c d) e)))

=J> ((a (b c)) (e))

4-4 Tree Representation of Lists 111

In Example 1, the first b that occurs in (b c) is removed, but the second b

that occurs in (c (b a)) is not removed. We denote the item to be removed

by item and the list by Is. The base case is again the empty list. When Is

is empty, the empty list is returned. Thus we begin the definition with the

terminating condition:

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

...)))

In order to take care of arguments like that in Example 2, we use equal? as

the sameness predicate. If (car Is) is the same as item, the answer is (cdr

Is), so we continue the definition with:

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

...)))

If (car Is) is atomic and is not the same cis item, the answer is obtained

by consing (car Is) to the list obtained by removing the leftmost item from

(cdr Is). Thus we get:

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((not (pair? Is))

(cons (car Is) (remove-leftmost item (cdr Is))))

...)))

We still have the case in which (car Is) is a nonempty list not equal to

item. If we analyze the recursion by looking at

(remove-leftmost item (cdr Is))

we see that we get a list with the first occurrence of item removed; but we

do not know whether this Weis the first occurrence of item in Is. We want to

112 Data Driven Recursion

Program 4.15 remove-leftmost

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((not (pair? (car Is)))

(cons (car Is) (remove--leftmost item (cdr Is))))

((member-all? item (car Is))

(cons (remove-leftmost item (car Is)) (cdr Is)))

(else (cons (car Is) (remove--leftmost item (cdr Is.)))))))

Program 4.16 member-all?

(define member-all?

(lambda (item Is)

(if (null? Is)

#f

(or (equal? (ceo- Is) item'

(and (not (pair? (car Is)))

(member-all'' item (cdr Is)))

(and (pair? (car Is))

(or (member--all? item (car Ie.))

(member--all? item (cdr Is.))))))))

remove only the first occurrence of item in Is, and its first occurrence may
not be in (cdr Is). In order to use this kind of argument, we must first

check to see whether the first occurrence of item in Is is in (car Is). We
do that with the helping procedure member-all?, a deeply recursive version

of member?, that we define after this definition. If item is in (car Is), we

cons (remove-leftmost item (car Is)) onto (cdr Is) to get the answer.

Otherwise, we cons (car Is) onto (remove-leftmost item (cdr Is)) to

get the answer. Thus we complete the definition as shown in Program 4.15.

The definition of member-all? is presented in Program 4.16.

A look at the definition of remove-leftmost reveals that the consequent in

the third cond clause and the alternative in the else clause are the same. We
can eliminate the repetition by interchanging the order of the tests we make.

The new version is given in Program 4.17.

4-4 Tree Representation of Lists 113

Program 4.17 remove-leftmost

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((and (pair? (car Is)) (member-all? item (car Is)))

(cons (remove-leftmost item (car Is)) (cdr Is)))

(else (cons (car Is) (remove--leftmost item (cdr Is)))))))

The recursion in the procedure remove-leftmost differs from the list re-

cursions done earlier in that we have to test whether item is in the car of the

list before proceeding to build the answer. This means cdring through the

car of the list twice in some cases. We shall return to the consideration of

remove-leftmost in Chapter 5, where a definition is presented that avoids

this double cdring. We have now seen various examples of both flat and deep

(tree) recursions.

Exercises

Exercise 4-8: count -parens-all

Write the definition of a procedure count-parens-all that takes a list as its

argument and counts the number of opening and closing parentheses in the

list. Test your procedure on:

(count-parens-all '()) ^^ 2

(count -parens-all '((a b) c)) ^^ 4

(count-parens-all '(((a () b) c) () ((d) e))) =» 14

Exercise 4-9: count-background-all

Define a procedure count-background-all that takes as its arguments item

and a list Is and returns the number of items in Is that are not the same

as item. Use the appropriate sameness predicate for the data shown in the

examples. Test your procedure on:

(count-background-all 'a '((a) b (c a) d)) ^^ 3

(count-background-all 'a ' ((((b (((a)) c)))))) => 2

(count-background-all 'b '()) ==*

114 Data Driven Recursion

Program 4.18 fact

(define fact

(lambda (n)

(if (zero? n)

1

(* n (fact (subl n))))))

Exercise 4-10: leftmost

Define a procedure leftmost that takes a nonempty list as its argument and

returns the leftmost atomic item in the list. Test your procedure on:

(leftmost '((a b) (c (d e)))) ==> a

(leftmost '((((c ((e f) g) h))))) => c

(leftmost '(() a)) => ()

Exercise 4-1 1- rightmost

Define a procedure rightmost that takes a nonempty list as its argument and

returns the rightmost atomic item in the list. Test your procedure on:

(rightmost '((a b) (d (c d (f (g h) i) m n) u) v)) ^ v

(rightmost '((((((b (c)))))))) =* c

(rightmost '(a ())) => ()

4.5 Numerical Recursion and Iteration

Recursion can also be used in numerical calculations. We consider several

examples in this section. We begin with the procedure fact, which takes

a nonnegative integer n cis its parameter and returns its factorial—that is,

the number multiplied successively by all the positive integers less than that

number. For example, (fact 5) has the value 5x4x3x2x1 = 120. We
derive this procedure using much the same kind of reasoning as we used with

lists, but instead of using cdr to reduce the size of the argument, we use subl.

Eventually the successive applications of subl to the argument will reduce it

to 0. We use the convention that the factorial of is 1, so that (fact 0) is

1. The recursive step in this case is done by considering (fact (subl n)),

which gives us the successive products of all of the positive integers less than

n. To get (fact n) from (fact (subl n)), all we have to do is multiply it

by n. From this, we get the definition for fact in Program 4.18.

4-5 Numerical Recursion and Iteration 115

When the procedure fact is applied to a number, say 3, a return table

is built much the same as the one that was built for the procedure swapper

in Chapter 2. The value of (fact 3) is denoted by answer-1. It is 3 times

(fact 2) , so the evaluation of answer-1 must wait until answer-2 is evaluated,

where answer-2 is (fact 2). Thus the first two rows of the return table are:

answer-1 is (* 3 answer-2)

answer-2 is (fact 2)

When we evaluate (fact 2), the return table becomes

answer-1 is (* 3 answer-2)

answer-2 is (* 2 answer-3)
answer-3 is (fact 1)

When we evaluate (fact 1), the return table becomes

answer-1 is (* 3 answer-2)

answer-2 is (* 2 answer-3)
answer-3 is (* 1 answer-^)

answer-4 is (fact 0)

where (fact 0) is 1. Now that we have found that answer-4 is 1, we work our

way up the table, replacing each answer on the right side by the value obtained

for it in the row below. This process is known as backward substitution. This

gives us:

answer-4 " 1

answer-3 is 1

answer- 2 is 2

answer- 1 is 6

so (fact 3) is 6. In finding (fact 3), the return table has four rows. In the

last row, the value of the variable on the left was obtained directly from the

terminating condition of the program. Then each of the other three variables

on the right was computed with a multiplication, so there were three multi-

plications required to complete the computation of (fact 3). The building

up of the return table and the subsequent backward substitution may be

summarized in the following:

116 Data Driven Recursion

(fiact 3)

(* 3 (fad; 2))

(* 3 (* 2 (fact: 1)))
(* 3 (* 2 (* 1 (fact 0))))
(* 3 (* 2 (* 1 1)))
(* 3 (* 2 D)
(* 3 2)

6

In general, to find the factorial of the number n, there would be n + 1

invocations of procedure fact. Thus the return table has n+ 1 rows. In the

last row, the value on the right is found to be 1—the value returned when the

terminating condition is true. In each of the other n rows of the return table,

a multiplication is performed to find the value on the right, making a total of

n multiplications to complete the computation.

We observed that a return table is constructed when we compute the fac-

torial using the recursive procedure fact. When the terminating condition

becomes true, the backward substitution must be performed on the return

table to get the answer. When the computation requires the construction of

a return table and backward substitution to get the answer, we say that the

computation is using a recursive process. We now look at another way of

defining a procedure to compute the factorial of a number that does not build

a return table. Instead, at each recursive invocation of the procedure, the

computations are performed without having to wait for other needed values,

and when the terminating condition is true, the answer is already computed

and is returned. In general, when the computer carries out a computation

without building a return table, so that backward substitution is not neces-

sary, the computational process is called an iterative process.

We have seen that in programs like the one written for fact, there is an

operation waiting for the value returned by the recursive procedure call. The

computational process so defined is not implemented as an iterative process.

On the other hand, we saw several iterative procedures, such as member?, in

which no operations waited for values returned by the recursive procedure

calls. In some programming language implementations, when an iterative

procedure is executed, it is still possible that a return table is built up and later

reduced by backward substitution. However, in Scheme, when a procedure is

intended to be iterative, the computation is always implemented in such a

way that no return table is needed.

To implement the computation of the factorial procedure as an iterative

process, we define a procedure named fact-it that has two parameters: n,

4.5 Numerical Recursion and Iteration 117

which is the integer whose factorial we are computing, and ace, another in-

teger, called an accumulator, which stores the answer at each step. Here is

how it works in computing the factorial of 3. Initially, n is bound to 3 and

ace is bound to 1. On each recursive invocation of fact -it, n is reduced by

1, and aec is replaced by its old value multiplied by the previous value of n.

When the base case (zero? n) is true, aee is equal to the answer 6. This is

illustrated in the following table. The initial values of n and aee are in the

first row. The entries in the first column decrease by 1 while each entry in the

second column is computed by multiplying the two entries in the preceding

row.

n aee

3 1

2 3

1 6

6

To define fact-it, we begin with the base case for which n is zero. When
(zero? n) is true, the accumulator has the answer, so aee is returned. Thus

we begin the definition with:

(define fact-it

(lanbda (n ace)

(if (zero? n)

ace

...)))

If n is not zero, we call faet-it with n reduced by one and the accumulator

multiplied by n, so the definition is completed with:

Program 4.19 fact-it

(define fact -it

(lambda (n ace)

(if (zero? n)

ace

(fact-it (subl n) (* aec n)))))

Let's walk through an invocation (fact-it 3 1), writing the successive

recursive invocations of faet-it, and finally writing the value 6 that is re-

turned:

118 Data Driven Recursion

(fact-it 3 1)

(fact-it 2 3)

(fact-it 1 6)

(fact-it 6)

6

In this computation, no return table is built up waiting for uncomputed values

to be returned. The accumulator is bound to the answer when the terminating

condition is true, and the answer is returned without any backward substitu-

tion. The fact that there is no waiting operation on each recursive invocation

of fact-it is seen when we look at the last line of the definition. After the

procedure call, there is no further operation to be done. Compare this last

line with the last line,

(* n (fact (subl n)))

in the definition of fact. We see that after the procedure fact is called, the

result must still be multiplied by n. When fact-it is called, no additional

operations are performed on the result. Thus fact-it runs as an iterative

process, but fact does not. When we trace this iterative procedure, we see

that the computation does not build up a return table of operations waiting

for values to be returned.

If we count the number of times we call the procedure fact-it and the

number of multiplications, we see that the total number of multiplications

is the same for the procedures fact-it and fact. However, the backward

substitution in the return table, which is built up when evaluating fact,

requires more memory space than is needed when evaluating the iterative

fact-it, which needs no return table. In the next section, we look at another

example, the computation of the Fibonacci numbers, where the difference is

more dramatic.

To compute the factorial of 3, we invoke (fact-it 3 1). If we do not like

to write the extra argument for the accumulator, we can define an iterative

version of fact that takes only one argument by writing

(define fact

(lambda (n)

(fact-it n 1)))

4-5 Numerical Recursion and Iteration 119

Exercises

Exercise 4-i2

Enter the procedure fact into the computer and compute (fact n) for n =

10, 20, 30, 40, 50 and 100. You will have an opportunity to observe how
the implementation of Scheme you are using displays large numbers.

Exercise 4-i3

What happens when you invoke (fact 3,5)?

Exercise 4-^4' harmonic-suin-it

Define an iterative procedure barmonic-sum-it that sums the first n terms

of the harmonic series

, 1111
Test your procedure by summing the harmonic series for 10 terms, 100 terms,

1000 terms, and 10,000 terms. It can be shown that

11 1 , ,11 1

23 n - ° - 23 n-1

where logn is the natural logarithm of n. Using the Scheme procedure log,

verify this inequality for the values of the sums computed above.

4.6 Analyzing the Fibonacci Algorithm

The following problem appeared in a textbook written in 1202 by the Italian

mathematician Leonardo of Pisa, who was the son of Bonacci, so his nickname,

taken from "filius Bonacci," became Fibonacci. How many pairs of rabbits are

born of one pair in a year? It was eissumed that every month a pair of rabbits

produces another pair and that rabbits begin to bear young two months after

their own birth.

The sequence of numbers that give the number of pairs of rabbits each

month is 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377. This tells us that

at the end of one month, the first pair had a pair of offsprings, so we have

two pairs. At the end of two months, only one pair is old enough to have

offsprings, so we have three pairs. At the end of three months, the first pair

of offsprings is old enough to bear young, so this time we get two new pairs,

120 Data Driven Recursion

and we have five pairs altogether. If we continue in this way, we generate

the sequence given above. Observe that each number in the sequence is the

sum of the two numbers preceding it. It has become customary to begin the

sequence with 0, 1, and use the algorithm that says that the next number

is always the sum of the preceding two numbers. The nth number in this

sequence is called the nth Fibonacci number.

We now define a procedure fib that takes a nonnegative integer n as its

parameter and returns the Fibonacci number corresponding to n. We have

(fib 0) is 0, (fib 1) is 1, (fib 2) is 1, (fib 3) is 2, and in general, for

n > 1, (fib n) is the sum of (fib (- n 1)) and (fib (- n 2)). We now

use this last recursive condition to define the procedure fib in Program 4.20.

Program 4.20 fib

(define fib

(lambda (n)

(if « n 2)

n

(+ (fib (- n D) (fib (- n 2))))))

(fib 4)

(fib 3) (fib 2)

(fib 2) (fib 1) (fib 1) (fib 0)

(fib 1) (fib 0)

Figure 4.21 Recursion tree for (fib 4)

To trace how (fib 4) is evaluated, we make a tree (Figure 4.21) in which

4-6 Analyzing the Fibonacci Algorithm 121

the root is labeled (lib 4). This is evaluated by adding (lib 3) and (lib

2), so our tree will have two branches, one going to a node (lib 3) and

the other to a node (lib 2). Each of these gives rise to two branches, (lib

3) giving rise to branches to the nodes (lib 2) and (lib 1), and (lib 2)

giving rise to branches to the nodes (lib 1) and (lib 0). This continues

until all of the leaves are either (lib 1) or (lib 0), which are known to be

1 and 0, respectively. This tree is an example of a binary tree because each

node that is not a leaf has at most two branches going down from it.

From Figure 4.21, we see that each node corresponds to a procedure call that

is made in evaluating (lib 4). In this case, there are nine procedure calls.

Each branch point (a node from which two branches originate) corresponds

to an addition, so there are four additions. In a similar way, we can build a

recursion tree for (lib 5), and we will have fifteen nodes and seven branch

points, hence fifteen procedure calls and seven additions. We suggest that you

draw the recursion trees for (lib 5) and for (lib 6) to see how large they

are and count the number of procedure calls and additions. It is not difficult

to see from the trees that if (calls-lib n) tells how many procedure calls

there are in computing (lib n) and (adds-lib n) tells how many additions

there are in computing (lib n), then these procedures satisfy the relations

(calls-lib 0) la 1

(calls-fib 1) is 1

(calls-fib n) is (addl (+ (calls-fib (- n 1)) (calls-fib (- n.2))))

and

(adds-f ib 0) is

(adds-fib 1) ts

(adds-f ib n) ts (addl (+ (adds-fib (- n 1)) (adds-fib (- n 2))))

We get Table 4.22 for these quantities.

n 012345678 9 10

(fib n) 1 1 2 3 5 8 13 21 34 55

(calls-fib n) 1 1 3 5 9 15 25 41 67 109 177

(adds-fib n) 1 2 4 7 12 20 33 54 88

Table 4.22 Count of procedure calls and additions

The number of procedure calls and the number of additions increase so

rapidly because in each procedure call, lib calls itself twice. This leads to

122 Data Driven Recursion

accl acc2

1

1 1

1 2

2 3

3 5

5 8

8 13

Table 4.23 Accumulator values for the iterative Fibonacci procedure

inefficiency since the same fib is called with the same arguments a number

of times, so that the different recursive calls repeat each other's work. In the

tree shown in Figure 4.21, (fib 2) is invoked twice and (fib 1) is invoked

three times. We next look at an iterative method for computing the Fibonacci

numbers.

A clue to how to set up an iterative process for computing the Fibonacci

numbers is found by observing that it takes the previous two numbers to

compute the next number in the sequence. Thus we have to store two jiumbers

at each step. We begin by storing the first two Fibonacci numbers, and 1

in accumulators, which we call accl and acc2. Thus at the start,

accl acc2

1

At each step, accl holds the current Fibonacci number and acc2 holds the

next one. Thus we can describe the algorithm that takes us from one step to

the next as follows:

1. The new value of accl is the same as the previous value of acc2.

2. The new value for acc2 is the sum of previous values of accl and acc2.

We apply these rules to extend the table to show the next six steps, as dis-

played in Table 4.23.

We are now ready to define a procedure fib-it that takes three arguments,

a nonnegative integer n, and the two accumulators, accl and acc2, and re-

turns the Fibonacci number corresponding to n. There are two ways that we

can use the algorithm given to write the code. In the first method, we can

use the value stored in accl (initially 0) to give us the answer. In that case,

one iteration of the algorithm gives us (fib 1), two iterations give us (fib

2), and in general n iterations give us (fib n) for any positive n. In the

4.6 Analyzing the Fibonacci Algorithm 123

Program 4.24 fib-it

(define fib-it

(lambda (n accl acc2)

(if (= n 1)

acc2

(fib-it (subl n) acc2 (+ accl acc2)))))

second method, we can use the value stored in acc2 (initially l) to give us

the answer. In this case, one iteration of the algorithm gives us (fib 2), two

iterations give us (fib 3), and in general, (n— 1) iterations give us (fib n).

The second method is more efficient for getting the value of (fib n). We opt

to implement the second method.

Our iterative procedure fib-it takes three parameters: the positive integer

n and the two accumulators accl and acc2. To implement the algorithm

stated above, we successively replace acc2 by the sum of accl and acc2,

and replace accl by the previous value of acc2. Then to compute the nth

Fibonacci number, we must repeat the process (n — 1) times. We use the

variable n as a counter and reduce it by one on each pass. When n reaches 1,

the accumulator acc2 contains the answer. This leads to the definition given

in Program 4.24.

Let's walk through (fib-it 6 1) to see how this works. On successive

passes through the program, the following procedure calls are made:

(fib-it 6 1)

(fib-it 5 1 1)

(fib-it 4 1 2)

(fib-it 3 2 3)

(fib-it 2 3 5)

(fib-it 1 5 8)

8

and the answer is the final value of acc2, which is 8. To compute the sixth

Fibonacci number, we only make six procedure calls and 5 additions. In

general, to compute the nth Fibonacci number, we make n procedure calls

and do n — 1 additions. This is a noticeable improvement over the number

of procedure calls and additions when fib is invoked. The iterative version,

fib- it, is certainly more efficient and saves a considerable amount of time

in computing the Fibonacci numbers. The ordinary recursive version, fib, is

less efficient but it does have the advantage of being easier to define directly

in terms of the rule that defines the Fibonacci numbers.

124 Data Driven Recuraion

Again, if we do not want to include the initial values of the accumulators

in each procedure call, we can define the iterative version of fib as

(define fib

(lambda (n)

(if (zero? n)

(fib-it n 1))))

We have seen that some methods of evaluating a given expression may take

more resources than other methods. The study of the efficiency of various

algorithms is called the analysis of algorithms. Let us denote the total re-

sources used in computing an expression that depends on an argument n to

be (res n). In our discussion, fib depended on the argument n, and we can

define as the resources used the sum of (calls-fib n) and (adds-^fib n).

Inspection of the table for (calls-fib n) shows that the following relation

exists between (calls-fib n) and (fib n):

(calls-fib n) = (addl (* 2 (subl (fib (addl n)))))

Similarly, (adds-f ib n) and (fib n) are related by

(adds-fib n) = (subl (fib (addl n)))

so that

(res n) = (addl (* 3 (subl (fib (addl n)))))

We now derive an estimate for (fib n). If you prefer, you can skip to

the formula for (fib n) given at the end of the derivation. We use the

fact that if a procedure satisfies the Fibonacci recurrence relation F{n) =
F{n — 1) + F{n - 2) and the initial conditions F(0) = and F{1) = 1, then

F[n) = (fib n) for all n. We begin by making a rather arbitrary assumption:

that F[n) gets large like some number a raised to the nth power. We then look

for restrictions that can be placed on the number a in order for the function

a" to satisfy the Fibonacci recurrence relation. If we are lucky enough to find

such conditions that determine a, we have solved the problem of finding a

formula for F{n). Substitution of a" into the recurrence relation gives us

^n „n— 1
I
„n—2a == a + a

4-6 Analyzing the Fibonacci Algorithm 125

and dividing through by a" ^ gives us the simple relation

a^ =0 + 1

This quadratic equation has the positive root

(l + v/5)

(l-v/5)

a —

and the negative root

'=
2

which are approximately 1.618 and —0.618, respectively.

It is easily verified that since both a" and 6" satisfy the Fibonacci recurrence

relation, then for any pair of numbers A and 5, the sum F(n) = Aa" + 56"

also satisfies the same recurrence relation. We thus try to find values of A
and B so that F(0) = and F(l) = 1. The constants A and B will now be

evaluated from the fact that

/'(0) = = A + 5

F(l) = l = .4a + 56

We find that A — -B = l/\/E and that with these values of A and B, F{n)

and (lib n) are the same for n = and n = 1, and that they both satisfy

the Fibonacci recurrence relation for all n. This means that they are the same

for £dl n, and we have

Thus (lib n) is somewhat less than 1.7", and (res n) is somewhat less than

3(1.7").

In general, we say that the procedure (res n) is of order 0{f{n)) for some

function / of n if there is a constant K such that (res n) < Kf{n) when n

is sufficiently large. In our case, we can say (res n) = 0(1.7") and since it

grows like the nth power of a number greater than 1, we say that (res n)

has exponential order when computing (lib n)

.

On the other hand, the operation count (res n) for computing (lib-it

n 1) is 2n - 1, which is simply 0{n). Here the n does not appear in an

exponent, but rather (res n) is simply a constant times n. We say that in this

case, (res n) has linear order. Thus the time required to compute (lib n)

grows exponentially with n, while the time required to compute (lib- it n

126 Data Driven Recursion

Program 4.25 reverse-it

(define reverse-it

(lambda (Is ace)

(if (null? Is)

ace

(reverse-it (cdr Is) (cons (cEir Is) ace)))))

1) grows linearly with n. We have seen what a dramatic difference this

makes.

In our two examples of iterative programs, we used procedures defined on

numbers. It is also possible to use similar methods to write iterative versions

of some of the list-processing procedures we considered earlier. For example,

consider the procedure reverse, which takes a list of items Is and returns

a list with the items in reverse order. We can write an iterative version

reverse-it that takes two arguments, a list of items Is and an accumulator

ace, which is initialized to be the empty list. The code for reverse-it is

given in Program 4.25. We now can obtain the procedure reverse by writing

(define reverse

(lambda (Is)

(reverse-it Is '())))

We leave it as an exercise to compare this iterative version with the earlier

recursive version of reverse. If we actually walk through each version with a

simple example, we see that the accumulator already is the answer when Is is

empty, whereas in the recursive version, we still have to use backward substi-

tution in a return table to get the answer. Furthermore the iterative version

does not use the helping procedure append. Generally, iterative versions tend

to require more arguments.

Exercises

Exercise 4-15

Rewrite the recursive version of the procedure fib with the line

(writeln "n = " n)

inserted just below the line (Isimbda (n). Then compute (fib 4) and com-

pare the results with the tree in Figure 4.21. Also compute (fib 5) and (fib

6) and observe how the number of recursive calls to fib increases.

4-6 Analyzing the Fibonacci Algorithm 127

Exercise 4- 16

Rewrite the iterative version of the procedure fib-it with the line

(writeln "n = " n ", accl = " accl ", acc2 = " acc2)

inserted just below the line

(lambda (n accl acc2)

Compute (fib-it 4 1) and compare the output with the output for (fib

4) in the preceding exercise. Do the same for (fib-it 5 1) and (fib-it

6 1).

Exercise 4^7: calls-fib, adds-fib

Write the definitions of the procedures calls-fib and adds-fib discussed in

this section. Test your procedures on the values given in Table 4.22. Also

evaluate each of these procedures for larger values of n to get an idea of their

rates of growth.

Exercise 4-18: length-it

Write an iterative version length-it of the procedure length, that computes

the length of a list.

Exercise 4-19: mk-asc-list-of-ints, mk-desc-list-of-ints

Write an iterative procedure mk-asc-list-of-ints that, for any integer n,

produces a list of the integers from 1 to n in ascending order. Then write an

iterative procedure mk-desc-list-of-ints that, for any integer n, produces

a list of integers from n to 1 in descending order.

Exercise 4-20: occurs, occurs-it

Define both recursive and iterative versions of a procedure occurs that counts

the number of times an item occurs at the top level in a list. Call the iterative

version occurs-it. Test your procedures by counting how many times the

item a occurs at top level in each of the following lists:

(a b a c a d)

(b c a (b a) c a)

(b (c d))

128 Data Driven Recursion

Locally Defined Procedures

5.1 Overview

When we bind a variable to some value using define, we are able to use that

variable to represent the value to which it is bound either directly in response

to a Scheme prompt or within a program that we are writing. Does this

mean that we have to think of new names for every variable we use when we

write many programs? No. Scheme gives us a mechanism for limiting where

bindings are in effect. In this chapter, we look at ways of binding variables

so that the binding holds only within a program or part of a program. The

main tools for doing this are two special forms with keywords let and letrec.

After introducing them, we use them to implement polynomials as a data type

in Scheme. We then apply the polynomial methods we develop to a discussion

of binary numbers, which form the basis of machine computation.

5.2 Let and Letrec

You may have wondered how Scheme knows what value to associate with

various occurrences of a variable. When some value is assigned to a variable,

we may think of that information being stored in a table with two columns: the

left one for variable names and the right one for the associated values. Such

a table is called an environment. A number of variables (such as those bound

to procedures) like +, , catx, and cons are predefined. These definitions are

kept in a table which we call the initial global environment. This initial global

environment is in place whenever you start up Scheme. When a given variable

is encountered in an expression, Scheme looks through its environment to see

if the variable has been bound to a value. Naturally, the variable + is bound

to the arithmetic operation we usually associate with the addition procedure,

and so on.

In addition to having the predefined Scheme variables, we have seen how

to use define to bind a variable to a desired value. The expression (define

var val) binds the variable var to the value val. We can again think of the

variables we define ourselves as being placed in a table which we call the user

global environment and when a variable is encountered in an expression, the

global environment (which includes both the user and initial global environ-

ments) is scanned to see if that variable is bound to a value. If a binding

cannot be found, a message is written saying that the variable is unbound in

the current environment. The user global environment remains in effect until

the user exits from Scheme.

Variables are also used as parameters to procedures that are defined by a

lambda expression. For example, in the lambda expression

(lambda (x y) (+ x y))

the variables x and y occurring in the body (+ x y) of the lambda expression

are locally bound (or lambda bound) in the expression (+ x y) since the x and

y occur in the list of parameters of that lambda expression. If we apply the

procedure, which is the value of this lambda expression, to the arguments 2

and 3, as in

(danbda (x y) (+ x y)) 2 3)

we can think of a new table being made, called a local environment, which

is associated with this procedure call. In this local environment, x is locally

bound to 2 and y is locally bound to 3. Then substituting 2 for x and 3 for

y gives (+ x y) the value 5, and

((lambda (x y) (+ x y)) 2 3)

returns the value 5.

A variable occurring in a lambda expression that is not lambda bound by

that expression is called free in that expression. If we consider the expression

(lambda (f y) (f a (f y z)))

the variables f and y are lambda bound in the expression, and the variables

a and z are free in the expression. When the application

130 Locally Defined Procedures

((lambda (f y) (f a (f y z))) cons 3)

is evaluated, the operator (which is the lambda expression) and its two oper-

ands are first evaluated. When the lambda expression is evaluated, bindings

are found for the free variables in a nonlocal environment. Then, with these

bindings for the free variables, the body of the lambda expression is evaluated

with 1 bound to the procedure, which is the value of cons, and y bound to

3. If either of the free variables is not bound in a nonlocal environment, a

message to that effect appears when the application is made. On the other

hand, if a is bound to 1 and z is bound to (4) in a nonlocal environment,

then this application evaluates to (1 3 4).

We used the term nonlocal environment in the previous paragraph when

we referred to the bindings of the free variables in the body of a lambda

expression. Those bindings may be found in the global environment or in a

local environment for another lambda expression. This is illustrated by the

following example:

((lambda (x)

((lambda (y)

(- X y))

15))

20)

The variable x is free in the body of the inner lambda expression, but its

binding is found in the local environment for the outer lambda expression.

The value of the expression is 5.

In the example

(lambda (x y) (+ x y))

the local bindings hold only in the body (+ x y) of the lambda expression,

and when we leave the body, we can for the moment think of the local en-

vironment as being discarded. The expression (+ x y) is said to be in the

scope of the variable x (and also of y). In general, an expression is said to

be in the scope of a variable x if that expression is in the body of a lambda

expression in which x occurs in the list of parameters.

By looking at a Scheme program, one can tell whether a given expression is

in the body of some lambda expression and determine whether the variables

in that expression are lambda bound. A language in which the scope of the

variables can be determined by looking only at the programs is called lexically

scoped. Scheme is such a language.

5.2 Let and Letrec ISl

Scheme provides several other ways of making these local bindings for vari-

ables, although we shall later see that these are all ultimately related to

lambda bindings. The two that we discuss here are let expressions and le-

trec expressions. To bind the variable var to the value of an expression val

in the expression body, we use a let expression (which is a special form with

keyword let) with the syntax:

(let i(var val)) body)

To make several such local bindings in the expression body, say vari is to

be bound to vali ,
var2 to val2

, , vavn to vain , we write

(let ((vari vali) (var2 va/2) . . . (varn vain)) body)

The scope of each of the variables vari, var2, . , vaVn is only body within

the let expression. For example, the expression

(let ((a 2) (b 3))

(+ a b))

returns 5. Here a is bound to 2 and b is bound to 3 when the body (+ a b)

is evaluated. Another example is

(let ((a +) (b 3))

(a 2 b))

returns 5, since a is bound to the procedure associated with + and b is bound

to 3. Similarly, in the expression

(let ((add2 (lambda (x) (+ x 2)))

(b (* 3 (/ 2 12))))

(/ b (add2 b)))

the variable add2 is bound to the procedure to which (lambda (x) (+ x 2))

evaluates, which increases its argument by 2, and b is bound to 0.5, and the

whole expression returns 0.2.

The local binding always takes precedence over the global or other nonlocal

bindings, as illustrated by the following sample computation:

132 Locally Defined Procedures

[1] (define a 5) [5] (let ((a 5))

[2] (addl a) (begin

6 (writeln (addl a))

[3] (let ((a 3)) (let ((a 3))

(addl a)) (sriteln (addl a)))

4 (addl a)))

[4] (addl a) 6

6 4

6

The define expression makes a binding of a to 5. When a is encountered in

(addl a) in [2] , its value is found in the global environment and 6 is returned.

In [3] , a is locally bound to 3, and the expression (addl a) is evaluated with

this local binding to give the value 4. The scope of the variable a in the let

expression is only the body of the let expression. Thus in [4] , the value of

the variable a in (addl a) is again found in the global environment, where

a is bound to 5, so the value returned for (addl a) is 6. In [5], we see a

version of the same computation in which no global bindings of a are made,

but here the local binding takes precedence over the nonlocal bindings.

We get a better understanding of the meaning of the let expression

(let ((a 2) (b 3))

(+ab))

when we realize that it is equivalent to an application of a lambda expression:

((lambda (a b) (+ a b)) 2 3)

To evaluate this application, we first bind a to 2 and b to 3 in a local envi-

ronment and then evaluate (+ a b) in this local environment to get 5.

In general, the let expression

(let iivari vali) ivar2 ^0/2) ... ivarn vain)) body)

is equivalent to the following application of a lambda expression:

((lambda ivari var2 ... varn) body) vali va/2 ... vain)

From this representation, we see that any free variable appearing in the

operands vali, va/2, . ., vain is looked up in a nonlocal environment. For

example, let's consider

5.2 Let and Letrec 133

[1] (define a 10)

[2] (define b 2)

[3] (let ((a (+ a 5)))

(a b))

30

[4] (let ((a 10) (b 2))

(let ((a (+ a 5)))

(* a b)))

30

In this example, a is bound globally to 10 in Cl], and b is bound globally

to 2 in [2]. Then in [3], the expression (+ a 5) is first evaluated.^ The

variable a is free in the expression (+ a 5), so the value to which a is bound

must be looked up in the nonlocal (here global) environment. There we find

that a is bound to 10, so (+ a 5) is 15. The next step is to make a local

environment where a is bound to 15. We are now ready to evaluate the body

of the let expression (* a b). We first try to look up the values of a and b

in the local environment. We find that a is locally bound to 15, but b is not

found there. We must then look in the nonlocal (here global) environment,

and there we find that b is bound to 2. With these values, (* a b) is 30, so

the let expression has the value 30. In [4] , we see a similar program in which

the free variables are looked up in a nonlocal but not global environment.

Looking back at the let expressions, we see how the lexical scoping helps us

decide which environment (local or nonlocal) to use to look up each variable.

It is important to keep track of which environment to use in evaluating an

expression, for if we do not do so, we might be surprised by the results. Here

is an interesting example:

[1] (define addb

(let ((b 100))

(Icunbda (x)

(+ X b))))

[2] (let ((b 10))

(addb 25))

125

Because b is bound to 10 in [2] and (addb 25) is the body of the let expres-

sion with this local environment, one might be tempted to say that the answer

in [2] should have been 35 instead of 125. In [1] , however, the lambda ex-

pression falls within the scope of the let expression in which b is bound to

^ The symbol + is also free in (+ a 5) , and its value is found in the initi£d global environment

to be the addition operator. The number 5 eveduates to itself. Simileirly, the symbol » is free

in the body, eind its value is found in the initial globed environment to be the multiplication

operator.

134 Locally Defined Procedures

100. This is the binding that is "remembered" by the lambda expression, and

when it is later applied to the argument 25, the binding of 100 to b is used

and the answer is 125.

Let's look at [1] again. The variable addb is bound to the value of the

lambda expression, thereby defining addb to be a procedure. The value of

this lambda expression must keep track of three things as it "waits" to be

applied: (1) the list of parameters, which is (x), (2) the body of the lambda

expression, which is (+ x b), and (3) the nonlocal environment in which the

free variable b is bound, which is the environment created by the let expression

in which b is bound to 100. The value of a lambda expression is a procedure

(also called a closure), which consists of the three parts just described. In

general, the value of any lambda expression is a procedure (or closure) that

consists of (1) the list of parameters (which follows the keyword lambda), (2)

the body of the lambda expression, and (3) the environment in which the

free variables in the body are bound at the time the lambda expression is

evaluated. When the procedure is applied, its parameters are bound to its

arguments, and the body is evaluated, with the free variables looked up in

the environment stored in the closure. Thus in [2], (addb 25) produces the

value 125 because the addb is bound to the procedure in which b is bound to

100.

Consider the following nested let expressions:

(let ((b 2))

(let ((add2 (lambda (x) (+ x b)))

(b 0.5))

(/ b (add2 b))))

The first let expression sets up a local environment that we call Environment 1

(Figure 5.1).

m

Figure 5.1 Environment 1

The inner let expression sets up another local environment, which we call

Environment 2. The first entry in this environment is add2, which is bound

to the value of (lambda (x) (+ x b)). The x in (+ x b) is lambda bound

in that lambda expression, and the value of b can be found in Environment 1.

5.2 Let and Letrec 1S5

But the inner let expression is in the body of the first let expression, so

Environment 1 is in effect and we find that the value associated with b in

Environment 1 is 2. Thus we have Environment 2 (Figure 5.2).

add2 Procedure (x) (+ I b) Environment 1

0.5

Figure 5.2 Environment 2

All of the variables in the expression to which add2 is bound are either

bound in that expression itself (a^ was x) or are bound outside of the let

expression (as was b). We are now ready to evaluate the expression (/ b

(add2 b)). In which environment do we look up b? We always search the

environments from the innermost let or lambda expression's environment out-

ward, so we search Environment 2 first, finding that b is bound to 0.5. Thus

the whole expression is (/ 0.5 2.5), which evaluates to 0.2.

As an example of how let is used in the definitions of procedures, we

reconsider the definition of the procedure remove-leftmost, which was given

in Program 4.15. Recall that our objective is to produce a list the same

as the list Is except that it has removed from it the leftmost occurrence

of item. In the base case, when Is is empty, the answer is the empty list.

If (car Is) is equal to item, (car Is) is the leftmost occurrence of item

and the answer is (cdr Is). If neither of the cases is true, there are two

possibilities: either (car Is) is a pair, or it is not a pair. If it is a pair,

we want to determine whether it contains item. In Program 4.15, we used

member-all? to determine this. Another way is to check whether (car Is)

changes when we remove the leftmost occurrence of item from it. If so, then

item must belong to (car Is), in which case the answer is

(cons (remove-leftmost item (car Is)) (cdr Is))

But if we use this approach, we have to evaluate

(remove-leftmost item (car Is))

twice, once when making the test and again when doing the consing. To avoid

the repeated evaluations of the same thing, we use a let expression to bind a

variable, say rem-list, to the value of

136 Locally Defined Procedures

(remove-leftmost item (cju: Is))

and use rem-list each time the value of this expression is needed. Here is

the new code for remove-leftmost:

Program 5.3 remove-leftmost

(define remove-leftmost

(lambda (item Is)

(cond

((null? Is) '())

((equal? (car Is) item) (cdr Is))

((pair? (car Is))

(let ((rem-list (remove-leftmost item (car Is))))

(cons rem-list (cond

((equal? (ceir Is) rem-list)

(remove--leftmost item (cdr Is)))

(else (cdr Is))))))

(else (cons (ecu: '.Ls) (remove--leftmost item (cdr Is)))))))

In a let expression

(let ((war val)) body)

any variables that occur in val and are not bound in the expression val itself

must be bound outside the let expression (i.e., in a nonlocal environment), for

in evaluating val, Scheme looks outside the let expression to find the bindings

of any free variables occurring in val. Thus

(let ((fact (lambda (n)

(if (zero? n)

1

(* n (fact (subl n)))))))

(fact 4))

will return a message that fact is unbound. You should try entering this code

to become familiar with the messages that your system returns. This message

refers to the fact occurring in the lambda expression (written here in italics),

5.2 Let and Letrec 137

which is not bound outside of the let expression. ^ Thus if we want to use a

recursive definition in the "val" part of a let-like expression, we have to avoid

the problem of unbound variables that we encountered in the above example.

We can avoid this difficulty by using a letrec expression (a special form with

keyword letrec) instead of a let expression to make the local binding when

recursion is desired.

The syntax for letrec is the same as that for let:

(letrec ((.vari vali) (vor2 ^0^3) ••• (.varn vain)) body)

but now any of the variables vari, var2, • • • , varn can appear in any of the

expressions vali , va/2 , • • • , vain , and refer to the locally defined variables

uori, var2, . . •, varn, so that recursion is possible in the definitions of these

variables. The scope of the variables vari, var2, . .
.

, varn now includes vali,

val2, . . ., vain, as well as body. Thus,

(letrec ((fact (leunbda (n)

(if (zero? n)

1

(* n (fact (subl n)))))))

(fact 4))

has the value 24.

We can also have mutual recursion in a letrec expression, as the next ex-

ample illustrates:

(letrec ((even? (lambda (x)

(or (zero? x) (odd? (subl x)))))

(odd? (lambda (x)

(and (not (zero? x)) (even? (subl x))))))

(odd? 17))

has the value #t.

In Program 5.4 we take another look at the iterative version of the factorial

procedure discussed in Program 4.19, this time written with letrec. Here we

are able to define the procedure fact with parameter n and define the iterative

helping procedure fact-it within the letrec expression. This enables us to

If we call (fact 0), the value 1 is returned, since the consequent of the if expression is

true and the alternative, in which the call to fact is made, is not evaluated. In this case

no error message would result.

138 Locally Defined Procedures

Program 5.4 fact

(define fact

(lambda (n)

(letrec ((fact-it

(lambda (k ace)

(if (zero? k)

ace

(fact-it (subl k) (* k ace))))))

(fact-it n 1))))

Program 5.5 swapper

(define swapper

(lambda (x y Is)

(letrec

((swap

(lambda (Is*)

(eond

((null? Is*) '())

((equal? (car Is*) x) (eons y (swap (cdr Is*))))

((equal? (ceir Is*) y) (eons X (swap (cdr Is*))))

(else (cons (<:ar Is*) (swap (cdr Isi'))))))))

(swap Is))))

define an iterative version of fact without having to use a globally defined

helping procedure. There is an advantage to keeping the number of globally

defined procedures small to avoid name clashes. Otherwise you might forget

that you used a name for something else earlier and assign that name again.

The letrec expression provides a more convenient way of writing code for

procedures that take several arguments, many of which stay the same through-

out the program. For example, consider the procedure swapper defined in

Program 2.8, which has three parameters, x, y, and Is, where x and y are

items and Is is a list. Then (swapper x y Is) produces a new list in which

x's and y's are interchanged. Note that in Program 2.8 each time we invoked

swapper recursively, we had to rewrite the variables x and y. We can avoid

this rewriting if we use letrec to define a local procedure, say swap, which

takes only one formal argument, say Is*, and rewrite the definition of the

procedure swapper as shown in Program 5.5.

5.2 Let and Letrec 139

The parameter to swap is Is*, and when the locally defined procedure

swap is called in the leist line of the code, its argument is Is, which is lambda

bound in the outer lambda expression. We could just as well use the variable

Is instead of Is* as the parameter in swap since the lexical scoping specifies

which binding is in effect. When we call swapper recursively in the old code,

we write all three arguments, whereas when we call swap recursively in the

new code, we must write only one argument. This makes the writing of the

program more convenient and may make the code itself more readable.

In this section, we have seen how to bind variables locally to procedures

using the special forms with keywords let and letrec. We use these impor-

tant tools extensively in writing programs that are more efficient and easier

to understand.

Exercises

Exercise 5.1

Find the value of each of the following expressions, writing the local environ-

ments for each of the nested let expressions. Draw arrows from each variable

to the parameter to which it is bound in a lambda or let expression. Also

draw an arrow from the parameter to the value to which it is bound.

a. (let ((a 5))

(let ((fun (lambda (i) (max x a))))

(let ((a 10)

(x 20))

(fun 1))))

b. (let ((a 1) (b 2))

(let ((b 3) (c (+ a b)))

(let ((b 5))

(cons a (cons b (cons c '()))))))

Exercise 5.2

Find the value of each of the following letrec expressions:

a. (letrec

((loop

(lambda (n k)

(cond

((zero? k) n)

(« n k) (loop k n))

(else (loop k (remainder n k)))))))

(loop 9 12))

140 Locally Defined Procedures

b. (letrec

((loop

(leifflbda (n)

(if (zero? n)

(+ (remainder n 10) (loop (quotient n 10)))))))

(loop 1234))

Exercise 5.3

Write the two expressions in Parts a and b of Exercise 5.1 as nested lambda

expressions without using any let expressions.

Exercise 5.4

Find the value of the following letrec expression.

(letrec ((mystery

(lambda (tuple odds evens)

(if (null? tuple)

(append odds evens)

(let ((next-int (car tuple)))

(if (odd? next-int)

(mystery (cdr tuple)

(cons next-int odds) evens)

(mystery (cdr tuple)

odds (cons next-int evens))))))))

(mystery ' (3 16 4 7 9 12 24) ' ' ()))

Exercise 5.5

We define a procedure mystery as follows:

(define mystery

(leUDbda (n)

(letrec

((mystery-helper

(lambda (n s)

(cond

((zero? n) (list s))

(else

(append

(mystery-helper (subl n) (cons s))

(mystery-helper (subl n) (cons 1 s))))))))

(mystery-helper n '()))))

What is returned when (mystery 4) is invoked? Describe what is returned

when mystery is invoked with an arbitrary positive integer.

5.2 Let and Letrec 141

Exercise 5.6: insert-left-all

Rewrite the definition of the procedure insert-left-all (See Exercise 4.6.)

using a locally defined procedure that takes the list Is as its only argument.

Exercise 5.7: fib

As in Program 5.4 for fact, write an iterative definition of fib using fib-it

(See Program 4.24.) as a local procedure.

Exercise 5.8: list-ref

Program 3.7 is a good definition of list-ref. Unfortunately, the informa-

tion displayed upon encountering a reference out of range is not as complete

as we might expect. In the definitions of list-ref, which precede it, how-

ever, adequate information is displayed. Rewrite Program 3.7, using a letrec

expression, so that adequate information is displayed.

5.3 Symbolic Manipulation of Polynomials

One of the eidvantages of a list-processing language like Scheme is its con-

venience for manipulating symbols in addition to doing the usual numericeil

calculations. We illustrate this feature by showing how to develop a sym-

bolic algebra of polynomials. By a symbolic algebra we mean a program that

represents the items under discussion as certain combinations of symbols and

then performs operations on these items as symbols rather than as numerical

values.

We begin by reviewing what is meant by a polynomial. An expression 5z^

is referred to as a term in which 5 is the coefficient and the exponent 4 is

the degree. In general, a term is an expression of the form a^x^ , where the

coefficient ajk is a real number emd the degree A; is a nonnegative integer. The

symbol x is treated algebraically as if it were a real number. Thus we may
add two terms of the same degree, as illustrated by 5z^ -\- 3z^ = 8z^. In

general, the sum of two terms of like degree is a term of the same degree with

coefficient that is the sum of the coefficients of the two terms. This rule is

expressed in symbols by

akx^ + hkx^ = (ajt + bk)x^

A term can also be multiplied by a real number, as illustrated by 7(5z^) =
35z^. In general, when we multiply the term akX^ by the reaJ number c, the

product is a term that has coefficient cajt and the same degree; thus

c(ajkz*) = (caifc)z*

14s Locally Defined Procedures

We may also multiply two terms using the following rule: the product of two

terms is a term with degree equal to the sum of the degrees of the two terms

and with coefficient equal to the product of the coefficients of the two terms.

This is expressed symbolically by

Here is how it looks in a numerical example: {3x^){7x^) = 21x^. It is custom-

ary to write a term of degree by writing only its coefficient. The term aix^

of degree 1 is usually written as aix, omitting the exponent 1 on x. Thus

3a;° is written as 3, and 5x^ is written as 5x. Terms of positive degree with

coefficients are generally omitted.

Two terms of like degree can be added to produce a term of the same

degree, but two terms of different degrees do not produce a term when added.

Instead, we can only indicate the addition by placing a plus sign between

the two terms. A polynomial is a sum of a finite number of terms, usually

arranged in order of decreasing degree. The degree of the polynomial is the

maaimum of the degrees of its terms. Thus the polynomial Sx"* + bx^ + 12

has degree 4, and the terms of degree 3 and 1 have coefficient and are not

written. In general, a polynomial of degree n is of the form

anX^ + an-ix^~ + • • • + a2X + aix + ao

where the coefficients at, for k — 0, . . .,n denote real numbers. The sum of

two polynomials is the polynomial obtained by adding all of the terms of both

polynomials, using the rule given above for adding terms of like degree. Thus

the sum of

3x^ + 5x^ + 12 and 7x^ + Gx'' - x^ + llx - 15

is the polynomial

7x^ + 9x'^ + 4x2 + llx-3

The term of highest degree in a polynomial is known as its leading term, and

the coefficient of the leading term is known as its leading coefficient. The

leading term of 3x'* + 5x'^ + 12 is 3x'*, and its leading coefficient is 3.

Our goal is to write programs that produce the sum and product of poly-

nomials. We saw the definition of the sum in the discussion above, and later

we shall define the product. As in our development of exact arithmetic in

Chapter 3, we again assume that certain constructor and selector procedures

for polynomials have been predefined and return to their definition later in

this section when we consider the actual representation of the polynomials in

5.3 Symbolic Manipulation of Polynomials 143

the computer. We proceed to describe what these selector and constructor

procedures do when applied to a polynomial.

There are three selector procedures: degree, leading-coef , and rest-of-

poly. If poly is a polynomial, then (degree poly) is the degree of poly and

(leading-coef poly) is the leading coefficient of poly. There is a zero poly-

nomial, the-zero-poly, which has degree zero and leading coefficient zero.

Finally, (rest-of-poly poly) is the polynomial obtained from a polynomial

of positive degree, poly, when its leading term is removed. If poly is of degree

zero, (rest-of-poly poly) is the-zero-poly.

The constructor procedure is called poly-cons. If n is a nonnegative inte-

ger, a is a real number, and p is the-zero-poly or a polynomial of degree

less than n, then (poly-cons n a p) is the polynomial obtained by adding

the leading term ax^ to the polynomial p. In particular, for any polynomial

poly, the value of

(poly-cons (degree poly)

(leading-coef poly)

(rest-of-poly poly))

is poly. We shall adopt another convention, which says that a polynomial of

positive degree cannot have zero as its leading coefficient. Thus if poly has

degree less than n for some positive n, then (poly-cons n poly) evaluates

to poly.

Using these procedures, we proceed to develop our symbolic algebra of

polynomials. We begin by devising a test to see if a polynomial is the-zero-

poly. All we have to ask is whether both its degree and leading coefficient

are zero. Thus we define zero-poly? in Program 5.6.

Program 5.6 zero-poly?

(define zero-poly?

(lambda (poly)

(and (zero? (degree poly)) (zero? (leading-coef poly)))))

Program 5.7 shows how we build a term having degree deg and coefficient

coef . The term so defined is itself a polynomial of degree deg consisting of

only one term. A polynomial consisting of one term is also referred to as a

monomial. If we are given a polynomial poly, we get its leading term by

applying the procedure leading-term, which we define in Program 5.8 using

make-term.

144 Locally Defined Procedures

Program 5.7 meOte-term

(define make-term

(leunbda (deg coef)

(poly-cons deg coef the-zero-poly)))

Progrcon 5.8 leading-term

(define leading-term

(launbda (poly)

(maJce-term (degree poly) (leading-coef poly))))

We next define the procedure p+ such that if polyl and poly2 are two

polynomials, then (p+ polyl poly2) is the sum of polyl and poly2. Let us

recall that the sum of two terms bx'' and ex'' of the same degree fc is a term

(6 + c)x* also of degree k. The sum of two polynomials is then the polynomial

obtained by adding the terms of like degree in the two polynomials. Our

algorithm for adding the two polynomials polyl and poly2 is:

• If polyl is the-zero-poly, their sum is poly2; if poly2 is the-zero-poly,

their sum is polyl.

• If the degree of polyl is greater than the degree of poly2, their sum is a

polynomial that has the same leading term as polyl, and the rest of their

sum is the sum of (rest-of-poly polyl) and poly2.

• If the degree of poly2 is greater than the degree of polyl, their sum is a

polynomial that has the same leading term as poly2 and the rest of their

sum is the sum of (rest-of-poly poly2) and polyl.

• If polyl and poly2 have the same degree n, the degree of their sum is n,

and the leading coefficient of their sum is the sum of the leading coefficients

of polyl and poly2, and the rest of their sum is the sum of (rest-ol-poly

polyl) and (rest-of-poly poly2).

This algorithm for the sum, p+, of polyl and poly2 leads to Program 5.9.

In this program, the use of the let expression enabled us to write each of

the cond clauses more concisely and more clearly. For example, had we not

used the let expression, the first cond clause would have looked like

5.3 Symbolic Manipulation of Polynomials 145

Progr£un 5.9 p+

(define p+

(lambda (polyl poly2)

(cond

((zero-poly? polyl) poly2)

((zero-poly? poly2) polyl)

(else (let ((nl (degree polyl))

(n2 (degree poly2))

(al (leading-coef polyl))

(a2 (leading-coef poly2))

(restl (rest-of-poly polyl))

(rest2 (rest-of-poly poly2)))

(cond

((> nl n2) (poly-cons nl al (p+ restl poly2)))

((< nl n2) (poly-cons n2 a2 (p+ polyl rest2)))

(else

(poly-cons nl (+ al a2) (p+ restl rest2)))))))))

((> (degree polyl) (degree poly2))
(poly-cons (degree polyl)

(leading-coef polyl)

(p+ (rest-of-poly polyl) poly2)))

Such use of let expressions often makes programs more readable.

We next define the product p* of two polynomials polyl and poly2. The

product of the terms OfcX*^ and UmX^ is the term (ajt x am)x^'^"^ . To multiply

a term Ax"^ times a polynomial 3x^ + 2x^ + 4x + 5, we multiply each of the

terms of the polynomial by 4x^ and add the resulting terms to get

12x^ + 8x^ + 16x^ + 20x2

Now to multiply two polynomials,

4x2 j^2>x^2 and 3x^ + 2x^ + 4x + 5

we first multiply each term of the first by the entire second polynomial to get

the three polynomials

12x^ + Sx^ + 16x3 + 20x2

9x^+6x^ + 12x2 + 15x

6x^ + 4x3 _,. 8x + 10

146 Locally Defined Procedures

and then we add these three polynomials to get the desired product:

12z^ + 9x^ + 14x^ + 6x^ + 20z^ + 32x2 + 23x + 10

We now translate the above example into an algorithm for multiplying any

two polynomials polyl and poly2. It will be convenient to define locally the

product t* of a term trm and a polynomial poly. The algorithm for this is:

• If poly is the-zero-poly, then (t* trm poly) is just the-zero-poly.

• Otherwise the degree of their product is the sum of the degrees of trm

and poly. The leading coefficient of their product is the product of the

coefficient of trm and the leading coefficient of poly. The rest of their

product is just the product of trm and the rest of poly.

Once t* has been defined, the product p* of polyl and poly2 can be defined

using the following algorithm:

• If polyl is the-zero-poly, then (p* polyl poly2) is just the-zero-

poly.

• Otherwise, we multiply the leading term of polyl by poly2, and add that

to the product of the rest of polyl and poly2.

This leads us to Program 5.10 for p*. In this program, t* is defined locally

using a letrec expression since it is a recursive definition. The lambda expres-

sion for the procedure p* is placed within the body of the letrec expression for

t* so that the local procedure it defines is available for use in p*-helper. The

letrec expression that defines p*-helper is used because the variable poly2 is

not changed in the recursive invocations of the procedure being defined. Thus

it is better programming style not to carry it along as a parameter. We define

the local procedure p*-helper that has as its only parameter the polynomial

pi that is bound to polyl when it is later invoked.

Program 5.11 defines a unary operation negative-poly such that when

poly is a polynomial, (negative-poly poly) is its negative: the polynomial

with the signs of all of its coefficients changed. We compute it by multiplying

poly by the polynomial that is a term of degree and leading coefficient —1.

Now that we have the negative of a polynomial, we can define the difference

p- between polyl and poly2 as shown in Program 5.12.

We now consider how to find the value of a polynomial poly when a number

is substituted for the variable x. To evaluate the polynomial 4x^-|-8z^ — 7aj-|-6

for X = 5, we substitute 5 for x and get 4{5'^) + 8{5^) — 7{b) + 6. The polynomial

can be evaluated at a given value of x by computing each term a^x* separately

5.3 Symbolic Manipulation of Polynomials 147

Progrsun 5.10 p*

(define p*

(letrec

((t* (lambda (trm poly)

(if (zero-poly? poly)

the-zero-poly

(poly-cons

(+ (degree trm) (degree poly))

((leading-coef trm) (leading-coef poly))

(t* trm (rest-of-poly poly)))))))

(lambda (polyl poly2)

(letrec

((p*-helper (lambda (pi)

(if (zero-poly? pi)

the-zero-poly

(p+ (t* (leading-term pi) poly2)

(p*-helper (rest-of-poly pi)))))))

(p*-helper polyl)))))

Program 5.11 negative-poly

(define negative-poly

(lambda (poly)

(let ((poly-negative-one (make-term -1)))

(p* poly-negative-one poly))))

Program 5.12 p-

(define p-

(leunbda (polyl poly2)

(p+ polyl (negative-poly poly2))))

and then adding the results. For example, we have

4(5^) + 8(5^) - 7(5) + 6 = 4x(5x5x5) + 8x(5x5)-7x(5) + 6

but this is very inefficient. If we evaluate this by computing each x* by

multiplying x by itself k — \ times and then multiplying the result by a^ , we

lltS Locally Defined Procedures

would be using k multiplications. For a polynomial of degree n, we must add

the number of multiplications for each term, which is l + 2 + 3 + --- + n =
n{n 4- l)/2 multiplications, to which we add the n additions needed to add

up the terms, and we get a grand total of n{n + l)/2 + n operations. We can

reduce this number of operations significantly by using the method of nested

multiplication, also known as Horner's rule, or synthetic division.

Before we derive the method of nested multiplication, we consider as an

example the polynomial P{x) = Ax^ + 8x^ - 7x + 6. If we write the constant

term first and factor an x out of the rest of the terms, we get P{x) = 6 +
x(— 7 + 8x + 4x^). We next factor an x out of the terms after the —7 in

the parentheses, to get P{x) = 6 + x(-7 + x(8 -|- x(4))). For x = 5, this

becomes 6 + 5(-7 + 5(8 + 5(4))). Whereas evaluating the polynomial P(x) in

its original form required nine operations, in this last form only six operations

are required—three multiplications and three additions.

In the general case of a polynomial of degree n, we note that all terms of

degree 1 or more contain a factor of x, so we can factor it out to get our

polynomial in the following form:

ao + x(ai + a2X + oax^ H (- Onx""-^)

We repeat this process, starting with the term ai, to represent our polynomial

as:

ao + x(ai + x(a2 + asx H h anx'^ ^))

By continuing to factor out an x from the terms after the constant term, we

finally arrive at the result:

Oo + x(oi + x(a2 + x(a3 H (- x{an-l + XOn) . . .)))

In this method of evaluating the polynomial, we have n multiplications and

n additions, so there are altogether 2n operations. In this way, the number of

operations grows linearly with n (that is, like n to the first power, or using the

notation of Chapter 3, 0{n)) while in the previous way, it grew quadratically

(that is, like n to the second power, or 0{n^)).

We next define a procedure poly-value such that (poly-value poly num)

is the value of the polynomial poly when num is substituted for x. A clue for

defining this procedure recursively (in fact, iteratively) comes from observing

that if we think of the last expression an-i + xon as a coefficient 6, then

the expression is just a polynomial of degree n — 1 having leading coefficient

b and all terms of degree less than n — 1 the same as those in poly. In

implementing this, we obtain an-i by taking the leading coefficient of (rest-

of-poly poly). But this works only if (rest-of-poly poly) has degree

5.3 Symbolic Manipulation of Polynomials 149

Progr2iin 5.13 poly-value

(define poly- value

(lambda (poly num)

(letrec

((pvalue (lambda (p)

(let ((n (degree p)))

(if (zero? n)

(leading-coef p)

(let ((rest (rest-of-poly p)))

(if « (degree rest) (subl n))

(pvalue (poly-cons

(subl n)

(* num (leading-coef p))

rest))

(pvalue (poly-cons

(subl n)

(+ (* nuB (leading-coef p))

(leading-coef rest))

(rest-of-poly rest))))))))))

(pvalue poly))))

n— 1, that is, when a„_i ^ 0. Thus, if (rest-of-poly poly) has degree less

than n — 1, we use xan for b. Thus the code for poly-value in Program 5.13

treats two Ccises depending upon the degree of rest.

This program is iterative since when pvalue is called in the if clauses, no

further operation is performed after the application of pvalue. Moreover,

because the procedure of one argument pvalue appears first in both the con-

sequent and the alternative of the last if expression, it can be pulled out of

the if expression so that the body of the last let expression reads

(pvalue (if (< (degree rest) (subl n))

(poly-cons

...)

(poly-cons

...)))

The last thing we illustrate before thinking about the representation of the

polynomial is how to build a given polynomial. For example, if we want to

define pi to be the polynomial

5x^ -3x2 -I- X- 17

150 Locally Defined Procedures

Program 5.14 The five basic definitions (Version I)

(define the-zero-poly '(0))

(define degree

(lambda (poly)

(subl (length poly))))

(define leading-coef

(Isimbda (poly)

(car poly)))

(define rest-of-poly

(lambda (poly)

(cond

((zero? (degree poly)) the-zero-poly)

((zero? (leading-coef (cdr poly)))

(rest-of-poly (cdr poly)))

(else (cdr poly)))))

(define poly-cons

(lambda (deg coef poly)

(let ((deg-p (degree poly)))

(cond

((and (zero? deg) (equal? poly the-zero-poly)) (list coef))

((>= deg-p deg)

(error "poly-cons: Degree too high in" poly))

((zero? coef) poly)

(else

(cons coef

(append (list-of-zeros (subl (- deg deg-p)))

poly)))))))

we simply write

(define pi (poly-cons 3 5

(poly-cons 2 -3

(poly-cons 1 1

(poly-cons -17 the-zero-poly)))))

Using the concept of data abstraction again, we have been able to develop

a symbolic algebra of polynomials without knowing how the polynomials are

represented. We did this by assuming that we had the selector and constructor

5.3 Symbolic Manipulation of Polynomials 151

procedures and the zero polynomial. We shall now see several ways in which

these can be defined.

A polynomial is completely determined if we give a list of its coefficients,

where we enter a zero when a term of a given degree is missing. The degree

of the polynomial is then one less than the length of the list of coefficients.

Thus the polynomial

OnX^ +an-lX^~^ -\ haiZ + Oo, On ^

can be represented by the list (on On-i • • • ai oq). For example, the poly-

nomial 5z^ — 7z^ + 21 is represented by the list (5 —7 21), where the zero

corresponds to the term Ox^ that is suppressed in 5z^ — 7x^ + 21.

If this representation of a polynomial as a list of its coefficients is adopted,

we can make the five basic definitions for the symbolic algebra of polynomials

as shown in Program 5.14. Since we required that the leading coefficient of

a polynomial be different from zero, we put a zero test in the second cond

clause in the definition of rest-of-poly to skip over the missing zeros. In

the definition of poly-cons, the third cond clause guards against a leading

coefficient of zero, and the last line uses the procedure list-of-zeros defined

in Program 3.5 to fill in missing zeros if deg differs from the degree of p by

more than 1.

The above representation of a polynomial by its list of coefficients has an

obvious disadvantage when we try to represent the polynomial z^°°°+ 1. We
would have to construct a list of 1001 numbers, all zero except the first and

last. The above representation is perfectly adequate when we are dealing

with polynomials of low degree, but it becomes cumbersome when we have

to write "sparse" polynomials of high degree. The following representation

of polynomials is more convenient for such higher-degree polynomials; we

represent the polynomial by a list of pairs of numbers. In each pair, the first

element is the degree of a term, and the second element is the coefficient of

that term. The pairs corresponding to terms with zero coefficients are not

included, except for the-zero-poly, which is represented by ((0 0)). The

pairs are ordered so that the degrees decrease. Thus the polynomial

has the representation ((n On) (n-1 On-i) • • • (1 ai) (0 oq)), for those terms

with o^ 7^ 0. We then can write the five basic definitions for the algebra of

polynomials as shown in Program 5.15.

There may be other representations of polynomials that are more conve-

nient to use in special circumstances. The advantage of our approach us-

ing data abstraction is that we only need to define the-zero-poly, degree,

152 Locally Defined Procedures

Program 5.15 The five basic definitions (Version II)

(define the-zero-poly '((0 0)))

(define degree

(lambda (poly)

(caar poly)))

(define leading-coef

(lambda (poly)

(cadar poly)))

(define rest-of-poly

(leunbda (poly)

(if (null? (cdr poly))

the-zero-poly

(cdr poly))))

(define poly-cons

(lambda (deg coef poly)

(let ((deg-p (degree poly)))

(cond

((and (zero? deg) (equal? poly the-zero-poly))

(list (list coef)))

((>= deg-p deg)

(error "poly-cons: Degree too high in" poly))

((zero? coef) poly)

(else

(cons (list deg coef) poly))))))

leading-coef, rest-of-poly, and poly-cons, and the rest of our algebra of

polynomials is still valid with no modifications.

Exercises

Exercise 5.9

Implement the algebra of polynomials in the two ways indicated in the text.

For each implementation, test each of the procedures p+, p-, and p* with the

polynomials

5.3 Symbolic Manipulation of Polynomials 153

pi(x) = Sx"^ - 7z^ + 2z - 4

P2(z) = x^ + 6x^ - 3z

and using poly-value, find pi(-l), Pi(2), P2(0), and p2(-2).

Exercise 5.10

Look closely at the definition of p+ (see Program 5.9). When nl is greater than

n2, the variables a2 and rest2 are ignored. Similarly, when nl is less than

n2, the variables al and restl are ignored. Rewrite p+ so that this wasting

of effort disappears. Hint: You will need to use let within the consequents

of cond clauses.

Exercise 5.11: poly-quotient, poly-remainder

Define a procedure poly-quotient that finds the quotient polynomial when

polyl is divided by poly2 and a procedure poly-remainder that finds the

remainder polynomial when polyl is divided by poly2.

Exercise 5.12

Another representation of polynomials eis lists that can be used is a list of

coefficients in the order of increasing degree. The list of pairs representation

given above can also be written in order of increasing degree. Consider the ad-

vantages and disadvantages of these representations compared to those given

above.

Exercise 5.13

How would the constructors and selectors be defiined if we use

(cons deg coef) instead of (list deg coef

)

in our second representation using lists of pairs?

Exercise 5.14

The definition oft* in Program 5.10 is flawed. Each time t* is invoked recur-

sively it evaluates both (degree trm) and (leading-coef trm), although

these values never change. In addition, the variable trm does not need to be

passed to t* because trm never changes. Explain how these two flaws are

eliminated in the following definition of p*.

154 Locally Defined Procedures

(define p*

(let

((t* (lambda (trm poly)

(let ((deg (degree trm))

(Ic (leading-coef trm)))

(letrec

((t*-helper

(lambda (poly)

(if (zero-poly? poly)

the-zero-poly

(poly-cons

(+ deg (degree poly))

(* Ic (leading-coef poly))

(t*-helper (rest-of-poly poly)))))))

(t*-helper poly))))))

(lambda (polyl poly2) ...)))

Exercise 5.15: append-to-list-of-zeros

In the first version of poly-cons presented in Program 5.14, poly is appended

to a list of zeros. The procedure list-of-zeros requires one recursion to

build the list of zeros and append requires another. Two recursions over the

list of zeros is inefficient. The program can be rewritten so as to require

only one recursion over the list of zeros. One suggestion for doing so is to

combine the construction of the list of zeros and the appending of poly into

one procedure append-to-list-of-zeros, which takes two parameters, n and

X and produces a list that contains x preceded by n zeros. This procedure can

be written either recursively or iteratively. Try your hand at both versions

and test them in poly-cons.

5.4 Binary Numbers

Information is stored in the computer in the form of binary numbers. One

may loosely think of the memory cells in which information is stored as a

row of switches, each having two positions: on and off. If a switch is on, it

represents the digit 1, and if it is off, it represents the digit 0. The information

contained in one such switch is called a bit, and eight bits of information

usually constitute a byte of information. Since there are 2® different settings

for eight switches, we can represent 256 different values by using one byte. In

this section, we shall discuss the representation of numbers in binary form,

and more generally, as numbers with an arbitrary base.

5.4 Binary Numbers 155

First recall that in the decimal system, each digit in a number is a place-

holder representing the number of times a certain power of 10 is counted.

Thus 4,723 is the same as

4 X 10^ + 7 X lOV 2 X 10^ + 3 X 10°

The 10 is called the base of the number system. We can think of any number

represented in this way as a polynomial in which the variable x has been

replaced by 10. In the same way, we can represent any number as a polynomial

in which the variable x has been replaced by the base b and the coefficients are

taken to be numbers between and 6—1. It is customary to write a number

in the base b system using the placeholder concept as a string of digits, each

digit being the corresponding coefficient in the polynomial. For example, for

base 2 {binary numbers), the digits are and 1 and the polynomial

1 X 2^ + 1 X 2^ + X 2^ + X 2^ + 1 X 2^ + X 2^ + 1 X 2°

can be represented as 1100101.

In general, for binary numbers, the number

an2" + an_i2''-^ + • • • + ai2 + oq

is written in the form a^an-i . . • aiao. We first consider the problem of finding

the decimal number when we are given its binary representation. This is

precisely the problem of evaluating a polynomial when the variable x has the

value 2. We can use the results of the last section if we represent our binary

number as a polynomial of degree n that has the coefficient ojfe for the term of

degree k, for A; = 0, 1, . . ., n. We define a procedure digits->poly that takes

a list of the digits of a binary number as its argument and returns a polynomial

of degree one less than the number of digits and that has the given digits as its

coefficients. The polynomial is constructed by the local procedure make-poly,

which has as its parameters the degree deg of the polynomial, which is one less

than the number of digits in the binary number, and Is, which is the list of

digits of the binary number. If we already have the polynomial for the binary

number obtained when the first digit is removed, that is, for parameters (subl

deg) and (cdr Is), we get the polynomial for the parameters deg and Is by

adding the term having degree deg and coefficient (car Is). This leads us

to the definition given in Program 5.16.

Now to convert from the binary representation of a number to the deci-

mal number, we use the procedure binary->decimal given in Program 5.17,

which takes a list of the binary digits as its argument and returns the decimal

156 Locally Defined Procedures

Program 5.16 digits->poly

(define digits->poly

(lambda (digit-list)

(if (null? digit-list)

(error "digits->poly: Not defined for the empty list")

(letrec

((make-poly

(lambda (deg Is)

(if (null? Is)

the-zero-poly

(poly-cons deg (car Is)

(make-poly (subl deg) (cdr Is)))))))

(make-poly (subl (length digit-list)) digit-list)))))

Program 5.17 binary->decimal

(define binary->decimal

(lambda (digit-list)

(poly-value (digits->poly digit-list) 2)))

number. As an example, we find the decimal number for the representation

of the binary number 11001101.

(binary->decimal ' (1 1 1 1 1)) => 205

If we have a polynomial, say 1x^ + 1, which corresponds to the binary num-

ber 101, how do we recover the list of binary digits (1 1)? To do this, we

define a procedure poly->digits that takes a polynomial poly corresponding

to a binary number and returns a list of the digits of that binary number. For

example,

(poly->digits (digits->poly '(11010 1))) => (1 1 1 1)

Consider (rest-of-poly poly); if its degree is one less than the degree of

poly, then (poly->digits poly) is just

(cons (leading-coef poly) (poly->digits (rest-of-poly poly)))

5.4 Binary Numbers 157

Program 5.18 poly->digits

(define poly->digits

(lambda (poly)

(letrec

((convert

(lambda (p deg)

(cond

((zero? deg) (list (leading-coef p)))

((= (degree p) deg)
'

(cons (leading-coef p)

(convert (rest-of-poly p) (subl deg))))

(else

(cons (convert p (subl deg))))))))

(convert poly (degree poly)))))

Otherwise, we have to cons zeros onto the list to take into account the gap

in the degrees between the leading term and the next term with nonzero co-

efficient. In order to do this, it is convenient to introduce a local procedure,

which we call convert. It keeps track of the degree of the term being con-

sidered, even if the coefficient is zero. Thus convert has two parameters: p,

which is a polynomial, and deg, which is an integer representing the degree

of the term. We define poly->digits £is shown in Program 5.18.

We also want to convert from the decimal number to its binary represen-

tation. We shall do this with the procedure decimal->binaxy, which takes a

decimal number and returns a list of the digits in its binary representation.

We can easily derive the algorithm if we recall that we want to find the co-

efficients an, On-i, ... ,ao in the polynomial corresponding to the number q,

which we now write using nested multiplication:

q = ao + 2(ai + + 2{an-i + 2an) •)

Observe that ao, which must be either or 1, is just the remainder tq when

q is divided by 2, since q = ao + 2{somenuTnber). Recall that tq is if 9 is

even, and it is 1 if 5 is odd. If we let qo be the quotient when q is divided by

2, then we have

qo = ai + 2(02 H 1- 2(an_i -I- 2an) • • •)

We now repeat this process to find that ai is the remainder ri when qo is

divided by 2, and so forth. In general, if qk is the quotient when ^jt-i is

158 Locally Defined Procedures

Quotient Remainder

197

98 1

49

24 1

12

6

3

1 1

1

Figure 5.19 Conversion of 197 to its binary representation

divided by 2 and if rk is the remainder when qk-i is divided by 2, then

cik = rk-

For example, to convert the decimal number 197 to binary form, we do

our work in two columns; the first gives the quotient, and the second gives

the remainder when the successive numbers are divided by 2. Figure 5.19

shows this computation. Each line in the table represents the quotient and

the remainder when the previous quotient is divided by 2. The binary repre-

sentation of the number is found by reading the remainders from the bottom

of the table to the top: 11000101. We will then have

(decimal->binary 197) =» (1 1 1 1)

Implementing this algorithm is accomplished in Program 5.20 by building

up the polynomial corresponding to the binary number term by term as the

remainders are obtained. The first term we build has degree and the de-

grees incresise by one each time a new remainder is found. Thus we are able

to define decinial->bin2a:y with the help of dec->bin, which has a second

parameter deg that keeps track of the degree of the term, starting from zero

and increasing by one in each recursive invocation.

We now have

(decinial->binary (binary->decimal ' (1 1 1 0))) =* (1 1 1 0)

(binary->decimal (decimal->binary 143)) =* 143

Two other number systems that are commonly used in computing are the oc-

tal (base 8) and the hexadecimal (base 16) systems. For octal, the base b in the

polynomial representation is replaced by 8, and in hexadecimal, the base 6 is

5.4 Binary Numbers 159

Program 5.20 decimal->binary

(define decimal->binary

(lambda (num)

(letrec

((dec->bin

(lambda (rI deg)

(if (zero? n)

the-zero- poly

(P+ (make -term deg (remainder n 2))

(dec- >bin (quol,ient n 2) (addl deg)))))))

(poly->digit£. (dec ->bin num 0)))))

replaced by 16. The digits 0,1,2,3,4,5,6,7 are used for octal numbers and the

digits 0, 1,2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F for hexadecimal numbers. Here

A stands for 10, fi for 11, . .
.

, F for 15.

Exercises

Exercise 5.16

Convert each of the following decimal numbers to base 2.

53

404

Exercise 5.17

Convert each of the following base 2 numbers to decimals.

a. 10101010

b. 1101011

Exercise 5.18: octal->decimal, hexadecimal->decimal

Look over the programs for binary->decimal and deciraal->binary and see

what changes have to be made to get definitions for the four procedures:

octal->decimal

hexade c imal ->dec imal

decimal->octal

dec imal->hexadec imal

Since we are representing our hexadecimal numbers as lists of digits, we can

use the number 10 for A, 11 for B, and so on, so that (12 5 10) is the list

160 Locally Defined Procedures

representation of the hexadecimal number C5A. Define one pair of conversion

procedures base->decimal and decimal->base that take two arguments, the

number to be converted and the beise, where the bcise can be any positive

integer. Then define a procedure change-base that changes a number num

from base bl to base b2, where nxm is a list of digits. Thus (cheinge-base

n\un bl b2) is a list of digits that gives the base b2 representation of num.

Test your program on:

(change-base '(5 11) 16 8) =^ (1 3 3)

(change-base ' (6 6 2) 8 2) ^ (1 1 1 1 1 0)

(change-base ' (1 1 1 1 1 1 1) 2 16) =* (1 7 13)

Exercise 5.19: binary-sum, binary-product

Define two procedures, binaa"y-sum and binary-product, that take two bi-

nary numbers as arguments and return the sum and product of those numbers

in binary form. This can be done in two ways. First, you could convert both

numbers to decimal form, perform the arithmetic operation, and then con-

vert to binary form. You could, on the other hand, treat the binary numbers

as polynomials and perform the arithmetic operations on these polynomials,

using the appropriate carrying rules for binary numbers. Write programs for

binary-sum and binary-product using both approaches.

Exercise 5.20: binary->decimal, decimal->binary

We have presented the conversions from binary to decimal and from deci-

mal to binary as applications of the algebra of polynomials developed in this

chapter. Write the two procedures binary->decimal and decimal->binary

directly from the definitions of binary and decimal numbers, using the list

representation for binary numbers and not making use of the polynomial al-

gebra.

5.4 Binary Numbers 161

6 Interactive Programming

6.1 Overview

6.2 Strings

In this chapter, we begin by taking a brief look at the string data type. We
then illustrate some of the input and output features available in Scheme by

developing a program to find the square root of numbers. After implementing

the basic square root algorithm, we look at ways of viewing intermediate

results and of providing data at run time. We close this chapter with a look

at two famous problems: the Tower of Hanoi and the Eight Queens problem,

both of which demonstrate ways of outputting data.

Strings form an important data type, and there are a number of operations

that can be performed on strings. A brief introduction to strings was presented

in Chapter 2. Recall that a string is written in Scheme sis a sequence of

keyboard characters enclosed within double quotes. We now look at a few of

the procedures in Scheme for manipulating strings. For example, the predicate

string? tests whether its argument is a string; string-length takes a string

as its argument and returns the number of characters in the string, including

blank spaces; and string-append takes any number of strings as arguments

and forms a new string by appending (or concatenating) them. The procedure

substring has the call structure

(substring string start end)

where string is a given string, and start and end are integers satisfying the

inequalities < start < end < L where L represents the length of string. It

returns a string, which is a substring of string consisting of those characters

beginning with the zero-based index start and including all of the characters

up to but not including the one with index end. Thus the length of the

substring is just the difference between end and start. It is also possible to

convert a symbol, such as 'hello into the string "hello" using the procedure

syinbol->string. Below are some examples illustrating string operations:

(string-length "This is a string") =* 16

(string-length "") =»
(string-append "This is" " a string") =^ "This is a string"

(string-append "12" "34" "56") => "123456"

(substring "This is a string" 4) ==» "This"

(substring "This is a string" 4 6) =^ " i"

(substring "This is a string" 5 13) =» "is a str"

(syiBbol->string 'hello) =» "hello"

(strings? "This is a string" "This is a string") ^^ #t

(strings? "This is a string" "This is a STRING") =» #f

(string-ci=? "This is a string" "This is a STRING") => «t

The predicate string=? tests whether two strings are the same and distin-

guishes between upper- and lowercase. The predicate string-ci=? treats

upper- and lowercase as though they were the same character. (The "ci"

stands for case insensitive .) Thus the next to the last example above is false,

and the last example is true.

"We illustrate the use of these string procedures by defining a procedure

string-insert that inserts a string insrt into a string stmg so that the

first character in insrt has index n in the resulting string. For example,

(string- insert "45" "123678" 3) => "12345678"

The definition appends the substring of stmg consisting of those characters

with indices less than n, the string insrt. and the substring of stmg consist-

ing of those characters with indices n or greater. This gives us the definition

in Program 6.1.

We shall introduce more string-handling procedures as they are needed in

our discussions and see examples of how they are used.

164 Interactive Programming

Program 6.1 string-insert

(define string-insert

(lambda (insrt strng n)

(string-append

(substring strng n)

insrt

(substring strng n (stiring--length strng)))))

Exercises

Exercise 6.1: substring?

Define a predicate substring? with two parameters, sstr and strng, that

tests whether the string sstr is a substring of strng. Hint: This can be done

using string-length, substring, and string=?. Test your predicate on the

following:

(substring? "s a s" "This is a string.") =» #t

(substring? "ringer" "This is a string.") ^=* #f

(substring? "" "This is a string.") =^ #t

Exercise 6.2: string-reverse

Define a procedure string-reverse that takes a string as its argument and

returns a string tnat is the given string with its characters in reverse order.

Hint: You may find the following procedure useful:

(define substring-ref

(lambda (strng n)

(substring strng n (addl n))))

Test your procedure on the following:

(string-reverse "Jack and Jill") => "lliJ dna kcaJ"

(string-reverse "mom n dad") =* "dad n mom"

(string-reverse "") => ""

Exercise 6.3: palindrome?

A string is a palindrome if the reverse of the string is the same as the string.

6.2 Strings 165

For example, "mom" and "dad" are examples of palindromes. Define a pred-

icate palindrome? that tests whether a given string is a palindrome. Test

your predicate on the following:

(palindroae? "able Has I ere I saw elba") =* it

(palindrone? "mom n dad") =^ #f

6.3 Implicit begin

The use of begin enables us to evaluate several expressions sequentially and

return the value of the last expression. This is useful in an if expression that

expects just one expression in each of its clauses. There are certain special

forms in Scheme that have an implicit begin built into their definitions. These

include the special forms with keywords lambda, let, letrec, and cond. For

example, writing

(lambda (x y)

(writeln x)

(writeln y)

(+ X y))

is the same as

(lambda (x y)

(begin

(writeln x)

(sriteln y)

(+ X y)))

Similarly, in the case of let and letrec, the body may consist of several

expressions so that

(let ((a 3) (b 4))

(writeln a)

(writeln b)

(+ a b))

is the same as

166 Interactive Programmtng

(let ((a 3) (b 4))

(begin

(writeln a)

(Hriteln b)

(+ a b)))

In a cond expression, each of the clauses contains a condition and a consequent

that is evaluated if the condition is true. The consequent may consist of several

expressions, which are then evaluated in sequential order a^s if they were in a

begin expression.

Exercise

Exercise 6.4

An example of the use of implicit begins in cond clauses is given below:

(define mystery

(leunbda (pos-int)

(letrec ((helper

(lambda (n count)

(cond

((= n 1)

(newline)

(writeln "It took " count " steps to get to 1."))

((even? n)

(writeln count

". We divide " n " by 2.")

(helper (/ n 2) (addl count)))

(else

(writeln coiint

". We multiply " n " by 3 and add 1.")

(helper (+ (* n 3) 1) (addl count)))))))

(helper pos-int 0))))

In this example, each cond clause uses an implicit begin. What is the output

of (mystery 9)? Invoke mystery with a few other positive integer argu-

ments. Safe recursive programs contain a terminating condition which even-

tually halts the computation. No one has, eis yet, been able to demonstrate

that mystery is safe. Nor has a positive integer argument been found for

which mystery is unsafe.

6.4 Input and Output 167

6.4 Input and Output

We have been using the keyboard to enter Scheme expressions, and we have

seen Scheme send its output to the screen. The Scheme expressions we enter

are evaluated after we press the <RETURH> key, and then the result is printed

out. There are programs in which we would like to enter additional data while

the evaluation is taking place or in which we would like to print out not only

the final result but some intermediate results of the computation.

As an example illustrating the desire to see intermediate results, we look at

a program to compute the square root of a number by the method of successive

averaging known as Newton's method. If we have an estimate u for the square

root of a positive number a, a better estimate is always given by the average

of u and ^, that is, by v where^

-^("+^) (1)

Suppose we start with the estimate u = 1 and use formula (1) to compute v.

We then substitute this value v for u in (1) to get the next value v. We continue

this process until we are satisfied with the value we get: but what criterion

should we apply to decide that we are satisfied? We decide how many decimal

places we want in the answer, say five, and stop when we get two successive

estimates that are the same to five decimal places. In particular, we shall stop

the calculation when u and v differ by less than the agreed-upon tolerance,

0.000005. To test whether u and r are closer than the given tolerance, we

shall use the predicate close-enough? defined by writing

(define tolerance 0.000005)

(define close-enough?

(laabda (u v)

(< (abs (- u v)) tolerance)))

We can describe the algorithm as follows:

1. Make an initial estimate w = 1 for the square root of a.

^ To make this plausible, recall that we axe looking for the number s having the property

that 5 X s = a. If the estimate u is too large, then — is too small, and their average v is a

better approximation to s. Similarly when the estimate u is too small, — is too leirge, emd

their average i; is a better approximation to s.

168 Interactive Programmtng

Program 6.2 square-root

(define square-root

(lambda (a)

(letrec

((next-estimate

(leunbda (u)

(let ((v (/ (+ u (/ a u)) 2)))

(if (close-enough? u v)

V

(next-estimate v))))))

(next -estimate 1))))

2. If u is an estimate for the square root of a, then the next estimate is given

by the v calculated in (1).

3. We continue applying Step 2 with the previously calculated value of u used

as the new value of u to get the next value of v until u and v differ by less

than tolerance.

Program 6.2 is a procedure that implements this algorithm.

We use this program to compute a few square roots:

[1] (square-root 100)

10.0

[2] (sqrt 100)

10.0

[3] (square-root 1000)

31.6227766016838

[4] (sqrt 1000)

31.6227766016838

[5] (square-root 2)

1.41421356237469

[6] (sqrt 2)

1.4142135623731

In [2], [4], and [6], we called the built-in square root procedure sqrt to

compare its (presumably correct) results with our approximation. We see that

we got more than just five-decimal-place accuracy. This averaging method is

known to halve the error until the error is less than 1 in absolute value and

then to double the number of decimal-place accuracy with each successive av-

eraging. In order to see that this is actually happening, it would be interesting

6.4 Input and Output 169

to be able to see each of the successive averages. We would like to send the

value V to the screen each time it is computed.

Scheme provides several procedures that enable us to send output to the

screen or, as we shall see in Chapter 15, to a file. We already have used the

procedure writein to write to the screen when we traced procedures. The one

we now use is display, and later in this section we shall discuss others. The

Scheme procedure display is called with only one argument, and it has the

side effect of printing that argument on the screen. The value that it returns

in not specified in Scheme, and we shall assume that our implementation does

not print a value for display. For example:

[7] (begin

(display "Is")

(display " ")

(display 1.4142)

(display " the square root of 2?"))

Is 1.4142 the square root of 2?

To put a space between the items being printed with display, we have to print

a space using (display " "). Strings are printed without the double quotes.

If we want to print the string "the square root of 2?" on the next line,

we use the Scheme procedure newline, which takes no arguments and has the

effect of moving the cursor to the beginning of the next line. Scheme does not

specify a value for newline, and we again assume that our implementation

does not print a value for newline. We now use newline to print the string

"the square root of 2?" on the next line instead of on the same line as

the other items.

[8] (begin

(display "Is")

(display " ")

(display 1.4142)

(newline)

(display "the square root of 2?")

(newline))

Is 1.4142

the square root of 2?

170 Interactive Programming

Program 6.3 square-root-display

(define square-root-display

(lambda (a)

(letrec ((next-estimate (lambda (u)

(let ((v (/ (+ u (/ a u)) 2)))

(if (close-enough? u v)

V

(begin

(display v)

(newline)

(next-estimate v)))))))

(next-estimate 1))))

We now define the square root procedure using display to print the inter-

mediate results on the screen (Program 6.3).^ When we call square-root-

display, we get the output shown in Figure 6.4. We can now observe that

the convergence of the square-root algorithm does display the convergence

behavior described.

Since we have only asked for five-decimal-place accuracy in the answer, it

would be more appropriate to print the final answer to five places. This can be

done using the Scheme procedure round, which rounds a number to the closest

integer. If we have a number like the one obtained for (square-root 2), we

round it to five places by first multiplying it by l.Oe+5 (i.e., 100000.0), to get

141421.356237469. This result is then rounded to the nearest integer using

round to get 141421, and to get the final answer, we divide by l.Oe+5, yielding

the result 1.41421, which is correct to five decimal places. In Program 6.5, we

define a general procedure round-n-places that has as parameters an integer

n and a decimal number dec-num and returns the number rounded off" to n

decimal places.

Then to get the answer to (square-root 2) rounded off" to five decimal

places, we write:

(round-n-places 5 (square-root 2)) => 1.41421

If we are rounding many numbers off to five decimal places, it is convenient

to define a procedure round-5-places as

^ Although the invocation of the local procedure next -estimate is within the begin ex-

pression, this is still an iterative program, since the value of the recursive invocation of

next-estimate is returned directly as the value of next-estimate.

6.4 Input and Output 171

[9] (square-root-display 100)

50.5

26.240099009901

15.0255301199868

10.8404346730269

10.0325785109606

10.0000528956427

10.0000000001399

10.

[10] (square-root-display 1000)

500.5

251.249000999001

127.614558163459

67.725327360826

41.2454260749912

32.7452493444886

31.6420158686508

31.622782450701

31.6227766016843

31.6227766016838

[11] (square-root-display 2)

1.5

1.41666666666667

1.41421568627451

1.41421356237469

Figure 6.4 Display of intermediate results

Progreun 6.5 round-n-places

(define round-n-places

(lambda (n dec-num)

(let ((scale-factor (expt 10 n)))

(/ (round (* dec-num scale-factor)) scale-factor))))

(define round-5-places

(lambda (dec-num)

(round-n-places 5 dec-num)))

172 Interactive Programming

and then simply write

(round-S-places (square-root 2)) =^ 1.41421

In squ2are-root-display, each successive value of v was printed out on a

new line. Suppose we want to print out all of the successive values on one line.

Then we would not follow each application of display with an application of

nevline. We would only use newline before returning the final answer to set

it off from the intermediate values.

(if (close-enough? u v)

(begin

(newline)

y)

(begin

(display v)

(display " ")

(next-estimate v)))

Here, (display v) prints the value of v to the screen; then (display " ")

prints a blank space after the value of v. Thus the successive numbers will

be separated by blank spaces. The final answer v will be on a new line. For

example, with the procedure squetre-root-display redefined this way, we

get:

[12] (squcire-root-display 2)

1.5 1.41666666666667 1.41421568627451

1.41421356237469

The procedure display prints the string "the squcure root of 2?" with-

out double quotes. For the occasions when we do want the double quotes to

be printed in addition to the string, we can use the Scheme procedure write

instead of display. If we use write instead of display in [8], we get

[13] (begin

(write "Is")

(write " ")

(write 1.4142)

(newline)

(write "the squ<u:e root of 2?")

(newline))

"Is"" "1.4142

"the square root of 2?"

6.4 Input and Output 173

Program 6.6 read-demo

(define read-demo

(lambda ()

(display "Enter data (enter done when finished) :
")

(let ((response (read)))

(cond

((eq? response 'done) (display "Thank you. Good--bye. "))

(else (display "You entered:

(write response)

(newline)

(read-demo))))))

")

We also see that (write " ") prints a blank space with double quotes around

it, whereas (display " ") prints just the blank space.

It is also possible to enter data interactively while a procedure is running

by making use of the Scheme procedure read. When the procedure read is

invoked with no arguments, the computer stops and waits for an expression

to be entered from the keyboard. The value entered from the keyboard is

returned by (read). In Chapter 15, we shall see how read may be called

with one argument to read from a file instead of from the keyboard. In

Program 6.6, we illustrate the use of read by writing a simple program that

asks us to enter data, reads the data we enter, and then tells us what data

we entered. A statement written to the screen asking us to do something is

called a prompt. A statement that shows what we entered in response to the

prompt is said to echo what we entered.

The first thing to notice about read-demo is that it is written as a procedure

of no arguments; the parameter list in the lambda expression is the empty

list (). A procedure of no arguments is called a thunk, and it is invoked by

merely enclosing the name of the procedure in parentheses. For example, if

we write

(define greeting

(lambda ()

(writeln "Hello. How are you?")))

then the procedure greeting is called as follows:

[14] (greeting)

Hello. How are you?

174 Interactive Programming

In the definition of read-demo, the first display expression prompts us for

data. The let expression binds the variable response to the object that is

produced by the read expression. During the evaluation, the computer pauses

and waits for us to enter a datum from the keyboard, and it is that datum that

is bound to response. We chose to use write instead of display to print the

response in order to show it exactly as it was entered. Thus when a string is

entered with double quotes, it is printed on the screen with the double quotes.

Had we used display instead of write, a string would be printed without the

double quotes. In order to stop the recursion, we enter done. The condition

terminating the recursion tests response to see if it is the same as done using

the predicate eq?. Here is a sample run using read-demo when a number,

a symbol, and a string are entered in response to the prompt asking for a

datum. The responses are presented in italics to distinguish them from the

prompts.

[16] (read-demo)

Enter data (enter done vhen finished) : 6.5432

You entered: 6.5432

Enter data (enter done when finished) : Hello

You entered: Hello

Enter data (enter done when finished) : "How are you?"

You entered: "How are you?"

Enter data (enter done when finished) : done

Thank you. Good-bye.

We now define interactive-square-root in such a way that it prompts

us for the numbers for which square roots are desired.

Program 6.7 interactive-square-root

(define interactive-square-root

(lambda

(writ Bin "Enter the number whose square root you want ,

"

" or enter done to quit: ")

(let ((n (read)))

(if (eq? n 'done)

(writeln "That's all,

(begin

folks .")

(writeln "The square root of " n " is " (squeire--root n))

(newline)

(interactive-square--root))))))

6.4 Input and Output If

5

The first writeln expression provides a prompt for us to enter a number.

Then the let expression binds the value given by (read) to n. When the

expression (read) is evaluated, the computer pauses and waits for the user to

enter a datum at the keyboard. In this Ccise the datum is a number, which is

bound to n. When n is not the symbol done, the writeln expression evaluates

its operands, which includes the expression (square-root n) and echoes n

while printing its square root. It is good practice to echo back the number

n along with its square root to be sure that you did not make the mistake

of entering a wrong number when you responded to the prompt. Next the

procedure interactive-square-root is called, and the process is repeated

until the symbol done is entered as a terminating condition. Below is an

example of an interactive session after calling interactive-square-root:

[1] (interactive-square-root)

Enter the number whose square root you want, or enter done to quit:

100

The square root of 100 is 10

Enter the number whose square root you want, or enter done to quit:

1000

The square root of 1000 is 31.6227766016838

Enter the number whose square root you want, or enter done to quit:

done

That's all, folks.

The interactive-square-root example illustrates the use of prompts to

ask the user to enter something at the terminal, and it illustrates the use of a

read expression to bind a value to a variable interactively. It also shows the

echoing of input data in the result to verify that the correct data were entered.

Study this example to understand these concepts fully. In this section, we have

seen that output from our programs can be sent to the screen using the four

procedures display, write, newline, and writeln. Input from the keyboard

can be entered during the evaluation of an expression using the procedure

read.

Exercises

Exercise 6.5

Write an interactive program that prompts for a number and then prints

the square and the square root of that number. It continues prompting for

1 76 Interactive Programming

numbers until stop is entered. The display should include the appropriate text

to identify the input and output.

Exercise 6.6: Making change

Write a program that prompts for an amount of money; for example

For what amoiint do you want chemge? $

and the user enters a number like 23.45. The program then tells how this

amount is made up of 100 dollar, 20 dollar, 10 dollar, 5 dollar and 1 dollar

bills and of quarters, dimes, nickels, and pennies. The output should say

something like:

Your change is

:

1 twenty-dollar bill

3 one-dollar bills

1 queurter

2 dimes

The program should then ask if you want change for another amount and

terminate if the answer is "no."

Exercise 6. 7; Weekday of a given date

A Reverend Zeller developed a formula to compute the day of the week for any

given day of the Gregorian calendar. The input to the algorithm is specified

in the following manner:

• m is the month of the year, with March as m = 1. January and February

are months 11 and 12 of the previous year.

• d is the day of the month.

• y is the year of the century.

• c is the previous century.

For example, for July 4, 1989, m = 5, d = 4, y = 89, and c = 19, while for

January 25, 1989, m = 11, d = 25, y = 88, and c = 19. The algorithm to

compute the day of the week is:

1. Take the integer part of (13m — l)/5. Call this a.

2. Take the integer part of y/4. Call this b.

3. Take the integer part of c/4. Call this e.

4. Compute f = a + b-\-e + d-iry-2c.

6.4 Input and Output 177

5. Set r equal to f modulo 7.

6. T tells us the day of the week, with Sunday corresponding to r = 0, Monday

to r = 1, etc.

Write a program that prompts for the month, the day, and the year. The

month should be entered in the usual way with January as 1 and December

as 12. The year should also be entered in the usual way (e.g., 1989). The

program should then convert these data to what is needed by the algorithm

and compute the day. The output should be a statement such as "1/13/1989

is a Friday." The program should ask whether another day is desired and

terminate if the user responds with "no."

6.5 Two Famous Problems

These two problems, known by the names Tower of Hanoi and Eight Queens,

are included in this chapter to illustrate how information is displayed while the

program is running. The Tower of Hanoi^ problem was apparently originated

by the French mathematician Edouard Luccis in the nineteenth century. The

following story is told in connection with the problem:

In the great Temple of Brahma in Benares, on a brass plate beneath

the dome that marks the Center of the World, there are 64 disks of

pure gold which the priests carry one at a time between three diamond

needles according to Brahma's immutable law: No disk may be placed

on a smaller disk. In the Beginning of the World, all 64 disks formed the

Tower of Brahma on one needle. Now, however, the process of transfer

of the tower from one needle to another is in midcourse. When the last

disk is finally in place, once again forming the Tower of Brahma but on a

different needle, then will come the End of the World, and All will turn

to dust.

We shall formulate the problem so as to have three posts, labeled L (for

left), C (for center), and R (for right), and n disks of decreasing diameter (in

going from bottom to top) all on the left post. Our goal is to move the n

disks to the right post, so that at the end they will again be stacked in order

of decreasing diameter in going from bottom to top. The two rules are that

we can move only one disk at a time and we must never put a larger disk on

' For a fuller account of the Tower of Hanoi puzzle, see Hofstadter, 1985.

178 Interactive Programming

Figure 6.8 The Tower of Hanoi

top of a smaller one. Figure 6.8 illustrates the initial configuration for three

disks.

This problem lends itself to a beautiful recursive solution. The idea is that

if we have solved it for moving n — 1 disks from a source post to a destination

post (making use of the third post £is a help post), we can immediately solve

it for moving n disks from a source post (say L) to a destination post (say R)

by making the following moves:

1. With n disks on the source post L, we use the fact that we know the solution

for n — 1 disks to move the top n— 1 disks to the post C. (In these moves,

the destination post R serves as the help post.)

2. Now the largest disk is the only one on the source post L and the destination

post R is empty. We move the largest disk from the source post L to the

destination post R.

3. Making use of the now-empty post L as a help post, we now move the n — 1

disks from post C to the destination post R.

We have now solved the problem for n disks under the assumption that

we knew the solution for n — 1 disks. If we have only one disk (n = 1), the

solution is easy: one merely carries that one disk from the source post to the

destination post. This case serves as the base case for our recursion. To be

able to write the solution to this problem, let us represent a single move that

carries a disk from a post called source to a post called destination by a

pair (source destination). For example, the move that carries a disk from

L to C is denoted by the pair (L C). A list of these pairs gives a sequence of

moves; for example, ((L C) (L R) (C R)) says that we first move the top

disk from post L to post C, then the top disk on post L is moved to post R,

and finally the top disk on post C is moved to post R.

The procedure to solve the Tower of Hanoi problem for n disks is called

6.5 Two Famous Problems 179

tOHer-of-hanoi and its definition begins with

(define toser-of-hanoi

(lambda (n)

...))

We now define a local recursive procedure move that moves n disks from

the post denoted by source to the post denoted by destination making use

of the post called helper. Thus move takes the four arguments n, source,

destination, and helper and produces a list of pairs that is the solution of

the problem of moving n disks from the post source to the post destination.

Thus we continue the definition with

(define tower-of-hanoi

(lambda (n)

(letrec

((move

(lambda (n source destination helper)

...))))))

The terminating condition for the recursion on n is the case in which n

is 1. Then we merely move the disk from the source to destination, and

the solution is a list whose only member is the pair consisting of source and

destination. Thus we have

(define tower-of-hanoi

(lambda (n)

(letrec

((move

(lambda (n source destination helper)

(if (= n 1)

(list (list source destination))

...)))))))

Now for any n > 1, we make use of the three steps given above. Step 1 tells

us to move n — 1 disks from source to helper, so we first invoke

(move (subl n) source helper destination)

which produces a list of pairs giving the moves that carry the first n — 1 disks

from the source post to the helper post making use of the destination post.

We append to that list the list containing the single move from the source

180 Interactive Programming

Program 6.9 tower-of-hanoi

(define tower-of-hanoi

(lambda (n)

(letrec

((move

(leunbda (n source destination helper)

(if (= n 1)

(list (list source destination))

(append

(move (subl n) source helper destination)

(cons

(list source destination)

(move (subl n) helper destination source)))))))

(move n 'L 'R 'C))))

post to the destination post. The resulting list is then consed onto the list of

pairs produced by

(move (subl n) helper destination source)

which moves the n — 1 disks from the helper post to the destination post

making use of the source post. These three steps enable us to complete the

definition of the local procedure move:

(define tower-of-hanoi

(leu&bda (n)

(letrec

((move

(lambda (n source destination helper)

(if (= n 1)

(list (list source destination))

(append

(move (subl n) source helper destination)

(cons

(list source destination)

(move (subl n) helper destination source)))))))

...)))

Now that the local procedure move is defined, we call it for n disks located

on the source L and with destination R with the help of the post C. Thus the

complete solution is in Program 6.9.

6.5 Two Famous Problems 181

Program 6.10 display-tower-of-hanoi

(define display- tower-of-hanoi

(let ((show-move (lambda (s d)

(display s)

(display " — >
' ')

(display d))))

(lambda (n)

(letrec

((move

(lambda (n source destination helper)

(if (= n 1)

(begin

(shoH-move source destination)

(newline))

(begin

(move (subl n) source helper destination)

(show-move source destination)

(display ", ")

(move (subl n) helper destination source))))))

(move n 'L 'R 'C)))))

Now to solve the Tower of Hanoi problem for three disks moving them from

the post L to the post R with the help of the post C, we enter

[1] (tower-of-hcinoi 3)

((L R) (L C) (R C) (L R) (C L) (C R) (L R))

This shows the seven moves that solve the problem for n = 3.

A minor modification of this program will enable us to see the individual

moves as they are being generated by the local procedure move. As written

now, the local procedure move builds a list of the individual pairs (list

source destination) and returns that as the answer. Now we ask it to

send those pairs, without parentheses, to the screen instead of building a list

of them. The code to do this is shown in Program 6.10. With this new

definition, we get the following output:

[3] (display-tower-of-heinoi 3)

L ~> R

L —> C, R —> C

L ~> R, C ~> L

C ~> R, L ~> R

182 Interactive Programming

It is good practice to walk through the program and explain how the output

is obtained.

The second problem we discuss in this section is that of the Eight Queens.

The challenge in this problem is to place eight chess queens on a chess board in

such a way that no queen is attacking any other queen.* How many different

solutions are there to this problem? One such is shown in Figure 6.11.

12 3 4 5 6 7 8

Figure 6.11 An Eight Queens Solution

Let us number the columns from 1 to 8 going from left to right and the

rows from 1 to 8 going from the bottom to the top. The data structure we

use to denote the positions of the 8 queens on the board is a list of integers

of length 8 in which the A;th integer in the list denotes the row of the queen

in the fcth column. This data structure is permissible since the nature of the

problem rules out the possibility of two queens being on the same column.

The queens illustrated in Figure 6.11 are represented by the position list

(57263148)

In general the last element in the position list denotes the row of the queen in

the eighth column, so we denote the positions of the three rightmost queens

on the board in Figure 6.11 by (1 4 8). We call a position list legal if none

* For those not familiar with the rules of chess, a queen attacks another piece if the queen

and the other piece are on the same horizontal, vertical, or 45-degree diagonal line.

6.5 Two Famous Problems 183

Program 6.12 legal?

(define legal?

(lambda (try legal-pl)

(letrec

((good?

(lambda (nes-pl up down)

(cond

((null? new-pl) #t)

(else (let ((next-pos (ceir new-pl)))

(and

(not (= next-pos try))

(not (= next-pos up))

(not (= next-pos down))

(good? (cdr new-pl)

(addl up)

(subl down)))))))))

(good? legal-pl (addl try) (subl try)))))

(define solution?

(lambda (legal-pl)

(= (length legal-pl) 8)))

(define fresh-try 8)

of the queens in the list attacks any other queen in the list. The position list

(1 4 8) is legal, but the position lists (8 4 8) and (6 4 8) are not legal,

the first because two queens are on the same row and the second because two

queens are on the same diagonal. Naturally, a list containing just one element

is legal. Program 6.12 defines a predicate that tests whether adding a new

queen to a legal position list is legal.

When do we know that we have a solution? When we have a legal position

list that is of length 8. For this problem, we will define a predicate solution?

that returns true if its argument, a legal position list, is of length 8. We need

one other piece of information before we can start. We need a constant Iresh-

try, which has the value 8.

The Eight Queens problem is interesting because it represents a simple

problem in backtracking. When you make guesses to find a solution, you

often make a wrong guess and follow that wrong guess with other guesses

until it becomes clear that the set of guesses you have made will lead to a

failure. The undoing of such guesses is referred to as backtracking.

184 Interactive Programming

Program 6.13 build-solution

(define build-solution

(lambda (legal-pl)

(cond

((solution? legal-pl) legal-pl)

(else (forward fresh-try legal-pl)))))

Imagine that we have the position list (64 17538) and are about to

place the last queen on the chess board. The queen we placed most recently

was the 6. Now we discover that we cannot place the last queen, so it must

be that 6 was a bad choice. Because we try the positions in a column in

decreasing order, the next possibility is 5. We try this list with 5, 4, 3, 2,

and 1, and they all fail. When we decrease it one more time we get 0, so we

backtrack. This time we use 3 and (17 5 3 8). Neither 3, 2, nor 1 can

be used, so once again we backtrack. Once again we get 0. The indicates

that there are no queens that can be added, so we backtrack again. This

time we use 6 and (5 3 8). We discover that although we cannot use 6, 5,

4, or 3, we can use 2. Once the 2 has been placed in the position list, we

try to place another queen, starting in position 8. This means we look for

a five-position list from the possibilities: (8 2 5 3 8), (7 2 5 3 8), (6 2

6 3 8), (5 2 5 3 8), (4 2 5 3 8), (3 2 5 3 8), (2 2 5 3 8), and (1 2

5 3 8). If one of these works, then we will be looking for a six-position list

among eight possibilities. If none of these works, then we backtrack and try

to find a four-position list from the single possibility 1 and (5 3 8). This

process, which consists of moving forward toward a solution as far as possible

and then backing up when we have hit a dead end, terminates with a solution

if there is one and terminates with the empty list if there are no solutions.

To solve the Eight Queens problem, we use the three procedures: build-

solution, forward, and backtrack. When build-solution (defined in Pro-

gram 6.13) is called, we know that its argument is a legal position list, so that

termination follows if it is the correct length. If it is not the correct length,

we call forward with an attempt that may or may not be legal. This attempt

will use fresh-try (i.e., 8) and a legal position list.

The procedure forward (see Program 6.14) is always called with a try and

a position list. If the try is 0, then we know that we have tried all positions

in this column, and none of them works, so we must backtrack. If the try is

not a 0, then adding try might make a legal position list. If so, we invoke

build-solution with the new legal position list. If not, we try again.

6.5 Two Famous Problems 185

Program 6.14 forward

(define forBard

(lambda (try legal-pl)

(cond

((zero? try) (backtrack legal-pl)

)

((legal? try legal-pl) (build-solution (cons try legal-pl)))

(else (forward (subl try) legal-pl)))))

Program 6.15 backtrack

(define backtrack

(lambda (legal-pl)

(cond

((null? legal-pl) '())

(else (forward (subl (ceir legal-pl)) (cdr legal-pl))))))

We next discuss backtrack (see Program 6.15). At the time backtrack is

invoked, we know that its argument is either the empty list, or it is a legal

position list that has shown no promise. If it is the empty list, that means we

have backtracked as far as is possible and could not find a solution. This is

the result when you solve the Three Queens problem on a 3 x 3 board. When
this happens, we have no solution. It is more likely, however, that the legal

position list has shown no promise. Hence, we sacrifice that position list and

try the next one. This is accomplished by subtracting one from the car of the

current position list.

With these three procedures, we can now produce a solution to the Eight

Queens problem.

[1] (build-solution '())

(57263148)

Generalizing this program to get more solutions is not difficult if we notice

that how we look at a solution is a matter of judgment. When we get a

solution, we can add it to a list of solutions, but also we may imagine that

that solution has shown no promise and backtrack over it. This way, we will

be forced to search for another solution, since the one we have has shown,

in a manner of speaking, no promise. This technique is called failure- driven

backtracking. For example, if we want three solutions, we can write

186 Interactive Programming

[2] (let ((soil (build-solution '())))

(let ((sol2 (backtrack soil)))

(let ((sol3 (backtrack 8ol2)))

(list soil 8ol2 sol3))))

((57263148) (47526138) (64713528))

From here, it is an easy step to get all solutions. Each time we get a solution,

we save it in a list and backtrack over it to get another solution, until there

are no solutions left. In the experiment below, we are interested just in the

number of solutions.

[3] (define build-all-solutions

(lambda ()

(letrec

((loop (Isuabda (sol)

(cond

((null? sol) '())

(else (cons sol (loop (backtrack sol))))))))

(loop (build-solution '())))))

[4] (length (build-all-solutions))

92

The procedures build-solution and forweurd rely on three global vari-

ables: legal?, solution?, and Iresh-try. Program 6.16 is a procedure that

frees us from concern about these three variables. By scoping these variables,

we see how to make the not-so-general procedure for solving the Eight Queens

problem work for a larger class of problems.

Just getting answers is not satisfying. Backtracking should be witnessed.

As we have done earlier in this chapter, we are going to display selected

information so that you can get a better idea of how these procedures work.

The procedure lorwaird is uninteresting because it is just monitoring the

counting-down procedure; thus we shall not trace forvsLrd. However, we will

display the position list on entrance to backtrack and build-solution. In

the trace we reverse the lists to make the trace more readable. By placing

(writeln "Backtrack : " (reverse legal-pi)

)

and

(writeln "Build-Solution : " (reverse legal-pi)

)

6.5 Two Famous Problems 187

Program 6.16 searcher

(define seeircher

(lambda (legal? solution? fresh-try)

(letrec

((build-solution

(lambda (legal-pl)

(cond

((solution? legal-pl) legal-pl)

(else (forscird fresh-try legal-pl)))))

(forseird

(lambda (try legal-pl)

(cond

((zero? try) (backtrack legal-pl))

((legal? try legal-pl)

(build-solution (cons try legal-pl)))

(else (forwaird (subl try) legal-pl)))))

(backtrack

(lambda (legal-pl)

(cond

((null? legal-pl) '())

(else

(forward (subl (ceir legal-pl)) (cdr legal-pl))))))

(build-all-solut ions

(leUttbda ()

(letrec

((loop (lambda (sol)

(cond

((null? sol) '())

(else (cons sol (loop (backtrack sol))))))))

(loop (build-solution '()))))))

(build-all-solutions)))

)

as the first expression in backtrack and build-solution, respectively, we

get a trace. If we only want to trace until the first solution is found, as shown

below, then we replace the body of the letrec by (build-solution '()). As

you study the trace below, remember that the position list has been reversed,

and hence the last item in each list is the one most recently entered.

188 Interactive Programming

[5] (searcher legal? (lambda (x) (= (length x) 7)) 7)

Build-Solution

Build-Solution

Build-Solution

Build-Solution

Build-Solution

Build-Solution

Backtrack

Backtrack

Build-Solution

Build-Solution

Build-Solution

Build-Solution

(2461357)

(7)

(7 5)

(7

(7

(7

(7

(7

(7

(7

(7

(7

3)

3

3

3

3

3

3

3

3

6)

6 4)

6 4)

6)

1)

1 6)

1 6 4)

16 4 2)

Exercises

Exercise 6.8

An interesting question we can ask is how many moves M„ are needed to

move a tower of n disks from the source post to the destination post. We can

get a simple equation satisfied by M„ if we recall that we first used M„_i
moves to move the top n — \ disks to the helper post, then we used one move

to carry the largest one from the source disk to the destination disk, and

finally we used Mn-\ moves to take the n — \ disks from the helper post to

the destination post. This leads to the difference equation Mn = 1 + 2M„_i.

We also know that if we have only one disk on the source post, it takes

only one move to take it to the destination post. Thus M\ = 1. Then

M2 = 1 + 2Mi = 1 + 2, and M3 = 1 + 2M2 = 1 + 2 + 22. gj^^^ ^y induction

that Mn = 1 + 2 + 2^ + 2^ H h 2""^ Sum this geometric series for M„ by

multiplying it termwise by 2 and then computing 2M„ — Mn to get the final

result Mn = 2" — 1. Estimate the number of digits in the number Me4 to

determine how many disks the priests of the Temple of Brahma must move

before All turns to dust.

Exercise 6.9

Write a program that solves the Tower of Hanoi problem for n disks and k

posts. All of the disks are initially on the first post. They should be moved

to the kih post with a minimum number of moves, placing no disk on top of

a smaller disk in the process.

Exercise 6.10: queens

The Eight Queens problem can be restated to apply to n queens placed on an

6.5 Two Famous Problems 189

nxn board so that none attacks any of the others. Write a procedure queens

that takes n as an argument and solves the problem for an arbitrary n. Test

your solution for n = 3, 4, 5, and 6.

Exercise 6.11: The Good Sequences

The Good Sequences problem may be stated as follows: a finite list of I's,

2's, and 3's is called a good sequence if it does not contain two identical

subsequences that are adjacent. Thus (123231) is not good because (2 3)

appears twice cis adjacent subsequences. On the other hand, (1 2 3 2 1 3) is

a good sequence. Methods similar to those used in solving the Eight Queens

problem can be used to show that for any n, one can find a good sequence of

length n. Generate all good sequences of length n.

Exercise 6.12

Change the definition of build-all-solutions so that instead of building a

list of all the answers, it displays the answers, one per line. Redefine your

solution so that it displays five solutions per line. Redefine the previous

solution to display n per line.

Exercise 6.13

The backtrack trace represents the search for the first solution of the Seven

Queens problem. Show what would be printed if we traced the second solution.

You may solve this by hand or by modifying the program.

Exercise 6.14

A standard technique for improving the efficiency of programs is to remove

invocations of length. In the procedures used to solve the Eight Queens

problem, we did not integrate the solution? test into the program because

we wanted to give you a relatively general program for doing backtracking.

Given that all you are concerned about solving is the Eight Queens problem,

rewrite the set of procedures so that there are no length invocations.

Exercise 6.15

Sets of procedures can sometimes be combined. For example, we do not

need both the backtrack and forwaord procedures. If we combine these two

procedures, we will be left with only two procedures: build-solution and

the combined procedure. Test build-solution and the combined procedure.

Furthermore, we can take the resultant procedure and combine it with build-

solution. This would leave us with just one procedure, build-solution.

Test this new build-solution.

190 Interactive Programming

Exercise 6.16: blanks

In the trace of backtrack and build-solution, we use strings with sequences

of blank characters. As the number of characters in such strings increeises,

they become more and more difficult to read. A solution is to write a proce-

dure bleinks that generates a string of n blank characters. Run the trace by

redefining backtrack and build-solution to use blauiks as defined below.

(define blemks

(IcUDbda (n)

(cond

((zero? n) "")

(else (string-append " " (blanks (subl n)))))))

6.5 Two Famous Problems 191

Part 2

Procedures as Values

Procedures that take numbers as arguments and have numbers as values are

called simple arithmetic operations. Examples are addition and multiplica-

tion. Procedures that take procedures as arguments and have procedures

as values are called higher-order operations. One use we will make of these

higher-order procedures will be to show how we define a procedure that com-

bines similar characteristics of several different procedures. The activity of

combining properties of several procedures is also known as abstracting over

procedures, a natural generalization of abstracting over data. Not only is the

dining out procedure that we discussed in the introduction to Part 1 an ab-

straction of the dining activity, but it can be made to work for other external

consuming activities. Instead of eating in a restaurant, we watch a movie

in a theater, and instead of reading from a menu, we read a marquee. We
still enter, pay, and exit, so we can abstract the procedures within the dining

out procedure, and now we can refer to it as the consuming procedure. If

we feed the consuming procedure the activities of reading the menu and eat-

ing, then we will once again have the dining out procedure, but if we feed it

the activities of reading the marquee and watching a movie, we will have the

movie-going procedure.

A predicate tests whether a value is true or false. Quantifiers tell us whether

some or all objects satisfy a predicate. Set theory is about collections of

elements and the properties of operations over such collections. In Chapter 8,

we develop a set algebra with quantifiers using higher-order procedures. The
essence of reasoning with higher-order procedures is the point of this part.

^^4 Procedures as Values

Abstracting Procedures

7.1 Overview

In this chapter, we first see how procedures can be passed as arguments to

other procedures and how procedures may be the values of other procedures.

We illustrate these ideas with a development of the Ackermann procedure.

We then show how a procedure of two arguments may be rewritten as a

procedure of one argument whose value is a procedure of one argument. This

process is called currying. We next look at several programs that are similar

in structure and we abstract these common features in a program that can be

used easily to generate any other program with these features. This process

is called procedural abstraction. Flat recursion on lists is often encountered

in program.ming, so we have selected it as the first candidate for abstraction.

That is followed by an abstraction of deep recursion.

7.2 Procedures as Arguments and Values

In this section, we shall study the use of procedures as arguments to other

procedures and as values of procedures. In Chapter 1, we included procedures

as a type of datum and have on occasion used procedures as arguments to

other procedures. For example, in the definition of max in terms of extreme-

value in Chapter 3, we passed the procedure > as an argument to the proce-

dure extreme-value. In Scheme, all procedures may be used as arguments

to other procedures and as values of procedures. This idea is illustrated by

many examples in this section.

Suppose we have a list of numbers, such as (13 5 79), and we want to

Program 7.1 map

(define map

(lambda (proc Is)

(if (null? Is)

'()

(cons (proc (car Is)) (map proc (cdr Is))))))

produce a new list that is obtained from the old by adding 1 to each item in

the list, so that in our example, we would get (2468 10). We can define

a procedure addl-to-each-item that takes a list Is and returns the new list

with each number augmented by 1.

(define addl-to-each-item

(lambda (Is)

(if (null? Is)

'()

(cons (+ 1 (car Is)) (addl-to-each-item (cdr Is))))))

Now if we want to add 2 to each element, we have to write the definition

again but with (+1 (car Is)) replaced by (+ 2 (car Is)). Since we may
want to perform many different operations on the elements of the list, it

would be more efficient if we had a procedure that takes as arguments both

the procedure we wish to apply to each element and the list. There is a

Scheme procedure map that has the parameters proc and Is and returns a

list that contains those elements that are obtained when the procedure proc

of one argument is applied to each element of Is. Thus

(map addl ' (1 3 5 7 9)) => (2 4 6 8 10)

A definition of map is given in Program 7.1. To add 2 to each element in the

list, we pass the procedure of one argument, (Isunbda (num) (+ num 2)), as

the first argument to map. Thus we have

(map (lambda (num) (+ num 2)) ' (1 3 5 7 9)) =* (3 5 7 9 11)

We can also apply map with a procedure that operates on lists as its first

argument. For example:

(let ((proc (lambda (Is) (cons 'a Is))))

(map proc '((be) (d e) (f g h)))) => ((a b c) (a d e) (a f g h))

196 Abstracting Procedures

Program 7.2 lor-each

(define for-each

(lambda (proc Is)

(if (not (null?

(begin

Is))

(proc (car Is))

(for-each proc (cdr Is))))))

(let ((x 'a))

(let ((proc (lambda (Is) (member? x Is))))

(map proc '((a b c) (bed) (c d a))))) =* (#t #f #t)

Observe that the elements of the list making up the second argument to map

must be of the correct type for the procedure that is applied to them. In

the first of these two examples, proc is a procedure that takes a list as its

argument and conses the symbol a onto the list. Thus each element of the

second argument to map is a list, and the list that is returned consists of

sublists, each of which begins with the a that was consed onto it.

There are procedures, such as display, that produce side effects of interest

to us rather than their returned values. If we apply such a procedure to each

item in a list, the list that is returned is not what interests us but only the side

effects produced by the procedure. In such cases, we use the Scheme procedure

for-each instead of map to apply the side-effecting procedure to the elements

of the list. When lor-each is applied with a side-effecting procedure as its

first argument and a list as its second argument, the procedure is applied

to each item in the list, the desired side effects are produced, and the value

that is returned is unspecified, that is, it depends upon the implementation

of Scheme being used. A definition of for-each is given in Program 7.2. An
example using for-each is:

[1] (for-each display '("Hello. How are you?"))

Hello. How eire you?

We shall see several more examples of the use of for-each below. But first

we introduce the form of lambda that is used to define a procedure that takes

an arbitrary number of arguments. We use this unrestricted lambda to define

the procedures writeln and error, which we have been using.

In a lambda expression, the keyword lambda is followed by a list of param-

eters. Its syntax is

7.2 Procedures as Arguments and Values 197

(Isunbda (parameteri . . .) expri expr2 • • •)

where zero or more parameters are in the list of parameters and where the

number of arguments passed to the procedure, which is the value of this

lambda expression, must match the number of parameters. The body of the

lambda expression consists of one or more expressions, which are evaluated in

order and the value of the last one is returned. Suppose we want to define a

procedure add that can be applied to arbitrarily many numbers and returns

their sum. For example, we would like to have

(add 1 3 5 7 9) =» 25

(add 1 3 5 7 9 11) ==* 36

(add 1 3 5 7 9 11 13) =» 49

It is possible to define a procedure that can be applied to any number of

arguments using the unrestricted lambda, whose syntax is

(lauabda var expri expr2 .)

and it may be applied to any number of operands by invoking

(danbda var expri expr2) operandi ...)

If the operands operandi . . . have the values argi . . ., then the variable var is

bound to the list of arguments (argi .

.

.). The expressions expri expr2 . .

.

in the body are evaluated with this binding in eff'ect.

Program 7.3 add

(define add

(letrec ((list-add

(laabda (Is)

(if (null? Is)

(+ (car Is) (list-add (cdr Is)))))))

(lambda eurgs

(list-add args))))

As an example. Program 7.3 shows the definition of a procedure add that

produces the sum of its arguments. For example, (add 12 3 4 6) =^ 16.

198 Abstracting the Structure of Procedures

Program 7.4 list

(define list (lambda args args))

Program 7.5 writeln

(define writeln

(lambda arge

(for-each display <irgs)

(newline)))

Program 7.6 error

(define error

(lambda args

(display "Error:")

(for-each (leunbda (value) (display " ") (display value)) eirgs)

(nevline)

(reset)))

The general strategy for using this form of lambda is to remember that eurgs is

a list, so we define a local procedure list-add that takes a list as its argument

and let it do what we want add to do. Then we call list-add with the list

args as its argument.

Similarly, the procedure list is defined in Program 7.4 so that

(list 'a 'b 'c 'd) =» (a b c d)

Two procedures, writeln and error, can also be defined using the unre-

stricted lambda. These are shown in Programs 7.5 and 7.6. The procedure

of no arguments reset in Program 7.6 returns the user to the prompt. Many

implementations of Scheme provide the procedure reset. A discussion of the

concepts used to define reset is given in Chapter 16. (See Exercise 16.6.)

Suppose we now want to find the maximum of two numbers in a list Is.

We cannot invoke (max Is), since the list Is is not the correct data type for

an argument to max, which expects each of its arguments to be a number.

If Is were, for example, (2 4), we would be looking at the expression (max

'(2 4)), which has the wrong type of argument for max. We could write

a recursive program that would compute the maximum of the values in Is.

7.2 Procedures as Arguments and Values 199

Program 7.7 add

(define add

(lambda args

(if (null? args)

(+ (car args) (apply add (cdr args))))))

However, there is the Scheme procedure, apply, that allows us to apply a

procedure of k arguments to a list of k items, and the results are the same as

if the items in the list were passed as the k arguments. The procedure apply

has the call structure

(apply proc list-of-items)

where the procedure proc takes the same number of arguments as the number

of items in the list Hst-of-items. It returns the value obtained when we invoke

proc with the items in list-of-items as its arguments. For example, we can

call

(apply max '(2 4)) =* 4

(apply + '(4 ID) =^ 15

The use of apply gives us another way to define procedures using the un-

restricted leunbda. Program 7.7 illustrates it by redefining the procedure add

given in Program 7.3, this time using apply in the recursive invocation of add

on the list (cdr args). There add is defined to apply to an arbitrary number

of numbers, so it cannot be applied directly to (cdr aorgs), which is a list

of numbers. Thus we use apply to invoke add on the items in the list (cdr

args).

The Scheme procedures + and are also defined to take an arbitrary number

of arguments. Thus we have:

(+ 1 3 5 7 9) => 25

(+ 5) => 5

(+) =>
(* 2 4 6) =« 48

(5) ==» 5

(*) => 1

200 Abstracting the Structure of Procedures

Similarly, the Scheme procedures maa and min are defined to take one or

more arguments. Thus we have

(ax 5 -10 15 -20) ^ 15

(in 5 -10 15 -20) =* -20

An object in Scheme is said to be a firsi-class object if it can be petssed as

an argument to procedures, can be returned by procedures, and variables may
be bound to it. We have been using data objects such as numbers, symbols,

or lists of numbers or symbols as arguments to procedures and as values of

procedures, and we have bound them to variables using define, lambda, let

and letrec. Procedures are also treated as first-class objects in Scheme. This

is not the case in many other programming languages. We now explore further

the implications of procedures as first-class objects.

To discuss the composition of two procedures, we first look at the composi-

tion of two functions from a mathematical point of view. Assume that / and

g are functions that take one argument and that each value of the function g

is a valid argument of the function /. We can then speak of the composition

h of the two functions / and g to be the function of one argument defined

by h{x) = fig{x)): that is. to get the value of h at x. we first evaluate g at

X. and then invoke / on the value gix). This idea can be interpreted for the

procedures we use in our programs. We now define a procedure compose that

takes two procedures f and g as parameters and returns another procedure

that is the composition of f and g.

Program 7.8 compose

(define compose

(la«bda (f g)

(laabda (x)

(f (g x)))))

The body of the first lambda expression constructs the procedure

(laabda (x)

(f (g x)))

with one parameter x. Thus (compose f g) is a procedure of one argument,

and we invoke this new procedure on 8 by writing ((compose f g) 8). As

7.2 Procedures as Arguments and \'alues 201

an example, let us take addl for g and sqrt for f . Then we can define the

composition h by writing

(define h (compose sqrt addl))

The new procedure h is the procedure that adds 1 to x and then takes the

square root of the result; expressed mathematically, h{x) = yjx + 1. If we

invoke h with argument 8, we get (h 8) ==* 3. Observe that we have passed

the procedures sqrt and addl as arguments to the procedure compose. Fur-

thermore, the value of the procedure compose is itself a procedure of one

argument. This illustrates both the fact that we can pass procedures, such as

sqrt and addl, as arguments to a procedure and we can have the value of a

procedure be a procedure.

If we reverse the order of the two procedures addl and sqrt as arguments

of compose in our previous example, we get the procedure

(define k (compose addl sqrt))

The procedure k so defined first takes the square root of its argument and

then adds one to the result; that is, A:(x) = ^Jx-\- 1. Thus k is quite a diff"erent

function from h.

Exercise

Exercise 1.1

What operand do we pass to k to get the same value eis (h 8)?

We next develop several basic arithmetic procedures that lead to an inter-

esting example that illustrates the use of procedures as values. The procedure

plus may be defined in terms of addl and subl by making use of the fact

that to add two nonnegative integers x and y, we can add 1 to x repeatedly

y times. This leads to Program 7.9. Similarly, using the fact that multipli-

cation of positive integers can be considered as repeated addition, times can

be defined in terms of plus and subl as shown in Program 7.10. This says

that multiplication of positive integers x and y is the same as adding x to

itself y times. In the same way, we can consider raising x to the exponent y

eis multiplying x by itself y times, so we can write the procedure exponent cis

shown in Program 7.11.

202 Abstracting Procedures

Program 7.9 plus

(define plus

(Icimbda (x y)

(if (zero? y)

X

(addl (plus X (subl y))))))

Program 7.10 times

(define times

(lambda (x y

(if (zero?

)

y)

(plus X (times x (subl y))))))

Program 7.11 exponent

(define exponent

(Icimbda (x y)

(if (zero? y)

1

(times X (exponent x (subl y))))))

Program 7.12 super

(define super

(lambda (x y)

(if (zero? y)

1

(exponent x (super x (subl y))))))

The three procedures we have defined follow a simple pattern. Using this

pattern, we can define another procedure, which we call super, that uses

exponent and subl, as shown in Program 7.12. What does super do? Let us

evaluate (super 2 3).

7.2 Procedures as Arguments and Values 203

Program 7.13 superduper

(define superduper

(lafflbda (x y)

(if (zero? y)

1

(super I (superduper i (subl y))))))

Program 7.14 super-order

(define super- order

(lambda (n)

(cond

((= n 1) plus)

((= n 2) times)

(else (lambda (3: y)

(cond

((zerc>? y) 1)

(else ((super- order (subl n))

z

((super -order n) I (subl y))))))))))

(super 2 3) ^^ (erponent 2 (super 2 2))

=* (exponent 2 (exponent 2 (super 2 1)))

==> (exponent 2 (exponent 2 (exponent 2 (super 2 0))))

=* (exponent 2 (exponent 2 (exponent 2 1)))

^^ (exponent 2 (exponent 2 2))

^^ (exponent 2 4)

=> 16

Thus (super 2 3) is 2^
. In the same way we get that (super 2 4) is 2^

(a tower of 4 twos), which is 65,536. We see that super yields large numbers

even with relatively small arguments like 2 and 4.

We now go to the next step and define superduper using super ajid subl, as

shown in Program 7.13. Then (superduper 2 3) is (super 2 4) or 65,536,

and (superduper 2 4) is (super 2 65536), which is a tower of 65,536 twos.

This is a very large number.

We can continue defining successive procedures by this process, but we must

make up a new name for each one. It would be better to define a procediire

204 Abstracting Procedures

super-order that depends upon a number n, so that (super-order 1) is the

same procedure as plus, (super-order 2) is the same procedure as times,

(super-order 3) is the same procedure as exponent, and so forth. The

definition of super-order is given in Program 7.14. If n is 1, super-order

is the same as plus, and if n is 2, then super-order is the same as times.

For each value of n, (super-order n) is a procedure of two arguments; for

example, ((super-order 4) 2 3) is the same as (super 2 3) or simply 16.

We can now write any procedure in the sequence by selecting the appropriate

value for the parameter n in (super-order n). For example, the procedure

that comes after superduper is (super-order 6).

If all three of the arguments, n, x, and y, in super-order are the same, it

is called the Ackermann procedure. Specifically, we can define

Program 7.15 ackermann

(define ackermemn

(lanbda (n)

((super-order n) n n)))

Then

(ackermann 1) is the sane as (plus 1 1) which is 2.

(ackermetnn 2) is the same as (times 2 2) which is 4.

(ackermanx. 3) is the same as (exponent 3 3) which is 27.

(ackermann 4) is the same as (super 4 4) which is 4

To get an estimate of how large (ackermann 4) is, we first note that 4'* is

256. To estimate 4^ = 4^^®, we set z = 4^"® and take the logarithm to get

logioz = 256logio4 = 154.13. Thus we get 4^^^ % 10^^* as our estimate for

4"*
. Finally we estimate

similarly. If we set y = (ackermann 4), then log^oy ~ 10^^'*logio4 %
10^^'*0.602. Then y » 10^°"^ which means that (ackermann 4) has ap-

proximately 10^^^ digits. Can you estimate the magnitude of (ackermann

S)? The Ackermann procedure played an important role as an example in

the general theory of recursive functions. (See, for example, Minsky, 1967.)

It certainly does grow fast as n increases.

7.2 Procedures as Arguments and Values 205

We see in the definition of super-order that we have a procedure with

parameter n whose value is itself a procedure with parameters x and y, il-

lustrating again how procedures are first-class objects in Scheme. We shall

explore these ideas further in the next section, which deals with procedural

abstraction.

Exercises

Exercise 7.2: composes

Use the procedure compose to define a procedure composes that takes as

arguments three procedures. /. g. and h, and returns the composition k such

that for each argument x, k{x) = f{g{h{x))).

ExeTcise 7.3: compose -many

Use the unrestricted lambda to define a composition procedure compose-many

that forms the composition of arbitrarily many procedures of one argument.

Test your procedure on

((compose-many addl addl addl addl) 3) ^^ 7

((coapose-aany sqrt abs subl (lambda (n) (* n n))) 0.6) ==* 0.8

(let ((f (lambda (n) (if (even? n) (/ n 2) (addl n))))

)

((compose-many f f f f f f) 21)) =^ 4

Exercise 7.4: subtract

Based on the technique used in this chapter to define plus, times, etc., define

the procedure subtract that has as parameters two nonnegative integers x

and y, with x > y. and returns the difference between x and y.

Exercise 7.5

In the following experiment, fill the blanks with the values of the expressions.

[1] (let ((h (lambda (i) (cons i i))))

(aap h '((1 2) (3 4) (5 6))))
7

[2] (aap (lambda (i) (cons i i)) '((12) (3 4) (5 6)))

9

[3] (aap (laabda (x) (+ 5 i)) '(1234))
7

[4] (let ((n 5))

(let ((proc (lambda (i) (+ n i))))

(map proc '(1 2 3 4))))

206 Abstracting Procedures

[5] (define iota

(lambda (n)

(letrec ((iota-helper

(lambda (k ace)

(cond

((zero? k) (cons ace))

(else (iota-helper (subl k) (eons k ace)))))))
(iota-helper (subl n) '()))))

[6] (letrec ((fact

(lambda (n)

(if (zero? n) 1 (* n (fact (subl n)))))))
(map fact (iota 6)))

[7] (map (lambda (x) (+ x (addl x))) (iota 5))
7

[8] (define mystery

(lambda (len base)

(letrec

((mystery-help

(lambda (n s)

(if (zero? n)

(list s)

(let ((h (lambda (i)

(mystery-help (subl n) (cons x s)))))

(apply append (map h (iota base))))))))

(mystery-help len *()))))

[9] (mystery 4 3)

Exercise 7.6: map-first-two

Define a procedure, map-first-two, that works exactly like map except that

the procedure argument is always a procedure of two arguments instead of

just one argument. Use the first and second elements of the list as the first

pair of arguments to the procedure, then the second and third elements, then

the third and fourth elements, and so on, until the end of the list is reached.

If there are fewer than two elements in the list, the empty list is the value.

Test your procedure on:

(map-first-tHO + ' (2 3 4 5 7)) => (5 7 9 12)

(map-first-two max '(2 4 3 5 4 1)) => (44554)

Exercise 1.1: reduce

Define a procedure, reduce, that has two parameters, proc and Is. The

procedure proc takes two arguments. The procedure reduce reduces the list

7.2 Procedures as Arguments and Values 207

Is by successively applying this operation: it builds a new list with the first

two elements of the preceding list replaced by the value obtained when proc

is applied to them. When the list is reduced to containing only two elements,

the value returned is the value of proc applied to these two elements. If the

original list Is contains fewer than two elements, an error is reported. Here

is how the successive stages in the reduction look when proc is + and Is is

(3 5 7 9):

(3 5 7 9) -> (8 7 9) ^ (15 9) -* 24

Test your procedure on:

(reduce + ' (1 3 5 7 9)) =J> 25

(reduce max ' (2 -4 6 8 3 1)) => 8

(reduce (lambda (i y) (and x y)) ' (#t #t #t #t)) => #t

The last example is not written as (reduce and ' (#t #t #t #t)) because

and is a keyword of a special form and not a procedure. Keywords only appear

in the first position of a list.

Exercise 7.8: andmap

Define a predicate andmap that takes two arguments, a one-argument predicate

pred and a list Is. The value returned by andmap is true when pred applied

to each of the elements of Is is true. If pred applied to any one of the elements

of Is is false, andmap returns false. The solution

(define andmap

(lambda (pred Is)

(reduce (lambda (x y) (and x y)) (map pred Is))))

is unacceptable because of the extra recursion. Test your predicate on:

(andmap positive? '(3 4 6 9)) =* #t

(andmap positive? '(3-148)) => #f

(let ((not-null? (compose not null?)))

(andmap not-null? '((a b) (c) (c d e)))) => #t

Exercise 7.9: map2

Define map2, which is exactly like map except that its procedure argument

is always a procedure that takes two arguments, and it takes an additional

argument that is a list the same length as its second argument. The additional

list is where it gets its second argument. Test your procedure on:

(map2 + '(1234) '(579 11)) => (6 9 12 15)

208 Abstracting ProceduTes

(inap2 (let ((n 5))

(leunbda (x y)

(and « X n) « n y))))
'(13 2 1 7)

'(9 11 4 7 8)) => (#t #t #f #t #f))

Exercise 7.10: map, ormap

We now present a definition of map that accepts any number of arguments.

(map proc Isi I32 ...Isn)

where proc is a procedure that takes n arguments and each of the n lists has

the same length. This generalizes the procedures map and map2 given above.

(define map

(leunbda args

(let ((proc (car args)))

(letrec ((map-helper

(lambda (a*)

(if (any-null? a*)

•()

(cons

(apply proc (.map car a*))

(map-helper (.map cdr a*)))))))

(map-helper (cdr args))))))

This program, as written, is incorrect because the two invocations of map
within the definition refer to the simple map we defined earlier in the chapter.

Add a definition of the simple map to the letrec (in the same way that even?

and odd? are in the same letrec) so that no names will be changed in the

definition of map-helper, and write zmy-null? using the definition of ormap

given below.

(define ormap

(lambda (pred Is)

(if (null? Is)

#f

(or (pred (car Is)) (ormap pred (cdr Is))))))

What does this version of map return when the n lists are not of equal length?

7.2 Procedures aa Arguments and Values 209

7.3 Currying

Exercise 7.11

To test your understanding of scope, determine the value of the expression

(letrec ((a (let ((a (lambda (b c)

(if (zero? b) c (a (subl b))))))

(lambda (x) (a x x)))))

(a 3))

The procedure + takes two numbers as arguments and returns their sum. The

procedure addl adds 1 to its argument. We can also define a procedure addS

that adds 5 to its argument by writing

(define add5

(lambda (n)

(+ 5 n)))

This can clearly be done for any number in place of 5. Another way of

approaching this problem makes use of the fact that a procedure may return

another procedure as its value. We can define a procedure curried+ that has

only one parameter, m, and returns a procedure having one parameter n, that

adds m and n:

(define curried+

(lambda (m)

(lambda (n)

(+mn))))

Thus (curried+ 5) returns a procedure defined by

(lambda (n) (+ m n))

where m is bound to 5. To add 5 and 7, we would then invoke

((curried* 5) 7) ^ 12

We can now define add5 by writing

(define add5 (curried+ 5))

210 Abstracting the Structure of Procedures

Moreover, we can define add8 by writing

(define add8 (curried* 8))

and we clearly can do the same for any other number in place of 8. What
underlies this method is the fact that we can take any procedure that has two

parameters, say x and y, and rewrite it as a procedure with one parameter

X that returns a procedure with one parameter y. The process of writing a

procedure of two parameters as a procedure of one parameter that returns

a procedure of one parameter is called currying the procedure.^ It is often

advantageous to use a curried procedure when you want to keep one argument

fixed while the other varies, so in essence, you are using a procedure of one

argument.

We next use currying to rewrite the definitions of four procedures in a way

that demonstrates certain common structural features that they possess. In

the next section, we shall abstract these common features and write a single

procedure from which the original four and many others can be obtained. The

four procedures are member?, map, sum, and product.

The procedure member? can be defined as follows:

(define member?

(Icunbda (item Is)

(if (null? Is)

»f

(or (equal? (car Is) item)

(member? item (cdr Is))))))

It tests whether the object item is a top-level object in the list Is. We are

going to apply the procedure member? with the same object item but different

lists Is, so we define the curried procedure member?-c, which is a procedure

with parameter item and returns a procedure that has the parameter Is and

tests whether item is a top-level member of Is. We do that in Program 7.16.

Observe the following points in the definition of member?-c:

1. member?-c is a procedure with one parameter item.

2. The procedure member?-c returns a procedure helper that has one param-

eter Is.

^ Conceived by Moses Schonfinkel in 1924 (See Schonfinkel, 1924) and neimed after the

logician Haskell B. Curry.

7.3 Currying 211

Program 7.16 member?-c

(define member?-c

(lambda (item)

(letrec

((helper

(lambda (Is)

(if (null? Is)

#f

(or (equal? (car Is) item) (helper (cdr Is)))))))

helper)))

3. We introduced the letrec expression to avoid having to pass the argument

item each time we make a recursive procedure call, since item does not

change throughout the program.

We can now define the original procedure member? in terms of member?-c

by writing

(define member?

(lambda (a Is)

((member?-c a) Is)))

As another example of currying, we look at the definition of the procedure

map, presented in Program 7.1, which hcis two parameters, a procedure proc,

and a list Is. It applies the procedure proc elementwise to Is and returns a

list of the results. For example,

(map addl ' (1 2 3 4)) ^ (2 3 4 5)

Its definition is:

(define map

(lambda (proc Is)

(if (null? Is)

'()

(cons (proc (car Is)) (map proc (cdr Is))))))

This can be written in curried form by using the procedure apply-to-all,

which takes one argument proc and is itself a procedure of the argument

Is. We give its definition in Program 7.17. We can write map in terms of

apply-to-all by defining

212 Abstracting Procedures

Program 7.17 apply-to-all

(define apply-to-all

(lambda (proc)

(letrec

((helper

(lambda (Is)

(if (null? Is)

'0

(cons (proc (c«ir Is)) (helper (cdr Is)))))))

helper))

)

Program 7.18 sum

(define sum

(letrec

((helper

(lambda (Is)

(if (null? Is)

(+ (cai Is) (helper (cdr Is0))))))

helper)

)

Program 7.19 product

(define product

(letrec

((helper

(lambda (Is)

(if (null?

1

(* (cai

Is)

• Is) (helper (cdr Is)))))))

helper)

)

(define map

(lambda (proc Is)

((apply-to-all proc) Is)))

We next look at two more procedures that take lists as arguments. The first,

7.3 Currying 213

Program 7.20 swapper-m

(define swapper-m

(laMbda (x y)

(letrec

((helper

(laabda (Is)

(cond

((null? Is) '())

((equal? (car Is) x) (cons y (helper (cdr Is))))

((equal? (car Is) y) (cons X (helper (cdr is))))

(else (cons (cao: Is) (helper (cdr Is))))))))

helper)))

sum, assumes that the objects in the list are numbers and returns the sum of

the numbers in the list, and the second, product, assumes that the objects

in the list are numbers and returns the product of the numbers in the list.

We write their definitions in Programs 7.18 and 7.19 in such a way that they

demonstrate the same structure as the preceding definitions of member?-c

and apply-to-all. We could have written the procedures sum and product

without the letrec expressions, but we have chosen to do it this way to be

able to compare the structure of these two procedures with the structure of

member?-c and apply-to-all when we abstract this structure in the next

section.

We close this section with an example that is similar to currying, this time

modifying a procedure with three parameters to get a procedure with two

parameters that returns a procedure with one parameter. We look at the

procedure swapper introduced in Program 2.8. Its definition is:

(define swapper

(laabda (x y Is)

(cond

((null? Is) '())

((equal? (car Is) x) (cons y (swapper x y (cdr Is))))

((equjd? (car Is) y) (cons x (swapper x y (cdr Is))))

(else (cons (car Is) (swapper x y (cdr Is)))))))

We modify it to get a procedure swapper-m (we use -m for "modified") that

has the two parameters x and y and that returns a procedure of one parameter

Is. Its definition is given in Program 7.20. To swap the numbers and 1 in

the list (0 1 2 1 2), we would invoke

214 Abstracting the Structure of Procedures

((swapper-m 1) ' (0 1 2 1 2)) => (1 2 1 2)

This example illustrates that a generalization of currying can be used to re-

define a procedure with n = m + k parameters to become a procedure with

m parameters that returns a procedure with k parameters. The term curry-

ing refers to redefining a procedure with n parameters to be expressed as n

procedures, each having only one parameter.

In this section, we have introduced the concept of currying a procedure of

two arguments to get a procedure of one argument that returns a procedure of

one argument. This technique is useful when we want to consider the behavior

of the procedure as the second argument varies while the first argument is

fixed. More generally, a procedure o{ n = m-j- k arguments may be modified

to get a procedure of m arguments that returns a procedure of k arguments.

Exercises

Exercise 7.12: curried*

Curry the procedure to get a procedure curried* and use it to define the

procedure timeslO that multiplies its argument by 10. Test your procedures

on:

((curried* 25) 5) =^ 125

(timeslO 125) =* 1250

Exercise 7.13: swapper-c

Curry the procedure swapper-m so that the curried procedure swapper-c has

one parameter x. It returns a procedure with one parameter y, which in turn

returns a procedure with one parameter Is. That procedure swaps x and y

in Is.

Exercise 7.14-' round-n-places

In Program 6.5, the procedure round-n-places was defined to take two pa-

rameters, n and dec-num, and returned the number dec-num rounded off" to

n decimal places. Rewrite the definition of round-n-places so that it takes

one parameter, n, and returns a procedure with one parameter, dec-num, that

rounds the number dec-num off" to n decimal places. We can then write

(define round-5-places (roimd-n-places 5))

to get the procedure that rounds a given number off" to five decimal places.

7.3 Currying 215

Exercise 7.15: subst-all-m

Modify the deeply recursive procedure subst-all, which has the parameters

new, old, and Is, to get a procedure subst-all-m with the two parameters

new and old, which returns a procedure with the parameter Is, which replaces

each occurrence of old in Is by new. Test your procedure on:

((subst-all-m 10) ' (0 1 2 1 2)) => (1 1 2 1 1 2)

((subst-all-m 1 0) '(0 1 2 ((0 1 2)))) => (1 1 2 ((1 1 2)))

Exercise 7.16: extreme-value-c

In Program 3.19, the procedure extreme-value was defined and then it was

used to define the procedures rmajc and rmin by pcissing it the appropriate

predicate. Write the definition of the procedure extreme-value-c, which

takes the predicate pred and returns a procedure that finds the maximum
of its two arguments or the minimum of its two arguments, depending upon

pred. Then express rmax and rmin in terms of extreme-value-c.

Exercise 7.17: extreme-value-c

In the previous exercise, the procedure (extreme-value-c pred) expects

only two arguments. Rewrite the definition of extreme-value-c using the

unrestricted lambda so that (extreme-value-c pred) is a procedure that

takes arbitrarily many numbers as arguments and returns the extreme value

(maximum or minimum) depending upon the predicate pred.

Exercise 7.18: between?, between?-c

Define a predicate between? that has three numbers i, y, and z, as parameters

and returns true when y is strictly between x and z, that is, when x < y <

z. Then define between?-c, a curried version of between?, where each of the

procedures has only one parameter. That is, between?-c has the parameter

X and returns a procedure that has the parameter y, which in turn returns

a procedure with the parameter z, that tests whether y is strictly between x

and z. Test your procedure on:

(((betHeen?-c 5) 6) 7) =^ #t

(((betBeen?-c 5) 5) 7) => »f

(((betHeen?-c 5) 4) 7) ==» #f

Exercise 7.19: andmap-c, ormap-c

Consider this definition of andmap-c:

216 Abstracting Procedures

(define emdmap-c

(lambda (pred)

(letrec

((and-help

(lambda (Is)

(cond

((null? Is) #t)

(else (and (pred (car Is)) (and-help (cdr Is))))))))

and-help)))

Fill in the blanks below.

[1] (define all-positive? (£m.dmap-c positive?))

[2] (all-positive? '(3489))
7

[3] (all-positive? '(3 -1 4 8))

7

[4] ((andmap-c (compose not null?)) '((a b) (c) (c d e)))

7

Now define the procedure ormap-c, which takes a predicate as an argument

and returns a predicate that accepts a list as a value. We can define ormap

(see Exercise 7.10) using ormap-c as follows:

(define ormap

(lambda (pred Is)

((ormap-c pred) Is)))

Test ormap-c by filling in the blanks below.

[5] (define some-positive? (ormap-c positive?))

[6] (some-positive? '(3 4 8 9))

7

[7] (some-positive? '(3 -1 4 8))

7

[8] ((ormap-c (compose not null?)) '(() (a b) (c) (c d e)))

9

Exercise 7.20: is-divisible-by?, prime?

Consider the definition

(define is-divisible-by?

(leunbda (n)

(lambda (k)

(zero? (remainder n k)))))

7.3 Currying S17

A prime number is a positive integer greater than 1 that is not divisible by any

positive number other than 1 and itself. Using is-divisible-by?, write a

definition of the procedure prime? that tests whether a positive integer n > 2

is prime by first testing whether it is odd and greater than 1 and then testing

whether it is not divisible by any of the odd integers from 3 to the largest odd

integer less than or equal to the square root of n. Why is it necessary only to

try integers less than the square root of n?

Exercise 7.21

Justify the statement "If we restrict ourselves to using only lambda expressions

having only one parameter in its list of parameters, we can still define any

procedure, regardless of how many parameters it has." Note that the currying

examples in this section show how to define procedures having two and three

parameters using only lambda expressions with one parameter.

7.4 Procedural Abstraction of Flat Recursion

In this section, we show how to abstract the structure of flatly recursive pro-

cedures to obtain a general procedure in terms of which the various special

cases can be defined. We illustrate this idea by looking for common structural

features in the four procedures member?-c, apply-to-all, sum, and product

defined in Section 7.3. A comparison of the code for these four procedures

yields the fact that the four lines

(letrec

((helper

(lambda (Is)

(if (null? Is)

and the leist line

helper

are identical in all four programs. Furthermore, in all four, we do something

to (car Is) and make the recursive call to helper on (cdr Is). We want

to define a procedure flat-recur that abstracts the structure of these four

programs; that is, it embodies the common features of these programs, and

they can all be derived from it by using suitable parameters. Let us see how

much of flat-recur we can write based on the above observations.

218 Abstracting Procedures

(define flat-recur

(Icunbda (

(letrec

((helper

(Icu&bda (Is)

(if (null? Is)

))))

helper)))

How do we fill in the blanks? Let us first look at the blank that is the

consequent of the if expression. It is the action taken when Is is empty.

We call this consequent of the test (null? Is) the seed and denote it by the

variable seed. This will be the first parameter in the outer lambda expression.

Table 7.21 shows the seed for each of the four cases.

Procedure seed

inember?-c #f

apply-to-all

sum

product 1

Table 7.21 Seeds for the four procedures

The other blank in the if expression is in the action taken on (car Is) and

(helper (cdr Is)) when (null? Is) is false. The action taken on (car

Is) and (helper (cdr Is)) is a procedure that takes (car Is) and (helper

(cdr Is)) as arguments, and we call this procedure list-proc. We write

list-proc as a procedure with the parameters x and y. When list-proc is

invoked, x will be bound to (caur Is) and y will be bound to (helper (cdr

Is)) to give us the alternative action when (null? Is) is false. For example,

the alternative action in the case of apply-to-all is

(cons (proc (car Is)) (helper (cdr Is)))

If list-proc is the value of

(lambda (x y) (cons (proc x) y))

then

7.4 Procedural Abstraction of Flat Recursion 219

(list-proc (car Is) (helper (cdr Is)))

is the desired alternative action. We pass list-proc as the second parameter

in the outer lambda expression. Table 7.22 gives list-proc for each of the

four programs.^

Procedure list-proc

member?-c (lambda (x y) (or (equal? x item) y))

apply-to-all (lambda (x y) (cons (proc x) y))

sum +

product

Table 7.22 The four list procedures

We are now ready to define the procedure flat-recur, which takes seed

and list-proc as arguments and produces precisely the procedure with pa-

rameter Is that abstracts the structure of the four procedures. (See Pro-

gram 7.23.) We can then write each of the four procedures in terms of this

new procedure. Furthermore, we can use it to write any procedure using

recursion on a list of top-level items.

We can now write the four procedures using flat-recur as follows:

(define member?-c

(lambda (item)

(flat-recuT #f (lambda (x y) (or (equal? i item) y)))))

(define apply-to-all

(launbda (proc)

(flat-recur '() (launbda (x y) (cons (proc i) y)))))

(define sum (flat-recur +))

(define product (flat-recur 1 *))

^ The procedure that we selected for list-proc in the case of meniber?-c does more pro-

cessing than is necessary, for it loses the benefit of the behavior of or. Generally when the

first argument to or is true, the value #t is returned without evaluating the second argu-

ment. However, when list-proc is called, both arguments are first evaluated, and then

the or expression is evaluated, so the argument to which y is bound is always evaluated.

Even though the resulting version of member?-c is less efficient, it illustrates the principle

of procediiral abstraction and a feature that one should be aware of when applying it.

220 Abstracting Procedures

Program 7.23 flat-recur

(define flat-recur

(lambda (seed list-proc)

(letrec

((helper

(laabda (Is)

(if (null? Is)

seed

(list-proc (car Is) (helper (cdr Is)))))))

helper)))

You may be concerned that the procedure list-proc in these last two ex-

amples has a different structure from those in the first two examples. This is

really not the case, since we could also have used (lambda (x y) (+ x y))

in place of the variable +. and we could have used (lambda (x y) (* x y))

in place of the variable *.

The process we have used here looks for common features in several pro-

grams and then produces a procedure that embodies the code that is similar

in all of these programs. It enables us to express each of the original proce-

dures more simply. This process is called procedural abstraction. This is a very

powerful programming tool that should be exploited when it is applicable.

The procedure llat-recur can be used whenever a program does recursion

on the top-level objects in a list. We now see an example of how we can use

it to define the procedure f ilter-in-c. Let Is be a list and suppose that

we have a predicate pred that we want to apply to each top-level object in

the list. If the result of applying pred to an object in the list is false, then

the object is to be dropped from the list. Thus the procedure f ilter-in-c

returns a list consisting of those objects from Is that "pass" the test. This

program involves recursion on the top-level objects in the list Is, and if Is is

empty, f ilter-in-c returns the empty list, so seed is (). To get list-proc

we shall again use x for the (car Is) and y for (helper (cdr Is)). Then

if pred applied to x is true, we cons x to y; otherwise we just return y. Thus

the list-proc of flat-recur can be written as

(lambda (x y)

(if (pred x)

(cons X y)

y))

7.4 Procedural Abstraction of Flat Recursion 221

Program 7.24 filter-in-c

(define filter-in-c

(lambda (pred)

(flat-recur

'()

(lambda (x y)

(if (pred x)

(cons X y)

y)))))

and we can define filter-in-c as shown in Program 7.24. If we do not want

to use filter-in-c in curried form, we can define the procedure filter-in

as:

(define filter-in

(lambda (pred Is)

((filter-in-c pred) Is)))

Here are some examples using filter-in:

(filter-in odd? ' (1 2 3 4 5 6 7 8 9)) =» (1 3 5 7 9)

(filter-in positive? ' (1 2 3 4)) => (1 2 3 4)

(filter-in (lambda (x) « x 5)) ' (1 2 3 4 5 6 7 8 9)) => (1 2 3 4)

In this section, we have illustrated the process of procedural abstraction of

flat recursion. We defined a procedure flat-recur from which procedures

that use flat recursion can be derived by passing flat-recur the appropriate

arguments. This is a powerful tool that can often be used to make programs

easier to write and to understand.

Exercises

Exercise 7.22: mult-by-scalar

In Exercise 3.1, we called a list of numbers an n-tuple. Using flat-recur,

deflne a procedure mult-by-scalar that takes as its argument a number c and

returns a procedure that takes as its argument an n-tuple ntpl and multiplies

each component of ntpl by the number c. Test your procedure on:

((mult -by-scalar 3) '(1-2 3 -4)) =*> (3 -6 9 -12)

((mult-by-scalar 5) '()) =>

222 Abstracting Procedures

Exercise 7.23: filter-out

The procedure filter-out takes two arguments, a predicate pred and a list

Is. It removes from the list Is all of its top-level elements that "pass" the

test, that is, it removes those top-level objects item for which (pred item)

is true. Write the definition of filter-out using a local procedure f ilter-

out-c that is defined using flat-recur.

Exercise 7.24: insert-left

Starting with the procedure insert-left described in Exercise 4.1 and using

flat-recur, define the modified version insert-left-m that takes as pa-

rameters the new and old values and returns a procedure with the list as its

parameter. Then define insert-left using insert-left-m.

Exercise 7.25: partial

Let proc be a procedure of one numerical argument with numerical values.

a. Define a procedure partial-sum that computes the sum of the numbers

(proc i) for i ranging from k to n, where k <.n. For example,

(partial-sum (lambda (m) (* m m)) 3 7) =* 135

b. Define a procedure partial-product that computes the product of the

numbers (proc i) for i ranging from k to n, where k < n. For example

(partial-product (lambda (m) (* m m)) 3 7) =^ 6350400

c. Define an abstraction of partial-sum and partial-product named par-

tial so that partial-sum and partial-product can be defined as

(define partial-sum (partial +))

(define partial-product (partial 1 *))

7.5 Procedural Abstraction of Deep Recursion

The deeply recursive procedures defined in Chapter 4 use recursion on nested

sublists rather than being limited to top-level objects of lists. They also

display a common structure that can be abstracted in a procedure deep-

recur. We now look at some deeply recursive procedures to find their common
structure and then formulate the definition of deep-recur.

We start with f ilter-in-all-c, which takes a pred as its argument and

returns a procedure that has a list Is as its parameter and, when applied to

7.5 Procedural Abstraction of Deep Recursion 223

Is, drops from the list those items that do not "pass" the test. For example,

if pred is odd? and Is is ((4 6) 2 (3 5 (8 7))) we have

((filter-in-all-c odd?) Is) => ((5) (3 5 (7)))

The code for filter-in-all-c is given in Program 7.25. We define lilter-

in-all as the procedure of two arguments, pred and Is, in terms of filter-

in-all-c as shown in Program 7.26.

In the same way, we define sum-all as a procedure of one argument Is,

which is a list of numbers, such that (sum-all Is) is the sum of all of the

numbers in Is. For example

(sum-all '(3 (1 4) (2 (-3 5)))) ^ 12

The code for sum-all is presented in Program 7.27. Both of these procedures,

sum-all and filter-in-all-c, share the following lines:

(letrec

((helper

(lambda (Is)

(if (null? Is)

(let ((a (car Is)))

(if (or (pair? a) (null? a))

helper

We are going to define a procedure deep-recur to abstract the structure

of these two procedures. Let us see how much of the code we can fill in from

the above observations.

(define deep-recur

(lambda ()

(letrec

((helper

(leunbda (Is)

(if (null? Is)

(let ((a (car Is)))

(if (or (pair? a) (null? a))

))))))

helper)))

224 Abstracting the Structure of Procedures

Program 7.25 f ilter-in-all-c

(define f ilter-in-all-c

(Icunbda (pred)

(letrec

((helper

(lambda (Is)

(if (null? Is)

'0

(let ((a (car Is)))

(if (or (pair? a) (null? a))

(cons (helper a) (helper (cdr Is)))

(if (pred a)

(cons a (1-lelper (cdr Is)))

(helper (cdr Is)))))))))

helper))

)

Program 7.26 filter-in-all

(define filter-in-edl

(Icunbda (pred Is)

((f ilter-in-all-c pred) Is)))

Program 7.27 sum-all

(define sum-all

(letrec ((helper

(lambda (Is)

(if (null

(let

? Is)

((a (car Is)))

(if (or (pair? a) (null? a))

(+ (helper a) (helper (cdr Is)))

(+ a (helper (cdr Is)))))))))

helper))

7,5 Procedural Abstraction of Deep Recursiori 225

Once again, we use the variable seed to denote the consequent of the first

if expression with test (null? Is). In the case of sum-all, seed is 0, and

in the case of f ilter-in-all-c, seed is (). We take seed to be the first

parameter for the outer lambda expression.

In the consequent of the second if expression with test (or (pair? a)

(null? a)), the local procedure helper for lilter-in-all-c invokes

(cons (helper a) (helper (cdr Is)))

and the local procedure helper for sum-all invokes

(+ (helper a) (helper (cdr Is)))

We refer to the procedure that is applied to (helper a) and (helper (cdr

Is)) as list-proc. We fill the blank with the application

(list-proc (helper a) (helper (cdr Is)))

and to generate the expression needed for f ilter-in-all-c. we bind list-

proc to cons, and to generate the expression needed for sum-all, we bind

list-proc to +. We take list-proc as the third parameter to the outer

lambda expression. We next consider what to use as the second parameter.

In both of our examples, the alternative of the second if expression with

test (or (pair? a) (null? a)) is a procedure invocation that involves a

and (helper (cdr Is)). For f ilter-in-all-c, we want to generate the

expression

(if (pred a) (cons a (helper (cdr Is))) (helper (cdr Is)))

while for sum-aill, we need

(+ a (helper (cdr Is)))

We can generate both of these using a procedure item-proc that has two

parameters, x and y. If we fill the blank with

(ite»-proc a (helper (cdr Is)))

then to get what we need for sum-all, we bind item-proc to +. To get what

we need for lilter-in-all-c, we bind item-proc to

226 Abstracting the Structure of Procedures

Program 7.28 deep-recur

(define deep-reciir

(lambda (seed item -proc list-proc)

(letrec

((helper

(leunbda (Is)

(if (null ? Is)

seed

(let ((a (car Is)))

(if (or (pair? a) (null? a))

(list-proc (h Blper a) (he Iper (cdr Is)))

(item-proc a (helper (cdr Is.)))))))))

helper)))

(lambda (z y)

(if (pred x)

(cons z y)

y))

We are now in a position to write a procedure deep-recur that abstracts

the structure of these procedures (and those in the exercises at the end of

this section). The procedure deep-recur hcis three parameters: seed, item-

proc, and list-proc. It returns helper, which is a procedure with only one

parameter Is. Combining the observations made above, we get the definition

presented in Program 7.28.

In particular, we can now write

(define sum-all (deep-recxir + +))

anc

(define f ilter-in-all-c

(lambda (pred)

(deep-recur

'()

(lambda (z y)

(if (pred z)

(cons z y)

y))

cons)))

7.5 Procedural Abstraction of Deep Recursion 2S7

In this chapter, we looked at the definitions of the four procedures sum.

product. member?-c. and filter-in-c. all of which performed flat recur-

sion, and abstracted from them their common structural features. We then

defined the procedure flat-recur, which incorporated those common fea-

tures and took as arguments the things that produced the features of the four

procedures that were not common to them all. This enabled us to recover the

original four procedures and others that do flat recursion from flat-recur

by passing to flat-recur the appropriate arguments. We then did a similar

thing with procedures that performed deep recursions. We abstracted from

the two procedures f ilter-in-all-c and sum-all their common features

and defined the procedure deep-rec\ir. We were able to recover the original

two procedures by passing to deep-recur the appropriate arguments. This

process of defining a procedure incorporating the common structural features

of a class of procedures, and then obtaining the procedures in that class by

passing the abstraction the appropriate arguments, is what we called proce-

dural abstraction.

Exercises

Exercise 7.26: remove-all-c. product-all

Write the definitions of remove-all-c and product-eill for arbitrary lists.

The procedure remove-all-c takes an object item as its argument and re-

turns a procedure of the list Is, which removes all occurrences of item in Is.

The call (product-all Is) returns the product of all of the numbers in the

list of numbers Is. In both procedures, preserve the structure displayed in

the above definitions of siun-all and f ilter-in-all-c using letrec.

Exercise 7.27: remove-all-c. product-all (continued)

Define the two procedures product-all and remove-all-c described in the

previous exercise using deep-recur.

Exercise 7.28: filter-out-all

In a manner analogous to that used in Exercise 7.23, use deep-recur to define

the deeply recursive procedure f ilter-out-all-c. and then use it to define

filter-out-all.

Exercise 7.29: subst-all-m

The procedure subst-cQl-m was described in Exercise 7.15. Define it using

deep-recur.

228 Abstracting the Structure of Procedures

Exercise 7.30: reverse-all

The procedure reverse-all was defined in Program 4.10. Define it using

deep-recur.

Exercise 7.31: flat-recur

Define flat-recur using deep-recur.

Exercise 7.32: deep-recur

Define deep-recur using flat-recur. Hint: Use letrec.

7.5 Procedural Abstraction of Deep Recursion 229

8 Sets and Relations

8.1 Overview

8.2 Quantifiers

Sets play a fundamental role in the development of mathematics and logic.

In this chapter, we show how sets may be introduced as a data structure in

Scheme. We first define various procedures that give information about how

many elements satisfy certain given conditions. These procedures are called

quantifiers. We then present an implementation of set theory; that is, we

define sets as a data type and develop the usual set operations. In the last

section, we apply sets to a discussion of functions and relations. Throughout

the discussion, we make use of the fact that procedures are first-class objects.

We use them as values and pass them as arguments.

We study various procedures in this section that we shall use later in our

discussion of sets. If we are given two items, these procedures are used to

tell whether both, at least one, or neither of the items satisfy some condition.

In a sense, they give an idea of how many of the items satisfy the condition;

hence these procedures are called quantifiers. In this section, we introduce the

quantifiers both, at-least-one, and neither; after sets have been introduced

in the next section, we add to this list the quantifiers for-all, there-exists,

and none.

The first of these is a procedure both that has a predicate pred as its

parameter and returns another predicate that has two parameters, ajrgl and

arg2. It is true if and only if pred is true for both argl and arg2. It is easy

to write the definition of both:

Program 8.1 both

(define both

(lambda (pred)

(lambda (zirgl arg2)

(emd (pred argl) (pred arg2)))))

For example, if we want to test whether two lists are both nonempty, we

can invoke the predicate

(both (lambda (Is) (not (null? Is))))

on the two lists. Then

((both (lambda (Is) (not (null? Is)))) ' (a b c) '(d e)) => «t

Incidentally, the predicate in this case can also be written as

(both (compose not null?))

Thus

((both (compose not null?)) '(a b c) '(d e)) =^ #t

We similarly define a procedure neither that has as parameter a predicate

pred. It returns another predicate that has two parameters, argl and eu:g2.

Its value is true if and only if neither (pred argl) nor (pred arg2) is true.

Here is its definition:

Program 8.2 neither

(define neither

(Icunbda (pred)

(leimbda (argl 2u:g2)

(not (or (pred argl) (pred arg2))))))

Thus

232 Sets and Relations

((neither null?) '(a b c) '(d e)) => «t

Another useful procedure is at-least-one, which has as its parameter a

predicate pred. It returns another predicate that has two parameters, aurgl

and eLrg2. Its value is true when either (pred argl) or (pred arg2) is true.

Below is its definition:

Program 8.3 at-least-one

(define at-least-one

(lambda (pred)

(lambda (argl arg2)

(or (pred argl) (pred arg2)))))

Here is how it works:

((at-least-one even?) 1 3) ^^ #f

((at-least-one even?) 1 2) ^=»» #t

We can play with logic a little to show that we can take one of these three

procedures as basic and express the other two in terms of it. For example, let

us take neither as the basic one and try to express both and at-least-one

in terms of neither. Given two lists, if we want to say that both lists are

empty, we can also say that neither of the lists is not empty. In general, saying

that both items satisfy a predicate is the same as saying that neither of them

does not satisfy the predicate. Thus we can write

(define both

(lambda (pred)

(leunbda (aurgl axg2)

((neither (lambda (arg) (not (pred arg)))) «irgl arg2))))

Suppose we have a procedure definition of the form

(define name (lambda (argl ...) (proc argl ...)))

where corresponding arguments are exactly the same in both places. We can

often simplify the definition to be

(define name proc)

8.2 Quantifiers 233

since in both versions, iname x . . .) is the same as iproc x . . .). For example,

this simplificatton rule tells us that the expression

(lambda (a Is) (cons a Is))

evaluates to a procedure that behaves the same as cons.

Observe next that we can rewrite the expression

(lambda (arg) (not (pred arg)))

which appears in the last line of the definition of both, to be

(lambda (arg) ((compose not pred) arg))

which, according to the above simplification rule, has the same value as

(compose not pred)

We can therefore rewrite the definition of both to be

(define both

(lambda (pred)

(lambda (eirgl eurg2)

((neither (compose not pred)) eurgl arg2))))

We can apply the simplification rule again to see that

(lambda (curgl eurg2) ((neither (compose not pred)) ar^l arg2))

is the same as

(neither (compose not pred))

so we obtain the final version of both to be

(define both

(lambda (pred)

(neither (compose not pred))))

This kind of simplification was possible because we curried out the parameter

pred when we decided on the form of the definitions. This kind of simplifi-

cation actually leads to a definition that reflects the way we verbalize it in

234 Sets and Relations

English. We said above that both satisfy the predicate when neither does not

satisfy it. We see here another advantage of currying.

In a similar manner, we can show that at-least-one can be defined in

terms of neither by

(define at-least-one

(lambda (pred)

(lambda (eirgl arg2)

(not ((neither pred) argl arg2)))))

This says that at least one of the two satisfies the predicate when it is not

true that neither satisfies the predicate.

Exercises

Exercise 8.1

Show that the procedure both can be taken as the basic quantifier and that

the other two, neither and at-least-one, can be defined in terms of both.

Exercise 8.2

Start with at-least-one as the basic quantifier, and define neither and both

in terms of at-least-one.

Exercise 8.3: equal?

Use the procedures of this section to write a definition of the Scheme predicate

equal? that tests whether two expressions are the same. If neither of the ex-

pressions is a pair, it uses eqv? to test their equality. Otherwise it recursively

tests the car and the cdr of the expressions until it can use eqv?. Test your

predicate on

(equal? '(a (be (d e) f)) ' (a (b c (d e) f))) => #t

(equal? '(a ((b d) c) e) ' (a (b d) c e)) ==> «f

(equal? '(a ((b d) c) e) '(a ((d b) c) e)) ==> #f

8.2 Quantifiers 235

8.3 Sets

In this section, we develop a data type called sets. We treat sets as an abstract

data type that has certain basic operators whose existence we first assume and

later implement when we choose a representation of sets. An implementation

of sets must begin with the specification of the kinds of objects that are

allowed as the basic building blocks. The collection of all such base objects is

called the universe of discourse or simply the universe.

The objects contained in a set are referred to as elements or members of the

set. In talking about sets, we use the notation of the mathematical logicians

and enclose the elements of sets in braces. Thus a set containing the elements

a, b, and c is written as {a, b, c}. A set may contain other sets as elements, as

illustrated by the set {{a, b}, {b, c}, {d, e}}, which contains the three elements

{a, 6}, {6, c}, and {d, e}. There is a set called the empty set that contains no

elements. Logicians write it as 0.

Either an element is in a set or it is not; it makes no sense to speak of

multiple occurrences of an element in a set. This is an important distinction

between lists and sets, since (a a) and (a) are two different lists, while we

never write {a, a}, since {a} is the set containing the element a, and repetition

of the element a is superfluous. Furthermore, the order in which the elements

of a set are written is immaterial. Thus {a, b, c} and {6, c, a} represent the

same set, whereas (a b c) and (b c a) represent different lists.

We now consider how we implement sets. We denote the empty set by the-

empty-set. There is a predicate to test whether a set is empty: empty-set?.

We also use a predicate set? that tests whether an object is a set. The base

elements of our sets belong to some universe for which there is a sameness

predicate, which we assume is equal?.

We now introduce the selectors and a constructor for use with sets. There

are two selectors, pick and residue. The selector pick takes a set as its

argument and returns an element of that set. Since order of elements is not

meaningful in sets, we cannot say that pick selects the first member of a set.

If obj is an object and s is a set, then the invocation ((residue obj) s)

returns a set that contains all of the elements of s except obj . If obj is not

in the set s, then ((residue obj) s) returns the set s. The constructor

is called adjoin. If obj is an object and s is a set, then (adjoin obj s)

returns a set that contains obj and all of the members of s. With these basic

operators, we now proceed to develop additional operations on sets.

236 Sets and Relations

We begin with the definition of a procedure make-set that takes any num-

ber of arguments and returns a set containing those arguments as elements.

Thus the invocation (meOce-set 'a 'b 'c) returns the set {a,b,c}. We use

the unrestricted lambda to define this procedure that takes an arbitrary num-

ber of arguments. If there are no arguments, the-empty-set is returned.

Otherwise we apply meike-set to all but the first of the arguments and then

add the first to that set using the constructor adjoin. This is just our usual

flat recursion when using the unrestricted lambda.

Program 8.4 msdce-set

(define meike-set

(lanbda args

(letrec

((list-meJce-set

(Icunbda (args-list)

(if (null? args-list)

the-empty-set

(adjoin

(car eirgs-list)

(list-make-set (cdr args-list)))))))

(list-meJte-set args))))

In Section 8.2, we introduced the three quantifiers both, at-least-one, and

neither, each of which took two arguments. We now define analogs of these

that take a set as their argument. The analog of neither is the quantifier

none, the analog of at-least-one is the quantifier there-exists, and the

analog of both is the quantifier for-all. We start with the procedure none

that takes a predicate pred as its parameter. It returns a predicate that has

a set s as its parameter and is true when pred is false for all elements in s.

For example,

(let ((s (make-set 2 4 6 8 10 12)))

((none odd?) s)) => «t

(let ((s (make-set 12 3 4 5 6)))

((none odd?) s)) =^ «f

Here is the definition of none:

8.3 Sets 237

Program 8.5 none

(define none

(laitbda (pre i)

(letrec

((test

(leunbda (s)

(or (empty--set? s)

(let ((elem (pick s)))

(and (not (pred elem))

(test, ((residue elem) s))))))))

test)))

Again, if pred is a predicate and s is a set, the expression

((there-exists pred) s)

is true when there is at least one element in s for which pred is true. We can

define there-exists in terms of none using the fact that there is an element

of s satisfying pred only when it is not the case that none of the elements of

s satisfies the predicate.

(define there-exists

(lambda (pred)

(Icuabda (s)

(not ((none pred) s)))))

The expression in the last line of this definition of there-exists can be

written as

((compose not (none pred)) s)

Then the simplifying rule of Section 8.2 can be used to give us the following

form of the definition:

Progrfon 8.6 there-exists

(define there-exists

(lambda (pred)

(compose not (none pred))))

238 Sets and Relations

The procedure lor-all is called with the call structure ((lor-all pred)

s) and is true only when pred is true for all of the elements in s. We can

again express for-all in terms of none if we observe that pred is true for all

of the elements in s only when there are no elements in s for which pred is

not true. Thus we can write

(define for-all

(lambda (pred)

(lambda (s)

((none (lambda (x) (not (pred x)))) s))))

Once again, we can use compose in the expression in the last line and the

simplifying rule to give Program 8.7.

Program 8.7 for-all

(define for-all

(leUDbda (pred)

(none (compose not pred))))

We can test for the sameness of objects or sets with a sameness procedure

called set-equal. We define set-equal so that it can be used to test for the

equality of both elements of sets and sets themselves. We use set-equal in a

curried form, so that if objl and obj2 are objects, then ((set-equal objl)

obj2) is true when objl is the same as obj2. You may have expected the

name set-equal? instead of set-equal. We use set-equal because when it

is passed an operand, its value is a procedure and not a truth value. We can

define the predicate set-equal? in terms of set-equal by writing:

(define set-equal?

(lambda (objl obj2)

((set-equal objl) obj2)))

If objl and obj2 are base elements of a set, they belong to a universe, and

their sameness can be tested with the predicate equal?. On the other hand, if

the objects are sets, we use the criterion of sameness used in set theory. First,

it says that a set 5 is a subset of a set T if each element of S is also an element

of T. Then if 5 is a subset of T and T is a subset of S, the two sets must

contain exactly the same elements and hence are equal sets. The definition

8.3 Sets 239

Program 8.8 set-equal

(define set-equal

(lambda (objl)

(lambda (obj2)

(or (and ((neither set?) objl obj2)

(equal? objl obj2))

(and ((both set?) objl obj2)

((subset objl) obj2)

((subset obj2) objl))))))

of set-equal makes mutually recursive use of the procedure subset, which

is defined later. Program 8.8 shows the code for set-equal.

We now define a procedure element that tests whether an object is an

element of a given set. If the object is denoted by obj and the set is denoted

by s, then ((element obj) s) is true when obj is an element of s. We have

again chosen to curry the procedure because it simplifies some of the programs

that make use of it. We want to see whether there is an element in the set

s that is equal to obj. We thus want to use the quantifier there-exists

with an argument that tests whether a given member of the set s is equal to

obj. But (set-equal obj) is precisely that predicate, for it tests whether its

argument is the same as obj . This is a good illustration of how currying can

help us. If we had the ordinary predicate set-equal?, with two arguments,

we wouldn't be able to create the obj-specific version so easily. We'd have to

say (lambda (s) (set-equal? s obj)) instead, and that's harder to read.

We then have

(define element

(lambda (obj)

(lambda (s)

((there-exists (set-equal obj)) s))))

Using the simplifying rule of Section 8.2, we may rewrite the definition of

element to be

(define element

(leunbda (obj)

(there-exists (set-equal obj))))

We now see that the last line is merely the composition of the two procedures,

240 Sets and Relations

there-exists and set-equal. We can then rewrite the definition of element

to be

Program 8.9 element

(define element (compose there-exists set-equal))

These steps in rewriting the definition of element again show us how the use

of currying can enable us to express our ideas in more compact and convenient

form.

The invocation ((element obj) s) tests for the set-theoretic relation

obj G s

which says that the object obj is a member of the set s. The set-theoretic

relation

s 3 obj

which says that the set s contains the object obj as a member, is tested for

by the predicate (contains s). For example, b £ {a,b,c} and {a,b,c} 3 b.

Program 8.10 shows the definition of contains.

Program 8.10 contains

(define contains

(lambda (set)

(lambda (obj)

((element obj) set))))

A set si is a subset of a set s2 if each member of si is also a member of s2.

This subset relation is denoted by si C s2. For example, {a, c} C {a, b, c, d}.

We also say that a set si is a superset of s2 if s2 is a subset of si. The superset

relation is denoted by si D s2. Thus {a,b,c,d} D {a,c}. We first define the

procedure superset such that if si and s2 are sets, then ((superset si)

s2) tests whether si is a superset of s2. We want to determine whether

all elements of s2 are contained in si. The predicate (contains si) tests

whether its argument is a member of si, so we can use it as the argument to

for-all to test whether all of the elements of s2 are contained in si. Thus

we get Program 8.11. We define the procedure subset using superset, as

shown in Program 8.12.

8.3 Sets 241

Program 8.11 superset

(define superset

(lambda (si)

(laabda (s2)

((for-all (contains sD) s2))))

Program 8.12 subset

(define subset

(lambda (si)

(lambda (s2)

((superset s2) si))))

The number of elements in a set is called the cardinal number of the set.

For example, the cardinal number of the set {a, 6, c, d} is 4, and the cardinal

number of the set {{a, b}, {c. d}, {e, /}} is 3, while each of the elements of this

set is itself a set with cardinal number 2. It is an easy matter to define the

procedure Ceurdinal, which determines the cardinal number of its argument

set. To do so, we use recursion on the elements of the set. The cardinal

number of the-empty-set is 0, which gives us our terminal condition. If the

set s is not empty, we pick out one element and compute the cardinal number

of the rest of the set. To get the cardinal number of s, we have to add 1 to

the cardinal number of the rest of the set. Here is the definition:

Program 8.13 ceirdinal

(define cardinal

(lambda (s)

(if (empty-set?

(let ((elem

s)

(pick s)))

(addl (cardinal ((res idue elem) s)))))))

The structure of this definition is typical of programs that perform recursion

over the elements of a set s. We pick an element out of s, then apply the

procedure to the rest of the set, and perform the appropriate operation on it

to get the result of applying the procedure to s.

242 Sets and Relations

Program 8.14 intersection

(define intersection

(leunbda (si s2)

(letrec

((helper

(lambda (si)

(if (empty-set? si)

the-empty-set

(let ((elem (pick si)))

(if ((contains s 2) elem)

(adjoin elenI (helper ((residue elem) si)))

(helper ((residue elem) si))))))))

(helper si))))

The intersection of two sets si and s2 is the set consisting of those ele-

ments of si that are also elements of s2. The intersection of si and s2 is

denoted by si n s2. For example, {a, 6, c, d}n {&, d, e} = {b,d}. We define a

procedure intersection that returns the intersection of its two arguments.

This definition uses recursion on the elements of si. Since s2 is not affected

in each recursive call, we define a local procedure helper that has only the

one parameter si. When si is empty, the intersection is the-empty-set.

Otherwise, we select an element elem from si and take the intersection of

the rest of the set si with s2. If elem is contained in s2, we adjoin it to the

intersection of the rest with si. Otherwise, we simply return the intersection

of the rest with si. The definition is given in Program 8.14.

The union of the sets si and s2 is the set consisting of all of the elements

that are either in si or in s2. It is denoted by si U s2. For example,

{a, b, c, d} U {b, d, e} = {a, b, c, d, e}. We define a procedure union that takes

two sets as arguments and returns their union. We again use recursion on the

set si. This time, when si is empty, the union is s2. This is our terminal

condition. The recursion proceeds as in the case of intersection, but now

we want to adjoin elem to the union of the rest of the set si with s2 when

elem is not contained in s2. Thus we get the definition in Program 8.15.

The difference between the sets si and s2 is the set consisting of those

elements of si that are not in s2. It is denoted by si \ s2. For example,

{o, b, c, d}\ {b, d, e} = {a, c}. We define a procedure difference in a manner

similar to that used to define intersection and union. This time, when si

is empty, the-empty-set is returned. And when elem is not contained in s2,

it is adjoined to the difference between the rest of si and s2. This leads us

8.3 Sets 243

Program 8.15 union

(define union

(lambda (si s2)

(letrec

((helper

(lambda (si)

(if (empty-set?

s2

si)

(let ((elem (pick si)))

(if (not ((contains s2) elem))

(adjoin elem (helper ((residue elem) si)))

(help er ((residue el em) si))))))))

(helper 5l))))

Program 8.16 difference

(define difference

(lambda (si s2)

(letrec

((helper

(leunbda (si)

(if (empty-set? si)

the-empty-set

(let ((elem (pick si)))

(if (not ((contains s2) elem))

(adjoin elem (helper ((residue elem) si)))

(helper ((residue elem) si))))))))

(helper si))))

to the definition of difference in Program 8.16.

The structural similarity of the definitions of intersection, union, and

difference is striking. This common structure is an obvious candidate for

procedural abstraction. The three programs differ in what set is returned

when the terminal condition is true. We call that set the base-set. And they

differ in the predicate that is applied to decide whether to adjoin the element

elem picked from the set si. We call that predicate pred. We use base- set

and pred as parameters to the procedure set-builder, which abstracts the

structure of the three preceding programs. (See Program 8.17.)

244 Sets and Relations

Program 8.17 set-builder

(define set-builder

(lambda (pred base -set)

(letrec

((helper

(lambda (s)

(if (empty-set? s)

base-set

(let ((elem (pick s)))

(if (pred elem)

(adjoin elem (helper ((residue elem) s)))

(helper ((residue elem) s))))))))

helper)))

Procedure base-set pred

intersection the-empty-set (contains s2)

union s2 (compose not (contains s2))

difference the-empty-set (compose not (contains s2))

Table 8.18 Base sets and predicates for abstraction

We can now rewrite the definitions of intersection, union, and differ-

ence using set-builder. Table 8.18 shows the values taken on by base-set

and pred in the definitions of these three procedures. With these correspon-

dences, we get

(define intersection

(lambda (si s2)

((set-builder (contains 82) the-empty-set) si)))

(define union

(lambda (si s2)

((set-builder (compose not (contains s2)) s2) si)))

(define difference

(lambda (si s2)

((set-builder (compose not (contains s2)) the-empty-set) si)))

8.3 Seta 245

Program 8.19 family-union

(define f aaily-union

(lambda (s)

(if (empty-set? s)

the-empty-set

(let ((elem (pick s)))

(union elem (family-union ((residue elem) s)))))))

Program 8.20 family-intersection

(define family-intersection

(lambda (s)

(if (empty-set? s)

the-empty-set

(letrec

((f am-int

(lambda (s)

(let ((elem (pick s)))

(let ((rest ((residue elem) s)))

(if (empty-set? rest)

elem

(intersection elem (feui-int rest))))))))

(f am-int s)))))

If the set S has as its members other sets, we can ask for the union of the

member sets. The union of the sets that are members of the set S is called

the family union of S. We represent it symbolically by (JS. For example,

U{{a. b}. {b. c, (f), {a, e}} = {a, 6, c, d. e}. We define (in Program 8.19) a pro-

cedure family-union that takes as its parameter a set s whose elements are

sets and returns the union of all of the elements of s.

In a similar manner, the family intersection of a set S whose elements are

sets is the intersection of all of the elements of S. It is denoted by P|S and

is illustrated by P|{{a.6. c}, {a.c.e}. {a,6,c,/}} = {a, c}. We define (in Pro-

gram 8.20) the procedure family-intersection that takes the parameter s,

which is a set whose elements are sets, and returns the intersection of all of

the sets in s.

Why is family-intersection more complicated than family-union? In

family-union, the use of the-empty-set acts as an identity for union in

246 Sets and Relations

Program 8.21 set-map

(define set-map

(lambda (proc s)

(if (empty-set? s)

the-empty-set

(let ((elem (pick s)))

(adjoin (proc elem)

(set-map proc ((residue elem) s)))))))

the same way as acts as an identity for plus (see Program 7.9) and 1

acts as an identity for times (see Program 7.10). For intersection, there

is no computable identity. Moreover, the-empty-set acts as an annihilator

for intersection in the same way that acts as an annihilator for x. We
must avoid passing the-empty-set to intersection. This is accomplished

by terminating the recursion when we reach a set that contains a single set.

The next procedure we define before looking into how we represent sets

is set -map, which takes two parameters, a procedure proc and a set s. It

returns the set consisting of those elements that are obtained when proc is

applied to each of the elements of s. For example, if proc is the procedure

cardinal and s is the set {{a},{b,c},{d,e},{a,c, f}}, then (set-map proc

s) evaluates to the set {3,2, 1}. Similarly, if s is {— 1,0, 1}, then (set-map

addl s) evaluates to the set {0, 1,2}. We define set-map in Program 8.21.

Suppose we have a list of objects and we want to convert it into a set

containing the same objects. All we have to do is use the procedure apply to

apply make-set to the list. Thus we define a procedure list->set as

Program 8.22 list->set

(define list->set

(lambda (Is)

(apply make-set Is)))

In a similar way, we can ask for a procedure that takes the elements of a set

and builds a list containing those elements. This is done by picking elements

out of the set and consing them onto a list. Program 8.23 shows how the

procedure set->list can be defined.

We have now included enough of the procedures for manipulating sets for

8.3 Sets 247

Program 8.23 set->list

(define set->list

(lambda (s)

(if (empty-set?

'()

(let ((elem

s)

(pick s)))

(cons elenI (set-->li8t ((res idue elem) s)))))))

you to get an idea of how to define set operations. We are now ready to

consider ways of representing sets. This is done in the next section.

Exercises

Exercise 8.4

In this section, we showed that there-exists and lor-all can be defined

in terms of none. Show that we could have taken there-exists as the basic

one and defined the other two in terms of it. Similarly, show that we could

have taken for-all as the basic one and defined the other two in terms of it.

Exercise 8.5: for-one

Consider the definition of the three-parameter procedure for-one, given be-

low. Its first parameter is a predicate, pred. Its second parameter is a proce-

dure of one argument, found-proc, and its third parameter is a procedure of

zero arguments, not-found-proc. It returns a procedure that takes a set s

as its parameter. If s is empty or if the predicate pred is false for all items in

s, then the procedure not-found-proc is invoked. If s contains an element

for which pred is true, then the procedure fo\md-proc is invoked on that

element.

(define for-one

(lambda (pred found-proc not-found-proc)

(letrec ((test

(lambda (s)

(if (empty-set? s)

(not-found-proc)

(let ((v (pick s)))

(if (pred v)

(found-proc v)

(test ((residue v) s))))))))

test)))

248 Sets and Relations

Here is an example of how it works:

((for-one

(lambda (x) (> x 7))

(lambda (v) (+ v 8))

(lambda () "Not found"))

(make-set 2 4 6 19 21 7))

returns the value 27 (or possibly 29, depending upon which element was se-

lected first). Define there-exists and for-all using for-one.

Exercise 8.6

Show, using a discussion analogous to that used with element in this section,

that we can also write the definition of superset as

(define superset (compose for-all contains))

8.4 Representing Sets

We have now defined the set procedures that enable us to manipulate sets as

a data type. These definitions all depend upon the six basic representation-

dependent terms: the-empty-set, empty-set?, set?, pick, residue, and

adjoin. We now show how these can be defined.

We first specify that the universe contains only objects for which equal?

is the sameness predicate. The first representation that we use for a set of

elements is a tagged list of those elements. A tag is a unique string that is

placed in the car position of a pair which enables us to distinguish tagged

objects from other ones. We define the tag for sets to be:

(define set-tag "set")

We make this distinction in order to define the predicate set? which will

determine whether its argument is a pair and its car is that unique tag. For

example, we represent the set {a,b, c} as the tagged list ("set" a b c). In

this first representation, we allow repeated elements in the lists. However, if

an element occurs once in a list, that element belongs to the set represented

by the list, and any other occurrences of that element in the list are ignored.

Thus the lists ("set" a b c) and ("set" a b a c b b) represent the same

set {a,b, c}. We divide the six basic definitions into two groups, the first

of which is used in both of our representations. This shared group includes

8.4 Representing Sets 249

Program 8.24 The shared basic definitions for sets

(define the-empty-set (cons set-tag '()))

(define empty-set?

(lanbda (s)

(eq? s the-eapty-set)))

(define set?

(leiHbda (<urg)

(and (pair? arg) (eq? (car arg) set-tag))))

(define pick

(Isjibda (s)

(let ((Is (cdr s)))

(if (null? Is)

(error "pick: The set is empty.")

(list-ref Is (random (length Is)))))))

the-empty-set, empty-set?, set?, and pick (see Program 8.24). We use

the procedure random in defining pick in order to select some element from

the list. The procedure random takes a positive integer n as an argument and

returns some randomly selected integer k in the range < A: < n. We chose

to use a randomly selected element from the list rather than the car of the list

or any other specific element of the list in order to convey the idea that the

set is unordered. Random number generators are discussed in Footnote 1 of

Section 10.2.5 and the procedure described there is defined in Exercise 13.3.

The definitions in Program 8.25 of the remaining two basic procedures,

adjoin and residue, reflect the fact that we allow repetitions in the repre-

sentation. We make use of the procedure remove (see Program 4.6).

Here are some examples of how the procedures behave using our represen-

tation that allows repetitions of items in the lists.

((set-equal (list->8et '(a b a b)))

(li8t->8et '(baa))) => «t

((element 'a) (make-set (li8t->set '(a))

(list->set '(a a))

(list->8et '(a a a)))) —* »f

((element 'a) (make-set (li8t->set '(a))

'a

(list->8et '(a a)))) =^ it

250 Seta and Relations

Program 8.25 adjoin, residue (Version I)

(define residue

(lambda (elem)

(lambda (s)

(let ((Is (remove elem (cdr s))))

(cond

((null? Is) the-empty-set)

(else (cons set-tag Is)))))))

(define adjoin

(lambda (elem s)

(cons set-tag (cons elem (cdr s)))))

(union (make-set 112 3 4)

(make-set 3 4 4 5 6 6))^ ("set" 12344566)
(intersection (make-set 12 3 3 4 5)

(make-set 3 4 4 5 6 7))^ ("set" 345)
(difference (make-set 112 3 3 4 5)

(make-set 3 4 4 5 6 7)) => ("set" 1 2)

(set-map cardinal (make-set (list->set ' (a b c))

(list->set '(a b a))

(list->set '(a a a))

(list->set '()))) => ("set" 3 2 10)
(family-inters9Ction (make-set (list->set '(a b c d d))

(list->set '(a c d e))

(list->set '(c d e f))))

=> ("set" c d)

Another representation for a set s is a list that contains the elements of s but

does not allow repetition of elements. The selector residue now has to remove

only the first occurrence of its first argument from the set since there are no

repetitions. Thus it uses remove-lst (Program 2.4) instead of remove. The

constructor adjoin must now test to determine whether its first argument,

the object, is already an element of its second argument, the set. It adds the

object to the set only if it is not already a member of the set. Program 8.26

shows the definitions of adjoin and residue for the representation with no

repetitions.

Here are some examples of how some of the procedures defined in Section 8.3

look when using the second representation of sets:

8.4 Representing Sets 251

Program 8.26 The basic definitions for sets (Version 11)

(define residue

(la>bda (elea)

(laabda (s)

(let ((Is (re«ove-lst elem (cdr s))))

' (cond

((niill? Is) the-empty- set)

(else (cons set-tag Is)))))))

(define adjoin

(la»bda (el en s)

(cond

((e«ber? eles (cdr s)) s)

(else (cons set--tag (cons elem (cdr s)))))))

(union (aake-set 12 3) (make-set 2 3 4)) ==» ("set" 1234)
(intersection (aake-set 12 3) (aake-set 2 3 4)) ^ ("set" 2 3)

(difference (make-set 1 2 3) (make-set 2 3 4))^ ("set" 1)

You now might ask. "Which representation is better?" Each has its advan-

tages. For example, in the first representation, the selector residue does

more work than its counterpart in the second representation since it has to

remove all occurrences of the element that was picked, while in the second

representation, it only has to remove the first occurrence. In the second rep-

resentation, adjoin does more work since it has to check whether the element

to be added is already in the tagged list. The lists involving no repetitions

represent the sets more compactly. Thus there is a trade-off when choosing

between these two representations.

We have built into our universe, not only symbols, numbers, and booleans.

but any data for which equal? works, and that includes lists. Here aire some

examples using this tagged-list representation of sets where some elements are

lists.

(union (make-set 1 '(1 2) '(2 3))

(make-set 1 2 ' (1 2) ' (3 4))

)

=* ("set" (2 3) 1 2 (1 2) (3 4))

(union (make-set 1 (make-set 1 2) (make-set 2 3))

(make-set 1 2 (make-set 1 2) (make-set 3 4)))

=*• ("set" ("set" 2 3) 1 2 ("set" 1 2) ("set" 3 4))

252 Sets and Relattons

(family-union

(make-set

(make-set 1 2) (make-set 2 3) (make-set 3 4)))

=^ ("set" 12 3 4)

We have now seen another application of data abstraction in this devel-

opment of the set data type. We defined all of the set operations using six

basic definitions, and only these six depend upon the specific representation

of the sets that we use. We then showed how to define these six using two

different representations of sets. The extensive use we made of currying in the

definitions of many of the set operations made it possible to use composition

of procedures to simplify several definitions. It also enabled us more easily to

define new procedures in terms of others with certain arguments fixed. For

example, if we want to remove the number from sets of numbers, we can

apply (residue 0) to any such set of numbers and get the desired result. We
also saw another example of the abstraction of the structure of several proce-

dures in set-builder. In the next section, we shall apply sets to a discussion

of functions and relations.

Exercises

Exercise 8.7

Use this definition of pick to implement sets with lists having repetitions:

(define pick

(Icu&bda (s)

(car (cdr s))))

In the following exercises, use only operations on sets. Do not use operations

on sets that depend upon the representation of the sets.

Exercise 8.8

The procedures union and intersection defined in this section each took two

sets as arguments. Rewrite these definitions using the unrestricted lambda so

that both take an arbitrary number of sets as arguments. Test your procedures

on the following examples:

(union

(make-set 12 3 4)

(make-set 13 4 5)

(make-set 2 1)) ==> ("set" 12 3 4 5)

8.4 Representing Sets 253

(intersection

(ake-set 12 3 4)

(ake-set 13 4 5)

(ake-set 15 6 3 7))=^ ("set" 1 3)

Abstract the structure of these two definitions to get a procedure from which

tinion and intersection can both be obtained by passing the procedural

abstraction appropriate arguments.

Exercise 8.9: symmetric-dillerence

Define the set procedure symmetric-difference that has two sets si and s2

as parameters and returns the set consisting of those elements that are either

in si but not in s2 or in s2 but not in si. For example,

(synaetric-difference

(ake-set 12 3 4 5)

(ake-set 3 4 5 6 7)) =» ("set" 1267)

Exercise 8.10: power-set

Define a set procedure power-set that has a set s as parameter and returns

the set consisting of all subsets of s. For example,

(power-set (ake-set 'a 'b 'c))

=* ("set" ("set" a b c) ("set" a b) ("set" a c)

("set" a) ("set" b c) ("set" b) ("set" c) ("set"))

Hint: Assume that power-set is defined for the rest of the set when an element

is picked out.

Exercise 8.11: select-by-cardinal

Let s be a set whose elements are sets. Define a set procedure select-by-

cardinal that has an integer int as its parameter and returns a procedure

with parameter s that builds the set of all of those elements of s that have

cardinal int. For example,

((select-by-cardinal 2)

(ake-set (ake-set 'a) (aake-set 'a 'b) (ake-set 'a 'b 'c)

(ake-set 'b 'c) (ake-set 'b)))

-^ ("set" ("set" a b) ("set" b c))

254 Sets and Relations

8.5 Ordered Pairs, Functions, and Relations

As an application of sets, we show how ordered pairs and the Cartesian prod-

uct of two sets are defined and use these ideas to develop the logical concepts

of functions and relations. We present a development of ordered pairs based

upon the development of sets presented in the preceding sections.

An ordered pair is a pair of elements in which the order is significant; that is,

(x, y) and (y, x) represent different ordered pairs as long as x and y are not the

same. We again treat ordered pairs as an abstract data type and introduce

the basic operations that apply to ordered pairs and then look at possible

representations of ordered pairs. Ordered pairs have two selectors and one

constructor. There is a selector called op-lst that takes an ordered pair as

its argument and returns the first element in the ordered pair. Similarly, there

is a selector called op-2nd that returns the second element in the ordered pair.

Finally, there is a constructor that is called make-op such that (maie-op x

y) is the ordered pair containing x as its first member and y as its second

member. There is also a predicate op? that tests whether its argument is an

ordered pair.

We now consider ways of representing ordered pairs. We present three dif-

ferent representations in this section: sets, two-element lists, and dotted pairs.

Logicians usually start with sets and build other concepts from them. In our

first representation, we show how this can be carried out in Scheme. Com-

pared to the last two representations, the first is quite complicated. It shows

the natural advantage the list or dotted-pair representations have for repre-

senting ordered pairs. If you are not interested in the set theory development

of ordered pairs, you can skip over the next two paragraphs and go on to the

list and dotted-pair representations.

We first represent ordered pairs as sets. A naive first attempt would repre-

sent the ordered pair (x,y) with the set {x,y}. However, there is a problem:

if X ^ y, then (x, y) 9^ (y, x), but {x, y} = {y, x} since order is immaterial in

sets. We can get around this difficulty by representing the ordered pair (x, y)

by the set {{x},{x,y}}. Then the ordered pair (y, x) is represented by the

set {{y}, {y, a:}}, which is not the same set as that used to represent (x,y),

as long as X is not the same as y. We identify the first element of the ordered

pair represented by {{x}, {x, y}} by noting that it is the only element in the

intersection {x} D {x, y} of the two member sets. Similarly, if x and y are not

equal, the second element of the ordered pair is the only element in the set

difference between Uii^)' i^' I/}} ^^^ flii^)' {^' y))- ^^ ^ ^^^ V ^^^ equal,

pick the first element of the ordered pair. It should be observed that the same

8.5 Ordered Pairs, Functions, and Relations 255

Program 8.27 Basic definitions for ordered pairs (Version I)

(define nake-op

(lambda (i y)

(maOce-set (make-set i) (make-set x y))))

(define op?

(lambda (set)

(and (set? set)

((for-all set?) set)

(= (cardinal (family-intersection set)) 1)

(or (= (cardinal set) 1)

((both (lambda (i) (= (cardinal i) 2)))

set

(family-union set))))))

(define op-lst

(lambda (op)

(pick (family-intersection op))))

(define op-2nd

(lambda (op)

(let ((fam-int (family-intersection op))

)

(let ((diff (difference (family—union op) fam-int)))

(pick (if (empty-set? diff) fam-int diff))))))

ordered pair is represented by {{z}, {x, y}}, {{z}, {y, z}}, and {{y, z}, {z}}.

Using this representation in terms of sets, the definitions of the four basic

procedures for ordered pairs are given in Program 8.27. Given the first element

X and the second element y of the ordered pair, the constructor maie-op

produces the ordered pair {{z}, {z,y}}. To understand the definition of op?,

observe that it is possible for the cardinal number of an ordered pair to be

equal to one. This is illustrated by {{a}, {a, a}}, which represents the ordered

pair [a, a). We have {{a}, {a, a}} = {{a}, {a}} = {{^}}i so its cardinal

number is one.

There are other ways of representing ordered pairs that we can also use.

For example, we can let an ordered pair containing the elements x and y be

represented by (list x y). This is using a representation by proper lists.

Then we have the definitions given in Program 8.28.

Another representation that is also a reasonable one to use represents the

pair containing x and y as a dotted pair containing those two elements, that

256 Seta and Relations

Program 8.28 Basic definitions for ordered pairs (Version II)

(define make-op

(leuttbda (x y)

(list X y)))

(define op?

(lambda (Is)

(and (pair? Is) (pair? (cdr Is)) (null? (cddr Is)))))

(define op- 1st

(lambda (op)

(car op)))

(define op-2nd

(lambda (op)

(cadr op)))

Program 8.29 Basic definitions for ordered pairs (Version III)

(define make-op

(Izimbda (x y)

(cons X y)))

(define op?

(lambda (pr)

(pair? pr)))

(define op-lst

(lambda (op)

(car op)))

(define op-2nd

(lambda (op)

(cdr op)))

is, as (cons x y). We then have the definitions given in Program 8.29. The

definitions in Programs 8.28 and 8.29 can be simplified using the simplification

rule of Section 8.2. See Exercise 8.12.

The Cartesian product of the two sets Si and 5*2 is the set of all ordered pairs

8.5 Ordered Pairs, Functions, and Relations 257

Progrcmi 8.30 cartesian-product

(define caurtesiam-product

(lambda (si s2)

(if (empty-set? si)

the-empty-set

(let ((elem (pick si)))

(union (set-map (lambda (> (make-op elem x)) 82)

(cartesian-product ((residue elem) 81) 82))))))

(x,t/) with X ^ Si and y E 82- The mathematical notation for the Cartesian

product of Si and ^2 is Si x 52- For example, the Cartesian product of the

two sets {a, 6, c} and {d, e] is the set of pairs

{(a, d), (a, e), (6, d), (6, e), (c, d), (c, e)}

The set procedure that forms the Cartesian product of two sets is defined in

Program 8.30.

A relation R from a set X to a set Y is defined to be a subset of the

Cartesian product of the two sets X and Y . Thus the relation R is a, set of

ordered pairs in which the first element is in X and the second element is

in Y. The empty set is also a relation having no elements. For example, if

X is the set (make-set a b c) and Y is the set (make-set 1), then the

following is a relation from X to Y:

(make-set (make-op 'a 0) (make-op 'a 1) (make-op 'c 1))

The domain of the relation R from X to V is defined to be the subset of X
consisting of all elements of X that appear as first elements of some ordered

pair in R. In our example above, the domain of the relation is the set {a,c}.

The range of the relation R is defined to be the subset of Y consisting of

all elements of Y that appear as second elements of some ordered pair in R.

Given a relation rel, we can define procedures domain and range that return

the domain and the range of rel, respectively. (See Program 8.31.)

A bineory relation on a set 5 is a subset of the Cartesian product of S
with itself. For example, if bob, torn, and jim are members of the set boys,

then a binary relation is-older-thsoi-relation on the set boys is given by

258 Sets and Relations

Program 8.31 domain, range

(define domain

(laabda (rel)

(set-aap op-•1st rel)))

(define rzmge

(lambda (rel)

(set -map op-•2nd rel)))

(define is-older-than-relation

(make-set (make-op 'tom 'bob)

(make-op 'tom 'jim)

(make-op 'bob 'jim)))

We can define a predicate is-older-tham? that has as its two parameters two

members bl and b2 of the set boys and returns true if the ordered pair (maJce-

op bl b2) is an element of the binary relation is-older-than-relation.

For example, we can write

(define is-older-than?

(lambda (bl b2)

((contains is-older-than-relation) (make-op bl b2))))

Suppose we are given a relation rel from one set to another. We now write

the definition of a procedure subrelation/lst that builds a new relation

consisting of all pairs from the relation rel that have a given element as their

first elements. Using our example above, when we enter

((subrelation/lst is-older-than-relation) 'torn)

the subrelation consisting of the two ordered pairs starting with tom is re-

turned. See Program 8.32.

A function from a set X to a set Y is defined to be a relation from X to

Y in which no two ordered pairs with the same first elements have diff'erent

second elements. Since functions are relations, domain and range are already

defined for functions. This definition of a function as a set of ordered pairs

is equivalent to the definition we have been using throughout the book. If

we have a function denoted by y = f{x) with x in the domain X and y in

the range Y, this is the relation consisting of the ordered pairs (x,y) sat-

isfying y = f{x). With this view of functions, the factorial function is the

8.5 Ordered Pairs, Functions, and Relations 259

Program 8.32 subrelation/lst

(define subrelation/lst

(lambda (rel)

(lambda (arg)

((set-builder

(lambda (x) ((set-equal (op-lst i)) arg))

the-empty-set)

rel))))

Program 8.33 function?

(define function?

1

(lambda (rel)

(or (empty-set? rel)

(let ((subrel ((subrelat Lon/lst rel) (op-lst (pick rel)))))

(and (= (cardinal subr<3l) 1)

(fiinction? (difference rta subrel)))))))

set {(0, 1), (1, 1), (2, 2), (3, 6), . . .}. We now write the definition of a predicate

function? that tests whether a relation is a function. (See Program 8.33.) If

the given relation rel is nonempty, this procedure looks at the subset of all

ordered pairs in rel that have the same first element as some ordered pair

(pick rel) in rel. If the number of distinct second elements in this subset is

greater than 1, false is returned. Otherwise the procedure is repeated on the

relation obtained by removing that subset from rel. This process continues

until no more ordered pairs are left to test, in which case true is returned.

The value of a function / at an element x in the domain of/ is the second el-

ement in the ordered pair in / that has x as its first element. In Program 8.34,

we define a procedure value that takes a function fun as its parameter and

returns a procedure that takes as its parameter an element arg in the domain

of fun and returns the value of fun at airg.

Let us summarize what we have accomplished. In Chapter 1, we introduced

lists as a data type having the constructor cons and the two selectors car

and cdr. Here we have developed sets as a data type having the constructor

adjoin and the two selectors pick and residue. Using these, we defined many

procedures that manipulate sets. We used lists in several representations of

sets. We then proceeded to define ordered pairs using sets. Ordered pairs

are another data type having the constructor make-op and the two selectors

260 Sets and Relations

Progrjun 8.34 value

(define value

(lambda (fun)

(Icu&bda (eirg)

(op-2nd (pick ((subrelation/lst fun) arg))))))

op- 1st and op-2nd. These were used to define relations and functions on

sets. It is interesting to observe that if we start with sets as our bcisic data

type, we can use sets as we did to define ordered pairs, and then we can use

ordered pairs as a representation of lists. For any two elements, x and y, we

define (cons x y) to be (meOte-op x y). We then define car to be op-lst

and cdr to be op-2nd. The empty list () is represented by the-empty-set.

Using these definitions of cons, car. cdr, and (), we can proceed to define

all of the procedures on lists that were defined in the earlier chapters. Thus

we have come full circle. We can take sets as our basic data type and develop

lists in terms of sets, or we can take lists as our basic data type and develop

sets in terms of lists.

We leave it to the reader to develop more of the theory of functions and

relations in the exercises. The many examples in this chapter should make

it clear how powerful a tool it is to be able to pass procedures as arguments

to other procedures and to be able to have procedures whose values are pro-

cedures. We have seen how convenient it is to be able to curry procedures.

All of this is possible because procedures are treated as first-class objects in

Scheme.

Exercises

Exercise 8.12

In Programs 8.28 and 8.29, we can rewrite the definition of op-lst as (de-

fine op-lst caoc) using the simplifying rule of Section 8.2. Redefine all of

the procedures in Programs 8.28 and 8.29 for which the simplifying rule is

applicable.

In the following exercises, use the set operations developed in this chapter.

Make your programs independent of the representation of sets being used.

Many of the problems in this list use the results of previous problems, so do

them in order.

8.5 Ordered Pairs, Functions, and Relations 261

Exercise 8.13: relation?

Define a predicate relation? that tests whether a set is a relation.

Exercise 8.14: inverse-relation

The inverse of an ordered pair (a, b) is the ordered pair {b,a). The inverse of

a relation R is the relation obtained when each ordered pair is replaced by its

inverse. Define a procedure inverse-relation that takes as its argument a

relation and returns its inverse relation.

Exercise 8.15: one-to-one?

A function is called one-to-one if its inverse relation is also a function. Write

the definition of a predicate one-to-one? that tests whether a function is

one-to-one. See the preceding exercise.

Exercise 8.16: make-relation

A convenient way of defining a relation rel is to give an arbitrary number

of pairs (x y) that corresponds to the ordered pairs (make-op x y) in rel.

Thus (make-relation '(1 2) '(1 3) '(2 3)) corresponds to the relation

{(1, 2), (1, 3), (2, 3)}. Define the procedure make-relation.

Exercise 8.17: reflexive?

A binary relation R on a set S is called reflexive if for each x in S, the

ordered pair {x,x) is an element of R. Define a predicate reflexive? that

tests whether a given relation rel is reflexive.

Exercise 8.18: symmetric?

A binary relation i? on a set S is called symmetric if it is equal as a set to its

inverse relation. See Exercise 8.14. Define a predicate S3rmmetric? that tests

whether a given relation rel is symmetric.

Exercise 8.19: function- compose

Suppose that / and g are functions such that the range of g is a subset of

the domain of /. The composition of / with g is the function consisting of

all ordered pairs (z, y) with x in the domain of g and y in the range of / and

for which there exists an element z such that (z, z) E g and (z, y) £ f. Define

the procedure function-compose such that (function-compose f g) is the

composition of f with g. Your procedure should first test whether the range

of g is a subset of the domain of f

.

262 Sets and Relations

Exercise 8.20: relation-compose

If Q and R are binary relations on a set 5, then the composition of Q with R
is the relation composed of all ordered pairs (x, y) such that for some 2 G 5,

there exists an ordered pair (x,2) E R and an ordered pair {z,y) G Q- Define

the procedure relation-compose such that (relation-compose q r) is the

composition of the relation q with the relation r.

Exercise 8.21: transitive?

A binary relation i? on a set S is called transitive if the composition of R
with R'\s a. subset of R. Define a predicate transitive? that tests whether

a relation rel is transitive. See the preceding exercise.

(trEuisitive?

(make-relation '(1 2) '(1 3) '(1 4) '(2 3) '(2 4) '(3 4))) => #t

(transitive?

(make-relation '(0 0) '(1 1) '(2 2) '(3 3) '(4 4))) => #t

(transitive?

(make-relation '(1 1) '(12) '(3 2) '(2 1))) ==*> #f

Exercise 8.22: equivalence-relation?

A binary relation rel on a set S is called an equivalence relation if it is

reflexive, symmetric, and transitive. Write the definition of the predicate

equivalence-relation? that tests whether a given relation is an equivalence

relation. See Exercises 8.17, 8.18, and 8.21.

(equivalence-relation?

(make-relation '(0 0) '(1 1) '(2 2) '(3 3))) => #t

(equivalence-relation?

(make-relation '(0 0) '(0 1) '(1 0) '(1 1))) =» #t

(equivalence-relation?

(make-relation '(0 0) '(0 1) '(1 1) '(2 2))) => #f

8.5 Ordered Pairs, Functions, and Relations 263

Part 3

Managing State

What is change? If we think further about the dining experience of Part I's

introduction, changes took place. Eating left you full, lessened the world's

food supply, enriched the purse of the restaurant's proprietor, and depleted

your buying power. All of these are changes. The state of the world after you

left the restaurant changed. Managing state means that all the effects of a

change must be taken into account.

Part 3 is about combining the management of state with the style of pro-

gramming that we have so far developed. In Chapter 9, we introduce a new

data structure, the vector. A vector is like a list, except that we access it

with operations that use the elements' indices, which are nonnegative inte-

gers, instead of with operations that find the first element and the rest of

the elements. In addition to the formal operations on vectors, we introduce

an operation that permanently changes the contents of a portion of a vector.

We use this operation to show the role of such state-changing operations in

general in enhancing the efficiency of correct procedures.

In Chapter 10, we use changing of state to develop some efficient procedures

for sorting and searching data stored in vectors. In Chapter 11, we strengthen

your intuition about writing procedures that use state-changing operations

by introducing such operations over lists and local variables. This leads to

Chapter 12, where we build an object-oriented system by merging higher-order

procedures with state-changing operations. In Chapter 13, we use object-

oriented programming to build a gas station simulation.

9 Using Vectors

9.1 Overview

We have been using lists as our basic data type, and for most of the ap-

plications we have had so far, lists have been adequate. They do have one

disadvantage that is apparent when we have a long list Is. Let's say it contains

1000 elements, and we want to know what the element with zero-based index

900 is. One way we can access that information is by applying cdr 900 times

and then applying car. That seems like a lot of work, so we use the Scheme

procedure list-ref defined in Program 3.7, which does the cdring for us,

and we invoke (list-ref Is 900). But the computer is doing just as much

work to access the 900th element of the list for us. It would be nice to have a

data type in which we could store elements and look directly into the 900th

(or any other) place and see what is there. Being able to access any element

in a list using the same amount of computer resources is called random access

into the list. What we now have available to us in lists is sequential access, in

which we have to cdr from the beginning of the list to the desired element. In

this chapter, we study a data type called vectors. Like lists, vectors are used

to store data. We discuss several possible implementations of vectors, the last

of which will provide data storage with random access.

9.2 Vectors

In mathematics, a vector is a function defined on a set of integers, say from

to n — 1, which assigns to each such integer a value that is said to be the

element with that integer as its index. A mathematical representation of a

vector with three elements, say a with index 0, b with index 1, and c with

index 2, is (a, 6, c). The word vector is also used as a data type in Scheme that

associates an element with each integer from zero to some given number. The

elements stored in a vector can be data of any type—for example, numbers,

symbols, lists, or procedures. For the external representation of a vector with

elements a, b, and c, Scheme uses #(a b c). In general Scheme's external

representation of a vector is a sharp symbol, #, followed by the elements

enclosed in parentheses.

As with the other data types we have studied, we begin with certain basic

procedures in terms of which we define the rest of the procedures involving

vectors. The actual representation of the vectors and the basic procedures

will be defined in several ways after we develop the other procedures in a

representation-independent fashion. The first of our four basic procedures is

the predicate vector?, which tests whether its argument is a vector. The sec-

ond one is the procedure vector-length, which takes a vector as its argument

and returns the number of elements in the vector.

The selector for vectors is called vector-ref . It has the call structure

(vector-ref vec k), where vec is a vector and A; is a nonnegative integer

less than the length of vec. It returns the element in vec that has index k. To

illustrate the use of this selector, we define a procedure view (See Program 9.1

and Exercise 9.2.) that takes a vector and displays its external representation.

If vec is the vector with the elements 1, 2, 3, and 4, we have

(view vec) displays #(1 2 3 4)

The indices of the elements of the vector vec go through the range from zero

to one less than the length of the vector vec. Thus we locally define highest-

index to be one less than (vector-length vec). The local procedure loop

displays in order the elements of vec, each, except for the last one, followed

by a space. Thus the desired output is obtained by first displaying "#(",

then invoking (loop 0) to display the elements of vec, and finally displaying

")"• In our implementation, we assume that the value returned by a display

expression is suppressed, so the same is true of view.

The constructor vector-generator, which we use for vectors, is a curried

procedure with the call structure

((vector-generator gen-proc) size)

The operand size is a nonnegative integer that is the length of the vector

we are constructing. The generating procedure gen-proc is a procedure that

takes an index as its argument and returns the value to be associated with

268 Using Vectors

Program 9.1 view

(define view

(lambda (vec)

(let ((highest- index (subl (vector-length vec))))

(letrec ((loop (lambda (i)

(display (vector-ref vec i))

(if (< i highest-index)

(begin

(display " ")

(loop (addl i)))))))

(display "«(")

(loop 0)

(display ")")))))

that index in the vector we are constructing. The index is any integer in the

range from zero to one less than size. When passed a generating procedure,

vector-generator returns a procedure. When that procedure is passed an

integer specifying the vector's length, it returns a vector having the specified

size and whose elements are determined by the generating procedure. As an

example of the use of vector-generator, if we want to construct a vector of

length 6 having for each of its elements, we can write

[1] (view ((vector-generator (lambda (i) 0)) 6))

«(0 0)

Here are some additional examples:

[2] (view ((vector-generator addl) 6))

#(123456)
[3] (view ((vector-generator (leunbda (i) i)) 5))

«(0 1 2 3 4)

[4] (view ((vector-generator (lambda (i) '())) 4))

«(() ())

[5] (define squares (vector-generator (lambda (i) (i i))))

[6] (view (squares 4))

«(0 1 4 9)

[7] (view (squares 6))

#(0 14 9 16 25)

Later we shall give ways of representing vectors and defining these basic

procedures. We now show how to define the other procedures that we need,

9.2 Vectors 269

making use of the four basic procedures. The first one is the Scheme procedure

neike-vector, which builds a vector of a prescribed size and fills all of its

elements with the same specified value. If a fill value is not given, all of the

elements of the vector are filled with something, say (), although this fill

value is not specified by Scheme. Thus we define the procedure make-vector

that takes either one or two arguments. Its first argument is always the size

of the vector we eire building, and the optional second argument is the value

we use to fill the elements of the vector. To accomplish the definition of a

procedure with an optional second argument, we use the unrestricted lambda

in its definition. Thus make-vector has as its parameter a symbol denoted by

surgs. We distinguish between the two cases by testing whether (cdr aurgs) is

empty. If it is, we construct a vector of length (car airgs) and fill it with ().

Never rely upon this fill value in your programs because the Scheme procedure

make-vector does not specify the fill value if you do not include it as a second

argument. Thus you may be surprised to find the implementation providing

something other than () , and your program will not run correctly. If you

want to use the fill value in your program, specify it as the second argument

to make-vector, and that value is used to fill the vector that is constructed.

Here is the code for meJce-vector:

Program 9.2 make-vector

(define nake-vector

(lanbda args

(let ((fill-value

(if (singleton-list? args)

'()

(cadr args))))

((vector-generator (lambda (i) fill-value)) (car args)))))

A convenient way of building a vector with given elements is to start with

a list containing those elements and converting the list into a vector using

the Scheme procedure li8t->vector that takes a list Is as its parameter.

The size of the vector being created is then the length of Is, and the gen-

erating procedure is simply (lambda (i) (list-ref Is i)). We then get

Program 9.3. Because list-rel is doing a recursion from the beginning of the

list for each index i, this is a very inefficient way of defining list->vector.

We consider a more efficient definition later.

270 Using Vectors

Program 9.3 list->vector

(define li8t->vector

(lanbda (Is)

((vector-generator (laabda (i) (list-ref Is i))) (length Is))))

Another convenient way of building a vector with given elements is pro-

vided by the Scheme procedure vector, which takes an arbitrary number of

arguments and returns a vector having those arguments as its elements. The

length of the vector returned is the same as the number of arguments. Since

the number of arguments is arbitrary, we must use the unrestricted lambda.

The definition of vector is:

Progr€iin 9.4 vector

(define vector

(laabda surgs

(li8t->vector args)))

Here are some experiments illustrating the use of these procedures:

[1] (view (aake-vector 5))

#(() () ())

[2] (view (li8t->vector ' (1 2 3 (4 5 6))))

id 2 3 (4 5 6))

[3] (view (vector 'a 'b '(a b c)))

«(a b (a b c))

[4] (view (vector 6 'symbol 5))

«(6 syabol 5)

The length of a vector is fixed when it is defined. Suppose we have defined

a vector vec of length k, and we find that we need a longer vector, say one of

length n, that has its first k elements the same as those of vec. We say that the

new vector is an extension of vec of length n. We now use vector-generator

to define the procedure vector-stretch that takes as its parameters a vector

vec and a number nev-size and returns an extension of vec of length new-

size. Its code is in Program 9.5. Although we use the name vector-stretch,

the new vector may also be the same length as or shorter than the original

vector.

9.2 Vectors 271

Program 9.5 vector-stretch

(define vector-stretch

(lambda (vec new-size)

(let ((size (vector-length vec)))

(let ((gen-proc (lambda (i)

(if (< i size)

(vector-ref vec i)

'()))))

((vector-generator gen-proc) new-size)))))

If the extension of a vector vec is the same size as vec, the extension

is a copy of vec. Thus we define the procedure vector-copy as shown in

Program 9.6.

Program 9.6 vector-copy

(define vector-copy

(lambda (vec)

(vector-stretch vec (vector-length vec))))

The procedure vector-copy gives us a copy of its argument with none of

its elements changed. Suppose we want a copy of the vector vec with the

element with index k replaced by the value val. We can define a new copying

procedure that has the kth element changed, as shown in Program 9.7.

Program 9.7 vector-update

(define vector-update

(lambda (vec k val)

(let ((gen-proc (lambda (i)

(if (- i k)

val

(vector-ref vec i)))))

((vector-generator gen-proc) (vector-length vec)))))

We can now give another version of the Scheme procedure list->vector,

this time using vector-update. In this version, we first build a vector vec

272 Using Vectors

Program 9.8 list->vector

(define li8t->vector

(lambda (Is)

(let ((vec (ncJce-vector (length Is))))

(letrec

((convert (lambda (Is* v i)

(if (null? Is*)

V

(let ((new-v (vector--update! v i (car Is*))))

(convert (;cdr Is*) new-v (addl i)))))))

(convert Is vec 0)))))

having the same length as the list Is that we are converting into a vector.

Then we form a loop using a letrec expression in which we start with the

vector vec and successively use vector-update to give us a new vector new-v

that has the appropriate element changed to the corresponding element in

the list. This new vector is passed to the local procedure convert, which

continues this process until all of the elements of vec have been updated. Its

definition is given in Program 9.8. We make an improvement in the procedure

list->vector later in this section. At that time, we shall eliminate the need

to pass the vector new-v as an argument to convert and shall produce an

0{n) version instead of (9(n^).

Suppose we have a vector vec and want to construct a new vector whose

elements are obtained by applying the procedure proc to the corresponding

elements of vec. To accomplish this, we use a vector analog of the list proce-

dure map. We call the vector version vector-map, and we define it by:

Program 9.9 vector-map

(define vector-map

(lambda (proc vec)

((vector-generator (lambda (i) (proc (vector-ref vec i))))

(vector-length vec))))

9.2 Vectors 273

For example,

[1] (vies (vector-map addl (vector 10 11 12 13)))

«(11 12 13 14)

[2] (vies (vector-map even? (vector 10 11 12)))

#(«t #f #t)

[3] (view (vector-map

(lambda (elem) (list 'a elem))

(vector 10 11 12 13)))

«((a 10) (a 11) (a 12) (a 13))

In the language used with vectors, one usually refers to numbers as scalars.

We call a vector a numerical vector if all of its elements are numbers. The

product of a scalar c and a numerical vector (oi, a2,...,an) is the vector

(cai, ca2, . .
.

, ccLn)- The procedure multiply—by-scalau: takes as parameters

a scalar c and a numerical vector vec and returns their product. It is defined

by

Program 9.10 multiply-by-scalar

(define multiply-by-scalair

(lambda (c vec)

(vector-map (lambda (elem) (* c elem)) vec)))

We define an analog to vector-map, called vector-apply-elementwise-

to-both, for a binary procedure proc and two vectors of the same length,

which applies proc to the corresponding elements of the two vectors.

Program 9.11 vector-apply-elementwise-to-both

(define vector-apply-elementwise-to-both

(lambda (proc)

(lambda (vecl vec2)

(let ((gen-proc

(lambda (i)

(proc (vector-ref vecl i) (vector-ref vec2 i)))))

((vector-generator gen-proc) (vector-length vecl))))))

The sum of two numerical vectors vecl and vec2 of the same length is the

274 Using Vectors

vector whose elements are the sums of the corresponding elements of vecl and

vec2. We define the vector operator vec+ that adds two vectors by simply

using vector-apply-elementwise-to-both with + as its operand. Similarly

we define the vector operator vec* that multiplies two vectors elementwise by

applying vector-apply-elementwise-to-both with * as its operand.

Program 9.12 vec+, vec*

(define vec+ (vector-apply-elementwise-to-both +))

(define vec* (vector-apply-elementwise-to-both *))

The use of vec+ and vec* is illustrated by:

[1] (view (vec+ (vector 13 5 7 9) (vector 97531)))
#(10 10 10 10 10)

[2] (view (vec* (vector 13 5 7 9) (vector 97531)))
«(9 21 25 21 9)

We now look at the problem of adding all of the elements of a numerical

vector. We first need the length of the vector, which we locally define to be

size. Then we set up a local recursion on the index, starting with index 0.

When the index reaches size, there are no more elements to add. We define

vector-sum to be:

Program 9.13 vector-sum

(define vector-sum

(lambda (vec)

(let ((size (vector-length vec)))

(letrec

((helper

(lambda (i)

(if (= i size)

(+ (vector-ref vec i) (helper (addl i)))))))

(helper 0)))))

In a similar way, we define vector-product, which takes the product of

9.2 Vectors 275

the elements of a numerical vector:

Program 9.14 vector-product

(define vector-product

(lambda (vec)

(let ((size (vector-length vec)))

(letrec

((helper

(lambda (i)

(if (= i size)

1

(* (vector-ref vec i) (helper (addl i)))))))

(helper 0)))))

Here are some examples:

(vector-sum (vector 13 5 7 9)) ^^ 25

(vector-product (vector 13 5 7 9)) ^ 945

It should occur to you when looking at the last two definitions that they are

very similar in structure, and that they are ideal candidates for abstraction.

Let's define a procedure vector-accumulate that abstracts the structure of

those two procedures. There are just two essential differences: the value re-

turned when the terminating condition is true, which we call the seed, and

the operator applied in the alternative, which we call proc. Then the defini-

tion of vector-accumulate is given in Program 9.15. We can now rewrite the

definitions of vector-sum and vector-product using vector-accumulate:

(define vector-sum (vector-accumulate +0))

(define vector-product (vector-accumulate * 1))

We defined list->vector, but we have not yet defined the Scheme proce-

dure vector->list that produces a list with the same elements as a given

vector. But that is just a recursion on the index with the procedure cons and

the seed (). We can then use vector-accumulate to define vector->list

as shown in Program 9.16. Then

(vector->li8t (vector 1 2 3 4)) =* (1 2 3 4)

(vector->li8t (vector 'abc 3 4)) =* (abc 3 4)

276 Using Vectors

Program 9.15 vector-accumulate

(define vector-accumulate

(Isunbda (proc seed)

(lambda (vec)

(let ((size (vector-length vec)))

(letrec

((helper

(lambda (i)

(if (= i size)

seed

(proc (vector-ref vec i) (helper (addl i)))))))

(helper 0))))))

Program 9.16 vector->list

(define vector->list (vector-accumulate cons '()))

Suppose that the elements of the vector (15.50, 8.95, 12.00) represent the

price of items we want to buy and the elements of the vector (2, 5, 3) represent

the number of each of those items we want. The total amount of money we

spend on the purchases is 2 x $15.50 + 5 x $8.95 + 3 x $12.00 = $111.75.

We found it by taking the products of the corresponding elements in the two

vectors and then summing the products. This type of computation involving

two vectors is used so often that it is given a name. It is called the dot-product

of the two vectors. In general, if u is the numerical vector (ao, ai, . .
.

, On-i)

and V is the numerical vector (&0) &i) •••, ^n-i)) the dot product u • v of

u and V is the number ao^o + t^i&i + • • • + o,n-ibn-i- We already have a

procedure vec* that computes the vector whose elements are the products

of the corresponding elements of two vectors of the same length. We also

have a procedure vector-sum that sums the components of a vector. The

composition of these two procedures gives us the dot product:

(define dot-product (compose vector-sum vec*))

where we use a more general version of compose that allows its second argu-

ment to be a procedure of arbitrarily many arguments. It is defined by

9.2 Vectors 277

(define compose

(laabda (f g)

(lambda args

(f (apply g args)))))

Although this is the dot product of two vectors, it is not an efficient way of

getting it. In the process of computing the dot product, the first procedure

applied, vec*, constructs a vector containing the products of corresponding

elements of the original two vectors. This is a rather costly and unnecessary

construction, since we can just make one pass down the elements of the two

vectors and accumulate the sum of the products as they are formed. The

definition of dot-product using this process is

(define dot-product

(lambda (vecl vec2)

(let ((size (vector-length vecl))

)

(letrec ((loop (lambda (i)

(cond

((= i size) 0)

(else (+ (* (vector-ref vecl i)

(vector-ref vec2 i))

(loop (addl i))))))))

(loop 0)))))

An even more efficient way of computing the dot product of two vectors

uses an accumulator to store the intermediate sums. Its code is given in

Program 9.17.

9.3 Representing Vectors

We have gone a long way without discussing the actual representation of

vectors we use in the computations and the definitions of the basic procedures.

It is now time to address these questions. Since a vector is mathematically

characterized as a function from the index to the element with that index, we

can first look at a representation of a vector as a tagged pair. The car of the

pair is the tag vector-tag whose value is "vector".

(define vector-tag "vector")

The cdr of the pair is another pair whose car is the vector's length, and

whose cdr is a procedure. That procedure takes an index as a parameter and

278 Using Vectors

Program 9.17 dot-product

(define dot -product

(lambda (vecl vec2)

(let ((size (vector-length vecl)))

(letrec

((loop

(lambda (i ace)

(if (= i size)

ace

(loop (addl i)

(+ ace (* (vector--ref vecl i)

(vector--ref vec2 i))))))))

(loop 0)))))

returns the element of the vector with that index. We make the convention

that the indices are zero based. With these conventions, we define vector?

and vector-length, in Program 9.18.

Program 9.18 vector?, vector-length

(define vector?

(lambda (arg)

(and (pair? arg) (eq? (car arg) vector-tag))))

(define vector-length

(lambda (vec)

(car (cdr vec))))

The constructor vector-generator has the generating procedure gen-proc

as its parameter. It returns a procedure that has the vector's length size as

its parameter. That in turn returns the vector being constructed, which is a

tagged pair containing the size and the procedure gen-proc. The definitions

of vector-ref and vector-generator are given in Program 9.19.

A tagged pair containing a list in place of a procedure can also be considered

as a representation of a vector. This is the second representation of vectors

we develop. We only need to redefine vector-ref and vector-generator as

in Program 9.20. As we mentioned in the Overview, the elements in such lists

are accessed with list-ref . vector-generator contains a loop that invokes

9.3 Representing Vectors 279

Program 9.19 vector-rel. vector-generator Version I

(define vector-ref

(lambda (vec i)

((cddr vec) i)))

(define vector-generator

(laaibda (gen-proc)

(laabda (size)

(cons vector-tag (cons size gen-proc)))))

Program 9.20 vector-ref vector--generat or Version II

(define vector-ref

(lambda (vec i)

(list-ref (cddr vec) i)))

(define vector-generator

(lambda (gen-proc)

(lambda (size)

(cons vector-tag

(cons size

(letrec

((loop (lambda

(cond

(i)

((= i size) '())

(else (cons (gen-proc i)

(loop (addl i.))))))))

(loop (3)))))))

gen-proc on each pass and builds a list of the results. We now have

[1] (vector 100 200 300 400 500)

("vector" 5 100 200 300 400 500)

[2] (vies (vector 100 200 300 400 500))

#(100 200 300 400 500)

With these two representations of vectors, we have implemented the prop-

erties of vectors specified in the mathematical definition; that is. we have

associated an element with each index. However, we have not considered the

280 Ustng Vectors

other question raised in the Overview, random access. It is clear that the list

representation does not provide random access to the elements, for we have

to cdr down the list until we find the element with the desired index, and the

computer resources used in this cdring increase with the index. It may appear

as though the representation of the vector using a procedure that assigns an

element to each index gives true random access to the elements, but consider

the following situation where vectors are represented as procedures:

(let ((a (make-vector 4 5)))

(let ((b (vector-update a 1 10)))

(let ((c (vector-update b 2 20)))

(let ((d (vector-update c 3 30)))

(vector-ref d 0))))) =» 5

In order to compute (vector-ref d 0), we first invoke the procedure rep-

resenting the vector d with argument to find that it invokes the procedure

representing the vector c with argument 0, which in turn invokes the pro-

cedure representing b with argument 0, which in turn invokes the procedure

representing a with argument 0, which returns the value 5. If we had asked

for (vector-ref d 3), the value 30 would have been returned with just the

one procedure invocation. Thus, the resources needed to access the different

elements of d depend upon the indices of the elements.

We do not have to give up on random access because Scheme has an imple-

mentation of vectors that does provide it. The third representation we discuss

is that provided by Scheme. The external representation of a vector in Scheme

as a list preceded by a sharp sign, #, is how we have been displaying vectors

with the procedure view. Thus the vector with elements 20, 30, 40, and 50 is

written as #(20 30 40 50). This is a representation, not an expression that

evaluates to a vector. Like lists, vector constants must be quoted, so that

when we enter a quoted vector, we get

[1] '#(10 u (+ 2 3) "Mary")

#(10 u (+ 2 3) "Mary")

[2] (writeln '#(10 20 (+ 10 20) 40 50))

#(10 20 (+ 10 20) 40 50)

[3] (vector 10 20 (+ 10 20) 40 50)

#(10 20 30 40 50)

The basic procedures vector?, vector-length, and vector-ref are pro-

vided by Scheme. Our fourth basic procedure, vector-generator, is not in

Scheme, but we can use the two Scheme procedures make-vector and vector-

set ! to define it. We have already discussed make-vector, but vector-set

!

9.3 Representing Vectors 281

is new. With the list and procedure representation of a vector, when we want

to change an element with index k in a vector vec to the new value c, we

invoke (vector-update vec k c), which makes a copy of the vector with a

given element changed. The original vector vec still has its original elements,

and only the copy has the element with index k changed to c. With the proce-

dure vector-set
!

, we invoke (vector-set ! vec k c) , and we do not create

a new vector, but instead we change the element with index k in vec to have

the value c. Thus vector-set ! is not a constructor, since it does not create a

new vector. Instead, we call such procedures mutators or mutation procedures

that cause a mutation or change in the original vector. Its call structure is

(vector-set! vec i obj), where vec is a vector, i is an index, and obj is

an object that becomes the element with index i in vec. The element that

previously had index i in vec is replaced with obj. The value returned by

an invocation of vector-set! is not specified, so do not use the returned

value since it depends upon the implementation of Scheme. Programs that

do use such values are not portable; that is, they cannot be used with other

implementations of Scheme. The purpose of an invocation of vector-set ! is

to change a vector, which is a side effect. As such, it can be used in begin

expressions where side effects are done. It is a convention in Scheme to place

an exclamation mark, ! , at the end of the names of mutation procedures. The

exclamation mark is read as "bang," so we read vector-set! as "vector set

bang." We follow our convention of not displaying whatever is returned by

side-effecting procedures. As with define, writeln, and the others, we shall

not display what a vector-set ! expression returns.

As an example of the use of vector-set
!

, consider

[1] (define vl (vector 2 4 6 8))

[2] vl

#(0 2 4 6 8)

[3] (vector-set! vl 2 5)

[4] vl

#(0 2 5 6 8)

Using vector-set !, we now present the definition of our basic constructor

vector-generator. The program for vector-generator first constructs a

vector vec of the desired length size (> 0), with unspecified elements. Then

it enters a loop with index i going from to size. For each i less than

size, it changes the ith element of vec to be the generating procedure gen-

proc applied to i. When the index i reaches its upper limit size, the vector

vec has had all of its entries changed, and since the if expression has only a

consequent, some value (unspecified in Scheme) is returned. But this value is

282 Using Vectors

ignored, since the letrec expression is the first expression in an implicit begin

expression. The value returned by the whole begin expression is the vector

vec. The structure of this program makes use of the fact that the vector

vec is changed by side effects. The mutation is done in the loop within the

letrec expression, and when its work is finished, the vector vec is returned.

Program 9.21 contains the code for vector-generator.

Program 9.21 vector-generator

(define vector-generat or

(lambda (gen-proc)

(lambda (size)

(let ((vec (make--vector size)))

(letrec

((loop (leunbda (i)

(if (< i size)

(begin

(vector-set

!

vec i (gen--proc i))

(loop (addl i)))))))

(loop 0))

vec))))

When we use vector-set
!

, we are interested in its side effects, and we do

not use the value that it returns. If we do want to use the updated vector that

has been reset by an invocation of vector-set
!

, we can use a mutating version

of vector-update, which we call vector-update ! . It first uses vector-set

!

to set the element with the given index to a new value and then returns the

vector. It is defined in Program 9.22.

Program 9.22 vector-update!

(define vector-update!

(lambda (vec i c)

(vector-set! vec i c)

vec))

When we presented the second definition of list->vector, we mentioned

that we would give another version in which it would not be necessary to pass

9.3 Representing Vectors 283

the newly created vector as an argument to the local procedure convert. We
can now do it using vector-set ! . We first create a vector having the same

length as the list using make-vector. Then we cdr down the list, changing

the entry in the vector to be the corresponding entry in the list. The code is

in Program 9.23.

Program 9.23 list->vector
i

(define list->vector

(lambda (Is)

(let ((vec (make-vector (length Is))))

(letrec

((convert

(lambda (Is i)

(if (not (null? Is))

(begin

(vector-!set! vec i (car Is))

(convert (cdr Is) (addl i)))))))

(convert Is 0))

vec)))

!

In this program, we again see that vector-set ! is used in a begin expression

for its side effect of changing an element in a vector. The mutation of the

vector is ax:complished in the body of the local procedure convert. When the

letrec expression is finished, the vector vec is returned.

When mutation is introduced, we must adopt a different point of view about

computing than when we use functional programming. Programs that make

use of mutation are referred to as imperative- style programs. In functional

programming, an object is passed as an argument to a procedure and a new

object is created, but the original one does not change. If we start with a

vector a, which is (vector 2 4 6), and let b be (vector-update a 1 5),

then the vector a has not been changed, and we have

[1] (let ((a (vector 2 4 6)))

(let ((b (vector-update a 1 5)))

(vies a) (newline)

(view b) (newline)))

«(2 4 6)

«(2 5 6)

On the other hand, if we use the mutator vector-update! instead of

284 Using Vectors

vector-update, we actually do change the vector a, and we have

[2] (let ((a (vector 2 4 6)))

(let ((b (vector-update! a 1 5)))

(writeln a)

(writeln b)))

#(2 5 6)

#(2 5 6)

In the first let expression in [2] , the vector a has a certain state that is

determined by its elements. When vector-update! is invoked in the second

let expression, the state of a is changed. When objects change over time, we

say that at any given time the object is in a certain state that is determined by

certain state variables (in our example, they are the elements of the vector).

If we know the state of an object, we know its behavior at that time. When
using mutators, one must be conscious of the fact that each object has a

certain state and that an invocation of a mutation procedure causes a change

in the state of the object. We shall introduce other mutators in Chapter 11

and discuss the changes in state they cause. At this point, we give another

illustration comparing programming in functional style using vector-update

with programming in imperative style using the mutator vector-update !

.

We next look at the problem of reversing the elements of a vector. To do so,

we define a procedure vector-reverse that has a vector vec as its parameter

and returns a vector having the same elements as vec but in reverse order. We
first define a vector-reversing procedure in functional style without mutation.

We use either of the first two representations of vectors (either as tagged

procedures or as lists). The idea that we use in writing this definition is to

use two indices, i and j. The lower index i starts at 0, and the upper index

j starts at the index of the last element. The elements with indices i and

j are swapped, and then i is increased by 1 and j is decreased by 1. The

swapping and changing indices continue until either the two indices coincide

(this happens when the length of the vector is odd) or until i is greater than

j (this happens when the length of the vector is even). The resulting vector is

returned. The swapping is done with a helping procedure called swap-maker

that has a vector vec as its parameter and returns a procedure that has two

indices indexl and index2 as parameters and returns a copy of vec that has

its elements with indices, indexl and index2, interchanged. The code for

vector-reverse is in Program 9.24.

We now give the definition of swap-madter in Program 9.25. We first store

the element with index indexl in a local variable temp. Then vector-update

is invoked on vec and returns a new vector having its element with index

9.3 Representing Vectors 285

Program 9.24 vector-reverse (functional version)

(define vector -reverse

(lEunbda (vec.>

(letrec

((switch

(lambda (v i j)

(if (>= i j)

V

(let ((swapv (swap--maker v))

)

(switch (swapv i j) (addl i) (subl j)))))))

(switch vec (subl (vector--length vec))))))

Program 9.25 swap-maker (functional version)

(define swap-maker

(lambda (vec)

(lambda (indexl index2)

(let ((temp (vector-ref vec indexl)))

(vector-update

(vector-update vec indexl (vector-ref vec index2))

index2

temp)))))

indexl changed to the element with index inciex2. Now vector-update is

again invoked, this time on the vector that was returned. It returns a new

vector that has its element with index index2 changed to temp, completing

the swap.

We illustrate the use of vector-reverse with the following experiment:

[1] (let ((a (vector 12 3 4 5)))

(let ((b (vector-reverse a)))

(view a) (newline)

(view b) (newline)))

#(12 3 4 5)

#(5 4 3 2 1)

We now write the definitions of corresponding procedures with mutations.

Program 9.26 gives the code for vector-reverse!. We are able to make

a few optimizations in the program, taking advantage of the fact that the

vectors have state that changes with invocations of the mutators. Now we

286 Using Vectors

do not have to pass the vector vec as an argument to the local procedure

switch and switch does not have to return a value. We can also define the

local procedure swapv! before the letrec expression defining switch. This

time, the helping procedure (swap-maker vec) (see Program 9.27) returns a

mutator that uses vector-update! actually to interchange the elements with

indices indexl and index2 in the vector vec itself. When switch finishes its

work, the vector vec has its elements in reverse order. After the invocation

of switch, the altered vector vec is returned as the value of the procedure

vector-reverse!. Thus using mutation reduces the need to pass vectors as

arguments to procedures and for procedures to return vectors as values. In

general, mutation provides for efficient communication between procedures

and faster running, more efficient programs.

We repeat the experiment, this time using the mutating version:

[2] (let ((a (vector 12 3 4 5)))

(let ((b (vector-reverse! a)))

(writeln a)

(writeln b)))

#(5 4 3 2 1)

«(5 4 3 2 1)

Notice that this time, the invocation of vector-reverse! on the vector a

actually changed the vector a itself, whereas in the previous version not in-

volving mutation, the vector a remained unchanged.

Program 9.26 vector-reverse ! (imperative version)

(define vector-reverse!

(launbda (vec)

(let ((sHapv! (swap-maker vec)))

(letrec

((switch (lambda (i j)

(if « i j)

(begin

(swapv! i j)

(switch (addl i) (subl j)))))))

(switch (subl (vector-length vec))))

vec)))

9.S Representing Vectors 287

Program 9.27 swap-maJter (imperative version)

(define swap-maker

(lambda (vec)

(lambda (indexl index2)

(let ((temp (vector-ref vec indexl)))

(vector-update

!

(vector-update! vec indexl (vector-ref vec index2))

index2

temp)))))

Comparing these two versions of vector-reversing procedures, we see that

when we are willing to abandon the original elements occupying various posi-

tions in a vector, we may use the same vector and update individual positions.

The values associated with the indices are changing, but they are in the same

vector, not a copy of the vector. Imagine a vector of length N to be a set

of N transparent shoe boxes fastened together at the sides and as elements

use billiard balls with values written on them. Then when we use vector-

update ! , we open the lid, take out the ball that is in the box, and replace that

ball with a different ball. We always use the same shoe boxes. The vector

itself is not changing, but its contents are. The shoe boxes did not change;

only their contents did. By using vector-update! we have shown that the

communication structure associated with vectors as arguments and values can

be lessened. What makes mutation really important, however, has to do with

random access and the way virtually all computers are designed. Random ac-

cess provides constant time\ that is, the time required to access any element

in the vector is the same. Sequential access in lists provides linear time in

which the time is proportional to the index of the element. Thus we see that

using mutation considerably improves the running time of programs.

In summary, we have now seen three approaches to implementing vectors.

In the first two representations, mutations are not used. When we want to

change an element with a given index in a vector, we use vector-update,

which constructs a new vector that has the new element, and the original

vector is left unchanged. Such programming without mutations is called func-

tional programming. In our third approach to vectors, we use the mutator

vector-set ! to change an element with a given index in a vector, and this

actually makes the changes in the original vector itself so as to change the

state. Such programming with mutations is called imperative programming.

We gain using mutation because the way it is implemented in Scheme gives

288 Using Vectors

us random access to the elements in the vector. The price we pay is that we

actually change elements in the original vector when we use vector-set!,

so if we need it for some reason after the invocation of vector-set
!

, we

must first make a copy of the original vector using vector-copy and apply

the mutation procedures to the copy. The vector data type has analogs in

other programming languages where they are often called one-dimensional ar-

rays. In the rest of this book, unless we state otherwise, we use the Scheme

implementation of vectors with the mutator vector-set !

.

Exercises

Exercise 9.1: successive-powers

Define a procedure successive-powers that constructs a vector of length n

whose entries are the successive powers of the number base. The element with

index is the 0th power of base. The procedure should be curried so that its

first parameter is base, and the procedure that is returned has parameter n.

Test your procedure on

((successive-powers 2) 8) ^^ #(1 2 4 8 16 32 64 128)

((successive-powers 3) 5) ^^ #(1 3 9 27 81)

Exercise 9.2

A vector of zero length can be displayed by #(). Rewrite the definition of

view to support vectors of zero length.

Exercise 9.3: vector-view

We defined a procedure view when we used the procedural representation of

a vector to display the vector in the notation using a sharp sign followed by a

list of elements. Define a procedure vector-view that works like view, except

that it displays the vector using angle bracket notation with commas as used

in mathematics. Take into account the observation of Exercise 9.2. With all

three representations of vectors given in this chapter, (vector-view (vector

10 20 30)) should display <10, 20, 30>. A similar program, set-view can

be defined using braces instead of angle brackets.

Exercise 9.4

Let vl be the vector (vector 12 3 4) and let v2 be (vector-copy vl).

What does each of the following expressions return? Test them with each of

the three representations of vectors.

a. (eq? vl v2), (eq? vl vl)

9.3 Representing Vectors 289

b. (eqv? vl v2), (eqv? vl vl)

c. (equal? vl v2), (equal? vl vl)

What conclusions can be drawn about the use of these predicates?

Exercise 9.5: vector-linear-search.

The vectors under consideration in this exercise contain elements that can be

tested for sameness with the predicate equal?. Define a procedure vector-

linear-search that has as its parameters a vector vec and an object obj. It

returns the smallest index whose element is the same as obj. If the object is

not in the vector, an appropriate message is returned. Test your program on:

(vector-linear-search '#(g npradlbs) 'a) ^^ 4

(vector-linear-search '#(29 13 96 -5 24 11 9 -15 2) 11) =^ 5

Exercise 9.6: vector-append, vector-reverse

Use vector-generator to define vector analogs of append and reverse.

9.4 Matrices

We have used lists and vectors to store data. In both of these, the elements

are sequentially organized, so that we can index the elements starting with

zero and increasing the index by one for each successive element. We often use

this way of organizing information, but there are also occasions where such

a sequential organization is not the best way of organizing the information.

Many times a table is a more convenient way of presenting data. For example,

in a telephone book, each person has several entries: a name, an address, and

a phone number. The data are entered in rows, each row containing the

information for one person. If we take the first entries in all of the rows, we

get the first column; the second entries of all rows form the second column;

and in general, the nth entries in all rows form the nth column. The table

in Figure 9.28 contains four rows and three columns. Each entry in the table

can be located if we are given two indices, the zero-based index of the row

and the zero-based index of the column. Thus in our table, "3314 Valley Dr."

is the item with row index 2 and column index 1.

A matrix is a table in which each of the entries has two indices, the first

being the zero-based row index and the second being the zero-based column

index. In our discussion, we refer to the element in the matrix A having row

index i and column index j as the element Oij . If the matrix has m rows and n

290 Using Vectors

"Jones, John" "2117 Plum St." "412-8421"

"Jones, M. S." "1392 First Ave." "424-7773"

"Jose, Michael W." "3314 Valley Dr." "421-0035"

"Joslin, Joan P." "2550 Western Blvd." "412-5531"

Figure 9.28 A table with four rows and three columns

columns, we call it an "m by n matrix." This is sometimes written as "m x n

matrix." For example, if A denotes the table given in Figure 9.28, then A is

a 4 X 3 matrix, and "424-7773" is the value of element ai2-

Unlike vectors, matrices are not a Scheme data type, so we have to decide

upon a representation for matrices, and we have to define the building blocks

in terms of which the matrix procedures are defined. We begin with two

procedures, num-rows and num-cols, that take a matrix as argument and

return the number of rows and the number of columns, respectively. We also

use a selector matrix-ref that has the call structure

((matrix-ref mat) row-index column-index)

where mat is a matrix and row-index and column-index are nonnegative

integers. It returns the element of the matrix m.at with indices row-index

and column-index. Thus, if A represents the matrix in Figure 9.28, we can

write

[1] (define A-ref (matrix-ref A))

[2] (A-ref 1 2)

"424-7773"

[3] (A-ref 2 1)

"3314 Valley Dr."

We also use a constructor that is an analog of vector-generator. We call

it matrix-generator, and it has the call structure

((matrix-generator gen-proc) nrows ncols)

where nrows and ncols are the number of rows and columns, respectively, of

the matrix we are constructing. The procedure gen-proc takes as its argu-

ments two indices and produces the element with those indices in the matrix

being constructed.

9.4 Matrices 291

We now decide how to represent a matrix. Let us assume that we are

defining an m x n matrix A. There are m rows and n columns in A, and

altogether there are m x n elements in A. Each of the m rows contains

n elements. One way of representing ^ is as a vector V that contains the

m X n elements of the matrix. But we must have a way of knowing the

correspondence between elements of V and elements of A. It will be clearer

if we look at a concrete example first and then generalize the method we

develop. Consider the matrix in Figure 9.29.

A =

Figure 9.29 A 3 x 4 matrix

We have followed the usual mathematical convention of writing such nu-

merical matrices (or tables) enclosed by large parentheses. This matrix, A,

has three rows and four columns. There are two ways of writing the elements

of a matrix sequentially, both of which are used in practice. One is to write

the rows one after the other, to get the sequence of elements

523714058312

This way is called row major order. The other way is to write the columns

one after the other, to get the sequence of elements

518243301752

This way of writing the elements is called column major order. We arbitrarily

choose to use the row major order in our representation of matrices.

Now that we are agreed on row major order, we must have a way of knowing

where one row ends and the next begins. In our example, there are in all 12

elements in the matrix, as we can see by counting the number of elements in

the sequence. Since we know that there are 4 elements in each row, we can

divide 12 by 4 to get that there are 3 rows. We need someplace to store the

number 4, which tells us the number of elements in each row. Let us agree to

put it at the end of the sequence of numbers and store the whole sequence in

a vector. Thus we represent the matrix A as the value of

(vector 523714058312 4)

292 Using Vectors

Program 9.30 num-cols

(define num-cols

(lambda (mat)

(let ((size (subl (vector-length mat))))

(vector-ref mat size))))

Consider the element in this vector. It has index 6 in the vector. What
indices does it have in the matrix A? Here is how we can compute them using

information we can extract from the vector A. The vector A has length 13,

and the last element is a 4. We use this last element to conclude that the

matrix has rows of length 4. Thus it has four columns. If we remove the

last element, there are 12 elements left, so the matrix has 12/4 = 3 rows.

Now if we start at the beginning of the vector and collect the elements in

groups of four, we see that is in the second group and is the third element in

that group. Thus is in the second row and third column. Using zero-based

indices, we see that has row index 1 and column index 2. We can get these

indices easily by noting that the row index is the quotient when the index 6

is divided by the row length 4, and the column index is the remainder when

6 is divided by 4.

Now let's reverse the process and start with the element in A having row

index 1 and column index 2. We find its index in the vector representing A by

multiplying the row index 1 by 4, which is the number of elements in each row

of A, and then adding the column index 2. Thus the index of that element in

the vector is (1 • 4) -I- 2 = 6.

In general, v/e represent an m x n matrix, mat, by a vector containing mn+1
elements, the last of which is a number telling us the number of columns of

mat, which is the same as the number of elements in each row of mat. The

elements of the matrix are enumerated in row major order, making up the first

mn elements. We can define the procedure num-cols for this representation

as shown in Program 9.30, for all we have to do is access the last element in

the vector representing the matrix.

To get the number of rows of the matrix, we merely divide one less than

the length of the vector representing the matrix by the number of columns.

Thus we get Program 9.31.

We now define matrix-rel that has the matrix mat cis its parameter and

returns a procedure that has as its parameters the row index i and the column

index j , and it in turn returns the element of mat with those indices. To find

the element in the vector representation of the matrix, we must multiply the

9.4 Matrices 293

Progrfon 9.31 num-roHS

(define nmn-rows

(leunbda (mat)

(let ((size (subl (vector--length mat))))

(/ size (vector--ref mat size)))))

row index i by the number of columns in the matrix mat and add to that

product the column index j. This gives us:

Program 9.32 matrix-ref

(define matrix-ref

(lambda (mat)

(let ((ncols (num-cols mat)))

(lambda (i j)

(vector-ref mat (+ (* i ncols) j))))))

Exercise

Exercise 9.7

The selector matrix-ref should contain in its definition a range test for the

indices i and j and return an error if either is out of range. Rewrite the

definition so that it contains such a test.

We now turn our attention to the constructor matrix-generator, which

is defined using vector-generator. We first have to build the generating

procedure of one argument that generates the vector representing the matrix.

If we are given the index k of an element e in the vector representation, the

corresponding row index is the quotient obtained when k is divided by ncols,

and the corresponding column index is just the remainder obtained when k is

divided by ncols. Recall that ncols is the number of elements in each row

of the matrix. Then to get the row index, we can count the number of groups

of ncols elements we can remove before including the element e with index

k. The number of such groups is the zero-based row index of the element e

in the matrix. But that number of groups is what we mean by the quotient

obtained when k is divided by ncols. The next such group of ncols elements

294 Using Vectors

contains e, and its zero-based index in that group is the column index of e

in the matrix. But that zero-based index is also the remainder when k is

divided by ncols. Thus we can take as the vector-generating procedure of

one argument

(lambda (k)

(gen-proc (quotient k ncols) (remainder k ncols)))

The length of the vector representing the matrix is one more than the product

of nrows and ncols. We can then write:

Progrsan 9.33 matrix-generator

(define matrix-generator

(lambda (gen-proc)

(lambda (nrows ncols)

(let ((size (* nrows ncols)))

(let ((vec-gen-proc

(lambda (k)

(if (< k size)

(gen-proc (quotient k ncols)

(remainder k ncols))

ncols)))

)

((vector-generator vec-gen-proc)

(addl size)))))))

As an example, we construct a 3 x 5 matrix having all of its elements zero

by writing (make-zero-matrix 3 5) where

(define make-zero-matrix (matrix-generator (lambda (i j) 0)))

In mathematics, the rows and the columns of a matrix are considered to

be vectors. We adopt this point of view and define the procedures row-of

and column-of that are used to select a row or a column of a matrix. It is

convenient to curry the procedures row-of and column-of. To get the row of

the matrix mat with zero-based index i, we invoke ((row-of mat) i), and

to get its column with zero-based index j, we invoke ((column-of mat) j).

These two procedures are defined by:

9.4 Matrices 295

Program 9.34 row-of

(define row-of

(lanbda (aat)

(let ((mat-ref (natrix-ref mat))

(munber-of-coluains (nua-cols mat))

)

(lambda (i)

(let ((gen-proc (lambda (j) (mat-ref i j))))

((vector-generator gen-proc) number-of-columns)))))

)

and

Program 9.35 column-of

(define column-of

(lambda (mat)

(let ((mat-ref (matrix-ref mat))

(number-of-ross (num-rows mat))

)

(lambda (j)

(let ((gen-proc (lambda (i) (mat-ref i j))))

((vector-generator gen-proc) number-of-rows))))))

Figure 9.36 The transpose of the matrix in Figure 9.29

The transpose of an m x n matrix .4 is an n x m matrix whose rovrs are the

columns of A. The transpose of the matrix in Figure 9.29 is the 4x3 matrix

given in Figure 9.36. To find the transpose of a matrix, we use the procedure

matrix-transpose (see Program 9.37) that takes as its argument a matrix

and returns its transpose. The key to writing the program is the observation

that the element with indices i.j in the transpose of A is the same as the

element with indices j. i in .4. It is easily defined using matrix-generator.

296 Using Vectors

Program 9.37 matrix-treinspose

(define matrix-transpose

(lambda (mat)

(let ((mat-ref (matrix-ref mat))

)

(let ((gen-proc (lambda (i j) (mat-ref j i))))

((matrix-generator gen-proc)

(num-cols mat)

(num-rows mat))))))

The elements of matrices can be any of the data types we have been using

in Scheme. For numerical matrices, that is, matrices whose elements are

numbers, we can define useful arithmetic operations. For example, if A and

B are two matrices of the same size (same number of rows and same number

of columns), we can define the sum A + B to he the matrix whose elements

are the sums of the corresponding elements of A and B. Similarly, we can

multiply the matrix A by a, scalar (number) c, and the resulting product cA is

the matrix whose elements are c times the corresponding elements of A. It is

also possible to define a useful multiplication rule for certain pairs of matrices.

It is not customary to define the product to be the matrix whose elements are

the products of corresponding elements of the two matrices. The following

example illustrates the multiplication rule normally used.

A factory produces four products, W, X, Y and Z, at each of two sites, R
and S. Each product uses steel, plastic, and rubber. Product W uses 4 units

of steel, 2 units of plastic, and 2 units of rubber. Product X uses 5 units of

steel, 2 units of plajstic, and 2 units of rubber. Product Y uses 4 units of steel,

3 units of plastic, and 1 unit of rubber. Product Z uses 3 units of steel, 5 units

of plastic, and 2 units of rubber. The cost of the steel, plastic, and rubber at

site R is $8, $4, and $5 per unit, respectively, and at site S is $7, $5, and $4

per unit, respectively. To find the material costs of making one unit of each

product at each of the two sites, we set up the following matrices:

Units Used

Steel Plastic Rubber

W / 4 2 2 \

X
Y

5 2 2

4 3 1

Cost Per Unit

Site R Site S

Steel / $8 $7

Plastic $4 $5

Rubber I $5 $4
Z \ 3 5 2 /

Let's consider the cost of making a unit of Product Y at Site R. We multiply

the number of units of each material by the corresponding cost at that site

9.4 Matrices 297

and add these products. This is the dot product of the third row of the Units

Used matrix and the first column of the Cost Per Unit matrix. The result is

4 $8 + 3 • $4 + 1 • $5 = $49. We compute the cost of making a unit of each

product at each of the sites by finding the dot product of the appropriate row

of the Units Used matrix and the appropriate column of the Cost Per Unit

matrix. This leads to the following tabulation of the results:

Site R Site S

w 1 $50 $46

X $58 $53

Y $49 $47

Z V $54 $54

From this example, we make the following observations about the way the

product of two matrices is defined. In order to be able to find the product AB
for two matrices, they must be compatible, which means that the number of

columns of A must be the same as the number of rows of 5. If two matrices

A and B are compatible, then the rule for computing their product AB is: if

A is a.n m X n matrix and B is an n x k matrix, then their product AB is ein

m X k matrix. The element with indices i, j in AB is the dot product of the

ith row vector of A and the jth. column vector of B.

We have developed the tools that enable us to translate this rule directly

into the definition of the procedure matrix-product that takes two compat-

ible matrices as arguments and returns their matrix product.

(define matrix-product

(Isunbda (mat-a mat-b)

(let ((a-row (row-of mat-a))

(b-col (coliunn-of mat-b)))

(let ((gen-proc

(lambda (i j) (dot-product (a-roH i) (b-col j)))))

((matrix-generator gen-proc)

(num-roBs mat-a) (num-cols mat-b))))))

This way of defining matrix-product follows directly from the rule describ-

ing matrix multiplication, but it is not an efficient way of doing it. Before actu-

ally taking the dot product, the row and column vectors had to be constructed.

However, the answer does not require having these vectors. We can take the

product of two elements at a time and accumulate their sum directly from the

matrices without building the row and column vectors. Each element in the

ith row of A has first index i, and each element in the jth column of B has

second index j. Thus the ith row of A has the elements Oi^Oi cii,i> • • • > Oi,n-i>

298 Using Vectors

Program 9.38 matrix-product

(define matrix-product

(lambda (mat-a mat-b)

(let ((ncols-a (niim-cols mat-a))

(a-ref (matrii-ref mat-a))

(b-ref (matrix-ref mat-b)))

(if (not (= ncols-a (num-rows mat-b)))

(error "matrix-product:"

"The matrices are not compatible.")

(let

((gen-proc

(lambda (i j)

(letrec

((loop

(lambda (r ace)

(if (= r ncols-a)

ace

(loop (addl r)

(+ ace (* (a-ref i r)

(b-ref r j))))))))

(loop 0)))))

((matrix-generator gen-proc)

(num-roHS mat-a) (num-eols mat-b)))))))

and the jth column of B has the elements boj, bij, . .
.

, fen-ij- Thus to form

the dot product of the ith row and jth column, we must add all products

of the form ai^rKj where r takes all integer values from to n — 1. In Pro-

gram 9.38, we redefine matrix-product to do this summation of products

directly and include a test for compatibility.

So far this treatment of matrices has not involved mutation. If we use a

purely functional representation of vectors and their procedures, all of the

procedures defined for matrices are purely functional. We can introduce a

mutator matrix-set! that is similar to vector-set!. When we do so, the

matrix must be considered as having state with the state variables the ele-

ments in the matrix, matrix-set! performs a mutation on the elements of

the matrix. It has the call structure

((matrix-set! mat) row-index column-index obj)

where mat is a matrix whose element with indices given by row-index and

9.4 Matrices 299

Program 9.39 matrix-set

!

(define matrix-set!

(lambda (mat)

(let ((ncols (nvim-cols mat)))

(lambda (i j obj)

(vector-set ! mat (+ (* i ncols) J) obj)))))

column-index is changed to the value of obj. Continuing the previous example

from Figure 9.28, we have

[4] (define A-set ! (matrix-set! A))

[5] (A-set! 2 1 "1922 River St.")

[6] (A-ref 2 1)

"1922 River St."

The mutator matrix-set! is defined in terms of vector-set! in Pro-

gram 9.39.

In this section, we saw how matrices can be implemented using vectors.

In a vector, each element has one index, and we refer to a vector as be-

ing one-dimensional. In a matrix, each element has two indices, the row

index and the column index. We refer to a matrix as being two-dimensional.

In some languages, the analogs of vectors and matrices are called one- and

two-dimensional arrays. In Exercise 9.14, three-dimensional arrays are im-

plemented, and the extension to higher-dimensional arrays is carried out in a

similar manner. We use vectors to provide random access to stored data in

our next chapter, which is on sorting and searching.

Exercises

Exercise 9.8: matrix

Define a procedure matrix that takes two arguments, m and n, and returns a

procedure that takes as its m x n arguments the elements of the mxn matrix

it creates. (Hint: Use an unrestricted lambda.) For example, to create the

matrix in Figure 9.29, we write

((matrix 3 4) 5 2 3 7

14 5

8 3 12)

300 Using Vectors

Exercise 9.9: mat+

Define a procedure mat+ that takes matrices A and B as arguments and

returns their sum A + B. A and B must have the same number of rows and

the same number of columns. If aij is the element of A with indices i,j, and

bij is the element oi B with indices i,j, then the element of A + B with indices

i,j is aij + bij .

Exercise 9.10: matrix-multiply-by-scalar

Define a procedure matrix-multiply-by-scalar that takes as arguments a

number c and a matrix A and returns the matrix cA, which has as elements

c times the corresponding elements of A.

Exercise 9.11: matrix-view

Define a procedure matrix-view that takes an tti x n matrix as its argument

and prints the matrix in the format shown below. If m is the matrix given in

Figure 9.29 an invocation of (matrix-view m) should print

5 2 3 7

14 5

8 3 12
Next, include a tag matrix-tag and generalize the procedure view to dis-

play a vector, set, or matrix depending on the type of its argument. (See

Exercise 9.3)

Exercise 9.12: Column major order

Suppose we had used the column major order for listing the elements of a

matrix in the vector representation. Write the definitions of the following

procedures using column major order: num-rows, mim-cols, matrix-ref,

matrix-set
!

, and matrix-generator.

Exercise 9.13: Vector of vectors

An mx n matrix can also be represented as a vector of length m in which the

element with index i is a vector of length n containing the elements in row i

of the matrix. Thus the matrix

2 1 -3
4 -2 -1

is represented as the vector

(vector (vector 2 1 -3) (vector 4 -2 -1))

For this representation of matrices, define the procedures niim-rows, num-

cols, matrix-ref, matrix-set!, and matrix-generator.

9.4 Matrices 301

Exercise 9.14

The method used in this chapter for representing an m x n matrix as a vector of

length mn + l can be extended to higher-dimensional arrays. For example, an

element a,jfc, in a three-dimensional array A is indexed with three indices, i, j,

and k, where f = 0, 1, . .
.

, mi — 1, j = 0, 1, . .

.
, m2 — 1, and ^ = 0, 1, . .

.
, ma— 1.

We would then represent A as a vector of length mi • m2 • ma -I- 2. The integer

rrin for n = 1, 2, 3 is the size of the matrix in dimension n and we say that A is

an mi X m2 X ma array. The last two entries in the vector representation can

be taken to be m2 and the product m2m3. Using this information, describe

the vector representation more completely, and define the procedures size-

dim-1, size-dim-2, and size-dim-S that are the analogs of num-rows and

num-cols and return the values mi, m2, and ma, respectively. Also define the

procedures array-rel, eoray-set! and array-generator, which are analogs

of the corresponding matrix procedures. These considerations can be extended

to give arrays of any dimension.

302 Using Vectors

10 Sorting and Searching

10.1 Overview

10.2 Sorting

The process of rearranging the data in a list to put them in some specified

order, such as alphabetical order or increasing numerical order, is called sort-

ing the list. The process of locating a given item in a list is called searching

the list for the given item. In this chapter, we develop routines for sorting

and searching both lists and vectors. We also develop a relational calculus for

retrieving from a table those items that satisfy some specified conditions.

We use tables to store many kinds of data, such as names, grades, or salaries.

It is more convenient to access data in tables if the data are arranged in some

increasing or decreasing order. For example, names are most conveniently

arranged in alphabetical order, and test grades are often most conveniently

arranged in decreasing order. There are many different methods for sorting a

table into a desired order. We shall look at a few of them in this section.

10.2.1 Insertion Sort

Our first sorting technique is called an insertion sort. Suppose we are given

a nonempty list Is of numbers that are not ordered and that we wish to rear-

range to be in increasing order. We first think about the problem recursively.

If the list of numbers contains only one number, the list is already sorted, and

we are done. If the list contains at least two numbers, and if we recursively

Program 10.1 insertsort

(define insertsort

(lambda (Is)

(if (singleton-list?

Is

Is)

(insert (car Is) (ins ertsort (cdr Is))))))

Program 10.2 insert

(define insert

(lambda (a Is)

(cond

((null? Is) (cons a ' ()))

((< a (car Is)) (cons a Is))

(else (cons (car Is) (insert a (cdr Is)))))))

invoke insertsort on (cdr Is), we get a correctly sorted list containing all

but the first number. To get the completely sorted list, all we have to do is in-

sert (car Is) into its correct position in the already sorted part (insertsort

(cdr Is)). For this insertion, we afterward define a procedure insert that

inserts a number a into the correct place in a sorted list Is. Program 10.1

contains the definition of insert -sort, and Program 10.2 contains that of

insert.

While (cdr Is) is not empty, insertsort invokes insert to insert (car

Is) into (insertsort (cdr Is)). Until (cdr Is) is empty, the value of

(insertsort (cdr Is)) is not known, so a return table is built. When Is

is finally reduced to contain a single number, then (insertsort (cdr Is))

is just the "sorted" list containing that single number. Then each of the

insertions that has been waiting in the return table can be evaluated, and the

final sorted list is built up. Figure 10.3 shows how the recursive insertion sort

routine sorts a list of numbers. We start with the list (50 40 30 20 10).

When we reach the invocation of insertsort on (10), the sorted sublist

(10) is returned, and the invocations of insert that have been waiting in the

return table are evaluated with sorted sublists as their second arguments.

We also write an iterative instead of recursive version of insertion sort. This

version will be written using Scheme vectors to store the data. We define a

mutation procedure called vector-insertsort ! that takes as its argument a

vector containing the numbers to be sorted into ascending order and changes

304 Sorting and Searching

(insertsort '(50 40 30 20 10))

(insert 50 (insertsort '(40 30 20 10)))

(insert 50 (insert 40 (insertsort '(30 20 10))))
(insert 50 (insert 40 (insert 30 (insertsort '(20 10)))))
(insert 50 (insert 40 (insert 30 (insert 20 (insertsort '(10))))))

(insert 50 (insert 40 (insert 30 (insert 20 '(10)))))

(insert 50 (insert 40 (insert 30 '(10 20))))
(insert 50 (insert 40 '(10 20 30)))

(insert 50 '(10 20 30 40))

(10 20 30 40 50)

Figure 10.3 Return table for insertsort

that vector into one with the same elements sorted as desired. The value it

returns is unspecified, as is the case with many mutators. It is more convenient

to insert the numbers to the left instead of to the right when using vectors. Our

sort of the vector #(60 50 30 40 10 20) proceeds as shown in Figure 10.4.

At each stage, we can picture the process as removing the next item to be

inserted and shifting those before it to the right until we come to the place

where the item belongs.

The sort is accomplished by applying the following algorithm. We assume

that all elements to the left of the element with index k have been sorted.

We then save the element with index k in a variable val, freeing up the kth

position so that we can shift into it. The element with index k is then inserted

into the correct position by successively testing each element to its left and

shifting it one place to the right until a smaller element is encountered. To do

this, procedure vector-insertsort ! uses a local procedure, sortloop, which

is first invoked with the index 1, since that is the index of the first element

to be inserted. The local procedure sortloop calls the procedure vector-

insert ! to do the insertion for each successive index. Each time it is called,

say with index k, all of the elements with indices less than k have already been

sorted, and vector-insert! inserts the element with index k in the correct

place relative to the first k elements. Now the elements with indices less than

k+ 1 are in the correct order. This insertion process continues until the index

k reaches the length of the original vector, by which time all of the elements

have been inserted. When k is equal to size, the condition in the if expression

is false, and the if expression returns some unspecified value. We assume in

this book that the implementation of Scheme we are employing does not print

the value returned on the screen. The code for vector-insertsort ! is given

in Program 10.5.

10.2.1 Sorting 305

Insert 50

Insert 30

Insert 40

Insert 10

Insert 20

#(60 50 30 40 10 20)

«(60 30 40 10 20)

#(50 60 30 40 10 20)

#(50 60 40 10 20)

#(50 60 40 10 20)

#(50 60 40 10 20)

#(30 50 60 40 10 20)

#(30 50 60 10 20)

#(30 50 60 10 20)

#(30 50 60 10 20)

#(30 40 50 60 10 20)

#(30 40 50 60 20)

#(30 40 50 60 20)

#(30 40 50 60 20)

#(30 40 50 60 20)

#(30 40 50 60 20)

#(10 30 40 50 60 20)

#(10 30 40 50 60)

#(10 30 40 50 60)

#(10 30 40 50 60)

#(10 30 40 50 60)

#(10 30 40 50 60)

#(10 20 30 40 50 60)

Figure 10.4 Steps in sorting with vector-insertsort

!

Program 10.5 vector-insertsort!

(define vector-insertsort!

(laubda (v)

(let ((size (vector-length v)))

(letrec ((sortloop (lanbda (k)

(if (< k size)

(begin

(vector-insert! k v)

(sortloop (addl k)))))))

(sortloop 1)))))

306 Sorting and Searching

We now consider the definition of vector- insert ! . The procedure vector-

insert ! is applied with first argument k when those elements of the vector

with indices less than k have already been sorted. It inserts the element with

index k into the correct place in the sorted part, so that those elements with

indices less than k + 1 are now sorted. Here is how vector-insert! works.

If it is called with index k, it lets val be the element with index k. The

local procedure insert-h is then called with index k. When insert-h is

called with some index m as argument, it compares val with the element comp

having index m— 1. If val is less than comp, we still have not found the correct

place for val, so comp is moved up to have index m, and insert-h is called

again with argument m — 1 to compare val with the element with index m — 2.

On the other hand, if val is not less than comp, m is the correct index for

val, and we assign it with (vector-set! vec m val). Each time insert-h

is invoked, its argument is one less than on the previous invocation. If its

argument is zero, then there are no more elements to the left to which to

compare it, and val must be the first element in the vector. Thus (zero? m)

is the terminating condition for the recursion. The code for vector-insert

!

is in Program 10.6.

Program 10.6 vector-insert!

(define vector-insert 1

(lambda (k vec)

(let ((val (vector--ref vec k)))

(letrec ((insert--h

(leunbda (m)

(if (zero ? m)

(vector-set! vec v&l)

(let ((comp (vector-ref vec (subl m))))

(if (< val comp)

(begin

(vector-set ! vec m comp)

(insert-h (subl m)))

(vector-set

!

7ec ffl val)))))))

(insert -hk)))))

Throughout this definition, we used the fact that vector-set ! is a mutation

procedure that changes the vector v as a side effect. When a vector v is passed

as an argument to vector-insertsort
!

, its elements are actually reordered

within that vector, so when we look at v after the sorting, its elements are

10.2.1 Sorting S07

sorted. This is a different behavior from the procedure insertsort, which

returns a sorted copy of the original list and the original list is not affected.

If we want a procedure to apply insertion sort to a vector and return a sorted

copy of that vector but leave the original vector unaffected, we can use the

following procedure, vector-insertsort:

(define vector-insertsort

(lambda (vec)

(let ((v (vector-copy vec)))

(vector-insertsort ! v)

v)))

Here is an example of how these sorting procedures work:

[1] (define nimlist (list 60 50 40 30 20 10))

[2] (insertsort niimlist)

(10 20 30 40 50 60)

[3] numlist

(60 50 40 30 20 10)

[4] (define numvec (vector 60 50 40 30 20 10))

[5] (vector-insertsort numvec)

#(10 20 30 40 50 60)

[6] numvec

#(60 50 40 30 20 10)

[7] (vector-insertsort! numvec)

[8] numvec

#(10 20 30 40 50 60)

We next perform an operation count on insertsort to study its efficiency

in sorting a list of length n. The procedure insert successively inserts the

kth number into the already sorted list of numbers with indices from k + 1

to n — 1. The process starts with k equal to n — 2 and decreases A: by 1 after

each insertion. When the sorted list to the right of the kth. number has m
members, inserting the A;th number in the correct place can require up to m
comparisons between the kth number and the numbers in the sorted list. In

applying insertion sort to a list of n numbers, the first insertion is done on

a list of one number, the second insertion is done on a list of two numbers,

and so on, with the ^th insertion done on a list of k numbers. There will be

n — 1 such insertion loops, so the total number of comparisons needed will be

at most l-|-2 + 3+--- + (n— 1) = n[n — l)/2. This formula represents the

worst possible situation, in which one has to go to the end of the sorted list

in each case to put the inserted number in the correct place. This was the

case in the example above. But in general, we can say that on the average.

308 Sorting and Searching

we would have to search halfway through the list to find the correct place to

insert the number, so the expected number of comparisons in insertion sort

is n{n — l)/4. Because the expected number of comparisons is 0{n^), we call

this a method of order n? or simply a quadratic method. If the list is alreeidy

sorted, the first comparison in each insertion determines the correct place, so

for a list of n correctly sorted numbers, only n comparisons are required.

10.2.2 Mergesort

The insertion sort discussed in the previous section is a quadratic method

requiring on the order of n^ comparisons to sort a list or vector of n elements.

We have seen that on the average it takes about 2,500 comparisons to sort a

list of 100 items. There are several methods of order nlogj n that reduce this

number considerably, so that a list of 100 items can be sorted with fewer than

700 instead of the approximately 2,500 comparisons of the previous method.

For a list of 1,000 numbers, insertion sort takes approximately 250,000 com-

parisons, while the nlogjn method takes about 10,000 comparisons. This

is a substantial improvement, and we now look at one such method, called

natural mergesort. In Program 4.3, we defined the procedure merge, which

takes two sorted lists and merges them into a single sorted list. The nat-

mergesort procedure takes advantage of whatever order already exists in the

list by grouping the original list into a list of sublists, each sublist consisting of

those elements that are already correctly ordered. For example, if the original

list is (2 34 123 2 1), the first step is to insert parentheses to group the

members into the four sublists ((2 3 4) (1 2 3) (2) (1)). Then each of

the successive pairs of sublists is merged to give half as many sublists, each of

which is still correctly ordered. In our example, the next step produces ((1

22 3 3 4) (12)). This process of merging successive pairs of sublists is

continued until there is only one correctly ordered list, at which point the sort

is completed. In our example, the next merge operation yields ((11222
3 3 4)), and the car of this list is the desired sorted list.

In the grouping pheise of our sorting procedure, we made the sublists as

large as possible so that each sublist is sorted. This grouping method is what

adds the adjective natural to the name mergesort. Another grouping method,

which leads to the procedure called mergesort without the adjective natural

is the following. We group the elements of our original list so that there is one

element in each sublist. Thus in the example above, our initial grouping yields

((2) (3) (4) (1) (2) (3) (2) (1)). Since each sublist of one element is

sorted, we can merge successive pairs of sublists to get ((2 3) (1 4) (2 3)

10. 2. & Sorting 309

Program 10.7 make-groups

(define make -groups

(lambda (Is)

(cond

((null'' Is) '())

((null? (cdr Is)) (list Is))

(else :iet ((a (car Is))

(gps (make-groups (cdr Is))))

(if « (c adr Is) a)

(cons (list a) gps)

(cons (cons a (car gps)) (cdr gps))))))))

(1 2)). Then successive sorted lists are merged to give ((12 3 4) (12 2

3)) and then ((11222334)). The development of this version of the

mergesort procedure is left as an exercise.

The first step in performing the natural mergesort is to group the data into

sublists so that in each sublist, the data are correctly ordered. In order to

carry out this grouping, we define a procedure maie-groups that takes a list

of numbers, Is, as its argument and returns a list with the numbers in the

same order but arranged in largest possible sublists in which the numbers are

nondecreasing. If Is is empty, then there are no sublists, and () is returned.

This serves as the terminating condition for our recursion. Similarly, if (cdr

Is) is empty, then Is consists of only one element, so there is only one group

consisting of the Is itself. Thus the list of groups is simply (list Is). Now,

if we let gps denote (make-groups (cdx Is)), there are two cases to consider

in order to get (maie-groups Is). If the first number in Is is greater than

the second number in Is, then the first sublist in (make-groups Is) is a

singleton list containing just that first number. Thus we have (cons (list

(car Is)) gps) as the result. On the other hand, if the first number in Is

in not greater than the second number in Is, then it must be added to the

first group alrecidy in gps. Thus the result is (cons (cons (car Is) (cau:

gps)) (cdr gps)). We can now complete the definition of make-groups in

Program 10.7.

We next use merge in the procedure pair-merge, which merges successive

pairs of sublists that resulted from applying make-groups to Is. By merging

successive pairs, we mean that the first two sublists are merged, then the third

and fourth sublists are merged, and so on until there are no pairs left to merge.

If there were originally an odd number of sublists, one would be left over as

310 Sorting and Searching

Program 10.8 pair-merge

(define pair-nerge

(lambda (sublists)

(cond

((null? sublists) '())

((null? (cdr sublists)) sublists)

(else (cons (merge (car sublists) (cadr sublists))

(pair-merge (cddr sublists)))))))

the last sublist of the list returned by pair-merge. Thus the procedure pair-

merge has as its parameter suolists, which is a list of sublists, and in each

sublist the numbers are in ascending order. It returns a list in which each

successive pair of sublists has been merged. Its straightforward definition

is given in Program 10.8.

To do the mergesort, we now need a procedure that applies pair-merge

repeatedly until there is only one sublist. We test for whether the list contains

only one sublist by checking whether the cdr of the list is empty. Thus we can

define the procedure nat-mergesort, which has as its parameter Is a list of

numbers and returns a list with those numbers sorted in ascending order. It

performs a natural mergesort by first grouping the numbers in largest possible

ascending sublists and then repeatedly merging successive pairs of sublists

until the list contains only one sublist. Program 10.9 shows the definition of

nat-mergesort.

Program 10.9 nat-mergesort

(define nat-mergesort

(lambda (Is)

(if (null?]

'()

-S)

(letrec ((sort (lambda (gps)

(if (null? (cdr

(CeLT gps)

(sort (pair-

gps))

-merge gps))))))

(sort (make- groups Is))))))

To see that the nat-mergesort procedure is 0{n log n), we consider a worst

10.2.2 Sorting 311

case in which we have n numbers arranged in descending order, and we sort

them into ascending order. This is a worst case because the grouping forms

a list of n lists, each containing only one number. On each pass through the

list, the procedure sort halves the number of sublists by merging successive

pairs. The question we must first answer is: "How many times can we divide

a number n by 2, rounding up to the next higher integer each time, until

we reach 1?" For example, if we start with seven numbers, the first pass of

sort produces four sublists. This is obtained by dividing | = 3.5 and then

rounding up to 4, corresponding to the list ((6 7) (4 5) (2 3) (1)). Next

we divide 4 by 2 and get two sublists: ((4 5 6 7) (1 2 3)). Finally when

we divide 2 by 2, we get one sublist, which is the sorted list.

What we have asked is: "What is the smallest power k for which 2*^ > n?"

Again if n = 7, then 2^ = 4 and 2^ = 8, so the value of k is 3. But the

statement 2^ = 8 means exactly the same thing as the statement log2 8 = 3,

and in general, the statement 2* = n means exactly the same thing as the

statement logj n = k. Thus the number of passes through the list to get to the

sorted list is at most log2 n rounded up to the next higher integer if it is not

a whole number. We can use the ceiling procedure to do this rounding and

use the usual notation [logj n\ . In merging two lists that together contain

m numbers, at most m — I comparisons are needed, so if all of the sublists

together contain n numbers, the number of comparisons needed in any one

pass of sort through the list will never exceed n. Since we make at most

|log2 n] passes through the list and each pass needs at most n comparisons,

we have a total of at most npogjn] comparisons. Thus nat-mergesort is

0(n log n).

There are also situations in which we want to sort a list of numbers into

decreasing order. The sorting procedures given can easily be modified to do

this; for example, in nat-mergesort, one only has to change the < to > in the

two procedures merge and make-groups. It would be even more convenient

to use procedural abstraction here and write one nat-mergesort procedure

that takes an additional argument rel that will be either < or >, and replace

the inequalities in merge and maie-groups by rel.

An iterative vector version of mergesort can also be defined. Since we shall

be sorting data stored in vectors, we look at such a version. A recursive

vector version of mergesort is outlined in the exercises. The iterative sorting

program has three parts. We first determine the group size, with initial value

1. From the group size, we determine the end points of the groups. Then

we merge successive pairs of groups, with the usual proviso that if there is

an odd number of groups, one is left over after the merging. After the merge

phase, we double the group size and repeat the process. This continues until

312 Sorting and Searching

Program 10.10 vector-merge'

(define vector-merge!

(launbda (newvec vec)

(lambda (left top-left right top-r ight)

(letrec

((mergeloop

(lambda (left right i)

(cond

((and (< left top-left) (< right top -right))

(if (< (vector-ref vec left) (vector-ref vec right))

(begin

(vector-set! newvec i (vectoi-ref vec left))

(mergeloop (addl left) right (addl i)))

(begin

(vector-set! newvec i 'vectoi—ref vec right))

(mergeloop left (addl]right) (addl i)))))

((< left top-left)

(vector-set ! newvec i (vector-ref vec left))

(mergeloop (addl left) right (addl i)))

((< right top-right)

(vector-set ! newvec i (vector-ref vec right))

(mergeloop left (addl right) (addl i)))))))

(mergeloop left right left)))))

the group size is the same as the length of the vector, at which time the sort

is completed. Since the initial group size is 1 for all groups, this is an ordinary

rather than a natural mergesort.

The merging phase is done by the procedure vector-merge
!

, which merges

two adjacent groups in a vector vec. Suppose that the group in vec with in-

dices from left up to, but not including, top-left and the group with indices

from right (usually the same as top-left) up to, but not including, top-

right have already been sorted. The mutation procedure vector-merge

!

merges these two groups into the vector newvec. The steps are similar to

those used in the procedure merge. The definition of vector-merge ! is given

in Program 10.10.

We now carry out the sort using the procedure vector-mergesort !, given

in Program 10.11, which has a vector vecl to be sorted as its parameter. Since

the mutator vector-merge I merges two adjacent groups of one vector into

another vector, we must always have another vector into which to carry out

10.2.2 Sorting 313

Program 10.11 vector-mergesort

!

(define vector-nergesort

!

(lanbda (vecl)

(let ((vec-size (vector-length vecl))

)

(let ((adjust (lambda (k) (min k vec-size)))

(vec2 (meike-vector vec-size))

(max-index (subl vec-size)))

(letrec

((merge-pass

(lambda (group-size count)

(if (> group-size maix-index)

(if (even? count) (vector-change! vecl mzix-index vec2))

(let ((newvec (if (odd? count) vec2 vecl))

(vec (if (odd? covuit) vecl vec2)))

(let ((merge! (vector-merge! newvec vec)))

(letrec

((group-ends

(lambda (left top-left right top-right)

(if (<= left meuc-index)

(begin

(merge! left top-left right top-right)

(let ((new-right (+ top-right group-size)))

(group-ends

top-right

(adjust new-right)

new-right

(adjust (+ new-right group-size)))))))))

(group-ends (adjust group-size)

group-size (adjust (* 2 group-size)))))

(merge-petss (* group-size 2) (addl coimt)))))))

(merge-pass 1 1))))))

this merge. Rather than create a new vector on each merging pass through

the vector, we make a second vector vec2 and alternate merges from vecl

into vec2 and from vec2 into vecl on successive merging passes.

On the first pass through the vector, we assume that each group contains

only one item, so the parameter group-size to the local procedure merge-

pass is given the initial value 1, and its second parameter count is set to 1.

On each successive merging pass through the vector, two adjacent groups are

314 Sorting and Searching

Program 10.12 vector-change!

(define vector-change!

(lambda (vecl j k vec2)

(letrec ((loop (leunbda (i)

(if (<= i k)

(begin

(vector-set I vecl i (vector-ref vec2 i))

(loop (addl i)))))))

(loop j))))

merged so group-size is doubled. On each merging pass, count is increased

by 1. When count is odd, the merging is done from vecl to vec2, and when

count is even, the merging is done from vec2 to vecl.

The end points of each pair of adjacent groups are the four parameters

of the local procedure group-ends; these are left, top-left, right, and

top-right. The parameter left is the left end point of the left group, and

right is the left end point of the right group of an adjacent pair of groups.

We get top-left by adding group-size to left, but with a large enough

group-size, top-left can exceed the length of the vector. In order to avoid

this, we use the local procedure adjust, which limits the size of its argument

to be at most the length of the vector vecl. The value of right is obtained

by adding group-size to left. And finally, we get top-right by adjusting

the sum of right and group-size. The mutator vector-merge! is then

invoked with these parameters to merge the two adjacent groups, and the

pass through the vector is made by repeated invocations of group-ends to

determine the successive pairs of groups. When a pass is completed, merge-

pass is invoked with the next group-size and count. Finally, when group-

size reaches the length of the vector, there is only one group and the vector

is Sorted. If it is vec2 that happens to be storing the sorted items, the

mutator vector-change! is invoked to copy vec2 into vecl. The definitions

of vector-mergesort ! and vector-change ! are given in Programs 10.11 and

10.12, respectively.

The mutator vector-change! copies the segment of vec2 with indices be-

tween j and k into vecl, actually changing the items in vecl. This vector

version of mergesort sorts a vector in just about the same time as the list

version of mergesort sorts a list of the same size. It is somewhat slower than

natural mergesort, but it has the advantage of not requiring a return table

10.2.2 Sorting 315

since it is iterative.

10.2.3 Quicksort

There is another popular method of sorting data stored in lists or in vectors,

called quicksort. When the data are rather randomly distributed, quicksort

is 0{nlogn) like mergesort, but in the worst cases, when the data are nearly

sorted, it is of order 0{n'^) like insertion sort. An advantage of the vector

version of quicksort over the vector version of mergesort is that the sorting is

done by mutation within the original vector, and no temporary storage vector

is necessary.

We first look at the algorithm for carrying out a quicksort of a list of n

numbers into increasing order.

1. We first select an item in the list, which we call the pivot. For convenience,

we shall select the first item in the list, although selecting other items as

the pivot sometimes improves the performance of the method.

2. The rest of the items in the list are copied into one of two lists. Those less

than the pivot are copied into the left list, and the rest are copied into the

right list. The order of the items in these two lists is immaterial.

3. A new list is created in which the items in the left group are followed by

the pivot, which is, in turn, followed by the items in the right group.

4. The quicksort algorithm is then repeated recursively starting again from

Step 1 on the items in the left group and on the items in the right group. On
each application of the algorithm, the groups decrease in size, and when all

groups have been decreased so as to consist of a single element, the original

list is sorted.

The program implementing this algorithm to sort a list of numbers into

increasing order is called quicksort. It first checks to see whether the list is

empty or if it consists of a single number. In these cases, it merely returns the

original list. Otherwise, it calls the local helping procedure called collect,

which carries out Steps 1 through 3 of the quicksort algorithm The procedure

collect has the pivot as its first parameter, the rest of the list as its second

parameter Is, and two accumulators, Igroup and rgroup, as its third and

fourth parameters. The first of these accumulators, Igroup, stores those

elements of the list that are less than the pivot to give us the left group,

and the second of the accumulators, rgroup, stores those elements that are

greater than or equal to the pivot to give us the right group. The procedure

collect tests each element of the list Is to determine whether it is less than

316 Sorting and Searching

Program 10.13 quicksort

(define quicksort

(letrec

((collect

(lambda (pivot Is Igroup rgroup)

(if (null? Is)

(append (qui cksort Igroup) [cons pivot (quicksort rgroup)))

(if (< (car Is) pivot)

(collect pivot (cdr Is) (cons (car Is) Igroup]) rgroup)

(collect pivot (cdr Is) Igroup (cons (.caoc Is) rgroup)))))))

(lambda (Is)

(if (or (null? Is)

Is

(collect (car 1

(null? (cdr Is)))

s) (cdr Is) '0 '())))))

the pivot. If it is, it conses it onto Igroup; otherwise it conses it onto rgroup.

When Is is finally empty, the pivot is consed onto the quicksort of rgroup,

which is then appended to quicksort of Igroup. The definition of quicksort

is given in Program 10.13.

We also present the vector version of quicksort, which we call vector-

quicksort ! . It has the property that it sorts the data within the given

vector without having to make a copy of it, as mergesort must do. This is an

advantage if the amount of memory available is small and making a copy uses

too much of the memory. Like vector-mergesort !, vector-quicksort! is

a mutator that changes the order of the elements in the original vector.

To illustrate how vector-quicksort ! implements the quicksort algorithm

in place (that is, within the given vector), we shall walk through the sorting

of the vector

#(649782569)

To see how this version of quicksort works, we place our left index finger below

the item to the right of the pivot (the item with index 1) and our right index

finger below the last item in the vector (the item with index 8 in our example).

This is illustrated by the arrows under the items:

#(649782569)
/ \

10.2.3 Sorting 317

We now go though a sequence of steps designed to move the pivot into its final

position, so that all items to its left will be less than or equal to the pivot eind

all items to its right will be greater than or equal to the pivot.

1. Searching Up. We compare the item above our left index finger with the

pivot and if it is not greater than the pivot, we move our left index finger

one entry to the right and compare that item with the pivot. We continue

moving to the right until we encounter an item that is greater than the

pivot. We then hold our left index finger at that position. If we pass

beyond the last item, we go back to it. In our case, we have moved to the

item with index 2, and the positions are given by:

#(649782569)
/ \

2. Searching Down. We next compare the item above our right index finger

with the pivot and if it is not less than the pivot, we move our right index

finger one entry to the left and compare that item with the pivot. We
continue moving to the left until we encounter an item that is less than the

pivot. We hold our right index finger at that position. If we come to the

first item, we stop there. In our example, we move down until we encounter

the item 5 with index 6.

#(649782569)/ \

3. Swapping. Swapping allows us to move both values from the wrong location

to the right location. As long as our left index finger is to the left of our right

index finger, we swap the items to which our index fingers are pointing,

and we move our left index finger one item to the right and our right index

finger one item to the left. This gives us:

#(645782969)
/ \

We repeat steps 1, 2, and 3 starting with our index fingers pointing to the

7 and 2 and using the same pivot, 6. Since our left index finger is pointing

to the item 7, which is greater than the pivot, and our right index finger is

pointing to the item 2, which is less than the pivot, we swap those two items

and move our index fingers to the next item, our left index finger moving right

and our right index finger moving left. This gives:

#(645287969)

318 Sorting and Searching

We again repeat steps 1,2, and 3 starting with our index fingers both pointing

to 8 with index 4 and using the same pivot, 6. Since our left index finger is

pointing to 8, which is greater than the pivot, it stays where it is. Our right

index finger is pointing to 8, which is greater than the pivot, so it moves one

to the left and comes to 2, which is less than the pivot, so it stays there. We
now have:

#(645287969)
X

4. Partition. After searching up and searching down, our left index finger is

pointing to an item that is to the right of the item to which our right index

finger is pointing. When this happens, we swap the pivot item with the

item to which our right index finger is pointing. This gives us:

#(245687969)

We next partition the vector into three parts: the left part consists of all items

to the left of the pivot 6 (these items are all less than 6); the pivot itself makes

up the middle part; and the right part consists of all items to the right of the

pivot (these items are all greater than or equal to 6).

#(245687969)

We now apply Steps 1 through 4 to the left and right parts, choosing the

leftmost item in each part as the pivot. We continue doing this until each

part contains only one point. When we reach that point, the vector is sorted.

In the definition of vector-quicksort ! in Program 10.14, the sorting is

done by the helping procedure qsort, which has as parameters the lowest

and highest indices of the part of the vector to be sorted. As long as there is

more than one item in that part—that is, the lowest index, low, is less than

the highest index, high—the helping procedure partition (defined later) is

called to carry out Steps 1 though 4, and the final position of the pivot is

called middle. Then the qsort procedure is invoked on both the left part

and the right part.

The procedure partition selects the pivot as the first item in the group

to be partitioned and then calls the local procedure search, which in turn

invokes the local procedures search-up and search-down to carry out Steps

1 and 2 given above. The indices of the items that search-up and search-

down locate are named new-left and new-right, respectively. If new-left is

10.2.3 Sorting 319

Program 10.14 vector-quicksort

!

(define vector-quicksort

!

(lambda (v)

(letrec

((qsort (lambda (low high)

(if « low high)

(let ((middle (partition V low high))

)

(qsort low (subl middl<0)
(qsort (addl middle) h]Lgh))))))

(qsort (subl (vector-length v))))))

less than new-right, the items with these indices are swapped, using the pro-

cedure vector-swap! defined in Program 10.16, and the searching continues

as described in Step 3. Otherwise, the pivot is swapped with the item with

the index new-right, and new-right is returned as the value of paortition.

The definition of partition is given in Program 10.15.

To get an idea of why quicksort is 0{n log2 n) for some lists, let's assume

that the items to be sorted are well mixed so that the correct location of the

pivot is near the middle of the list each time a left group or a right group is

sorted. Let's also assume that the list contains n = 2"* items; then m = logj n.

On the first pass, there will be approximately n comparisons with the pivot

(actually n — 1). If the correct location of the pivot item is near the middle

of the list, the left group and the right group each contain approximately ^
items. Thus to sort each of them will take approximately ^ comparisons,

and since there are two groups, the total is again approximately 2(^) = ri

comparisons. Again assuming that the correct location of each pivot is near

the middle of the group, we have four groups each, containing approximately

^ items, so again approximately n comparisons will be needed to sort them

all. Since each partitioning is assumed to divide the group into two groups

of essentially equal size, the length of the list is divided by 2 on each pass,

so after m passes, each group will contain only one item. Thus there are

m passes, and each pass makes n comparisons, so there are nm = n logj n

comparisons in all. A similar but more involved analysis shows that if the list

is well mixed, quicksort is 0(n logjn).

On the other hand, when the original list is already sorted (or nearly sorted),

then the first pass requires n comparisons, only to find that the left group is

empty and the right group contains n— 1 items. Thus it takes n— 1 comparisons

320 Sorting and Searching

Program 10.15 paartition

(define partition

(laabda (v low high)

(let ((pivot (vector-ref v low)))

(letrec

((search

(laabda (left right)

(letrec

((search-up

(lambda (i)

(cond

((= i (addl right)) (subl i))

((> (vector-ref v i) pivot) i)

(else (search-up (addl i))))))

(search-down

(lambda (i)

(cond

((or (= i (subl left)) (< (vector-ref v i) pivot)) i)

(else (search-down (subl i)))))))

(let ((new-left (search-up left)

)

(new-right (search-downright)))

(if (< new-left new-right)

(begin

(vector-swap! v new-left new-right)

(search (addl new-left) ^subl new-right)))

(begin

(vector-swap! v low new-right)

new-right)))))))

(search (addl low) high)));)

Program 10.16 vector-swap!

(define vector-swap!

(lambda (vec i j)

(let ((temp (vector-ref vec i)))

(vector-set! vec i (vector-ref vec j))

(vector-set! vec j temp))))

10.2.3 Sorting 321

to partition the right group and that partitioning again leads to an empty left

group and a right group containing n — 2 items. Continuing this way, we see

that it will take

n + (n - 1) + (n - 2) + • + 2 = -(n^ + n - 2)

comparisons, which is Oin"^). Thus quicksort has the strange property that

it is the most efficient method for sorting data that are completely unsorted

and least efficient for data that are nearly sorted.

10.2.4 Sorting AlphabeticeJly

Often the data to be sorted consist of names that one would like to have

rearranged in alphabetical order. Scheme provides a convenient way to do

alphabetical sorts. Strings can be compared to decide which precedes the other

in alphabetical order. To decide whether one string precedes another string,

Scheme provides a predicate string<? that takes two strings as arguments

and is true if its first argument precedes its second argument lexicographically

(i.e., in the order in which they would appear in a dictionary). The usual

lexicographic order is modified to place the digits through 9 first, then all of

the capital letters, followed by all of the lowercase letters. A complete listing

of the order of the characters, including the punctuation characters, is given

in the ASCII Code Table, which is discussed in Appendix A. For example,

(string<? "Johnson, James" "Johnston, John") =^ #t

(string<? "Cleveland, Ohio" "Cincinnati, Ohio") ^ «f

There are also predicates string>?, string<=?, and string>=? that do the

expected things. The predicates string<? and string>? can be used in place

of < and > in the sorting programs to sort names into alphabetical order. If

the sort routine had been abstracted to take an additional argument rel, then

the alphabetical sort could have been accomplished by passing rel the value

string<? or string>?.

The data being sorted are sometimes in a table that can be sorted in many

different ways depending upon which column of the table we want in sorted

order. For example, a table may contain personnel data for a company. Each

row of the table contains the data for an individual employee. In the study of

databases, each row of the table is referred to as a record. The first column

contains the name, with last name first. The second column contains the

employee's identification number; the third column, the employee's age; the

322 Sorting and Searching

Name Id Age Yr.Emp Supervisor Salary

(define tablelO-17
'(("Smith, Harold W." 2324 43 1974 "Fox, Charles Q." 49325)
("Jones, Mary Ann" 1888 54 1965 "none" 65230)
("White, Thomas P." 3403 34 1982 "Smith, Harold W." 27300)
("Williams, John" 2451 46 1970 "Jones, John Paul" 41050)
("Brown, Susan E." 3620 28 1984 "Williams, John" 18500)
("August, Elizabeth" 2221 45 1971 "Jones, John Paul" 44100)
("Jones, John Paul" 1990 55 1965 "Jones, Maury Ann" 63700)
("Wilson, William W." 2455 46 1970 "August, Elizabeth" 41050)
("Black, Burton P." 3195 38 1978 "Smith, Harold W." 31420)
("Fox, Charles q." 2400 41 1981 "Jones, John Paul" 52200)
("Blue, Benjamin J." 3630 26 1984 "Williams, John" 18500)))

Table 10.17 A table represented as a list

fourth column, the year when the employee joined the company; the fifth col-

umn, the employee's supervisor; and the sixth column, the employee's annual

salary in dollars. Each of these columns is called a field, and each field has a

field name. The third field has the field name "Age." To process the data in

Scheme, one can represent it as a list (or in some cases, as a vector or a list of

vectors depending on which data structure is easier to process). Table 10.17

shows such a table represented as a list.

To sort the data in this table, we must first decide which field we are going

to sort on; that field is referred to as the sort key or simply the key. We can

sort these data so that the names are in alphabetical order, in which case we

are sorting on the first field, or we are sorting with the key "Name." One

could also sort the data by any of the other fields, depending upon the use

we are making of the data. The sorted data are then returned with the same

records but reordered so that the sorted field is in the desired order. We must

modify the less-than predicate (or rel in the abstracted version) of the sort

routine so that it makes the comparison on the appropriate member of each

row and then moves the whole row as a unit as the sorting is done.

10.2.5 Timing the Sorting Routines

Which of the sorting routines is best? We compare them by recording the time

each takes to sort the same lists of numbers into increasing order. We use lists

of randomly generated numbers as the test data. Many implementations of

Scheme provide a procedure reuidom (see Exercise 13.3) that takes a positive

10.2.5 Sorting 323

integer argument n and returns a pseudo-random number in the range to

n-1, including the end values.^ Program 10.18 defines random-list, which

hcis as its output a list of n such randomly generated integers, each of which

is between and n — 1.

Program 10.18 random-list

(define random-list

(lambda (n)

(letrec ((build-list

(lambda (k)

(if (zero? k)

'0

(cons (random n) (build-list (subl k)))))))

(build-list n))))

We then define the test data as

(define randlOO (random-list 100))

(define rand200 (random-list 200))

(define rand400 (random-list 400))

(define v-randlOO (list->vector randlOO))

(define v-rand200 (list->vector rand200))

(define v-rand400 (list->vector rand400))

We can measure the time that each of the three sorting procedures takes to

sort these lists (or vectors) using the procedure timer, which we now define.

When we pass timer a procedure proc and its argument arg, it tells us both

the time in seconds that it took to run (proc arg) and the answer returned

by (proc arg). In order to do the timing, we assume that the Scheme we

are using has a way of getting the time of day accurate to hundredths of a

second. We assume that we can access the time of day by calling a procedure

^ Such sequences {xfc}, k = 0, 1, . . . of pseudo-random nvunbers can be generated in the

following way. Consider a congruence relation of the form /(x) = ax mod m, where m is

a large prime integer and a is an integer in the range 2, 3, . . . , m — 1. Good choices for

m and a are m = 2^^ - 1 = 2,147,483,647 and a - 7^ - 16,807. We choose an initial

seed si and generate the sequence s^^i = /(*fc)> ^ = ^>^ Then u^ = si^/m is a

pseudo-random number in the range < u^ < 1, and a pseudo-rcmdom integer x^ in the

range < x^ < n — 1 is the integer part of nuh. (See Park and Miller 1988.)

324 Sorting and Searching

of no arguments called time-of-day.^ In Program 10.19, we define a timing

procedure that uses time-ol-day, which is assumed to be a thunk.

Program 10.19 timer

(define timer

(lambda (proc arg)

(let ((start (time-of-day)))

(let ((val (proc arg)))

(let ((finish (time-of-day)))

(let ((elapsed-time (/ (- finish start) 100)))

(writeln "Time = " elapsed-time ", Answer = " val)))))))

When a let expression, which contains several pair bindings, such as

(let ((vari vali) (var2 wa/2) ••• ivarn vain))

body)

is evaluated, there is no guarantee in what order the pair bindings (vark

valk) are evaluated. In timer, we have to be sure that the order of the pair

binding is as shown in the code, so we had to nest the let expressions. In

addition, the last nesting was required because the va/-part of the last let

expression contained the t;ar-part of the previous let expression, which would

not be allowed if these two pair bindings were in the same let expression.

Scheme also has the special form let*, which has syntax similar to let:

(let* ((vari vali) {var2 va/2) ... ivarn vain))

body)

which is equivalent to a sequence of nested let expressions each containing one

of the pair bindings:

(let ((vori vali))

(let ((var2 vo/2))

(let (.(varn vain))

body) ...))

^ Although the way of getting the time of day has not been standardized, eill Schemes have

some way of either getting the time of day or of timing a procedure.

10.2.5 Sorting 325

The pair bindings in a let* expression are evaluated from left to right, and

any ua/-part may contain var's from previous pair bindings. This enables us

to define timer in the following way:

(define timer

(lambda (proc arg)

(let* ((start (time-of-day))

(val (proc eirg))

(finish (time-of-day))

(elapsed-time (/ (- finish start) 100)))

(writeln "Time = " elapsed-time ", Answer = " val))))

Sort Time in Seconds

Number of Items 100 200 400

insertsort 0.55 2.69 10.76

nat-mergesort 0.17 0.38 0.88

quicksort 0.11 0.22 0.60

vector-insertsort ! 0.39 1.71 6.21

vector-mergesort ! 0.33 0.65 1.48

vector-quicksort ! 0.22 0.44 1.05

Table 10.20 Comparison on random data

The results of using timer on the various sort routines we have devel-

oped are given in Table 10.20."^ The three mutators vector-insertsort!,

vector-mergesort!, and vector-quicksort! were called by first making a

local copy of the vector to be sorted and then calling the timer on the invo-

cation of the mutator. For example, for vector-insertsort ! we have

(let ((v (vector-copy v-randlOO))

)

(timer vector-insertsort! v))

The time for the two insert sorts increases approximately by a factor of four

each time the length of the data is doubled, whereas mergesort's and quick-

sort's time increases by a factor between two and three.

The test was conducted in PC-Scheme (Version 3.02) on a Zenith 386 microcomputer.

326 Sorting and Searching

We have seen the behavior of the various sorting routines on a list of ran-

domly distributed integers. It is also interesting to compare their behavior

on lists that are nearly sorted. Suppose we have a list starting with 50 and

followed by the integers from 1 to 100 in their natural order. We want to sort

this list into increasing order. This is equivalent to saying we want to insert

50 into the sorted list of integers from 1 to 100. We shall test our six sorting

routines on this problem of inserting 50 into the integers from 1 to 100, as

well as the problems of inserting 100 into the integers from 1 to 200 and of

inserting 200 into the integers from 1 to 400. The vector versions are tested

on the vectors obtained by converting the lists to vectors. The results are

shown in Table 10.21.

Sort Time in Seconds

Number of Items 101 201 401

insertsort 0.05 0.11 0.17

nat-mergesort 0.06 0.11 0.16

quicksort 0.38 1.37 5.98

vector-insertsort

!

0.05 0.11 0.17

vector-mergesort

!

0.28 0.66 1.42

vector-quicksort

!

0.44 1.59 5.93

Table 10.21 Comparison on nearly sorted data

In this kind of insertion into a sorted list, insertion sort and natural merge-

sort are about equally fast, and quicksort is much slower. We cannot recom-

mend any one of these routines as being the best. We must choose the sorting

routine that is best suited to do the job we have in mind for it. There are

many other sorting routines that have their advantages for specific kinds of

sorting jobs. However, we shall not explore this subject any further in this

book. There is an extensive literature on this topic in which you can read

about other ways of sorting data.

Exercises

Exercise 10.1: decr-ints

Define a procedure decr-ints that, given an integer n as its argument, pro-

10.2.5 Sorting 327

duces a list of the integers in decreasing order from n to 1. Use this procedure

to create test lists and vectors of length 25, 50, and 100, and use these to time

the sorting routines developed in this section. Explain why these lists provide

a "worst case" for all three.

Exercise 10.2: nat-mergesort

Rewrite the definition of nat-mergesort so that it is curried and takes as its

first argument a binary relation rel and returns a procedure that takes a list

as its argument. It returns the list sorted so that successive pairs of elements

satisfy the binary relation. For example, if the list contains numbers, to sort

the list in ascending order we use the procedure (nat-mergesort <), and

to sort a list of names in lexicographic order we use the procedure (nat-

mergesort string<?). Test your procedure on suitable lists of numerical

data and lexicographic data.

Exercise 10.3

Modify the mergesort program so that it can sort Table 10.17 by any one of

the six fields, and in the case of numerical fields, the sort can be in either

increasing or decreasing order. Test your program by sorting the data into

four separate tables, the first sorted alphabetically by Name, the second into

increasing order by Id, the third by decreasing order of Salary, and the fourth

by increasing Date of Employment.

Exercise 10.4: mergesort

We implemented the natural mergesort in which the original list is grouped

into the largest possible ordered sublists. The ordinary mergesort routine

groups the elements into sublists of one element each. Then the sublists are

merged pairwise until there is only one sublist. Define a procedure mergesort

that implements the ordinary mergesort. Compare the times for mergesort

and nat-mergesort to sort random lists of length 100, 200, and 400 numbers

and to do the insertions done in the second time tests. Write the definition of

a recursive vector version of mergesort that uses the two procedures vector-

merge ! and vector-change ! given in this section. The algorithm is outlined

below.

a. Make a vector, store, that has the same length as the vector vec to be

sorted.

b. Define a local procedure sort that takes as its parameters first and last,

which are the indices of the first and last items, respectively, in the group

within vec to be sorted in a given recursive pass. The initial values of

first and last are and one less than the length of vec, respectively.

328 Sorting and Searching

10.3 Searching

c. As long as first is less than last, let mid be the index of the item that is

halfway between first and last. Then in a begin expression (which may
be implicit), do Steps d through g.

d. Invoke sort on the group from first to mid.

e. Invoke sort on the group from (addl mid) to last.

f. Invoke vector-merge ! on the appropriate arguments to merge the sorted

groups in vec from first to last into the vector store.

g. Copy the part of store between first and last into vec.

Compare the times for this version of mergesort to sort the various test vectors

with the times for the iterative vector version and with the times for natural

mergesort and ordinary mergesort to sort the test lists.

Suppose we have a list containing many items and we want to determine

whether a certain item is in the list and, in the case of a table, retrieve the

information in the row containing the item. We can easily write a program

that searches through the list from the beginning until the given item is found,

and if it reaches the end of the list without finding it, the program indicates

that the element is not in the list. A vector version of this procedure is in

Exercise 9.5. If each of the entries in a list of n items is accessed equally

frequently, we would on the average expect to have to go through half of the

list to find an item, and this would take on the average n/2 comparisons. Such

a method is called a linear search through the list for the given item.

If the list is already sorted into increasing (or decreasing) order, there is a

more efficient method for searching for a given item, which we call the target.

This more efficient method, called binary search, is described next. There is

a well-known guessing game in which one player. A, challenges another, B, to

guess the number A is thinking, knowing only that the number (or target) is

between 1 and 100, including both 1 and 100. B may ask any question, but

A can answer only "yes" or "no." The object is to determine the target by

asking the least number of questions. The most efficient strategy for asking

the questions is to divide the interval in which the target must lie into two

equal parts and question whether the target lies in one of these parts. For

example, the first question could be: "Is the number greater than 50?" If the

answer is yes, the next question should be: "Is the number greater than 75?"

By halving the length of the interval in which the target can lie with each

10.3 Searching 329

question, it takes only seven questions to reduce the length of the interval to

1, at which point the number is determined.

The game described is an exeimple of a binary search. This method requires

random access of the items, so it will be more efficient to use vectors as the

data structure to store the data. If the vector has length n, we start by looking

at the item with index n/2. If it is equal to the target, we are finished. If it is

less than the target, we know that the target lies in the right half of the vector,

so we repeat the search procedure in the right heJf of the vector. If the item

with index n/2 is greater than the target, we know that the target lies in the

left half of the vector, and we repeat the search procedure in the left half of

the vector. This procedure divides the length of the vector by two every time

it is repeated, so it takes at most k steps to reach the point where the length is

reduced to one and the item is found, where 2* = n; that is, fc = logj n. Thus

a vector of 1,000 items that would take an average of 500 comparisons to find

an item using linear search would take at most 10 comparisons to find the

item using binary search.* This points out the advantage of using a method

that is O(logn) instead of 0(n).

Since we shall want to use the bineo-y search program to search for items

in vectors that may either be sorted in increasing or in decreasing order, or

in fact, in vectors of names that are sorted lexicographically, we shall write

a general version of binajy-seaxch. that takes as a parameter a relation rel

and returns a binary search procedure that takes a vector and a target as

its parameters. We can then pass <, >, or striiig<? to accomplish the three

kinds of searches mentioned above. Program 10.22 shows the code for such a

version of binary-search.

We apply this procedure to search a vector of names arranged alphabetically

as follows:

[1] (let ((names (vector "Ann S" "Ben J" "Ed A" "Guy S" "Kay ¥")))

((binary-search string<?) names "Guy S"))

3

If we have many alphabetical searches to perform, it may be convenient to

define a procedure alpha-search in terms of binary-search by writing

(define alpha-search (binary-search string<?))

* Actually, the procedure binaxy-search may involve two comparisons at each step in order

to determine whether the target is less than, greater than, or equal to the test value, so the

number of comparisons for a vector of 1,000 items could be as high as 20.

3S0 Sorting and Searching

Program 10.22 binary-search

(define binary-seeurch

(lambda (rel)

(lambda (vec target)

(letrec

((search

(leunbda (left right)

(if (< right left)

(writeln "The search failed.")

(let ((middle (floor (/ (+ left right) 2))))

(let ((mid-val (vector-ref vec middle)))

(cond

((rel tEurget mid-val)

(search left (subl middle)))

((rel mid-val target)

(search (addl middle) right))

(else middle))))))))

(search (subl (vector-length vec)))))))

and then we can apply this procedure to a vector of strings as follows:

[2] (let ((names (vector "Ann S" "Ben J" "Ed A" "Guy S" "Kay W")))

(alpha-search names "Ed A"))

2

Exercises

Exercise 10.5: list-linear-search

Write a program list-linear-search that takes an arbitrary list of numbers

and a number and searches through the given list linearly from the beginning

until it finds the number. If it finds the number, it returns the zero-based

index of that number in the list; if it does not find the number, it returns an

appropriate message.

Exercise 10.6

Write the procedures that are used to sort the personnel data in Table 10.17

on the field of names, and then use binary search to locate a given name and

return the personnel data for that individual. Use vectors to store the data

and use the vector sort routine you wish.

10.4 Relational Calculus 331

10.4 Relational Calculus

We have seen how information is stored in tables. Table 10.17, which contains

personnel data for a company, is an example of such a table. In accessing

information stored in a table, we often want to get all items that satisfy

certain conditions. For example, in Table 10.17 we can ask for the personnel

data for all people who joined the company after 1980. Similarly, we can ask

for all people over 40 years of age whose salaries are over $50,000. We now

develop a relational calculus that will enable us to access data in this way

using the quantifiers for-all and there-exists and the procedures set-

builder and set-map defined in Chapter 8. We assume in this section that

the data are stored in lists.

In order to use these predicates conveniently, we use the procedure apply,

which enables us to apply a procedure of several arguments to a list that con-

tains the same number of arguments. We define the procedure unlist, which

is a curried version of apply, in Program 10.23. Here proc is a procedure that

takes n arguments and Is is a list of n objects suitable to be the arguments

of proc. Then

((unlist operator) (list operandi operandn))

is equivalent to

{operator operandi ••• operandn)

For example, ((unlist +) '(2 3)) returns 5.

In the tables in which we store our data, we do not want to have two rows

exactly the same. For that reason, we take, as the data structure to represent

the table, a set whose elements are lists, each of which is one row of the table.

We use the set procedures to manipulate the information stored in the table.

For example, if we want to use the information in Table 10.17, we convert it

to a set using

(define setlO-17 (list->set tablelO-17))

To proceed with the development of our relational calculus, let us first

assume that we have a predicate pred, which is a question that will be true

or false on a given record in the set depending upon what values the items in

the record have. We first look at an example of how for-all can be applied

to setlO-17. Suppose we want to see if a// of the employees are over 25 years

332 Sorting and Searching

Program 10.23 unlist

(define iinlist

(lambda (proc)

(lambda (Is)

(apply proc Is))))

of age. We write the predicate age-test?, which has as arguments the field

names in our table and tests to see if the age entry is over 25. We shall, in

general, find it convenient to invoke unlist on the predicates we define in

this section so that the quantifiers can process them directly.

(define age-test?

(unlist

(lambda (name id age yr-emp supervisor salciry)

(> age 25))))

Then we apply the procedure for-all to set 10-17 with the predicate age-

test? in the following way:

((for-all age-test?) setlO-17) =* #t

It returns true since all of the employees are over 25 years of age. Had we

replaced the 25 by 35 in age-test?, for-all would have returned false, since

some of the employees are not over 35.

In a similar wav we can use the procedure there-exists. For example, if

we want to know if anyone under 50 years of age receives a salary over $50,000,

we write the predicate age<50&salary>50000? as follows:

(define age<50&salciry>50000?

(unlist

(lambda (neune id age yr-emp supervisor salciry)

(and (< age 50) (> salary 50000)))))

Then we apply the procedure there-exists and get

((there-exists age<50&8alary>50000?) set 10-17) =^ #t

since Mr. Fox is 41 years old and receives a salary of $52,200.

We now consider an example using both for-all and there-exists. We
say that namel precedes name2 if namel comes before name2 in the lexico-

graphic ordering. Using setlO-17 again, we ask whether the following state-

ment is true: "For all employees, either the employee's name precedes his/her

104 Relational Calculus 333

supervisor's name, or there exists einother employee whose name precedes that

of the first employee and whose supervisor's name precedes the name of the

first employee's supervisor." If the first employee's name is denoted by n and

his/her supervisor's neime is denoted by s. then we have asked that either n

precedes s. or there is another person whose name is denoted by n* and whose

supervisor's name is denoted by s*. for which n* precedes n and s* precedes

s. We can now express this statement in terms of there-exists and lor-aill

as follows:

((for-all

(unlist

(lambda (n i a y s p)

(or (8triiig<? n s)

((there-exists

(unlist

(lambda (n* i» a* y* s* p*)

(and (8tring<? n* n) (string<? s* s)))))

8etlO-17)))))

setlO-17)

The parameters for the inner lambda expression had to be chosen to be vari-

ables different from those of the first lambda, for if we had used n cind s as

the parameters in the inner lambda expression, we would have hcui

(and (string<? n n) (8tring<? s s))

This would always be false and is certednly not what we weuit. Although the

names selected for parameters in a lambda expression are generally arbitrary,

it is necessary to watch for name conflicts in combining such procedures as

lor-all and there-exists. (Incidentally, the expression above returns false

since the conditions are not met by the employee Wilson whose supervisor is

August.)

The two procedures for-all and there-exists return true or false de-

pending on the predicate and the set constructed from the data table. We
shall refer to that set as the table, even though it is a set. To obtain the

names and ages of cill persons in Table 10.17. we write

(define nametage

(unlist

(laimbda (name id age yr-emp superYisor salary)

(list name age))))

SS4 Sorting and Searching

If we then call the procedure set-map as follows

(set-map nameftage set 10-17)

we get a table of all of the names in Table 10.17 followed by the field of ages.

The other fields have not been included. We call this new table the projection

of Table 10.17 onto the name and age fields. In a similar way, we can obtain

projections of Table 10.17 onto any of its fields.

Sometimes we want to get the actual rows of the table for which some

predicate is true. In particular, suppose we want to get the data from the

table about all people who are over 45 years of age. The data we want for

each one are the Id, the Age, the Year Employed, and the Salary. We write a

predicate over-45? as follows:

(define over-45?

(unlist

(lambda (name id age yr-emp supervisor salary)

(> age 45))))

We next invoke the procedure set-builder to get the subset over-45-set

of setlO-17 consisting of all entries for which the age is greater than 45.

(define over45-set

((set-builder over-45? the-empty-set) setlO-17))

To get the desired output, namely, the Id, Age, Year Employed, and Salary,

for each of the selected employees, we project the set over45-set onto the

four desired fields using set-map and then pass the resulting set to set->list

to construct the new table.

(set->list

(set-map

(unlist

(lambda (name id age yr-emp supervisor salary)

(list id age yr-emp salary)))

over45-set))

=> ((1888 54 1965 65230)

(2451 46 1970 41050)

(1990 55 1965 63700)

(2455 46 1970 41050))

The procedure set-map builds a new set consisting of parts of the rows of

the given table, then the list representation of the set contains no repetitions.

In our previous example, had we asked for the retrieved data to be the age.

10.4 Relational Calculus 335

Jones, M.A.

Jones, J.P.

Fox Williams August

Blue Wilson

White Black

Figure 10.24 Organizational chart for Table 10.17

year employed, and the salary, we would have had two rows like (46 1970

41050), but set-map would have included only one of them in the set. To

avoid such loss of information, at least one of the fields over which you project

should identify each individual uniquely.

In Table 10.17, each person has an immediate supervisor. The organiza-

tional chart for the company is given in Figure 10.24. White is under imme-

diate supervision of Smith but remotely under Fox, J. P. Jones, and M. A,

Jones. Blue is under the immediate supervision of Williams, but remotely

under J. P. Jones and M. A. Jones. We can ask the question: "Who is the

closest common supervisor for both White and Blue?" Going up the tree from

these two, we see that their closest common supervisor is J. P. Jones. We shall

write a program to find the closest common supervisor of two members in a

supervision tree determined by a table such as Table 10.17. We make the

eissumption that each person has at most one immediate supervisor and that

the tree is connected so that there is one person at the very top.

The program will first start at one of the two members and build the path

up the chart until it goes as high as it can. The path will be a list consisting

of the names starting with one member, say. White, and containing (in order)

all of the names on the path until the top, M. A. Jones. To build this path, we

336 Sorting and Searching

Program 10.25 find-supervisor

(define find-supervisor

(unlist

(lambda (name id age yr-emp supervisor salcury)

(lambda (v) (if (string=? name v) supervisor «f)))))

need the procedure build-path, which takes a name like Smith in the table,

determines his supervisor (Fox), and adds Smith to the path, then determines

Fox's supervisor, and so on. When a person finally has no supervisor, that

person is added to the path, and the path terminates. The procedure that

determines a person's supervisor is called find-supervisor. For Table 10.17,

its definition is given in Program 10.25. When given the entries in a row of

the table, find-supervisor returns a procedure that takes the name of a

person, and if that person's name is in the given line, it returns that person's

supervisor; otherwise it returns false.

The strategy we use to find the closest common supervisor for two people,

say X and y, once their two path-lists to the top have been found is to start at

the rear of each path-list, where the two path-lists have the same person (in

our case, M. A. Jones) and move simultaneously toward the front in both lists

until the corresponding elements in the two lists differ. The preceding name

(the last one for which the two lists agree) is the closest common supervisor.

In Figure 10.24, the two paths to White and Blue split apart at J. P. Jones, so

he is their closest common supervisor. It is easier to cdr down a list from the

front to the back, so we reverse each of the two path-lists found for x and y,

so that they now agree in their first elements. The procedure find-ccs then

cdr's down the lists comparing their first elements. When these first disagree,

the previous one is returned as the closest common supervisor. The code

for the procedure closest-coinmon-supervisor is given in Program 10.26.

When reading the code for closest-conunon-supervisor, keep in mind that

when closest-coinmon-supervisor is applied below, the parameter test-

procedure is bound to find-supervisor. Since the tables we use are sets of

lists, we use the set operations pick and residue defined in Chapter 8 as the

selectors for sets.

When the procedure closest-conunon-supervisor is called with the argu-

ments White and Blue, we get

10.4 Relational Calculus 337

Program 10.26 closest-common-supervisor

(define closest -common-supervisor

(letrec

((f ind-ccs

(lambda (pathl path2)

(let ((restl (cdr pathl)) (rest2 (cdr path2)))

(if (string=? (car restl) (c«ur rest2))

(find-ccs restl rest2)

(car pathl))))))

(lambda (test-procedure)

(lambda (table)

(letrec

((build-path

(lambda (tbl u)

(if (empty-set? tbl)

(list u)

(let ((next (pick tbl)))

(let ((v ((test-procedure next) u)))

(if (not v)

(build-path ((residue next) tbl) u)

(cons u (build-path table v)))))))))

(Ickfflbda (x y)

(find-ccs

(reverse (build-path table x))

(reverse (build-path table y)))))))))

[1] (((closest-common-supervisor find-supervisor)

setlO-17)

"White, Thomas P." "Blue, Benjamin J.")

"Jones, John Paul"

In this chapter, we have demonstrated how data are handled using lists,

vectors, and sets. We chose the data structure for storing the data that was

most convenient for the application we had in mind. For a binary search, a

vector was used. For sorting, vectors or lists were used to store the data. For

using the relational calculus to search in a table, we found sets of lists to be

a convenient data structure. We have so far developed these important data

types to store data. In later chapters, we shall introduce several more useful

data types, such as the one called objects with which we shall implement

stacks and queues (Chapter 12) and the one called streams (Chapter 15).

338 Sorting and Searching

Exercises

Exercise 10.7: set-builder-map

There is some redundancy in using both set-builder and set-map to find the

projection of the set of those over 45 onto the fields Id, Age, Year Employed,

and Salary. We used an invocation of the form

(set-map proc ((set-builder pred base-set) some-set))

Instead we can construct a procedure set-builder-map, which first deter-

mines if pred of an element returns true, and if so it then adjoins the proc of

that element to the result. Its call structure is

((set -builder-map pred proc base-set) some-set)

For example, we can restate the earlier example using set-builder-map.

((set-builder-map

over-45?

(unlist

(lambda (name id age yx-emp supervisor salary)

(list id age yr-emp salairy)))

the-empty-set

)

setlO-17)

Define the procedure set-builder-map.

Exercise 10.8

Write a procedure that accesses the data in Table 10.17 and returns the names

and identification numbers of all employees who are over 40 years of age, were

hired before 1975, and whose salaries are over $43,000.

Exercise 10.9

Table 10.27 contains the monthly sales for January and February for the

employees listed according to their identification numbers, arranged in in-

creasing order. These are the same employees whose personnel data are given

in Table 10.17. The owner of the company wants a table that contains the

employees' names in alphabetical order and their January sales. Modify the

sorting, searching, and relational procedures given in this chapter to produce

10.4 Relational Calculus 339

the desired table. You may find it convenient to add some additional argu-

ments (predicates, test procedures, tables, etc.) to some of the procedures

given above.

(define table 10-27 '(

Id Jan-Sales Feb-Sales

(1888 22300 33000)

(1990 61080 49320)

(2221 41000 52200)

(2324 25550 31500)

(2400 31010 25250)

(2451 28800 16500)

(2455 72050 50010)

(3195 60500 40220)

(3403 31100 22500)

(3620 31100 22500)

(3630 26300 19400)))

Table 10.27 Sales for January and February

Exercise 10.10

The procedure closest-common-supervisor defined in Program 10.26 com-

putes the paths using the local procedure build-path, which recursively pro-

duces the path-list. This path-list is later reversed when it is used as an ar-

gument to f ind-ccs. Rewrite the definition of closest-common-supervisor

so that build-path also has an accumulator as an argument and builds the

list iteratively. The final value of the accumulator is then the desired list in

the order from the top of the tree to the bottom, and reversing it is no longer

necessary when it is used as an argument to f ind-ccs.

Exercise 10.11: List of Vectors

This experiment assumes a list of vectors representation of tablelO-17.

[1] (define age (lambda (vec) (vector-ref vec 2)))

[2] (define age-test? (lambda (vec) (> (age vec) 25)))

[3] ((andmap-c age-test?) tablelO-17)

«t

Redo the examples of Section 10.4 using this representation. What are its

advantages and disadvantages?

340 Sorting and Searching

11 Mutation

11.1 Overview

In Chapter 9, we used the mutator vector-set! to change the entries in a

vector. The use of this and related mutators allowed us to write our programs

in a different style. With side effects on vectors, we showed in Chapter 10

that we can achieve better communication between the program parts and

we can define procedures that run more efficiently. In this chapter, we study

several other mutators. First, we look at a mutator that changes the binding

of a variable, and then we look at mutators that modify lists.

11.2 Assignment and State

A variable can be globally bound to a value using define. Furthermore, a

variable can be locally bound to a value using lambda, let, and letrec. Once

any of these bindings has been made, we may want to change the value to

which a variable is bound. Scheme provides a special form with keyword set

!

for this purpose. If the variable var is already bound to some value (either

globally or locally) and we wish to change the value to which var is bound to

be the value of the expression val, all we have to write is

(set! var val)

and Scheme evaluates val and binds that value to var. Scheme does not

specify what a set! expression returns, so the value returned is implementation

dependent. In this book, we suppress the value returned by the invocation of

a set! expression and write the next prompt. The use of set ! is illustrated in

the following:

[1] (define f (lambda (x) (+ x 10)))

[2] (f 5)

15

[3] (set! f (lambda (x) (* x 10)))

[4] (f 5)

50

[5] (let ((f (lambda (x) (+ x 100))))

(writeln (f 5))

(set! f (lambda (x) (* x 100)))

(f 5))

105

500

[6] (f 5)

50

In this example, the define expression is used to bind f to the procedure that

adds 10 to its argument. In [2], f applied to 5 returns 15. In [3], a set!

expression is used to rebind f to the procedure that multiplies its argument

by 10. We see the effect of this rebinding in [4] when the application of f to

5 now returns 50. The let expression in [5] locally binds f to a procedure

that adds 100 to its argument. In the body of the let expression, (f 5) is

written to the screen and produces 105. Then a set! expression is used to

rebind f to the procedure that multiplies its argument by 100. Observe that

this rebinding affects only the local binding of the variable f . Then the value

of (f 5) is returned, producing the value 500. In [6] , f is again applied to 5,

and the global binding of f is used to give the value 50. The set! expression

within the let expression affected only the local binding of f

.

We may think of the set! expression looking up the variable var in the

relevant environment (local or global, determined by the lexical scoping) and

actually replacing the value to which var is bound with the value of val.

Although implementations of Scheme generally allow us to change the binding

of a globally defined variable by defining it again using define, we do not

recommend doing so. Such changes in the bindings should be done with

set!. However, before a variable can be rebound using set!, it must have

been bound to some value either globally using define or locally using lambda

or one of the other binding forms.

We can use set ! in the following implementation of stacks. A stack is a

data structure used to store objects. An object can be put into the stack

342 Mutatton

with an operator called push! that takes the object as its argument. The last

object put into the stack is removed by the operator pop ! . It is characteristic

of stacks that the last object that was entered is the first object removed.

This property is described with the name LIFO, which stands for "last in,

first out." Thus, if we push the numbers 10, 20, and 30 onto the stack in the

given order, on the first pop, 30 is removed, on the second pop, 20 is removed,

and on the third pop, 10 is removed.

We now look at one way of implementing stacks (we shall return to the

subject again in Chapter 12 for a better implementation). For our present

purposes, we implement a stack as a list of objects. The car of the list will

be the top of the stack. We next describe several procedures that perform

operations on a stack. The procedure empty? tests whether the stack is the

empty list. The procedure top returns the top of the stack, that is, the car

of the stack. The procedure push ! adds its argument to the top of the stack.

The procedure pop! removes the top of the stack. Finally, the procedure

print-stack prints the whole stack. The definitions of these procedures are

given in Program 11.1.

We have elected to print a stack with the word TOP : preceding it to show

which end is the top of the stack. Thus the stack containing the numbers 1,

2, 3, and 4, with 1 on top will be printed as

TOP: 12 3 4

With the definitions given above, we perform the following experiment:

[1] (push! 'a)

[2] (push! 'b)

[3] (push! 'c)

[4] (top)

c

[5] (pop!)

[6] (print-stack)

TOP: b a

We next illustrate the use of set! in a discussion of memoizing. Let us

suppose that we want to find the value of a procedure proc that on each

invocation requires a long computation before it returns an answer. We also

assume that we call this procedure often with various arguments. It would

save time if we could store each new value that the procedure computes in a

table, and each time the procedure is called, the table is first checked to see if

the procedure has already been invoked with that argument. Then the already

11.2 Assignment and State 34S

Program 11.1 Procedures defining a stack

(define stk '())

(define empty?

(lambda ()

(null? stk)))

(define top

(lambda ()

(if (empty?)

(error "top: The stack is empty.")

(car stk))))

(define print-stack

(lambda ()

(display "TOP: ")

(for-each (lambda (i) (display x) (display " ")) stk)

(newline))

)

(define push!

(lambda (a)

(set! stk (cons a stk))))

(define pop!

(lambda ()

(if (empty?)

(error "pop!: The stack is empty.")

(set! stk (cdr stk)))))

computed value is returned rather than recomputing it. If it has not already

been computed, then it is computed, and the new value is both returned and

entered into the table. Since we are assuming that the computation of proc

is a relatively long process, it is more efficient to look the value up in the

table rather than recompute it. This process of making a table of values that

have already been computed and searching through this table each time the

procedure is called to see whether the value has already been computed for

the current argument is referred to as memoizing the procedure.

The data structure that we use to serve as a table in which to store the

already-computed values is a list, which we call table. Each entry in table is

a dotted pair (arg . val), in which val is the value of (proc arg). Thus if

344 Mutation

the procedure is the Fibonacci procedure fib and we have already computed

fib for arguments 2, 4, and 6, then table is ((2 . 1) (4 . 3) (6 . 8)).

We can also use proper lists as the entries in the table; in that case, table

would look like ((2 1) (4 3) (6 8)). The dotted-pair representation has

the advantage of being more efficient, since in building the table, only one con-

sing operation is necessary to build the dotted pair (cons 2 1), whereas two

consing operations are necessary to build the list (cons 2 (cons 1 '())).

Similarly, to obtain the second item in the dotted pair, we use cdr, whereas

in the list case, we first have to take the cdr and then take the car. We use

the procedure 1st to access the first item and 2nd to access the second item

of a list. If we are using lists of two items, 1st is then car, and 2nd is cadr.

If the list has three items, we also use 3rd instead of caddr, and if the list

has four items, we include 4th for cadddr. These are easier to read than the

multiple car/cdr chains.

To look up whether fib has already been computed for argument 4, the

procedure lookup is used. The procedure lookup has four parameters, an

object obj, a list of pairs table, and two procedures: success-proc, which

takes one argument, and failure-proc, which takes no arguments. If there is

a pair in table that has obj as its first element, then we say that the lookup

succeeded, and we invoke success-proc on that pair. If there is no pair

in table that has obj as its first element, our lookup failed, and we invoke

failure-proc. These two procedures, success-proc and failure-proc, are

known as the success continuation and the failure continuation, respectively,

because they tell how to continue the computation when we either find obj

in table or fail to find it. For example:

(lookup 4 '((1 1 1) (2 4 8) (4 16 64) (6 36 216))

(lambda (pr) (2nd pr))

(lambda 0)) ==» 16

and

(lookup 3 '((11 1) (2 4 8) (4 16 64) (6 36 216))

(lambda (pr) (2nd pr))

(lambda () 0)) =>

In these examples, table is a list of items, each item being a list of three

numbers. The success continuation tells us to return the second element in

the pair. The failure continuation tells us to return 0. In the first example,

4 is found to be the first element in the third pair, so 16 is returned. In the

11.2 Assignment and State 345

second example, 3 is not found as the first element of any of the pairs, so is

returned.

The definition of lookup is straightforward. The strategy used in this defi-

nition is to search the list of pairs until we either find a pair starting with obj

or reach the end of the list. Since obj, success-proc, and failure-proc do

not change in the recursion, we begin with a letrec expression to define a local

procedure, lookup, which has only the one parameter table. Because of lex-

ical scoping, we can use the same name lookup for both the local procedure

and the global procedure. Program 11.2 shows the definition of lookup.

Program 11.2 lookup

(define lookup

(lambda (obj table success-proc failure-proc)

(letrec ((lookup (lambda (table)

(if (null? table)

(failure-proc)

(let ((pr (car table)))

(if (equal? (car pr) obj)

(success-proc pr)

(lookup (cdr table))))))))

(lookup table))))

We illustrate the use of lookup in the definition of the Scheme procedure

assoc, which has two parameters, obj and a list of pairs table. If a pair

in table has obj as its first element, that pair is returned; otherwise false is

returned. For example:

(assoc 4 '((1) (2 1) (3 1 5) (4 3) (6 8))) (4 3)

(assoc 5 '((1) (2 1) (3 1 5) (4 3) (6 8))) #f

The code for assoc is easily written using lookup. We have only to take the

identity procedure as the success continuation and the constant procedure

that always returns false as the failure continuation. See Program 11.3.

We are now ready to write the procedure memoize, which takes a procedure

proc as its parameter and returns another procedure that is the memoized

346 Mutation

Program 11.3 assoc

(define assoc

(lambda (obj table)

(lookup obj table (lambda (pr) pr) (lambda () #f))))

Program 11.4 memoize

(define memoize

(leimbda (proc)

(let ((table '()))

(leunbda (arg)

(lookup arg table

(leunbda (pr) (cdr pr))

(lambda ()

(let ((val (proc arg)))

(set! table (cons (cons arg val) table))

val)))))))

version of proc. The definition of memoize is presented in Program 11.4.^

To memoize the Fibonacci procedure fib, we first define fib as before:

(define fib

(lambda (n)

(if « n 2)

n

(+ (fib (- n D)
(fib (- n 2))))))

We now show two different ways of approaching the memoization of fib. The

first way, which does not lead to the most efficient way of computing it, is to

define f ib-m as follows:

(define fib-m (memoize fib))

Evaluate (fib-m 6) first. Since (fib 6) has not yet been computed, fib is

computed recursively to get its value 8. This value is added to the table in the

^ The line (lambda (pr) f^cdr pr)) in the definition of memoize can be replaced by cdr.

Can you explain why?

11.2 Assignment and State 347

Program 11.5 memo-fib

(define memo-fib

(sHoize (lambda :n)

(if « n 2)

n

(+ (memo--fib (- n D)
(memo--fib (- n 2)))))))

set! line of code for memoize, and table is now bound to ((6 . 8)). When
(fib-m 6) is evaluated again, the new binding is in effect. In this way, set

!

changes the value of the lexical binding of the variable table.

If (fib-m 6) is called again, the lookup with argument 6 produces the

pair (6 . 8) and by taking its cdr, we get the answer 8. If this is now re-

peated with (fib-m 100), the first time it is called, the tree recursion will

involve approximately 3(1.7^°°) operations, which is more than 10^^. If, how-

ever, (fib-m 100) is called a second time, the answer is found with just one

lookup in the table, a significant improvement in efficiency since the table

contains only two items at this point. If the table does get large after many
procedure calls with different arguments, the iteration in lookup makes the

search in the table take time, so there is a trade-off that must be weighed be-

tween the efficiency of the procedure evaluation and the table lookup. Later,

we shall consider the use of vectors to represent the table of stored values.

Random access into the table for our lookups makes the memoizing process

more efficient than iteration through the table from its beginning.

A more practical use for the memoizing procedure can be made if we use

it in the recursive invocations of fib that are made in the definition of the

procedure fib itself. In computing (fib 6) recursively, one computes fib for

arguments 5, 4, 3, 2, and 1. Suppose that the first time any one of these is

found, its (.arg . va/)-pair is added to table. Then whenever fib is called

with this same argument in the tree recursion, the value is already known

from the table lookup and need not be recomputed. This will save time ui

the original computation of (fib 6), and if we call (fib 7), it is the sum of

(fib 6) and (fib 5), both of which are already in the table. This is a great

saving in time. Program 11.5 shows how we write this memoized version of

fib.

It is possible to get a feeling for how much memoizing improves the efficiency

of a computation by using the "timer" defined in Program 10.19. Below is

an experiment involving computations of the memoized procedures defined

348 Mutation

above:

[1] (timer fib 20)

Time = 7.69, Answer = 6765

[2] (timer fib 25)

Time = 85.19, Answer = 75025

[3] (timer fib-m 20)

Time = 7.69, Answer = 6765

[4] (timer fib-m 20)

Time = 0, Answer = 6765

[5] (timer fib-m 25)

Time = 85.25, Answer = 75025

[6] (timer fib-m 25)

Time = 0, Answer = 75025

[7] (timer memo-fib 20)

Time = 0, Answer = 6765

[8] (timer memo-fib 25)

Time = 0, Answer = 75025

[9] (timer memo-fib 100)

Time = 0.22, Answer = 354224848179261915075

[10] (timer memo-fib 100)

Time = 0, Answer = 354224848179261915075

Exercise

Exercise 11.1

To see how dramatically memoizing reduces the number of recursive invoca-

tions of fib, trace the procedures fib and memo-fib by placing (display n)

(display " ") before the if expressions. Then invoke the traced procedures

with arguments 6, 7, and 10. Be sure that you understand the results.

Because the elements of a vector can be accessed randomly with equal ease,

vectors can be used effectively for making tables. When a list is used as the

data structure for a table and the table lookup is done with assoc or with

lookup, the iterative search tests each entry until the correct one is found. If

we are looking for an entry that is not near the beginning of the list, the search

is costly in time. In a vector, we can access any entry with equal facility. Let

us rewrite memoize for a procedure that takes a nonnegative integer as its

argument. This time table is a vector in which we store values. We must fix

a largest value for the arguments that we store in the table, since we must

11.2 Assignment and State 349

specify the length of the vector in advance. ^ Let us suppose that memoization

will take place for arguments that are at most equal to some number mzut-

arg, and then we can take (addl meix-arg) as the length of the vector. To

find the value of the procedure proc for a given argument arg, we must first

determine whether that value has already been entered into the table. We
use vector-ref for the lookup and let item-stored be (vector-rel table

arg) . The test to determine whether a value heis been stored for the argument

arg is (null? item-stored). If the procedure we aie memoizing takes on

the value () , we would not be able to distinguish it from the (
)

' s used to fill

the original table. To avoid having to put restrictions on the values assumed

by the procedure, we enter (list val) instead of val into the table whenever

a new procedure value is added. Then item-stored finds a list containing

the value, and to get the value itself, we must take (car item-stored). The

definition of vector-memoize is given in Program 11.6.

Program 11.6 vector-memoize

(define vector-meBoize

(lajBbda (max-arg)

(lambda (proc)

(let ((table (Make-vector (addl max-arg) '())))

(lambda (eurg)

(if (> arg mcix-arg)

(proc arg)

(let ((item-stored (vector-ref table arg)))

(if (pair? item-stored)

(car item-stored)

(let ((val (proc arg)))

(vector-set ! table curg (list val))

val)))))))))

This memoizing procedure can be used in exactly the same way as the one

we defined earlier for numerical procedures like fib. It is more efficient when

many entries have been made into the table since the random access of the

vector makes lookup faster.

We can use this memoizing procedure to compute fibonacci numbers by

^ This is a disadviuitage of using vectors instead of lists as the data structure for the table.

We shall look at a way of removing this restriction when we discuss hashing in Chapter 12.

350 Mutation

calling the procedure memo-fib, now defined by:

(define memo-fib

((vector-memoize 100)

(lambda (n)

(if « n 2)

n

(+ (memo-fib (- n 1)) (memo-fib (- n 2)))))))

This allows table lookup up to argument 100.

Let us summarize what we have learned about set ! in this extended ex-

ample. A set! expression is a special form with the following syntax:

(set ! vc.r val)

First, Scheme evaluates the expression val. Then Scheme looks for the lexical

binding of var, and the value of that binding is changed so that var is bound

to the value of val. If var is not bound to some value, then in many implemen-

tations, the set! expression returns an error message, for set ! changes only

existing bindings; it does not create new bindings. It is important to realize

that set ! does this rebinding as a side effect, and in Scheme set ! returns an

unspecified value, so that diff^erent implementations of Scheme could return

different things, and you should not rely on using the value returned in your

programs. The fact that set! does its rebinding as a side effect means that

you can use set! in a begin expression (implicit or explicit) before the last

clause and accomplish the rebinding.

We next illustrate the use of set! by showing how we can simulate an

imperative style of programming. Imperative-style programs consist of state-

ments executed sequentially, each one of which performs a certain action on

the variables or provides input or output. For example, an assignment state-

ment that assigns a value 10 to a variable a is given by (set! a 10). An
output statement that prints the value of the variable a on the screen is given

by (writeln a). Branching is accomplished using a conditional statement,

which we can do using either a cond or an if expression. If we want to ex-

ecute a statement that is not the next one in the sequential order, we use a

"goto"-type statement, which we accomplish by invoking a thunk, that is, a

procedure of no arguments. This has the effect of making the next statement

to be executed be the first statement in the body of the thunk. We show

such a program by rewriting the definition of the procedure member? in this

imperative style. Recall first an iterative version of member?:

11.2 Assignment and State 351

(define member?

(lambda (item Is)

(cond

((null? Is) #f)

((equal? (car Is) item) #t)

(else (member? item (cdr Is))))))

An imperative version of member? is given in Program 11.7.

Program 11.7 Imperative version of member?

(define member?

(lambda (item Is)

(let ((goto (lambda (label)

(label))))

(letrec

((start

(lambda ()

(cond

((null? Is) «f)

((equal? (car Is) item) #t)

(else (goto reduce)))))

(reduce

(lambda ()

(set ! Is (cdr Is))

(goto start))))

(goto start)))))

The variable that is assigned values by the statements in the program is

Is. The procedure goto invokes the thunk, which is its argument. The letrec

expression defines the thunks, which control the order in which the statements

are executed in the program. In the last line of the program, we see that the

first thunk invoked is steirt. The body of this thunk is a cond expression

that has three clauses. In the first of these, the condition tests whether the

list Is is empty. If so, #f is returned. The second condition in the thunk

start tests whether the first value in the list Is is item, in which case the

value #t is returned. The else clause in the thunk start moves control to the

body of reduce, where the list Is is assigned the value (cdr Is) and control

is moved back to start. It is important to realize that no variable is passed

to start when control is moved to start. Instead, the value assigned to the

352 Mutation

Program 11.8 while-proc

(define while-proc

(lambda (pred-th body-th)

(letrec ((loop (lambda ()

(if (pred-th)

(begin

(body-th)

(loop))))))

(loop))))

variable Is is changed by the set ! statement, and that is the value of Is used

on the next invocation of start. In functional programming, new values are

passed as arguments to procedures, whereas in this imperative programming

style, the new values of variables are given by assignment statements using

mutation procedures such as set !

.

An advantage of using a computer instead of hand calculation is the pos-

sibility of doing repetitive operations a large number of times with few in-

structions. This is done in a language like Scheme by repetitively invoking a

procedure with different arguments until a termination condition is reached.

One method of repeating certain operations in imperative-style programming

uses a while loop. We can illustrate the use of while by introducing the proce-

dure while-proc, which takes as parameters a predicate thunk pred-th and

a body thunk body-th. As long as the invocation of pred-th returns true,

body-th is invoked followed by an invocation of loop. It is assumed that in

the body of body-th, mutations will occur that eventually will make the invo-

cation of pred-th false. When that happens, the loop is completed. The while

loop depends on side effects to produce the desired results. The code for the

procedure while-proc is presented in Program 11.8. We have implemented

while-proc here as a procedure that takes two thunks as arguments. In the

exercises in Chapter 14, we shall implement a while expression as a special

form that has the predicate and the body themselves as subexpressions rather

than thunks made out of them.

We show an example of the use of while-proc by giving another definition

of member?, this time in an imperative style using a while loop. Here, we

introduce a local boolean variable ans that will be initialized to #f . In the

loop, the predicate thunk pred-th tests whether the list Is is empty or the

variable ans is true. As long as neither one is true, the body thunk body-th is

invoked. This tests whether the first value in the list Is is item. If it is, then

11.2 Assignment and State 353

ams is assigned the value true. Otherwise, the list Is is assigned the value

(cdr Is). The loop then repeats the invocation of the predicate thunk, and

if it is true, the body thunk is invoked again. If it is false, the loop returns

something, but since it was called within an implicit begin expression, the

value it returns is ignored and the value of ans is returned. This definition of

member? follows:

(define member?

(lambda (item Is)

(let ((ans #f))

(while-proc

(lambda (not (or (null? Is) ans)))

(lambda

(if (equal? (car Is) item)

(set ! ans #t)

(set! Is (cdr Is)))))

ans)))

In this imperative style, recursion can be done only by explicitly building

the return table. Using set! in Scheme, we can simulate that behavior. In

Program 2.8, we defined the procedure swapper recursively. We first repro-

duce a recursive definition and then implement it in this imperative style,

replacing recursion with the explicit construction of the return table, which

we implement as a stack.

(define swapper

(lambda (a b Is)

(letrec ((loop (lambda (Is*)

(cond

((null? Is*) '())

((equal? (car Is*) a)

(cons b (loop (cdr Is*))))

((equal? (car Is*) b)

(cons a (loop (cdr Is*))))

(else

(cons (car Is*) (loop (cdr Is*))))))))

(loop Is))))

Most languages have a looping mechanism that repeats some operation until

a terminating condition is satisfied. We once again use the procedure nhile-

proc for that purpose. Notice that in the recursive program for swapper,

until Is* is empty, something is consed onto the recursive invocation of loop

354 Mutation

with argument (cdr Is*). Thus, that something is added to a return table

on each loop. We accomplish this in our imperative-style program by pushing

that something onto a stack, and when Is* is finally empty, we repeatedly

cons the top of the stack onto our answer and pop the stack until the stack

is empty. Thus our code will have two loops; the first pushes the appropriate

thing onto the stack until the list is empty, and the second pops the stack until

it is empty. We assume here that the stack stk has been globally defined and

is empty when the procedure swapper is called.

Program 11.9 swapper

(define swapper

(leunbda (a b Is)

(let ((Is* Is) (ans '()))

(while-proc

(lambda () (not (null? Is*)))

(lambda ()

(cond

((equal? (car Is*) a) (push! b))

((equal? (car Is*) b) (push! a))

(else (push! (car Is*))))

; (print-stack)

(set! Is* (cdr Is*))))

(while-proc

(lambda () (not (empty?)))

(lambda

(set! ans (cons (top) ans))

; (writeln "Answer = " ans)

(pop !

)

; (print-stack)

))

ans)))

Program 11.9 contains the imperative-style code for swapper. We have

included some print-stack and writeln expressions to obtain a trace of the

program. Semicolons have been placed in front of these output expressions

to show that they are not part of the swapper program. To get the trace,

remove the semicolons. An example of an application of swapper is given in

11.2 Assignment and State 355

[1] (swapper 12 '(123123))
TOP: 2

TOP: 12
TOP: 3 1 2

TOP: 2 3 1 2

TOP: 12 3 12
TOP: 3 1 2 3 1 2

Answer = (3)

TOP: 12 3 12
Answer = (13)
TOP: 2 3 1 2

Answer =(2 13)
TOP: 3 1 2

Answer =(3213)
TOP: 12
Answer =(13213)
TOP: 2

Answer =(213213)
TOP:

(213213)

Figure 11.10 Trace of the imperative-style swapper

Figure 11.10. The stack grows during the first loop, and the answer is being

built before each pop of the stack during the second loop.

In this example, the stack was defined globally and given the name stk.

Each of the stack operations referred to this stack in its definition. If we had

needed two stacks, say stkl and stk2, we would have had to define two sets

of stack operations and use the right ones with each of the two stacks. This

is an inconvenient way of working with stacks, so we shall look further into

this matter in Chapter 12 and develop a better way of implementing stacks

using what is known as object-oriented programming.

The stack is an object that changes with each push! and pop!. An object

that changes with time is said to be in a given state between changes. We
say that such an object has state. Its state can be described by certain

descriptors, called its state variables. In the case of the stack, we can consider

its list representation as a state variable that completely describes the stack.

The mutators such as set ! and vector-set ! and the procedures derived from

them such as push! and pop! are used to change the state of objects. In most

of our Scheme programs, we can use procedure applications and recursion and

avoid the use of mutators altogether. There will be times, however, when we

find it convenient to use mutators.

356 Mutation

In mathematics and logic, a function is a rule that assigns to each of its

arguments a certain value, and the presentation in Section 8.5 developed this

point of view. We have been using the term procedure to describe the programs

we have been writing in Scheme. It would have been appropriate to use the

term function as long as we do not have side effects and the value returned by

the function is completely determined by its arguments; that is, the function

returns the same value every time it is invoked with the same arguments. This

is no longer the case when side effects are present. It is more accurate to use

the term procedure instead oi function since side effects are allowed, and this

is the custom in Scheme.

Exercises

Exercise 11.2: pascal-trieingle

In the Pascal triangle, each number is the sum of the two numbers in the line

above it and on each side of it. The first six lines of the triangle are shown

below:

1

1 1

1 2 1

13 3 1

14 6 4 1

1 5 10 10 5 1

Using a zero-based counting system and denoting the number in the nth

row and the kth. column by (pascal-triemgle n k), (pascal-tricingle 4

2) is 6, and (pascal-triamgle 5 1) is 5. The algorithm that we use to

build the triangle line by line says that (pascal-triangle n k) is the sum

of (pascal-trieuigle (- n 1) (- k 1)) and (pascal-triangle (- n 1)

k). We consider that each row of the triangle is continued with a zero at each

end. Use this algorithm to define the procedure pascal-triangle, which we

use in several exercises in this section. Analyze this algorithm to determine the

number of additions performed when (pascal-trieingle n k) is computed.

Test your procedure on:

(pascal-triangle 10 5) => 252

(pascal-triangle 12 6) ^ 924

(pascal-triangle 14 7) ^ 3432

(pascal-triangle 16 8) ==> 12870

11.2 Assignment and State 357

Exercise 11.3: timer2

Write the definition of a procedure timer2 that finds the time elapsed from

the time a procedure proc is called to the time when the value is returned,

assuming that the procedure proc is a procedure of two arguments. Test

your procedure on the procedure pascal-triemgle, defined in the preceding

exercise, when the following procedure calls are made: (pascal-triangle

10 5), (pascal-trisoigle 12 6), (pascal-triangle 14 7), and (pascal-

triangle 16 8).

Exercise 11. 4: combinations

It can be shown that (pascal-triangle n k) represents the number of dif-

ferent ways k objects can be selected from a list of n distinct objects. This

number is often denoted by [^). The notation n! is used for the factorial of

n, which we compute with the procedure fact. It can be shown that the

number (^) can be computed using the formula
f.,(^_f^\,

- Write the definition

of a procedure combinations that uses this formula instead of the algorithm

given in Exercise 11.2. Compare it with pascal-triangle by timing it for the

values of the arguments given in Exercise 11.2. Also compute (combinations

100 50).

Exercise 11.5: lookup2

Write the definition of a procedure lookup2 that takes five arguments: two

Scheme objects objl and obj2, and a list of triples trilist and a success

and a failure continuation. It searches through the list from beginning to end

looking for a triple in which the first element is obj 1 and the second element is

obj2. If such a triple is found, it passes that triple to the success continuation.

Otherwise, the failure continuation is invoked. Test your procedure on:

(looJnip2 'a 'c '((a b 5) (a c 7) (b c 9))

(lambda (tr) tr) (lambda ()'())) =* (a c 7)

(lookup2 'a 'c '((a b 5) (c a 7) (b c 9))

(lambda (tr) tr) (lambda ()'())) => ()

Exercise 11.6: memoize2

Write the definition of the procedure memoize2, which memoizes a procedure

proc of two arguments.

Exercise 11.7

Memoize the procedure pascal-triangle in Exercise 11.2 to define a pro-

cedure memo-pascal-triangle in a manner analogous to the definition of

358 Mutation

Program 11.11 Mystery program for Exercise 11.10

(define nystery

(lambda (a b Is)

(let ((Is* Is) (ans '()) (goto (lambda (label) (label))))

(letrec

((push

(Isuabda

(cond

((null? Is*) (goto pop))

((eq? (czu: Is*) a) (push! b) (goto reduce))

((eq? (car Is*) b) (push! a) (goto reduce))

(else (push! (car Is*)) (goto reduce)))))

(reduce

(Isunbda

(set! Is* (cdr Is*))

(goto push)))

(pop

(lambda ()

(cond

((empty?) eins)

(else

(set! ans (cons (top) ans))

(pop !

)

(goto pop))))))

(goto push)))))

memo-fib in this section. Time both a call of pascal-triangle and a call of

memo-pascal-triangle on each of the arguments used in Exercise 11.2.

Exercise 11.8: timer*

Define a procedure timer* that times a procedure of an arbitrary number of

arguments. For example, if proc is a procedure of four arguments and we

want to time the application (proc 1 2 3), we would call (timer* proc

10 2 3). Use the unrestricted lambda and apply.

Exercise 11.9

In the imperative-style program for swapper, the stack and its operations were

defined nonlocally. Rewrite this program with the stack and its operations

defined locally within the definition of svapper and test your procedure on

the example given in Figure 11.10.

11.2 Assignment and State 359

Exercise 11.10

In the imperative-style program for swapper, we used while loops to repeat

certain steps when a given condition is true. In some languages, while loops

are not implemented so another device must be used. Such languages often

use a "goto" statement as a means of returning control to a previous step in

the program. As in the first imperative version of member? in Program 11.7,

we can simulate a goto statement by invoking a procedure of no arguments

(a thunk). Program 11.11 is a mystery program that is written in imperative

style and invokes various thunks to move the control to the body of the thunks.

Assume that a global stack stk is initially empty. What is returned when we

invoke:

(mystery 'a 'z '(crazy))

11.3 Box-and-Pointer Representation of Cons Cells

The box-and-pointer representation gives us a convenient graphical way of

visualizing the objects constructed using cons. An object that is not a pair,

such as a number, a symbol, or a boolean, is denoted by enclosing the object in

a box (i.e., we put a square or rectangle around the object). For example, we

represent the number 5 by enclosing the numeral 5 in a box. The constructor

cons produces a pair represented by a cons cell, which is a double box (a

horizontal rectangle divided into two boxes by a vertical line) with a pointer

(arrow) emerging from the center of each of the two boxes. The pointer

emerging from the center of the box on the left points to the box containing the

car of the pair represented by the cons cell. The pointer from the center of the

box on the right points to the box containing the cdr of the pair represented

by the cons cell. Figure 11.12(a) shows the box-and-pointer representation of

the improper list (or dotted pair) (cons 3 4). The pointer from the left side

points to the ceir, which is 3, and the pointer from the right side points to the

cdr, which is 4. When (cons 3 4) is entered into Scheme, the improper list

(3 , 4) is returned. We call the pointer from the left side of a cons cell the

car pointer and the pointer from the right side of a cons cell the cdr pointer.

The value of (cons 3 (cons 4 5)) is represented by two cons cells, one

for each cons. Figure 11.12(b) shows the box-and-pointer configuration for

this value. The car pointer of the first cons cell points to the number 3, and

the cdr pointer of the first cons cell points to the second cons cell. The car

pointer of the second cons cell points to the number 4, and the cdr pointer

of the second cons cell points to the number 5. In this way, we can build up

360 Mutation

I

I

-j—>[A'

yt

3

1 I—>^ 5

(cons 3 4)

(a)

(cons 3 (cons 4 5))

(b)

Figure 11.12 Box-and-pointer diagrams

3L

3

>r yr

3 l4 5

(cons 3 '()) (cons 3 (cons 4 (cons 5 '())))

(a) (b)

Figure 11.13 Box-and-pointer diagrams for proper lists

the box-and-pointer representations of the values of more complicated cons

expressions.

We now look at the representation of a proper list. We begin with the

list (cons 3 ' ()), for which Scheme displays (3). Once again a cons cell is

created by cons, and this time the car pointer points to the number 3. But

how shall we represent the fact that the cdr pointer points to () ? We indicate

that the cdr is the empty list by drawing a diagonal line in the right half of

the cons cell. This is illustrated in Figure 11.13(a).

The list (cons 3 (cons 4 (cons 5 '()))), which appears on the screen

as (3 4 5), is represented as the linked cells in Figure 11.13(b). Another

interesting list to consider is

(cons (cons 3 '()) (cons 4 (cons 5 '())))

which appears on the screen as ((3) 4 5). The box-and-pointer represen-

11.3 Box- and- Pointer Representation of Cons Cells 361

tation contains four cons cells as illustrated in Figure 11.14. The first cons

creates a cell in which the car pointer points to the cons cell created by the

second cons, in which the car pointer points to 3 and the cdr pointer indicates

() . The cdr pointer of the first cons cell points to the cons cell created by

the third cons. The car pointer in the third cons cell points to 4, and its cdr

pointer points to the cons cell created by the fourth cons. In this fourth cons

cell, the car pointer points to 5, and the cdr pointer indicates (). Thus each

cons in an expression creates a new cons cell in which the car pointer points

to the car part and the cdr pointer points to the cdr part of the cell.

»

3

5

(cons (cons 3 '()) (cons 4 (cons 5 '())))

Figure 11.14 Box-and-pointer diagram

If we define a to be (cons 3 ' ()) by writing

(define a (cons 3 '()))

we can indicate this binding by a pointer from the name a to the cons cell

created by cons, as illustrated in Figure 11.15(a). If we now use set! to

change this binding, say

(set! a (cons 4 (cons 5 '())))

we can think of this as disconnecting the pointer from a to the linked cells

representing (cons 3 '()) and connecting it to the linked cells representing

(cons 4 (cons 5 '())), as illustrated in Figure 11.15(b).

S62 Mutation

a—

>

(define a (cons 3 '()))

(a)

4 5

(set! a (cons 4 (cons 5 '())))

(b)

Figure 11.15 Representing define and set!

Now suppose that a and b are defined as:

(define a (cons 1 (cons 2 '())))

(define b (cons (cons 3 '()) (cons 4 (cons 5 '()))))

as illustrated in Figure 11.16(a,b). We next define c to be:

(define c (cons a (cdr b)))

The cons in the definition of c creates a cons cell (to which c points) in which

the car pointer points to the same cell as does a and the cdr pointer points

to the same cell as does the cdr pointer of the cons cell to which b points.

This is illustrated in Figure 11.16(c). It is clear from this representation that

a and b have not been changed when we defined c, and a => (1 2), b =*
((3) 4 5), and c ==» ((1 2) 4 5).

The procedures set-car! , set-cdr ! , and append! , which we discuss next,

actually do change the objects to which they are applied. For example, when

we use the same definitions of a and b given above and illustrated in Fig-

ure 11.16(a,b), and invoke

(set-car! b a)

11.3 Box-and-Pointer Representation of Cons Cells 363

a
/"

(a)

/"
(b)

(c)

Figure 11.16 (define c (cons a (cdr b)))

then the car pointer of the cons cell to which b points is disconnected and

is made to point to the same linked cell as does a. This is illustrated in

Figure 11.17. Now:

b =» (Cl 2) 4 5)

a =* (1 2)

Thus b has been changed by set-car! so that we can say that set-car!

caused a mutation in the list structure of b. This enables us to use set-car I in

begin expressions since this mutation is a side effect. Let us compare b and c.

They are equal?, but not eq?. Also the application of set-car I had the effect

of disconnecting the previous car of b (see the dotted box in Figure 11.17)

which is now "garbage" to be recycled in the next "garbage collection." In

general, cells are garbage if they are not pointed to by nongarbage.

The invocation (set-cdr ! pair value) does the same kind of reconnecting

of the cdr pointer of pair so that it points to ua/ite. The box-and-pointer

diagrams in Figure 11.18 illustrate c and d defined by

(define c (cons 1 (cons 2 (cons 3 '()))))

(define d (cons 4 (cons 5 (cons 6 '()))))

364 Mutation

a > /
^

5 |r

I

5K

3

Figure 11.17 (set-car! b a) in Figure 11.16

Let us first define h to be

(define w (cons c d))

so that w => ((1 2 3) 4 6 6). (See Figure 11.18.)

We pause to make an important observation about the predicate eq? . Two
items are the same in the sense of eq? if they point to the same object. From

Figure 11.18, we see that

(eq? (car w) c) #t

since they both point to the same chain of linked cells.

If we next call

(set-cdr! c d)

the cdr pointer of c is changed to refer to d (Figure 11.19) and now c =* (14
5 6). But the side effects of (set-cdr! c d) extend to all objects that have

pointers to c; now w =^ ((1456) 456). Thus care must be taken when

using procedures like set-cair ! and set-cdr! that cause mutations in the list

structure that unexpected or unwanted changes in other data objects do not

11.3 Box-and-Pointer Representation of Cons Cells 365

w 1 w w

{/

1 2 3

w

> —-^ H /
V >r

4 5 6

Figure 11.18 (eq? (car w) c) => #t

w

c -> —

p

ji ^ /!i
7^

1 i

1

I
2 J j

r

—d — ,/

[4

1

1

1

5 6

>

Figure 11.19 (set-cdr! c d) in Figure 11.18

occur. The two procedures set-cao" ! and set-cdr ! cause mutations in the list

structure of data objects, but the values that they return are unspecified and

may differ in different implementations of Scheme. Thus to write programs

that are portable (run in various implementations of Scheme), it is necessary

to avoid using the values returned by these procedures.

S66 Mutation

u >

Figure 11.20 (define x (append c d))

The procedure append was defined in Program 4.1 as:

(define append

(lambda (Isl ls2)

(if (null? Isl)

ls2

(cons (cau: Isl) (append (cdr Isl) ls2)))))

If c and d are again defined as in Figure 11.18, and we define

(define u (cons c (cons d '())))

and

(define x (append c d))

then append makes a copy of c and changes the cdr pointer of the last cons

cell in this copy to point to d. (See Figure 11.20.) Then:

11.3 Box-and-Pointer Representation of Cons Cells 367

Program 11.21 last-pair

(define last-pair

(lambda (x)

(if (pair ? (cdr i))

(last -pair (cdr x))

x)))

Program 11.22 append!

(define append!

(lambda (Isl ls2)

(if (pair? Isl)

(begin

(set-cdr! (last-pair Isl) ls2)

Isl)

ls2)))

X (1 2 3 4 5 6)

c > (1 2 3)

d (4 5 6)

u ((3L 2 3) (4 5 6))

In making the copy of c, x had to create three cons cells.

The procedure append! offers a more efficient way of appending one list to

another. However, it has side effects that must be considered, so it should not

be used indiscriminately. Let us begin by defining the procedure last-pair

(see Program 11.21), which takes as its argument a nonempty list and returns

the list consisting of the last value in the list. For example:

(last-pair '(1 2 3)) (3)

We then define append! in Program 11.22. Here last-pair cdr's down the

list Isl until it reaches the last pair in Isl. Then set-cdr! redirects the cdr

pointer to ls2 instead of the empty list. The last line in the begin expression

returns this mutated list Isl. For example, if we apply append! to the two

lists c and d defined above by writing

(define y (append! c d))

368 Mutation

c —
\N

.^ — > >

y-

1 2 3

i
A w ~yU ^ >

/y
/"

4 5 6

X—

>

w

1 2 3

11 k - W /U W

Figure 11.23 <'define y (append! C (i)) in Figure 11. 2()

then y is obtained by connecting the cdr pointer of the Icist cons cell in c to

d. (See Figure 11.23.) We now have

y ^ (1 2 3 4 5 6)

c => (1 2 3 4 5 6)

d =^ (4 5 6)

X ^ (1 2 3 4 5 6)

u =* ((1 :> 3 4 5 6) (4 5 6))

The last result is a side effect of using append! on c, for the c, which also

appears in the definition of u, has been mutated. The value of x is not changed

because it originally makes a copy of c and has no pointer to c. Thus each

time we have a choice of using one of the procedures set-cao:
!

, set-cdr
!

, or

append ! , we must decide whether we want a copy of the original lists made

by using suitable procedures of cons, Ceir, cdr, and append or mutations of

the original lists taking into account the possible side effects. We must be

11.3 Box-and-Pointer Representation of Cons Cells 369

^^ ^ '

-^ ^2 j_

—1

u j]

Figure 11.24 Box-and-pointer diagram for Exercise 11.12

careful that undesirable side effects do not occur when using set-Cca- ! , set-

cdr!, and append!. In the next chapter, we shall see examples where these

procedures can safely be used because the variables affected are local and the

side effects can be controlled.

Exercises

Exercise 11.11

Draw a box-and-pointer diagram for the following:

(let ((x (list 1 2 3)))

(let ((y (list 4 5 6)))

(let ((z (cons x y)))

(set-cdr! x y)

z)))

Exercise 11.12

Write a let expression in the style of Exercise 11.11 that generates the entire

structure shown in the box-and-pointer diagram in Figure 11.24.

Exercise 11.13

a. Draw a box-and-pointer diagram for the following:

(let ((x (cons 11)))

(set-caur! x x)

(set-cdr! x x)

x)

370 Mutation

b. Define a procedure that recognizes such cons cells.

c. Define a procedure that takes a list as its argument and removes all occur-

rences of such cons cells.

Exercise 11.1

4

Conduct the following experiment, explaining the results:

[1] (define mystery

(lambdaCx)

(let ((box (last-pair x)))

(set-cdr! box x)

x)))

[2] (define ans (mystery (list 'a 'b 'c 'd)))

[3] ans

Exercise 11.15

Let us consider only flat lists in this exercise. We know that we can write a

procedure that determines the length of a list. We allow, however, that the

cdr of the last cell of the list might point back to some portion of the list. For

example,

(let ((i (list 'a 'b 'c 'd 'e)))

(set-cdr! (last-pair x) (cdr (cdr x)))

x)

We can print such lists by invoking (writeln x); however, the printing of the

list will not terminate. Redefine writeln so that if it discovers one of these

lists, it prints something appropriate. For example,

(writeln x) ==^ (abcdecde ...)

Hint: Define a predicate cycle? which determines if a list is a flat cycle. Also,

reconstruct a list like (abcdecde ...) that has the string " ..." as

the last of its nine elements.

Exercise 11.16: efface

Create the box-and-pointer diagrams for x, y, z, a, a*, b, b*, c, and c* before

and after the invocation of efface in test-efface.

11.3 Box-and-Pointer Representation of Cons Cells 371

(define efface

(lambda (x Is)

(cond

((null? Is) '())

((equal? (car Is) x) (cdr Is))

(else (let ((z (efface x (cdr Is))))

(set-cdr! Is z)

Is)))))

(define test-efface

(lambda

(let ((x (cons 1 '())))

(let ((y (cons 2 x)))

(let ((z (cons 3 y)))

(let ((a (cons 4 z)) (a* (cons 40 z)))

(let ((b (cons 5 a)) (b* (cons 50 a)))

(let ((c (cons 6 b)) (c* (cons 60 b)))

(writeln x y z a a* b b* c c*)

(efface 3 c)

(writeln x y z a a* b b* c c*)))))))))

Exercise 11.17

Using the definition of efface from Exercise 11.16, describe the behavior of

(test-efface2) and (test-elface3). Explain the difference.

(define test-efface2

(lambda

(let ((Is (list 5 4 3 2 1)))

(writeln (efface 3 Is))

Is)))

(define test-efface3

(lambda

(let ((Is (list 5 4 3 2 1)))

(writeln (efface 5 Is))

Is)))

Exercise 11.18: smudge

Create the box-and-pointer diagrams for x, y, z, a, a*, b, b*, c, and c* before

and after the invocation of smudge in test-smudge.

372 Mutation

(define smudge

(Icunbda (x Is)

(letrec

((smudge/x

(lambda (Is*)

(cond

((null? (cdr Is*)) Is*)

((equal? (car Is*) x) (shift-down Is* (cdr Is*)))

(else (smudge/x (cdr Is*)))))))

(if (null? Is)

Is

(begin

(smudge/x Is)

Is)))))

(define shift-down

(lambda (boxl box2)

(set-car! boxl (car box2))

(set-cdr! boxl (cdr box2))))

(define test-smudge

(lambda ()

(let ((x (cons 1 '())))

(let ((y (cons 2 x)))

(let ((z (cons 3 y)))

(let ((a (cons 4 z)) (a* (cons 40 z)))

(let ((b (cons 5 a)) (b* (cons 50 a)))

(let ((c (cons 6 b)) (c* (cons 60 b)))

(writeln x y z a a* b b* c c*)

(smudge 3c)
(writeln x y z a a* b b* c c*)))))))))

Exercise 11.19: count-pairs

The procedure count-pairs counts the number of cons cells in a data struc-

ture. It is defined using the global variable seen-pairs* and the helping

predicate dont-count?.

(define *seen-pairs* '())

ll.S Box- and-Pointer Representation of Cons Cells SIS

(define coxint-pairs

(Izunbda (pr)

(if (dont-coxint? pr)

(begin

(set! seen-pairs* (cons pr *8een-pairs*))

(addl (+ (coiont-pairs (c«ir pr))

(count-pairs (cdr pr))))))))

(define dont-count?

(lambda (s)

(or (not (pair? s)) (member? s *seen-pairs*))))

a. Create a box-and-pointer diagram for y just prior to the invocation of

count-pairs in the procedure test-count-pairs.

(define test-count-pairs

(lambda ()

(let ((x (cons 'a (cons 'b (cons 'c '())))))

(let ((y (cons x (cons x (cons x x)))))

(set-cdr! (last-pair x) x)

(writeln (count-pairs y))

(count-pairs y)))))

b. Explain the behavior of test-connt-pairs. Why are the answers differ-

ent? Rewrite count-pairs functionally so that the two answers are the

same. Hint: Look back at the definition of vector-insert sort ! in Pro-

gram 10.5.

c. Rewrite count-pairs using local state, which gets changed with set !

.

Here is a skeleton:

(define count-pairs

(lambda (pr)

(covmt-pairs/seen pr '())))

(define count-pairs/seen

(lambda (pr seen-pairs)

(letrec

((count (lambda (pr) ...)))

(count pr))))

374 Mutation

d. Rewrite count-pairs using private local state. Hint: Look at the skele-

ton below. We must set seen-pairs back to the empty list just prior to

invoking count. Here is a skeleton:

(define count -pairs

(let ((seen-pairs "any list of pairs"))

(letrec

((count (lambda (pr) ...)))

(lambda (pr)

(set! seen-pairs '())

(count pr)))))

e. Rewrite count-pairs using private local state, setting seen-pairs to the

empty list after invoking count instead of before invoking count. This

way we know that seen-pairs is always the empty list before and after

invoking count -pairs.

The next seven problems are related. Work them in order and you will learn

about what computers cannot do.

Exercise 11.20: Turing Tapes

Consider a list that grows in both directions: (... cbaxy...). We call

such a list an unbounded tape, or just tape. We use a positive number of

O's as left and right borders to indicate where the interesting information on

the tape resides: (... OcbaxyO...). Any symbol would work as the

border symbol; no border value can appear within the interesting information

on the tape, for if it did then it would indicate a border. Included as part

of the data abstraction of a tape is a location on the tape. Tapes can be

read only a character at a time. For the purposes of this discussion, x is the

character being read on the above tape.

There are four procedures defined over tapes. The first one is at, which

takes a tape and returns the character being read. The second one is over-

write, which takes a character, c, and a tape, and returns an equivalent tape

except that the character being read is replaced by c. We can characterize

the relation between overwrite and at with the following equation. Let t be

a tape and let c be a character; then:

(at (overwrite c t)) = c

The third and fourth procedures are left and right. These take a tape

and return an equivalent tape except that the character being read is the one

11.3 Box-and-Pointer Representation of Cons Cells 375

just to the left (or right) of the one that was previously being read. In our

example, this would mean that the character being read is now a (or y). Since

the tape is unbounded in both directions, there is no concern about falling off

the tape. We have the identities:

(left (right tape)) = tape = (right (left tape))

In our use of tapes, we always do overwrite followed by either left or

right but not both. We refer to this operation as reconfiguring the tape. In

order to reconfigure a tape, we need a character to write and a direction in

which to move:

(define reconfigure

(lambda (tape character direction)

(if (eq? direction 'left)

(left (overwrite chciracter tape))

(right (overwrite character tape)))))

We now consider a possible representation of tapes. In this representation

a tape is composed of two non-null, finite lists. We call these two lists left part

and right part. The left part contains everything to the left of where we are

reading until the left end of the tape, but it is reversed. In our example, that

is (a b c 0). The right part contains everything from where we are reading

until the right end of the tape. In our example above, that is (x y 0). Thus,

the tape is represented by the list ((a b c 0) (x y 0)). We can now define

at and overwrite:

(define at

(lanbda (tape)

(let ((right-part (2nd tape)))

(.car right-paurt))))

(define overwrite

(lambda (chau: tape)

(let (deft-part (Ist tape)) (right-paurt (2nd tape)))

(let ((new-right-part (cons cheur (cdr right-part))))

(list left-part new-right-part)))))

We have only to define the procedures left and right. Let us consider

what is involved in moving to the right. In our example this would mean that

we are looking at y. If that is so, then the right part would become (y 0).

What would happen to the x? Since it is now to the left of where we are

376 Mutation

reading, it would be moved into the left part and would become the first item

in the left part. Here is a first try at right:

(define right

(lambda (tape)

(let (deft-part (1st tape)) (right-part (2nd tape)))

(let ((new-left-part (cons (car right -part) left-part))

(new-right-peirt (cdr right-part)))

(list new-lef t-petrt new-right-part)))))

This is very close to correct, but it might violate the restriction that the left

part and the right part must be non-null. Consider invoking right on the

tape ((y x a b c 0) (0)). Using this incorrect version of right, the new

tape would become ((OyxabcO) ()), and that violates the non-null

condition that each part must satisfy. If new-right-part is the empty list,

we must replace it by (0), which represents the right end of the tape. Here

is the improved version of right:

(define right

(lambda (tape)

(let (deft-part (1st tape)) (right -part (2nd tape)))

(let ((new-left-part (cons (ceir right-part) left-peirt))

(new-right-part (cdr right-part)))

(list new-left-peurt (check-null new-right-pairt))))))

(define check-null

(Icimbda (part)

(if (null? part)

(list 0)

part)))

Write the procedure left, and test reconfigure with the procedure below:

(define test-reconfigure

(Isunbda

(let ((tapel (list (list 'a 'b 'c 0) (list 'x 'y 0))))

(let ((tape2 (reconfigure tapel 'u 'right))

(tapeS (reconfigure tapel 'd 'left)))

(let ((tape4 (reconfigure tape2 'v 'right))

(tapes (reconfigure tape3 'e 'left)))

(let ((tape6 (reconfigure tape4 'w 'right))

(tape? (reconfigure tapeB 'f 'left)))

(let ((tapes (reconfigure tape6 'x 'right))

(tape9 (reconfigure tape? 'g 'left)))

(list tapes tape9))

)

)))))

11.3 Box-and-Pointer Representation of Cons Cells 377

Exercise 11.21: list->tape, tape->list

Define a pair of procedures that builds an interface for handling tapes. The

first procedure, list->tape, takes a list, Is, of characters that contains no

O's and produces a tape, t, with the condition that Is is the same as (right

t) minus trailing zeros. For example, if Is is (x y), then (list->tape Is)

returns ((0) (x y 0)). The procedure tape->list takes a tape and returns

a list. The resultant list does not keep track of where on the tape it is reading.

Hence, it is not always the case that (list->tape (tape->list t)) = t;

however, it is always the case that (tape->list (list->tape Is)) = Is.

For example, if the tape, t, is ((a b c 0) (x y 0)), then (tape->list t)

is (c b a X y), but (list->tape ' (c b a x y)) is ((0) (c b a x y 0)),

not ((a b c 0) (x y 0)). Not only must the left part be reversed, but no

O's should appear in the resultant list. Rewrite test-reconfigure so that it

uses list->tape and tape->list.

Exercise 11.22

In the procedure test-reconfiguxe from the previous exercise, we used

tapel twice. Generally that does not happen. More frequently, a tape is

used as an argument in an iterative program. Consider the following experi-

ment:

[1] (define shifter

(letrec

((shift-to-0

(lambda (tape)

(let ((c (at tape)))

(cond

((equal? c 0) tape)

(else (shift-to-0 (reconfigure tape c 'right))))))))

shift-to-0))

[2] (shifter (list (list 0) (list 'a 'b 'c 0)))

When the tape is used in this fashion, we no longer need to make a new copy

each time we reconfigure the tape. For example, we can redefine overwrite

to change the value that at returns just by using set-car!:

(define overwrite

(lambda (char tape)

(let ((right-part (2nd tape)))

(set-csir! right -part char)

tape)))

378 Mutation

In changing the definition of overwrite, we exchanged one invocation of set-

car! for three uses of cons and one use of cdr, but test-reconfigure no

longer produces the same result. Why? Redefine right and left to use as

few invocations of cons as possible. Test shifter as in [2].

Exercise 11.23

We can write interesting procedures that begin with an empty tape (i.e,

(list->tape '())). Test the procedures below using an empty tape and

determine which ones do not halt:

(define busy-beaver

(letrec

((loopright

(lambda (tape)

(let ((c (at tape)))

(cond

((equal? c 'a)

(loopright (reconfigure tape 'a 'right)))

(else (maybe-done (reconfigure tape 'a 'right)))))))

(maybe-done

(lambda (tape)

(let ((c (at tape)))

(cond

((equal? c 'a) (reconfigure tape 'a 'right))

(else (continue (reconfigure tape 'a 'left)))))))

(continue

(lambda (tape)

(let ((c (at tape)))

(cond

((equal? c 'a)

(maybe-done (reconfigure tape 'a 'left)))

(else (loopright (reconfigure tape 'a 'right))))))))

loopright)

)

(define endless-growth

(letrec

((loop

(leunbda (tape)

(let ((c (at tape)))

(cond

((equal? c 0)

(loop (reconfigure tape 'a 'right))))))))

loop))

11.3 Box-and-Pointer Representation of Cons Cells 379

(define perpetual-motion

(letrec

((this-way

(lambda (tape)

(let ((c (at tape)))

(cond

((equal? c 'a)

(that-way (reconfigure tape 'right)))

(else (that-way (reconfigure tape 'a 'right)))))))

(that-way

(lambda (tape)

(let ((c (at tape)))

(cond

((equal? c 'a)

(this-way (reconfigure tape 'left)))

(else (this-way (reconfigure tape 'a 'left))))))))

this-way))

(define pendulum

(letrec

((loopright

(Icifflbda (tape)

(let ((c (at tape)))

(cond

((equal? c 'a)

(loopright (reconf igrire tape 'a 'right)))

(else (loopleft (reconfigure tape 'a 'left)))))))

(loopleft

(lambda (tape)

(let ((c (at tape)))

(cond

((equal? c 'a)

(loopleft (reconfigure tape 'a 'left)))

(else (loopright (reconfigure tape 'a 'right))))))))

loopright))

Exercise 11.24

Each of the procedures in the previous exercise looks about the same. Each

takes a tape as an argument. Then it reconfigures the tape according to

the current character and either returns the reconfigured tape or passes it

along to another procedure. We can think of each cond line as a list of five

elements. For example, the first cond line of continue in busy-beaver could

be represented by: (continue a a left maybe-done). We can interpret

this line as follows: From the state of continue, if there is an a, overwrite it

380 Mutation

with an a, move left, and consider only the lines that start with raaybe-done.

The entire busy-beaver procedure could be represented by a list of all the

transcribed cond lines:

(define busy-beaver-lines

'((loopright a a right loopright)

(loopright a right maybe-done)

(maybe-done a a right halt)

(maybe-done a left continue)

(continue a a left maybe-done)

(continue a right loopright)))

We use the convention that we start the computation at (car (car busy-

beaver-lines)). We also assume that halt is self-explanatory.

Using the representation of tapes that we have developed thus far, define a

procedure run-lines that takes a set of lines, like the busy-beaver-lines,

and a tape and returns the same result as (busy-beaver tape). The proce-

dure below will get you started. You need only define the procedures called

by run-lines.

(define run-lines

(lambda (lines tape)

(letrec

((driver

(lambda (state tape)

(if (eq? state 'halt)

tape

(let ((matching-line

(find-line state (at tape) lines)))

(driver

(next-state matching-line)

(reconfigure

tape

(next-char matching-line)

(next-direction matching-line)

)

))))))

(driver (current-state (car lines)) tape))))

Such a set of lines is called a Turing machine, named for Alan M. Turing.

Turing claimed that with a small set of characters, including the 0, he could

use his machines to compute whatever a computer could. Then he showed

that no one can write a procedure test-lines, like run-lines, that takes

11.3 Box-and-Pointer Representation of Cons Cells 381

an arbitrary machine and an arbitrary tape and determines whether (run-

lines machine tape) halts. This result is so important that it has been

given a name, the halting problem. All this was done in 1936!

Exercise 11.25

Often it is possible to remove a test by careful design. In the definition of re-

configure, there is a superfluous test. Rewrite busy-beaver replacing 'left

by left and 'right by right, so that a revised definition of reconfigure

works.

Exercise 11.26: New Representation

Consider a representation of tapes that keeps what it is reading separately.

For example, we might choose a list of three elements

(at left-part right-part-less-at)

Then we could redefine overwrite and right cis follows:

(define overwrite

(lambda (char tape)

(let ((left (2nd tape)) (right (3rd tape)))

(list char left right))))

(define right

(lambda (tape)

(let ((char (1st tape))

(left (2ud tape))

(right (3rd tape)))

(list (car right)

(cons char left)

(check-null (cdr right))))))

Use this representation of tapes and test busy-beaver. Then redefine all

necessary procedures so that the use of cons is minimal.

382 Mutation

12 Object-Oriented Programming

12.1 Overview

A different perspective on computing is provided by object-oriented program-

ming. In this style of programming, certain objects are defined that respond

to messages passed to them. Figuratively, we can think of an object as a

computer dedicated to solving a particular type of problem. The input is

the message passed to the object, the object does the computation, and the

output is the value returned by the object. In this chapter, we see how such

objects are defined, and we illustrate the use of objects to define such data

structures as stacks and queues.

12.2 Boxes, Counters, Accumulators, and Gauges

In Chapters 3 and 5, the concept of data abstraction was discussed and il-

lustrated. We saw there that we can write programs that are independent

of the representation of the data and are based on certain predefined basic

procedures, including the constructors and selectors used on the data type.

The actual representation of the data was then used only in defining these

basic procedures. We develop the idea of data abstraction further by defining

certain objects that are combined with certain operations. It is not necessary

for users to know how these objects and operators are implemented in order

to use them. They only have to know the interface. An example of such an

object is a stack that has associated with it such operations as push! and

pop ! . This offers a degree of security in the handling of data and makes it

possible to change the internal representation of the object without the user's

being aware of any changes. Before looking at stacks and queues, we introduce

the Ccise expression, which makes it easier for us to define the various objects

we shall study.

12.2.1 The Case Expression

Scheme provides a special form with keyword case that selects one of a se-

quence of clauses to evaluate based upon the value of an argument (or mes-

sage) that it is passed. To see how case is used, let us first look at a procedure

that tells us whether a letter is a vowel or a consonant. We can define it as

(define vowel-or-consoneint

(lambda (letter)

(cond

((or (eq? letter 'a)

(eq? letter 'e)

(eq? letter 'i)

(eq? letter 'o)

(eq? letter 'u))

'vowel)

(else 'consonant))))

This procedure can also be defined using the special form case as follows:

(define vowel-or-consonant

(leUDbda (letter)

(case letter

((a e i u) 'vowel)

(else 'consonant))))

The value of letter is matched with each of the items (keys) in the list in

the first clause of the case expression. If there is a match, the expression

following the list of keys is evaluated and returned as the value of the case

expression. Thus if letter evaluates to one of a, e, i, o, or u, vowel is

returned. Otherwise, the next clause is evaluated, and since in this case it is

the else clause, consonant is returned. In case letter evaluates to one of the

five vowels, it is more convenient to use the case expression, which matches it

with the possible key values rather than the cond expression, which must list

a separate test for each possibility.

The syntax of case is

384 Object-Oriented Programming

(case target

(.keys expri expT2)

(else expri expr2 .))

where target is an expression that is evaluated and its value is compared

with the keys. Each clause begins with keys, which is a list of items each of

which is matched (using eqv?) with the value of target to decide which of the

clauses will be selected for evaluation. When the first such match is found, the

expressions expr . . . following the keys are evaluated in order and the value

of the last is returned (there is an implicit begin following each keys). If no

match is found and the optional else clause is present, then the expressions

expr ... in the else clause are evaluated. If no else clause is present, then

some unspecified value is returned. It is good programming style always to

include an else clause even if only for reporting an error.

Below are some additional simple examples demonstrating the use of case:

[1] (case 'b

((a) (display "a was selected: ") (cons 'a '()))

((b) (display "b was selected: ") (cons 'b '()))

((c) (display "c was selected: ") (cons 'c '()))

(else (display "None were selected.")))

b was selected: (b)

[2] (case (remainder 35 10)

((2468) "positive and even")

((13579) "positive and odd")

((-2 -4 -6 -8) "negative and even")

((-1 -3 -5 -7 -9) "negative and odd")

(else "zero"))

"positive and odd"

In the various objects we shall define in this chapter, we shall use internal

representations of the data, which are not supposed to be apparent to the user.

In order to secure the data structures used, we introduce, in Program 12.1,

the procedure for-eff ect-only, which evaluates its operand to perform the

side effects and then returns the string "unspecified value". Following our

usual convention, we will not display "unspecified value".

12.2.1 Boxes, Counters, Accumulators, and Gauges 385

Program 12.1 for-eflect-only

(define for-effect-only

(lambda (it em- ignored)

"unspecified value"))

12.2.2 Boxes

A box is a place in which a value can be stored until it is needed later. A new

box containing a given initial value is created by the procedure box-maker.

There are five operations that we shall perform on a box. We use one of

these operations to put a value into the box and another to show the value

in the box. The operation that puts a value into the box is called update!

and the operation that shows the value in the box is called show. Another

useful operation, called swap!
,
puts a new value into the box and returns the

old contents of the box. The operation called reset ! resets the value stored

in the box to its initial value. The ability to perform a reset operation is

somewhat unusual. The operation type, specified for all objects, tells what

kind of object is being sent a message. In this case the type is "box". In

general, the operations that are performed on an object are called methods.

In the case of a box, there are five methods: update
!

, show, swap
!

, reset
!

,

and type.

The objects, such as boxes, are themselves procedures. To apply one of

the methods to an object, we invoke the object on the (quoted) name of the

method followed by any additional arguments appropriate for that method.

We then say that we send the name of the method and any additional argu-

ments as a message to the object. We can use the call structure:

(object ' m.ethod-nam.€ operand ...)

where object is sent the message consisting of the quoted method name and

zero or more operands. On the other hand, we find it more suggestive and,

in fact, more flexible to introduce the procedure send, which is used to send

the message to the object. When we use send, we use the call structure

(send object ' m,ethod-name operand ...)

The following shows a typical construction of a box box-a that is initialized

386 Object-Oriented Programming

with (+ 3 4) and a box box-b that is initialized with 5. We shall describe

the actual mechanism for constructing boxes after looking at the example.

[I] (define box-a (box-maker (+ 3 4)))

[2] (define boi-b (box-maker 5))

[3] (send box-a 'show)

7

[4] (send box-b 'show)

5

[5] (send box-a 'update! 3)

[6] (send box-a 'show)

3

[7] (send box-b 'update! (send box-a 'swap! (send box-b 'show)))

[8] (send box-a 'show)

5

[9] (send box-b 'show)

3

[10] (send box-a 'reset!)

[II] (send box-a 'show)

7

[12] (send box-a 'type)

"box"

[13] (send box-a 'update 27)

Error: Bad method neune: update sent to object of box type.

In [3] , in order to see what is stored in box-a, we send the message show

to box-a, and in [5] , in order to change the value stored in box-a, we send

it the message update! and the new value 3. In [13], we forgot to include

the exclamation mark on the word update, and an error was signaled. The

sending of these quoted method names and arguments as messages to the

objects leads to a style of programming referred to as message-passing style.

In Program 12.2, we define box-maker. It takes as its argument an initial

value stored in the box. It returns a procedure that takes an arbitrary num-

ber of arguments and is hence defined using the unrestricted launbda whose

parameter list is denoted by msg. Each invocation of box-maker returns an

object that we refer to as a box. Thus, in our experiment presented above,

box-a and box-b are examples (or instances) of boxes. Also, in [3] , the mes-

sage consists of the single item ' show, whereas in [5] , the message consists

of two items, the method name 'update! and the operand 3. In the code

given below for box-maker, we use 1st and 2nd to denote car and cadr.

12.2.2 Boxes, Counters, Accumulators, and Gauges 387

Program 12.2 box-maker

(define box-maker

(leunbda (init-value)

(let ((contents init-value))

(lambda msg

(case (1st msg)

((type) "box")

((show) contents)

((update!) (for-effeet-only (set! contents (2nd msg))))

((swap!) (let ((ans contents))

(set! contents (2nd msg))

ans))

((reset!) (for-effeet-only (set! contents init-value)))

(else (delegate base-object msg)))))))

Program 12.3 delegate

(define delegate

(lambda (obj msg)

(apply obj msg)))

respectively. We also use msg to denote the message, delegate is defined in

Program 12.3.

In order to be able to reset the box to its initial value, init-value, it is

necessary to preserve that value. Thus a local variable contents is introduced

to hold the current value stored in the box. It is initialized with init-value.

In the case clause that matches swap
!

, a let expression binds ans to the

current contents of the box. Then set! puts the new value into the box,

but the old value ans that was stored in the box is returned. Whenever

the else clause is reached, no match was found for the method name, so the

message is passed on (or delegatedy to another object, which attempts to

respond to it. (We find that it is more suggestive to use the procedure name

^ When an object cannot respond to a message, there are mechanisms other than delegation

which have been developed. One common mechanism is inheritance. We have chosen to

use delegation instead of inheritance; however, aJl programs expressible with inheritauice

are also expressible with delegation.

388 Object-Oriented Programming

Program 12.4 base-object

(define base-object

(lambda msg

(case (1st msg)

((type) "base-object")

(else invalid-method-name-indicator)))

)

Program 12.5 send

(define send

(lambda args

(let ((object, (car args)) (messag e (cdr args)))

(let ((try (apply object messag e)))

(if (eq? inval id-method-name- indicator try)

(error "Bad method name:" (car 1nessage)

"sent to object of 1

(object 'type)

"type.")

try)))))

delegate instead of apply to pass the message on to another object, although

the two procedures delegate and apply behave the same by our simplification

rule.) In this case, the object to which the message is delegated is the base-

object, which returns invalid-method-naiine-indicator, which is bound to

the string "uiLknown".

(define invalid-method-name-indicator "iinknown")

The procedure send then generates the appropriate invocation of error. The

definitions of base-object and send are contained in Programs 12.4 and 12.5.

We shall define many diff'erent types of objects in this chapter using object

makers similar to box-maker. These will each contain an else clause that

must handle method names for which there is no match. One of the major

advantages of using send is that all these else clauses will have exactly the

same call structure

(else (delegate object msg))

and send takes the appropriate action. When writing the definitions of the

object makers and when using the objects, we must remember that:

12.2.2 Boxes, Counters, Accumulators , and Gauges 389

1. Every object should respond to the method name type.

2. When no match is found for a method name, the else clause should delegate

the message to some object, which in some cases may be base-object.

3. Use send to pass messages to objects.

In this implementation of a box, the data structure used to store a value in

the box is just a variable. The user is not concerned with this fact when using

the box to store the value. We could have used a different data structure,

such as a cons cell, m which to store the value. In the program below for box-

maker, init-value is initially stored in the car position of a cons cell, which

we denote by cell. The procedure set-car! is used to change the value

stored in the box. This alternative version of box-maker is in Program 12.6.

Program 12.6 box-maker (Alternative)

(define box-maker

(lambda (init-value)

(let ((cell (cons init-value "any value")))

(lambda msg

(case (1st msg)

((type) "box")

((show) (car cell))

((update!) (for-effeet-only (set-car! cell (2nd msg))))

((swap!) (let ((sms (cju: cell)))

(set-car! cell (2nd msg))

ans))

((reset!) (for-effeet-only (set-car! cell init-value)))

(else (delegate base-object msg)))))))

12.2.3 Counters

A counter is an object that stores an initial value and each time it is called,

the stored value is changed according to some fixed rule. The counter has two

arguments: the initial value stored and the procedure describing the action

to be taken each time the counter is updated. For example, (counter-maker

10 subl) is a counter with initial value 10 that decrements the counter by

1 when it is updated. The counter responds to the method names: type,

update
!

, show, and reset ! . The definition of counter-maker follows:

390 Object-Oriented Programming

Program 12.7 counter-maker (Methods Disabled)

(define counter-maker

(lambda (init-v«ilue \in«iry-proc)

(let ((total (box-meJcer init-value)))

(lambda msg

(case (1st msg)

((type) "counter")

((update!) (let ((result (imary-proc (send total 'show))))

(send total 'update! result)))

((swap!) (delegate base-object msg))

(else (delegate total msg)))))))

The counter locally defines the box total, which contains the initial value

stored in the counter. When the counter receives the message consisting of the

method name update!, the unary update procedure unsury-proc is applied

to the value stored in the box total to obtain the new value which is then

stored in total. For example, if we wanted the counter to count up by 1 each

time it is updated, we can use addl as the unary update procedure. To create

a counter with initial value that increases the stored value by 6 each time

it is updated, we write:

(coimter-meJcer (launbda (x) (+ 5 x)))

The counter is not supposed to respond to swap ! . Thus if such messages are

sent to a counter, they are delegated to base-object rather than to a box,

which does respond to swap ! . Since the counter responds to the messages

show and reset ! the same as the box total, the else clause merely passes

these messages to total. Thus the message show displays the value currently

stored in the counter, and reset! resets the counter to its initial value. The

fact that the response of the counter to these messages can be found by passing

them to the box is called delegation. The work of the counter is "delegated"

to the behavior of the box.

The approach of catching the method names that are to be disabled, like

swap!, is only one way of supporting the interface. Another alternative is to

catch all the method names to be enabled. Thus, we can rewrite counter-

metker using this view. As long as we delegate to the base object all the

method names that are meaningless, we can use either approach. On one

hand we are throwing the illegal method names out (i.e., disabling them), and

on the other, we are delegating the legal ones (i.e., enabling them). In any

12. 2.S Boxes, Counters, Accumulators, and Gauges 391

Program 12.8 counter-maker (Methods Enabled)

(define counter-maker

(lambda (init-value unary-proc)

(let ((total (box-maker init-value)))

(lambda msg

(case (1st msg)

((type) "counter")

((update!) (send total 'update!

(unary-proc (send total 'show))))

((shoB reset) (delegate total msg))

(else (delegate base-object msg)))))))

event, both have the same effect, and each has aspects that recommend it. If

we are delegating to an object with many legal method names, and only a few

illegal ones, then we should disable illegal method names; otherwise we are

free to choose to enable legal method names. A version of counter-maker,

which enables legal method names, is presented in Program 12.8.

12.2.4 Accumulators

An accumulator is an object that has the initial value init-value. Each time

it receives a message consisting of the method name update! and a value v,

the binary update procedure binary-pro c is applied to the value stored in

the accumulator and v; the result is the new value stored in the accumulator.

For example, if ace is an accumulator that initially stores the value 100 and

has subtraction (-) as its binary update procedure, it is defined by

(define ace (accumulator-maker 100 -))

and

(send ace 'update! 10)

causes the number 90 to be stored in ace. If we then update ace with 25, we

write

(send ace 'update! 25)

and the number 65 is stored in the accumulator.

392 Object-Oriented Programming

Program 12.9 accumulator-maiker

(define accumulator-meiker

(IcUDbda (init-value binary-proc)

(let ((total (box-maker init-value)))

(leimbda msg

(case (1st msg)

((type) "accumulator")

((update!

)

(send total 'update!

(binary-proc (send total 'show) (2nd msg))))

((swap!) (delegate base-object msg))

(else (delegate total msg)))))))

The accumulator uses a box, called total, to store its values. In addition to

responding to the message consisting of update ! and a value, it uses delegation

to pass such messages as show and reset ! to the box total. Program 12.9

contains the code for accumulator-maJcer.

12.2.5 Gauges

A gauge is the last object to be defined in this section. A gauge is similar to

a counter, but it has two unary update procedures, one to count up and the

other to count down. The one to count up is called unary-proc-up, and the

one to count down is called unary-proc-down. The gauge responds to two

update messages up! and down!. It stores its values in a box called total.

When the gauge receives the message up
!

, the update procedure unary-proc-

up is invoked on the value stored in total to get the new value stored in total.

Similarly, when the gauge receives the message down!, the update procedure

unary-proc-down is invoked on the value stored in total to get the new value

stored in total. The gauge also responds to the messages show and reset

!

by delegation from total. For example, to create a gauge g with initial value

10, which either adds 1 or subtracts 1, we write

(define g (gauge-maker 10 addl subl))

and

(send g 'up!)

causes the number 11 to be stored in g, while

12.2.5 Boxes, Counters, Accumulators, and Gauges 393

Program 12.10 gauge-maker

(define gauge-mciker

(lambda (init-value unaury-proc-up uneory-proc-down)

(let ((total (box-maker init-value)))

(lambda msg

(case (1st msg)

((type) "gauge")

((up!) (send total 'update!

(unsury-proc-up (send total 'show))))

((down!) (send total 'update!

(unary-proc-down (send total 'show))))

((swap! update!) (delegate base-object msg))

(else (delegate total msg)))))))

(send g 'down!)

returns the number stored in g to 10. Program 12.10 contains the definition

of gauge-maker.

Exercises

Exercise 12.1: acc-max

Define an accumulator acc-meuc that has initial value and each time it is

updated, it compares the value stored with a new value and stores the majc-

imum of the two. Then test acc-meix by updating it in succession with the

numbers 3, 7, 2, 4, 10, 1, 5 and find the maocimum by passing acc-max the

shov message.

Exercise 12.2: double-box-meJter

Define a procedure double-box-maOcer that takes two arguments, iteml and

item2, and stores these values in two boxes, the left and right, respectively.

An instance of double-box-m€dcer responds to the following messages: show-

lelt, show-right, update-lelt
!

, update-right
•

, and reset !

.

Exercise 12.3: accumulator-maJcer, gauge-meiker

In the definitions of accmnulator-maker and gauge-meJcer method names

that are illegal have been disabled. Rewrite the last two lines of each of these

394 Object-Oriented Programming

procedures so that instead of disabling illegal method names, we enable legal

method names and disable all others.

Exercise 12. 4^ restricted-counter-maker

Our implementation of counter-maker places no restrictions on the possible

values that can be stored in the counter. Define restricted-counter-maker

to take an additional argument, a predicate pred. No value is stored in a

restricted counter unless it satisfies the predicate. If a value fails to satisfy

the predicate, then a reset occurs. For example, if the predicate is (lambda

(n) (and (> n 0) (< n 100))) and we try to bring the restricted counter

up to 105, it will reset to its initial value.

Exercise 12.5

Define the hour hand of a 12-hour clock as a restricted counter. (See the

preceding exercise.)

Exercise 12.6

Define a 12-hour clock that has both a minute and an hour hand. This clock

is to be constructed from two objects. One of them will be the 12-hour

clock, which displays only its hour hand, and the other, the minute hand,

will be built using a modified restricted counter. Such a counter is created

using modified-restricted-counter-meOcer, which includes an additional

argument. This new argument is a reset procedure that is invoked in place of

the built-in reset in the restricted-counter-maker. When the minute hand

of the clock is about to pass to 60 minutes, the reset procedure is used not

only to reset the minute hand to but also to update the hour hand. Do not

forget to initialize the clock. The new clock is itself to be an object created by

the procedure of one argument, clock-maQter, that responds to two messages:

show and update!. (See the preceding exercise.)

Exercise 12.7

As was done in Chapters 8 and 9, tag the objects by adding object-tag as

"object". Then define the simple procedures object? and make-object.

Wrap meike-object around (lambda msg . . .) and redefine send.

Exercise 12.8

Is it possible to implement an accumulator with a counter-maker instead of

a box-maker? Is it possible to implement a counter with an accumulator-

mcQcer instead of a box-maker?

12.3 Stacks 395

12.3 Stacks

As we saw in Chapter 11, a stack is an ordered collection of items into which

new items may be inserted at one end and from which items may be removed

from the same end. The end at which items may be inserted or removed is

called the top of the stack. The image that is often conjured up when thinking

of a stack is the rack of trays in a cafeteria, in which one takes the top one,

and trays are added from the top. As the stack builds up, the item that weis

put on first is buried deeper and deeper, and as things are removed from the

stack, the one that was put on first is the last one to be removed. The item

that was added to the stack last is the first one to be removed. Thus a stack

is referred to as a last-in-first- out data structure, or a LIFO.

The stack has several methods associated with it;

• empty?, which tests whether the stack is empty.

• push
!

, which adds an item to the top of the stack.

• top, which returns the item at the top of the stack.

• pop
!

, which removes an item from the top of stack.

• size, which returns the number of items on the stack.

• print, which prints the items on the stack.

An experiment with stacks is given in Figure 12.11. The two stacks, r and

s, are created in [1] and [2]. In the definitions of r and s, we see that

stack-maker is a thunk, that is, a procedure of no arguments. Its definition

is given in Program 12.12.

In the code for stack-maker, we used a list as the internal representation

of the stack. The user need never know how it is represented, for if we change

the representation, we can alter the definitions of the methods so that when

their names are passed as messages to the stack, the results seen by the user

are the same as those produced by the above code. Even when the stack is

printed, it does not show the internal representation of the stack.

Exercise

Exercise 12.9

In arithmetic, parentheses are used to form groupings of numbers and oper-

ators. For example, one writes 3*(4 + 2). In more complicated expressions,

three different kinds of separators are used to form groupings: parentheses '(',

')', brackets '[',']', and braces '{','}'. Here is an expression that uses all three

396 Object-Oriented Programming

[I] (define r (stack-aaker)

)

[2] (define s (stack-maker))

[3] (send s 'print)

TOP:

[4] (send r 'print)

TOP:

[5] (send s 'eapty?)

tt

[6] (send s 'push! 'a)

[7] (send s 'push! 'b)

[8] (send s 'push! 'c)

[9] (send s 'top)

c

[10] (send s 'print)

TOP: c b a

[II] (send s 'empty?)

tf

[12] (send r 'empty?)

#t

[13] (send r 'push! 'd)

[14] (send s 'size)

3

[15] (send s 'pop!

)

[16] (send s 'pop !

)

[17] (send s 'print)

TOP: a

[18] (send r 'print)

TOP: d

Figure 12.11 Using stack operations

kinds of grouping symbols:

13 + 5*{[14-3*(12-7)]- 15}

Write a program that will scan a mathematical expression made up of the

four basic operations -r, — .=^. and / and the three kinds of separators and

test whether the separators are correctly nested. The examples (3 — 4] and

(5 — [2 + 4) + l] are not correctly nested. This is a natural problem for the use

of a stack, for whenever a left-grouping symbol is encountered, it is pushed

onto the stack, and whenever a right-grouping symbol is encountered, the

stack is popped and the left symbol that comes off the stack is compared to

the right symbol just encountered. If they are of different types, the nesting

is not correct. You can model the arithmetic expression as a list of numbers,

12.3 Stacks 397

Program 12.12 stack-maker

(define stack-meJ^er

(lambda

(let ((stk '()))

(lambda msg

(case (Ist msg)

((type) "stack")

((empty?) (null? stk))

((push!) (for-effeet-only

(set! stk (cons (2nd msg) stk))))

((top) (if (null? stk)

(error "top: The stack is empty.")

(car stk)))

((pop!) (for-effeet-only

(if (null? stk)

(error "pop!: The stack is empty.")

(set! stk (cdr stk)))))

((size) (length stk))

((print) (display "TOP: ")

(for-each

(Icunbda (x)

(display x)

(display " "))

stk)

(newline))

(else (delegate base-object msg)))))))

operators, and grouping symbols. Since Scheme uses these symbols as special

characters, one cannot use them as grouping symbols in the list modeling the

arithmetic expression. Thus use the strings "(",")", "C", "]", "{", and "}"

in place of the grouping symbols. The above arithmetic expression, in this

representation, looks like

(13 + 5 * "{" "[" 14 - 3 * "(" 12-7 ")" "]" - 15 "}")

Test your program on the examples given here and on several additional tests

you devise, some correctly and others incorrectly nested.

398 Object-Oriented Programming

12.4 Queues

A queue is an ordered collection of items into which items are inserted at

one end, called the rear, and from which items are removed at the other end,

called the front. People waiting in line for service normally form a queue in

which new people join the line at the rear and people are served from the

front. Similarly, processes waiting to be run on a computer are put into a

queue to await their turn. Stacks are called LIFO lists because the last one in

is the first one out. Queues are called FIFO lists because the first one in is the

first one out. Adding an item to the rear of the queue is called enqueuing the

item, and removing an item from the front of the queue is called dequeuing.

We implement a queue as an object with the following methods:

• empty?, which tests whether the queue is empty.

• enqueue
!

, which adds an item to the rear of the queue.

• front, which returns the Hem at the front of the queue.

• dequeue
!

, which removes the item from the front of the queue.

• size, which returns the number of items in the queue.

• print, which prints the items in the queue.

Our first implementation of a queue will imitate the way we implemented

a stack. The data structure we choose for the queue is a list, with the first

element of the list the front of the queue. To dequeue an element, we essen-

tially take the cdr of the list. To enqueue an element, we must put it at the

end of the list, so we can make a list of the element and append that onto

the end of the queue. The code for such an implementation is presented in

Program 12.13.

The implementation using lists as the data structure for the queue produces

the results we want, but it does it inefficiently. The trouble is that when we

enqueue an item, we use append! , which must cdr down q until the last pair

and then we attach the cdr pointer to the list containing the new item. The

longer the queue, the more "expensive" it is to cdr down q to get to the last

pair. It would be better to have an implementation that could attach the new

item to the end of the queue without having to cdr down the whole queue.

We accomplish this by introducing a second pointer called rear, which points

to the last cons cell in the queue. When the queue is empty, the pointer q
points to a cell formed by (cons ' () ' ()), and rear also points to that cell.

Only the cdr of q is used.

12.4 Queues 399

Program 12.13 queue-maker

(define queue-m8iker

(lambda ()

(let ((q '()))

(lambda msg

(case (1st msg)

((type) "queue")

((empty?) (null? q)

)

((enqueue!) (for-effeet-only

(let ((list-of-item (cons (2nd msg) '())))

(if (null? q)

(set! q list-of-item)

(append! q list-of-item)))))

((front) (if (null? q)

(error "front: The queue is empty.")

(car q)))

((dequeue!) (for-effeet-only

(if (null? q)

(error "dequeue!: The queue is empty.")

(set! q (cdr q)))))

((size) (length q))

((print) (display "FRONT: ")

(for-each

(lambda (i) (display x) (display " "))

q)

(newline))

(else (delegate base-object msg)))))))

Figure 12.14(a) shows a box-and-pointer representation of such a queue that

has in it the numbers 1 and 2, with 1 at the front. Figure 12.14(b) shows

how the new item 3 is added to the queue by setting the cdr of rear to be

(cons 3 ' ()) and then setting rear itself to point to the last cons cell in the

list. Our new definition of queue-maker is given in Program 12.15. A sample

session using a queue is given in Figure 12.16.

Exercises

Exercise 12.10

Add a message to the queue defined in Program 12.15 called enqueue-list

!

400 Object- Oriented Programming

^ rear
^--^

/ w w

1 2

rear
\^ ^
/ /p F w

>' >r >'

I 2 3

(a)

(b)

Figure 12.14 Box-and-pointer diagram for a queue

that takes as an argument a list Is and enqueues each of the elements of the

list to the queue preserving their order. For example, if the queue a contains

the elements 1, 2, 3, with 1 at the front, and if Is is (list 4 5 6), then

after invocation of (send a 'enqueue-list ! Is), the queue a contains the

elements 1, 2, 3, 4, 5, 6 with 1 at the front. Do not use append!. Why?

Exercise 12.11

Revise the definition of queue-maker in Program 12.15 to include a message

enqueue-maoiy ! that enqueues any number of items at one time. For example,

(send a ' enqueue-many ! 'x 'y 'z) has the same effect as

(begin

(send a 'enqueue! 'x)

(send a 'enqueue! 'y)

(send a 'enqueue! 'z))

Exercise 12.12: queue->list

Define a procedure queue->list that takes as its argument a queue q, with

size disabled, and returns a list of the elements in q without destroying the

queue. In order to do this, one can first enqueue a unique element such as

(list ' 0). Then cons the front of the queue onto the list, and also enqueue

the front onto the queue. Now dequeue the queue, so that what was at the

front is now at the rear of the queue. Repeat this operation of consing the front

of the queue to the list, enqueuing the front of the queue so that it is at the

rear, and then dequeuing the queue, until the unique element you enqueued

12.4 Queues 401

Program 12.15 queue-maier

(define queue-maker

(lambda ()

(let ((q (cons ' () '())))

(let ((rear q)

)

(lambda msg

(case (1st msg)

((type) "queue")

((empty?) (eq? rear q)

)

((enqueue!) (for-effeet-only

(let ((list-of-item (cons (2nd msg) '())))

(set-cdr! zeax list-of-item)

(set! rear list-of-item))))

((front) (if (eq? rear q)

(error "front: The queue is empty.")

(car (cdr q))))

((dequeue!) (for-effeet-only

(if (eq? rear q)

(error "dequeue!: The queue is empty.")

(let ((front-cell (cdr q))

)

(set-cdr! q (cdr front-cell))

(if (eq? front-cell rear)

(set! rear q))))))

((size) (length (cdr q))

)

((print) (display "FRONT: ")

(for-each

(lajnbda (x)

(display i)

(display " "))

(cdr q))

(newline)

)

(else (delegate base-object msg))))))))

reaches the front. When it is dequeued, you have a list of the elements that

are in the queue, and the queue is intact.

Exercise 12.13

Rework the previous problem with the method name size enabled.

402 Object- Onented Programming

[I] (define q (queue-mzJcer))

[2] (send q 'empty?)

#t

[3] (send q 'enqueue! 1)

[4] (send q 'enqueue! 2)

[5] (send q 'enqueue! 3)

[6] (send q 'size)

3

[7] (send q 'front)

1

[8] (send q 'print)

FRONT: 12 3

[9] (send q 'empty?)

»f

[10] (send q 'dequeue!)

[II] (send q 'print)

FRONT: 2 3

Figure 12.16 Using queue operations

Exercise 12.14

In the first version of a queue given in this section, the message enqueue!

contains the code (append! q list-of-item). Discuss the correctness and

the efficiency of the code for a queue if that line of code is replaced by (append

q list-of-item) or by (set! q (append q list-ol-item)).

12.5 Circular Lists

In the previous sections, we defined both the stack and the queue as objects.

In the internal representation of these objects, we used lists. In the case of the

queue, we used pointers to keep track of the front and the rear of the queue.

There is another way of treating stacks and queues that is more elegant. It

makes use of a data type known as a circular list. In this section, we first

implement circular lists as objects and then use them to define both the stack

and the queue, making use of delegation to take advantage of the properties

of the circular list.

In an ordinary list, the cdr pointer of the last cons cell points to the empty

list. This is denoted by placing a diagonal line in the right hand side of the

last cons cell. If, instead, the cdr pointer of the last cons cell of the list points

back to the first cons cell in the list, we say that the list is a circular list. The

12.5 Circular Lists 403

marker
1

1

1 1

/

<

r
^

b a

marker

(a)

M _

1

—^—

>

1 1

—

I

/
r^ ^^ n^ -^ 1

d c b a
(b)

Figure 12.17 Box-and-pointer diagrams for a circular list

box and pointer diagram for a circular list containing the three items c, b.

and a is shown in Figure 12.17a. Note that marker is a pointer to the cons

cell whose car is a. Then to make the list circular, (cdr marker) points back

to the cell whose car is c. To add an item d to this circular list, we cons d to

(cdr meorker) and then reset the cdr pointer of marker to point to the cons

cell with d as its car. (See Figure 12.17b.) Thus inserting d into a nonempty

circular list can be accomplished by invoking:

(set-cdr! Barker (cons 'd (cdr Barker)))

Similarly, to remove d from the resulting circular list, we note that (cdr (cdr

marker)) does not contain the item d. so we only have to write

(set-cdr! marker (cdr (cdr marker)))

to get back to the circular list in Figure 12.17a.

In general, we make an ordinary list circular by letting marker be a pointer

to the end of the list. Then we set the cdr pointer of marker to point to the

beginning of the list. The item to which the cdr pointer of marker points

is referred to as the head of the circular list. As an object, a circular list

responds to the following messages:

• empty?, which tests whether the circular list is empty.

• insert ! . which adds an item to the circular list.

404 Object- Onented Programmtng

• head, which returns the head of the circular list, that is, the item that is

just past the marker.

• delete
!

, which removes the head of the circular list.

• move!, which shifts the marker to point to the head of the circular list,

thus making a new item the head.

• size, which returns the number of items in the circular list.

• print, which displays the circular list.

The code for circular-list-meJcer is given in Program 12.18. Initially,

meirker is locally defined to be the empty list, and when the method name

empty? is received, it tests whether msorker is the empty list. The message

sent to insert an item into the circular list consists of two parts, the method

name insert! and the item to be inserted. There are two cases to consider

when inserting an item. If the list is empty, we first make a list consisting of

the item to be inserted and then change marker to point to that list. Then

we have to make the list circular, so we make the cdr pointer of meirker point

back to meirker itself. We now have a circular list containing only the one

item we inserted.

On the other hand, if the list is not empty, we use the fact that (cdr

meirker) points back to the head of the list when we cons the item to be

inserted (that is, (2nd msg)) onto (cdr meirker). Once we have added the

new item to the head of the list, we reset the cdr pointer of maorker to point

to the cell containing the new item, which becomes the new head of the list.

We use the word head in spite of the fact that a circular list does not have a

head or a tail. However, we may think of the cdr pointer of the cons cell to

which mairker points as pointing back to the head of the list to make the list

circular. And we may think of marker itself as pointing to the last cell in the

list.

If the list is empty when a delete ! message is received, an error is signaled.

If the list contains only one item (that is, if (cdr marker) points back to

meirker itself), then msurker is set equal to the empty list. Otherwise, we again

refer to the "head" of the list as the cons cell to which (cdr marker) points.

Then we reset the cdr pointer of marker to point to (cdr (cdr meo-ker)).

When we found the size of such objects as stacks and queues, we used

the procedure length on their internal list representations. This requires

cdring down the list while counting. We have given a more eflficient way of

doing this by keeping the size in a gauge and incrementing or decrementing

it appropriately when we insert or delete something from the circular list.

We have to be careful in writing the code for a circular list that we do

not get into an infinite loop, going around the circle of pointers indefinitely.

12.5 Circular Lists 405

Program 12.18 circular-list-maker

(define circular-list-maker

(lambda ()

(let ((meurker '())

(size-gauge (gauge-maker addl subl)))

(lambda msg

(case (1st msg)

((type) 'circular list")

((empty?) (null? marker))

((insert !) (send size-gauge 'up!)

(for-effeet-only

(if (null? marker)

(begin

(set I marker (cons (2nd msg) ' ()))

(set-cdr! marker marker))

(set-cdr! marker (cons (2nd msg] (cdr marker))))))

((head) (if (null? marker)

(error "head: The list is empty.")

(ceir (cdr meurker))))

((delete !) (for-effeet-only

(if (null? marker)

(error "delete!: The eirculeu: list is empty.")

(begin

(send size-gauge 'donnl)

(if (eq? maurker (cdr marker))

(set ! marker ' ())

(set-cdr! marker (cdr (cdr marker))))))))

((move !

)

(for-effeet-only

(if (null? marker)

(error "move!: The circular list is empty.")

(set! marker (cdr marker)))))

((size) [send size-gauge 'shoff))

((print) (if (not (null? marker))

(let ((next (cdr marker)))

(set-cdr! marker '())

(for-eaeh (leunbda (x) (display x) (display " "))

next)

(set-cdr! marker next)))

(newline)

)

(else (delegate base-object msg)))))))

4O6 Object-Oriented Programming

Program 12.19 stack-maiker

(define stack-maker

(laabda ()

(let ((c (circuleur-list-msJcer)))

(lanbda nsg

(case (1st msg)

((type) "stack")

((push!) (send c 'insert! (2nd nsg)))

((pop!) (send c 'delete!))

((top) (send c 'head))

((print) (display "TOP: ") (send c 'print))

((insert! head delete! nove !) (delegate base-object msg))

(else (delegate c msg)))))))

In order to avoid this in the case of print, we use the trick of temporarily

resetting the cdr pointer of meirker to point to the empty list. Then the

list is no longer circular, and we can use for-each without fear of looping

indefinitely.

We are now ready to look at the definitions of stack and queue making use

of a circular list. In implementing the stack, a circular list is used and the

marker stays fixed. When the stack receives a push! message, it sends it to

the circular list as an insert ! message. Similarly, the pop! message is sent to

the circular list as a delete! message. When the print message is received

by the stack, the word TOP: is first printed, and then the message is sent to the

circular list. The stack messages size and empty? are delegated to the circular

list. The code for stack-maker using a circular list is in Program 12.19.

The queue-maiker is similarly defined in terms of a circular list, but this

time, the marker is moved each time an item is inserted, so that it points to

the cell containing the new item. Again, most of the queue operations are

delegated to the circular list. The code for queue-maker making use of a

circular list is given in Program 12.20.

This is an elegant way of implementing both the stack-madcer and the

queue-msQcer. They take advantage of delegation by passing messages on to

the circular list. The circular list was flexible enough because we were able to

move the mairker to keep track of certain cells. Notice that we have gained

in eflficiency by making use of the internal gauge in the circular list to keep

the size of the stacks or queues. The circular list is, in general, a useful data

structure.

12.5 Circular Lists 407

Program 12.20 queue-maker

(define queue-maker

(lambda ()

(let ((c (circular-list-maker)))

(lambda msg

(case (1st msg)

((type) "queue")

((enqueue!) (send c 'insert! (2nd msg)) (send c 'move!))

((dequeue!) (send c 'delete!))

((front) (send c 'head))

((print) (display "FRONT: ") (send c 'print))

((insert! head delete! move!) (delegate base-object msg))

(else (delegate c msg)))))))

Exercises

Exercise 12.15

Redefine the stack-maker and queue-maLker procedures presented in Pro-

grams 12.19 and 12.20 so that, instead of the illegal method names being

disabled, the legal method names are enabled.

Exercise 12.16

Draw the box-and-pointer diagrams for a stack implemented using a circular

list. Start with the empty stack, push on the items a, b, c, and d, and then

pop these four items. Show the box and pointer diagrams for the successive

stages as the stack increases and decreases in size.

Exercise 12.17

Make the same sequence of box and pointer diagrams as in the previous ex-

ercise but this time for a queue.

Exercise 12.18

Redefine circular-list-maker in Program 12.18 keeping a local variable

that is initialized to zero to keep the size of the circular list without using a

gauge. Then do it without any local variables.

Exercise 12.19

When building a circular list, it is not necessary to build a circular structure.

Instead, the method names, which rely on the circular structure, must be

408 Object-Oriented Programming

redefined. For example, if before, the cdr of mcirker was a cell c, then using

a simple list, it would be necessary to test (null? (cdr marker)) and then

return c. This approach has a cost because there is an additional local variable

to maintain, which requires setting and testing. However, the benefit is that

no structures are built that can unintentionally enter infinite loops. Redefine

circulax-list-maker without actually using an explicitly circular structure.

Exercise 12.20

Add a method reverse to the circular-list-maJcer that reverses the cir-

cular list in such a way that the cdr pointer of each cons cell is changed to

point to the previous cell in the list instead of the next cell. The diagram

in Figure 12.21 shows a circular list containing four items before and after

reversing. As in the diagram, be sure your method moves the marker.

marker

marker^ \^

>r

i

y f

i

y r

i

>r

a
\

b
\

c
\

d

Figure 12.21 Reversing a circular list

12.6 Buckets and Hash Tables

In Chapter 11, we used a table to store the values computed by procedures

by memoizing those procedures. The values were retrieved from the table by

calling a procedure lookup. In this section, we construct objects that have

the properties of tables. These objects are called buckets. We also present a

second way of storing data using hash tables, which are vectors in which the

12.6 Buckets and Hash Tables 409

entry for each index is a bucket. In this way, large amounts of data can be

stored in relatively small vectors.

Buckets respond to two messages:

• update!, which adds (or alters) a bucket entry.

• lookup, which retrieves a bucket entry.

A bucket is a structure like a stack or queue whose internal representation can

be thought of as a flat list. Unlike a stack or queue, the order in which things

are entered into a bucket is unimportant, and a bucket can only get bigger.

An entry in a bucket (much the same as in a table) consists of two parts:

the key and its associated value. When we memoize the Fibonacci procedure,

each table entry consists of the procedure's argument and the value of the

procedure when called with that argument. In our bucket, the procedure's

argument would be the key, and the value of the procedure for that argument

would be the associated value.

When we update a bucket, if the key is present, then the value associated

with the key is the argument to an updating procedure. The value returned

by this invocation of the updating procedure determines the new value to be

associated with this key. If the key is not present, then the new value to be

associated with this key is determined by invoking an initializing procedure.

The message lookup is like the procedure lookup introduced in the previ-

ous chapter for tables. In that use, we invoke (lookup key table success

fail), and in the object-oriented view, we invoke (send bucket 'lookup

key success fail). Thus if there is a value associated with key, that value

is passed to success, and if key is not in the table, fail is invoked on zero

arguments.

For update! messages there is some similarity with lookup because there

are separate responses to the existence or nonexistence of the key in the ta-

ble. The call structure for update! is (send bucket 'update! key proc-

if-present proc-if-absent). Again a search of the bucket for the key

occurs. If key exists with associated value, vai, that value is replaced with

the result of evaluating (proc-if-present val). If key does not exist, it is

added with the associated value (proc-if-absent key). A typical session

with a bucket is given as an example in Figure 12.22. Program 12.23 is an

implementation of a bucket-maker.

Recall that we defined memoize in the previous chapter as a mechanism for

improving the efficiency of any single-argument procedure proc. We can use

the bucket mechanism to obtain another version of nemoize (Program 12.24).

The key will be the argument, n, and its associated value will be the value of

(proc n).

410 Object-Oriented Programming

[I] (define b (bucket-maker))

[2] (send b 'lookup 'a (lambda (x) x) (lambda () 'no))

no

[3] (send b 'update! 'a (lambda (x) (addl x)) (lambda (x) 0))

[4] (send b 'lookup 'a (leunbda (x) x) (lambda () 'no))

[5] (send b 'update! 'a (lambda (x) (addl x)) (lambda (x) 0))

[6] (send b 'lookup 'a (lambda (x) x) (lambda () 'no))

1

[7] (send b 'update! 'q (lambda (x) (+ 2 x)) (lambda (x) 1000))

[8] (send b 'lookup 'q (lambda (x) x) (lambda 'no))

1000

[9] (send b 'update! 'q (lambda (x) (+ 2 x)) (lambda (x) 1000))

[10] (send b 'lookup 'q (lambda (x) x) (lambda 'no))

1002

[II] (send b 'update! 'q

(leimbda (x)

(send b 'lookup 'a (lambda (y) (- x y)) (lambda () 'no)))

(lambda (y) 'no))

[12] (send b 'lookup 'q (lambda (x) x) (lambda () 'no))

1001

Figure 12.22 Using bucket operations

Exercise

Exercise 12.21

The two invocations of send in memoize can be simplified to one by adding

a new method name to bucket-meiker (see Programs 12.23 and 12.24) that

combines the update and lookup into one operation and thus avoids one of the

two searches. Rewrite bucket-meiker to run the definition of raemoize below.

(define memoize

(lambda (proc)

(let ((bucket (bucket-meiker)))

(leuabda (arg)

(send bucket 'update! -lookup arg (lambda (val) val) proc)))))

Requiring no upper bound on the size of a bucket has its own cost. As

the bucket gets bigger, we discover that the search for updating and looking

information up in the bucket gets more and more expensive. Let us consider

another program that uses a bucket. Suppose we have a list of strings, like

12.6 Buckets and Hash Tables 411

Program 12.23 bucket-maker

(define bucket-maker

(lanbda ()

(let ((table '()))

(lambda msg

(case (1st msg)

((type) "bucket")

((lookup)

(let ((key (2nd msg)) (succ (3rd msg)) (fail (4th msg)))

(lookup key table (lambda (pr) (succ (cdr pr))) fail)))

((update!

)

(for-ef feet-only

(let ((key (2nd msg))

(updater (3rd msg))

(initializer (4th msg)))

(lookup key table

(lambda (pr)

(set-cdr! pr (updater (cdr pr))))

(lambda

(let ((pr (cons key (initializer key))))

(set! table (cons pr table))))))))

(else (delegate base-object msg)))))))

Program 12.24 memoize

(define memoize

(lambda (proc)

(let ((bucket (bucket-maker))

)

(lambda (arg)

(send bucket 'update! arg (lambda (val) val) proc)

(send bucket 'lookup <urg

(lambda (val) val) (lambda «f))))))

the contents of a book. We would like to find the word count frequency of

the articles a, an, and the and possibly some others. We could solve this as

follows:

412 Object-Oriented Programming

(define word-frequency

(lambda (string-list)

(let ((b (bucket-maker)))

(f or-each

(lambda (s) (send b 'update! s addl (lambda (s) 1)))

string-list)

b)))

This defines the procedure word-frequency, which, when passed a text (a

list of strings), returns a bucket that has each of the different strings in the

text as a key and the number of times that string appears in the text as its

associated value. Now suppose that the variable string-list is bound to

some text; for example, the text might start with ("four" "score" "and"

"seven" "years" "ago" "our" "fathers" ...). By writing

(define word-frequency-bucket (word-frequency string-list))

we define a bucket, called word-frequency-bucket, that contains each of

the different words in our text as keys and the frequency of that word as its

associated value. To see how many times the three strings "a", "an", and

"the" appear in the text, we write:

(map

(lambda (s)

(cons s (send word-frequency-bucket 'lookup s

(lambda (v) v)

(lambda () 0))))

'("a" "an" "the"))

This returns a list of the form (("a" . 7) ("an" . 0) ("the" . 10)).

If we were maintaining a frequency count for a book with 1,000 different

words, then the bucket would be a list of 1,000 items, and searching it would

be expensive. We next show how to avoid this problem.

We have now seen two ways of handling the building of tables for such

purposes as memoizing. The first method was to use lists or buckets, which

has the disadvantage that when the table gets long, lookup becomes a costly

operation. The other method was to use a large vector so that each entry can

be stored with a unique index and can be accessed randomly. This has the

disadvantage that the vector has a predetermined fixed length and can hold a

limited number of entries. We are now ready to look at a surprisingly simple

solution to avoid the long searches and to allow for an unlimited number of

12.6 Buckets and Hash Tables 413

entries. We create a vector that holds one bucket per index. This way we can

partition the pairs by placing individual keys and their associated values in a

bucket as a function of what the key is.

A rather naive solution to the word frequency problem would be to associate

a bucket with each letter. This would create 26 buckets, and if we were lucky,

the average length of each bucket would be 1000/26 (approximately 40). Then

we could use the first or last letter of a string to determine which bucket to

update. Of course, words in English being what they are, the z-bucket will

not carry its load. The choice of function and the length of the vector vary

with the nature of the data being stored. The function must take a key and

replace it by some nonnegative integer that can reference the vector. This

function is called a hash function because it hashes up the data and turns

them into integers, which are then used to access the vector. The important

point here is that we want the hash function to spread the data evenly in the

buckets. For the Fibonacci numbers example, a reasonable hash function is

the remainder with the size of the vector. Here is how to create hash tables.

Program 12.25 hash-table-maker

(define hash-table-maker

(lambda (size hash-fn)

(let ((v ((vector-generator (lambda (i) (bucket--maker))) size)))

(lambda msg

(case (1st msg)

((type) "hash table")

(else

(delegate (vector-ref v (hash-fn (2nd msg))) msg)))))))

An empty bucket is placed at each index of the vector, v. Then, using the

key, an index is determined by applying the hash-fn to the key. The value

at that index is a bucket that responds to the same messages as heish tables.

By delegating to the bucket the original message, the same information is

forwarded to the bucket. We now write the new definition of memoize using

a hash table in Program 12.26. In order to write this new memoize we only

need to supply arguments to hash-table-maker. Everything else remains

unchanged. This version of memoize is restricted to numerical data since

its associated hash function invokes remainder on its argument. The hash

function can be as general as the problem for which it is being used demands.

414 Object-Oriented Programming

Program 12.26 memoize

(define memoize

(let ((hashf (lambda (x^ (remainder x 1000))))

(let ((h (hash-table-maker 1000 hashf)))

(lambda (proc)

(lambda (arg)

(send h 'update arg (lambda (v) v) proc)

(send h 'lookup arg (lambda (v) v) (lambda #f)))))))

Similarly we can rewrite word-frequency by including a hash table where

we earlier had a bucket. For this, we need a way of converting the first letter

of each string into an integer. The code that assigns to each keyboard char-

acter a unique integer (see Appendix Al) provides us with just the help we

need. Scheme has a procedure string-ref that takes a string and an inte-

ger as arguments and returns the character in the string having that integer

as its index. Scheme also has the procedure char->integer, which takes a

character as its argument and returns the integer associated with that char-

acter. We shall study the character data type more fully in Chapter 15. We
use these two procedures now to define the hash function for the procedure

word-frequency:

(define word-frequency

(let ((naive-hash-function

(lambda (s)

(remainder (char->integer (string-ref s 0)) 26))))

(let ((h (hash-table-maker 26 naive-hash-function)))

(lambda (string-list)

(f or-each

(lambda (s) (send h 'update! s addl (lambda (s) 1)))

string-list)

h))))

A popular hash function for strings is one that sums the (char->integer

(string-ref s i)) for i = to (subl (string-length s)) and finds the

remainder with the length of the vector. The important aspect of the choice

of hash function is that it must spread the data randomly into the buckets so

that each bucket carries its load.

The advantage of hash tables is that when order is not important, a table

can be stored in a vector so that retrieval and updating are far more effi-

cient than in simple linear search. The disadvantage is that we rely on a

12.6 Buckets and Hash Tables 415

hash function that cannot know in advance what the data will look like. To

demonstrate this, consider the following definition of new-bucket-maker:

(define neH-bucket-maker

(lambda ()

(hash-table-maker 1 (lambda (d) 0))))

This hash table is as inefficient as a bucket. We chose the vector too small,

and we chose the hash function too naively. Of course, this would never be

done. In practice, most systems discourage the user from worrying about the

size of the hash table or the nature of the hash function.

Exercises

Exercise 12.22

Construct a list of strings from some paragraph in this section, and run word-

frequency over that list. Determine how many of each of the articles o, an,

and the were used.

Exercise 12.23

Using the list of strings from the previous exercise, introduce a hash function

that uses a large prime number for the vector length and uses the sum of

integers corresponding to characters hash function as described in this section.

Exercise 12.24

Include a message re-initialize ! in the definition of bucket-maker and

hash-table-maker. In both cases, this method returns the object to its

initial state.

Exercise 12.25

Lists that can only grow can get expensive.

a. Include a remove ! message in bucket-maker that removes the key and its

associated value from a bucket. The operation guarantees that if b is a

bucket, then the following expression is always false.

4I6 Object-Oriented Programming

(begin

(send b 'remove! key)

(send b 'lookup key (lambda (v) #t) (lambda () #f)))

is always false.

b. Include a remove! message in hash-table-maker that removes the key

and its associated value from the hash table. If b is a hash table, then the

expression above is always false.

Exercise 12.26: store!

Define a procedure store! that takes a hash table (or bucket), a key, and a

value and is defined so that if b is a hash table (or bucket), then

(begin

(store! b key value)

(send b 'lookup key (leuobda (v) (equal? value v)) (lambda () #f)))

is always true. Do this without adding any new messages to hash-table-

maker (or bucket-maker).

Exercise 12.27

Include an image message in bucket-maker whose value is a list of the key-

value pairs. Design it so that in the event of a subsequent update to an existing

key, that update will not mutate the list previously returned by the image

message. If b is a bucket and (send b 'lookup key number? (lambda ()

#1)) is true then

(let ((prs (send b 'image)))

(send b 'update! key addl (lambda (k) 0))

(= (cdr (assoc key prs)) (cdr (assoc key (send b 'image)))))

is always false.

Exercise 12.28

Using the previous exercise, include an image message in hash-table-maker

whose value is a list of key-value pairs. Design it so that in the event of a

subsequent update to an existing key, that update will not mutate the list

previously returned by the image method. If b is a hash table and (send

b 'lookup key number? (lambda () #f)) is true, then the equation of the

previous exercise holds. Hint: You may be tempted to use append, but here

is an example where if you defined bucket-maker correctly, you should be

able to use append !

.

12.6 Buckets and Hash Tables 4^7

The next four problems are related. Work them in order and you will discover

an interesting generalization of delegation.

Exercise 12.29: theater-maker

Consider the definition of theater-maJter below. When entering a theater,

there is usually a line to purchase tickets. Sometimes what is showing at the

theater attracts a massive audience. When that happens, the doors to the

theater may close while there is still a line to purchase tickets. By using a

gauge for modeling the flow of patrons into the loge and a ticket queue where

each patron waits, we can model these facets of a theater. What are the

advantages of using delegate in the else clause of theater-maker? What are

the disadvantages?

(define theater-maker

(lEunbda (capacity)

(let ((ticket-line (queue-maker)

)

(vacancies (gauge-maker capacity addl subl)))

(lambda msg

(case (1st msg)

((type) "theater")

((enter!) (if (zero? (send vacancies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vaceuicies 'down!))))

((leave!) (if (< (send vacancies 'show) capacity)

(send vacancies 'up!)

(error "leave!: The theater is empty.")))

(else (delegate ticket-line msg)))))))

Exercise 12.30

In theater-maker, suppose we would like to know how many seats are vacant

for the next showing. We cannot find this out without introducing a message,

say show, in the definition of theater-maker. See the code below. Why must

we include the extra message?

(define theater-maker

(lambda (capacity)

(let ((ticket-line (queue-maker))

(vacancies (gauge-maker capacity addl subl)))

(lambda msg

(case (1st msg)

((type) "theater")

j^l8 Object-Oriented Programming

((enter!) (if (zero? (send vacancies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vacancies 'dosn!))))

((leave!) (if (< (send vacancies 'show) capacity)

(send vacancies 'up!)

(error "leave!: The theater is empty.")))

((show) (send vacancies 'show))

(else (delegate ticket-line msg)))))))

We have two active objects: ticket-line and vacancies. The default

line has (delegate ticket-line msg). This means that we do not have

(delegate vacancies msg). We are only allowing one default. With double

delegation, we can have two defaults. If the message is not applicable to the

first default, it tries the second. So far, we have only seen objects with single

delegation. In this exercise, we build objects with multiple delegation.

We introduce a binary function, combine, that, like compose, takes two

procedures (in this case, objects) as parameters and returns a procedure as a

value.

Program 12.27 combine

(define combine

(lambda (f g)

(lambda msg

(let ((f-try (delegate f msg)))

(if (eq? invalid-method--name- indicator f-try)

(delegate g msg)

f-try)))))

The returned procedure will delegate a message, in order, to the two objects

until it finds one that does not return invalid-method-name-indicator. If

f is not such an object, it invokes g. The procedure combine takes only two

arguments. Rewrite combine to take two or more arguments. Below we have

changed theater-maker to use combine so that the vacancies messages will

be delegated too. The result will be multiple delegation, which will delegate

show messages without the additional line in theater-maker.

12.6 Buckets and Hash Tables 419

(define theater-maker

(lambda (capacity)

(let ((ticket-line (queue-maker))

(vacancies (gauge-maker capacity addl subl)))

(lambda msg

(case (Ist msg)

((type) "theater")

((enter!) (if (zero? (send vacancies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vacancies 'down!))))

((leave!) (if (< (send vacemcies 'show) capacity)

(send vacancies 'up!)

(error "leave! The theater is empty.")))

(else (delegate (combine ticket-line vacancies) msg)))))))

Exercise 12.31

The multiple delegation used with combine in the previous exercise is some-

times dangerous because method names are symbols. What would happen

if show were used instead of front as the message for looking at the first

element in a queue? Consider both expressions:

(delegate (combine ticket-line vacancies) msg)

and

(delegate (combine vacancies ticket-line) msg)

Exercise 12.32

In the interests of security, we would like to disable some operations from

delegation. For example, we would like to keep anyone from resetting the

gauge. This would correspond to yelling "fire," clearing the loge before the

showing, and then allowing just the current contents of the ticket line to enter

the loge. That would not be fair. The patrons who were already in the

loge would have paid without receiving any entertainment. Or perhaps an

update! message might be sent so that everyone might think the loge was

full. Such skullduggery is possible with the current configuration of theater-

maker. However, if we form a list of those "unfriendly" messages and disable

them, we can keep these theaters from allowing such nefarious acts. Below is

a partial solution where we have disabled reset! and update!. Rewrite the

definition of theater-maker below to include all of the messages that should

be disabled:

ji20 Object-Oriented Programming

(define theater-maker

(lambda (capacity)

(let ((ticket-line (queue-maker))

(vacancies (gauge-maOcer capacity addl subl)))

(lambda msg

(case (1st msg)

((type) "theater")

((enter!) (if (zero? (send vacemcies 'show))

(display "doors closed")

(begin

(send ticket-line 'dequeue!)

(send vacancies 'down!))))

((leave!) (if (< (send vaceuicies 'show) capacity)

(send vaczmcies 'up!)

(error "leave!: The theater is empty.")))

((reset! update!) (delegate base-object msg))

(else (delegate (combine ticket-line vacancies) msg)))))))

The next six problems are related. Work them in order, and you will discover

some interesting generalizations of objects as we have defined them in this

chapter.

Exercise 12.33

Consider a new definition of send.

Program 12.28 send

(define send

(lambda args

(let ((try (apply (car args) args)))

(if (eq? inval id-method-name- indicator try)

(let ((object (car args)) (message (cdr args)))

(error "Bad method name : " (car message)

"sent to object of"

(object object ' type)

"type."))

try))))

According to this definition, uses of send are the same as before, but each mes-

sage includes the receiver of the message as the first element of the message.

Here is an example that uses this send to build counter-maker:

12.6 Buckets and Hash Tables 421

(define counter-meiker

(lambda (init-value uneiry-proc)

(let ((total (box-maker init-value)))

(lambda message

(let ((self (cair message)) (msg (cdr message)))

(case (1st msg)

((type) "counter")

((update!) (let ((result (unaury-proc (send total 'show))))

(send total 'update! result)))

((swap!) (delegate base-object message))

(else (delegate total message))))))))

The variable message contains the receiver as its car and the original msg as

its cdr. When we delegate, we use the whole message. Rewrite box-maker

so that this definition of coxmter-maker works. Be sure to redefine base-

object.

Exercise 12.34

Below is the definition of cartesicoi-point-maker:

(define cartesian-point-maker

(lambda (x-coord y-coord)

(lambda message

(let ((self (ceur message)) (msg (cdr message)))

(case (1st msg)

((type) "Ccurtesiam point")

((distance) (sqrt (+ (squaire x-coord) (squzure y-coord))))

((closer?) (< (send self 'disteince) (send (2nd msg) 'distance)))

(else (delegate base-object message)))))))

Fill in the gaps in the experiment below:

[1] (define cpl (caurtesian-point-maker 3.0 4.0))

[2] (send cpl 'distance)

7

[3] (define cp2 (cartesian-point-maker 1.0 6.0))

[4] (send cp2 'distance)

7

[5] (send cpl 'closer? cp2)

7

[6] (send cp2 'closer? cpl)
7

422 Object-Oriented Programming

Exercise 12.35

Using the definitions of the previous exercise, we add a new kind of point.

In the Cartesian point, we found the distance to the origin as a straight line.

In this definition, we determine the distance as the sum of two straight lines:

the distance to the x-axis and the distance to the y-axis. This type of point

is called a Manhattan point because it is reminiscent of distances traveled in

cities. Below is the definition of manliattan-point -maker:

(define manhattan-point-maker

(lambda (x-coord y-coord)

(let ((p (cartesian-point -maker x-coord y-coord)))

(Icunbda message

(let ((self (car message)) (msg (cdr message)))

(case (1st msg)

((type) "Manhattsm point")

((distance) (+ x-coord y-coord))

(else (delegate p message))))))))

With this definition, we have refined cartesian-point -maker by determining

the distance diff"erently. The determination of which of two points is closer to

the origin stays the same, but if the point is a Manhattan point, it determines

its distance to the origin by summing instead of finding the square root of the

sum of squares. Fill in the gaps in the experiment below:

[7] (define mpl (manhattan-point-maker 6.0 1.0))

[8] (send mpl 'disteince)

7

[9] (send cp2 'closer? mpl)
•?

[10] (send mpl 'closer? cp2)

7

Exercise 12.36

Suppose that we always create points at the origin (0,0). Then we could add

a method name moveto ! that would take an x-coordinate and a y-coordinate

as arguments. In addition, we want a list of the two current coordinates.

Add the method names current-coordinates and moveto ! to the definition

of cartesian-origin-maker below. We have left the type eis "Cartesian

point" because it still is a point eis one would find in the plane.

12.6 Buckets and Hash Tables 423

(define cartesi8m-origin-maker

(lambda ()

(let ((x-coord 0) (y-coord 0))

(lambda message

(let ((self (car message)) (msg (cdr message)))

(case (car msg)

((type) "Cartesian point")

((distance) (sqrt (+ (square x-coord) (squeure y-coord))))

((closer?) (< (send self 'distance) (send (2nd msg) 'distemce))'

(else (delegate base-object message))))))))

Exercise 12.37

Using the definition of your solution to cartesizin-origiii-meLker from the

previous exercise, fill in the gaps in the experiment below.

[1] (define cpl (cartesian-origin-maker))

[2] (send cpl 'distance)
7

[3] (send cpl 'current-coordinates)
•?

[4] (send cpl 'moveto! 6.0 1.0)

7

[5] (send cpl 'distance)

7

[6] (send cpl 'current-coordinates)

7

Exercise 12.38

Fill in the rest of the definition of manhattsm-origin-maker below, but do

not use p. Test closer? on a Manhattan point and a Cartesian point that

have both been moved to (6.0,1.0).

(define manhattan-origin-maker

(lambda ()

(let ((p (cartesian-origin-maker)))

(lambda message

(let ((self (car message)) (msg (cdr message)))

(case (1st msg)

((type) "M2mhattan point")

((distance) ?)

(else (delegate p message))))))))

424 Object-Oriented Programming

13 Simulation:

Objects in Action

13.1 Overview

One of the many uses of computers is in simulation, that is, in the modeling

of real-world phenomena with the computer to study how varying the con-

ditions (parameters) affects the behavior of the system. We generally select

characteristics of the system to be modeled and define objects and actions

that enable a computer program to mimic the real world. If the real-world

behavior is adequately described in the computer program, the results of the

program should predict what happens in the real-world situation. In many
instances, the actual system we are studying is unwieldy and does not lend it-

self to experimentation. By using computer simulation, we can see the effects

of parameter changes without tinkering with the actual system. Simulation

is extensively used in decision making in government, business, and industry.

We shall illustrate the use of object-oriented programming in a simulation

of a gasoline station. We have selected this example because we can build a

fairly realistic model for it with relatively few parameters. It also gives us an

opportunity to use a number of the data structures introduced in Chapter 12,

such as queues, boxes, counters, and accumulators.

13.2 Randomness

Simulation problems often deal with phenomena that involve uncertainty. A
number of the variables that we use will have values that are generated ran-

domly. We already used such randomly generated values when we generated

lists of numbers to be sorted in Chapter 10. We say that simulations that

make use of randomness to approximate the values of certain variables are us-

ing Monte Carlo methods. For our gas station simulation, we describe three

different random number generators: uniform, exponential, and normal.

In our gas station simulation, the customers have a choice of full service

or self-service. We estimate the percentage of the customers that choose self-

service, say, 75%, so that 25% select full service. Then when a customer

arrives, we must decide whether he wants self or full service. For lack of

better information, we could toss two coins, and if both come up heads, we

assume that he wants full service. We accomplish this coin-tossing ploy in the

computer by generating a number that is equally likely to assume any integer

value from through 99. If that number is less than 75, we assume the cus-

tomer wants self-service. The number that takes values in the range from

through 99 and is equally likely to eissume any such value is an example of a

uniformly distributed random variable. In general, a variable whose value is

determined by chance (tossing a coin or a simulation of such an act) is called

a random variable. If the values it takes on are all in some fixed interval and

any value in that interval is equally likely to be assumed, we say the ran-

dom variable has a uniform, distribution. The procedure random, introduced

in Chapter 10, generates a uniformly distributed "random" variable with a

nonnegative integer value less than n when (random n) is called. To generate

a decimal number between and 1, excluding but including 1, we can use

the procedure unif-rand-var-O-l in Program 13.1.

Program 13.1 unif-rand-var-O-l

(define unif-rand-veur-O-l

(let ((big 1000000))

(lambda ()

(/ (+ 1 (random big)) big))))

In an actual gas station, we cannot always tell exactly when the next cus-

tomer will arrive. The variable that tells us when the customers arrive is also

a random variable. It is shown in probability theory that the time between

the successive arrival of customers is a random variable with an exponential

distribution.^ (See Program 13.2.) That is, the time between the arrival of

successive customers can be taken to be a log - where a is the average time

^ See, for example, Feller 1950, p. 218.

426 Simulation: Objects in Action

between arrivals and u is a uniformly distributed random number with values

between and 1, not including 0. We omitted the value to be able to take

the logarithm of the random number. We can then define a procedure called

arrival-time-generator, which randomly generates the arrival time of the

next customer, using the parameter av-arr-time, which is set when the pro-

gram is initialized, and rounding the resulting time to be an integer with 1

minute as its smallest value.

Program 13.2 exponential-random-variable

(def ine exponent ial-random-variable

(lambda (mean)

(* mean (- (log (unif-rand-var-0-1))))))

Program 13.3 arrival-time-generator

(define airrival-time-generator

(Ijunbda (av-arr-time)

(+ 1 (round (exponential-random-variable (- av-arr-time 1))))))

The number of gallons of gasoline that a customer buys is also a random

variable. It seems reasonable to assume that the number of gallons of gasoline

that a customer buys will cluster around some average value. Very few buy

1 or 2 gallons and very few buy large quantities above 25 gallons. It might

be appropriate for us to assume that the average number of gallons that a

customer buys is 12 gallons and that most buy between 8 and 16 gallons. This

leads us to assume that if we draw a graph showing the number of gallons

bought on the horizontal axis and the number of people who bought that

many gallons on the vertical axis, we would get the well-known bell-shaped

curve known as the normal distribution. This distribution has the property

that its highest probability is at the mean (or average) value m, which we

shall take as 12 gallons. There is also the standard deviation s, a number

that indicates the fatness of the bell-shaped curve. About two-thirds of the

purchases fall in an interval, which extends a distance s on each side of the

mean m. In our case, we shall take the standard deviation to be 4 gallons, so

that about two-thirds of the customers purchase between 8 and 16 gallons.

We have seen how to get a uniformly distributed pseudo-random variable

13.2 Randomness 4^7

between and 1. Let us call this uniformly distributed random variable u,

and let us generate 12 such random numbers: ui,U2, . .
.

, Ui2- We can then

simulate a normally distributed random variable v with mean m and standard

deviation s by using the formula^

12

m + s yj(u,- — .5)

t=i

The Greek letter sigma, ^, indicates that we form the sum of terms of the

form {ui — .5) for the index i going from 1 to 12. Program 13.4 generates the

normally distributed random variable. Program 13.5 generates the number of

gallons of gasoline purchased.

Program 13.4 nonnal-ramdom-vaariable

(define normal-random-variable

(lambda (meein std-dev)

(letrec ((compute (lambda (i)

(if (zero? i)

(+ (- (unif-rand-var-0-1) .5)

(compute (subl i)))))))

(+ mean (* std-dev (compute 12))))))

Program 13.5 gallons-generator

(define gallons-generator

(lambda ()

(maix 1 (round (normal-remdom-vzuriable 12 4)))))

^ We always use 1 2 uniform random v2Lriables to generate a normal random vau-iable because

it can be shown that the mean of any uniform r2indom v^lriables u on the interval to 1 is .5,

and its standeird deviation is l/\/T2. By adding 12 independent uniform rjuidom variables,

we get an approximation to a normal reindom veiriable with meain .5 and stand2Lrd deviation

1. We subtract .5 in each term to get the meam to be and multiply the resulting sum by

5 to get a steindard deviation of s 2uid add m to get a meem of m.

428 Simulation: Objects in Action

Exercises

Exercise 13.1

In the game of odds and evens, two coins are tossed. If the result of a toss is

one head and one tail, we call it odds. Otherwise, we call it evens. Write a

program to simulate this game for 1000 tosses and determine the number of

odds and evens that occur.

Exercise 13.2

While riding in a car with a friend, he proposes a wager that involves keeping

track of the last two digits of the license plates of passing cars. He bets you

$10 that within the next twenty cars that pass, at least two passing cars will

have the same two-digit number as the last two digits in their license plates.

This may be any number from 00 to 99. Develop a program to simulate this

game to determine whether you should take the bet. Perform the simulation

100 times and determine the amount of money you would have won or lost.

Exercise 13.3

The random number generator implemented in most computers generates

what are known as pseudorandom numbers rather than true random numbers.

Footnote 1 in Section 10.2.5 describes an algorithm for such a pseudorandom

number generator. Here is a Scheme implementation of that algorithm:

(define random-maker

(lambda (m a seed)

(lambda (n)

(let ((u (/ seed m)))

(set! seed (modulo (* a seed) m)

)

(floor (* n u))))))

(define remdom-time (lambda () 1000))

(define random

(random-maker (- (expt 2 31) 1) (expt 7 5) (random-time)))

If your implementation of Scheme has a procedure that gives you the time

of day, it should be used instead of random-time. If not, our naive definition

will suffice. Consider these two ways to test a random number generator.

a. Divide the range from to 99 into k equal parts. Generate n random

numbers in that range and count how many fall into each part. The fraction

13.2 Randomness 429

of those that fall in each part should be approximately the same and equal

tof.

b. Count the number of upward runs (that is, sequential runs of random

numbers in ascending order) of length k and the number of downward runs

(that is, sequential runs of random numbers in descending order) of length

Ar when a large number of random numbers is generated. For each value of

k, the counts should be approximately the same.

Implement these two tests in Scheme, and run them using the random

number generator defined above. If your implementation of Scheme has a

random number generator, test it too. Interpret the results.

13.3 The Gas Station Simulation

Our simulation concerns a gasoline station that has two lanes leading to self-

service pumps and two lanes leading to full-service pumps. This is not an

uncommon configuration in small stations. To run the simulation, we specify

the following initialization parameters:

• close-time: The closing time in hours assuming that the station opens

when the clock reads hours.

• %-self-service: The percentage of the customers who choose self-service.

• av-airr-time: The average time interval in minutes that passes between

the arrival of customers. The customers arrive at random times, but the

average time between arrivals is what is estimated here.

• prolit-sell: The profit that the station owner makes on each gallon of

self-service gas sold.

• profit-full: The profit that the station owner makes on each gallon of

full-service gas sold.

• eztra-timeCself-punp: The average time spent at the self-service pump
in excess of the time actually pumping the gas (e.g., cleaning windows,

paying for purchase, etc.).

• extra-timeWull-pump: The average time spent at the full-service pump

in excess of the time actually pumping gas (e.g., waiting for service, paying

for purchase, etc.).

• pump-rate: The number of gallons of gasoline per minute that the pumps

deliver.

4S0 Simulation: Objects in Action

Gas Station

2 full-service pumps
2 self-service pumps

aock

Serve next ciistomer

at each pump

Dequeue customer

served and record

purchase data

Update clock

C\ closing time

arrival time

Enqueue next customer

in shortest pump queue

of desired service type

Serve next customer

at each pump

Dequeue customer

served and record

purchase data

Update clock

and

arrival time

Serve next customer

at each pump

Dequeue customer

served and record

purchase data

Update clock

Output statistical
{

data for day

Figure 13.6 Flow^chart for the gas station simulation

Figure 13.6 shows a flowchart or diagram of the gas station simulation. The

box on the top shows the gas station with four pumps. Moving downward, we

pass through various diamond-shaped boxes, which correspond to conditionals

or branches. Each branch follows a customer through the wait in the pump

queue until he or she is served and is dequeued and the purchase is recorded.

At closing time, those customers still in line are served but no new ones are

admitted. When all are served, the statistical data for the day are printed

out.

To implement this gas station simulation, we use several types of objects,

each made by an object maker. Figure 13.7 shows the various objects and

the method names to which they respond. It also shows the lines of com-

13.3 The Gas Station Simulation 431

station

Tf^t^r%rt V

wnicn serve
5lll —^ITIT^fV*?

«iprvp V

pump7

empty

:

^i/e

check w

customer

CTQllrtnc ^

^A w

serv

1V/VV/J.\J

ice

w

nuTnV>er~of

total wait! —
max—wait'

—
V tr*tQ 1—T^fr*Ti1

1

rpnort

>

service

pump
pump
pump

queue ofcustomers

queue ofcustomers

queue ofcustomers

queue ofcustomers

> gallons generator

service

counter

accumulator

accumulator

accumulator

report procedure

Figure 13.7 Objects and messages used in the simulation

munication between the objects, that is, the objects that send messages to

other objects. The gas station itself is an object named station created by

station-maker (see Program 13.10). The object station responds, in ways

that will be described later, to four messages: report, which-serve, all-

empty?, and serve. Each pump in the gas station is an object created by the

procedure pump-maker (see Program 13.11). The pump object, which man-

ages its queue of customers who are waiting for service, responds to the four

messages: empty?, (referring to its queue of customers), enqueue!, size, and

check. The customers are objects created by the procedure customer-maker

(see Program 13.12). Each customer responds to the messages: gallons and

record. We also use objects created by the procedure service-maiker (see

Program 13.13). These objects, which are associated with each customer,

know the type of service (self or full) and the profit per gallon and use that

information to store information about the customer's purchase.

432 Simulation: Objects in Action

We use several other objects that are created by object makers defined in

Chapter 12. For example, the object clock, which keeps time in minutes, is

a counter that has initial value zero and update procedure addl. The object

arrival is a box that stores the arrival time of the next customer. Each

pump has a queue denoted by q and made by queue-meiker in Chapter 12.

The total amount of time a customer spends at the pump is kept by a box

object called timer. Finally, for each type of service (self and full), we keep

a record of the following four items: (1) A tally is kept of the total number

of customers in a counter object called number-of . (2) The total waiting

time for all customers is kept in an accumulator object called total-wait.

(3) The maximum waiting time for all customers is kept in an accumulator

object called max-wait. (4) The total profit is kept in an accumulator object

called total-profit.

The values of the eight initialization parameters are passed to the pro-

cedure simulation-setupftrun, defined in Program 13.8, which starts the

simulation by invoking the procedure simulation with four arguments. The

first operand peissed to simulation invokes station-maker, which itself takes

six arguments. The second and third operands passed to station-maker are

the two services that set up the mechanism for recording the data we want

to collect in our simulation. The rest of the code is clarified when we look at

the definitions of the object makers given below. The second operand passed

to simulation creates the clock.

The management of the gas station simulation is done by the procedure

simulation that is invoked by simulation-setupftrun. We see the progress

of the customer through the station illustrated in the flowchart of Figure 13.6

reflected in the code for the procedure simulation, given in Program 13.9.

The value bound to the parameter station in the procedure simulation

is an object created by the procedure station-meiker, for which the code is

given in Program 13.10. Looking at the code for simulation, we see that the

box aurrival stores the sum of the current clock time plus the time increment

until the next customer arrives, which is generated by the airrival-time-

generator. We enter loop and assume that it is not yet closing time and

that it is the arrival time of the next customer. Then the station is passed

the two-part message in which the first part is which-serve and the second

part is a customer, created by invoking the procedure customer-maker (Pro-

gram 13.12) with the two arguments, the arrival time stored in arrival and

clock. From station-maker in Program 13.10, we see that the customer

so created is enqueued to the pump with the shortest queue that gives the

desired kind of service (full or self).

Next, station is sent the message serve. This causes each of the four

13.3 The Gas Station Simulation 4^3

Program 13.8 simulation-setup&mn

(define simulation-setuptrvm

(lambda (close-time 7,-self-service av-arr-time

profit-self profit-full

extra-timeJself-pump extra-timeCfull-pump pump-rate)

(let ((self-service (service-maker "Self" profit-self))

(full-service (service-maker "Full" profit-full)))

(simulation

(station-maker

'/,-self -service

self-service

full-service

extra-timeJself-pump

extra-time8full-pump

pump-rate)

(counter-maker addl)

av-eirr-time

(* 60 close-time)))))

pumps to check its queues. Looking at the code for pump-maker, we see that

when pump is passed the message check and the queue q associated with that

pump is not empty, the pump refers to its timer. Whenever a customer is

finished and dequeued, the timer is reset to -1. Thus if the timer is found to

store the value -1 when the message check is received, it updates the timer

to store the total time the customer at the front of the queue spends at the

pump. This total time includes both the actual pumping time and the average

extra time at the pump (one of the initial parameters). From then on, each

time pump receives the message check, the number stored in timer is reduced

by one, until the value stored is zero. When that happens and pump is passed

the message check, the customer has completed what had to be done at the

pump, and that customer is dequeued.

The dequeued customer is then passed a two-part message. The first part

is the method name record, and the second part is the variable service,

which is bound to an object that is either full-serv or self-serv created

by service-maker (Program 13.13) and passed into pump-maker when the

object pump was created. The service stores in itself the kind of service (full

or self) at that pump and the profit per gallon at that pump, and it keeps the

following statistics:

1. a tally of the number of customers using that kind of service.

434 Simulation: Objects in Action

Program 13.9 simulation

(define simulation

(lambda (station clock av-arr-time close-time)

(let ((arrival

(box-maker (+ (send clock 'show)

(arrival-time-generator av-eu:r-t ime)))))

(letrec

((loop

(lambda ()

(if (= (send clock 'show) close-time)

(prepare-for-closing)

(begin

(if (= (send clock 'show) (send arrival 'show))

(begin

(send station 'which-serve

(customer-maker (send arrival 'show) clock))

(send station 'serve)

(send arrival 'update!

(+ (send clock 'show)

(arrival -time-generator av-eu:r-time)))

(send clock 'update!))

(begin

(send station 'serve)

(send clock 'update!)))

(loop)))))

(prepare-for-closing

(lambda ()

(if (send station 'all-empty?)

(send station 'report)

(begin

(send station 'serve)

(send clock 'update!)

(prepare-for-closing)))))

)

(loop)))))

2. the total waiting time of all customers who have passed through the queues

for that kind of service,

3. the maximum, waiting time for all such customers, and

4. the total profit so far at the pump for that kind of service.

13.3 The Gas Station Simulation 4^5

Program 13.10 station-mcLker

(define station-maker

(let ((check (lambda (p) (send p 'check)))

(all-empty? (andmap-c (lambda (p) (send p 'empty?))))

(shorter (lambda (pi p2)

(if (< (send pi 'size) (send p2 'size)) pi p2))))

(lambda (7,-self self-serv full-serv eitra-time-self extra-time-full pump-rate)

(let ((selfs (list (pump-maker extra-time-self pump-rate self-serv)

(pump-maker extra-time-self pump-rate self-serv)))

(fulls (list (pump-maker extra-time-full pump-rate full-serv)

(pump-maker extra-time-full pump-rate full-serv))))

(lambda msg

(case (1st msg)

((type) "station")

((report) (send self-serv 'report) (send full-serv 'report))

((which-serve)

(let ((piimp (apply shorter (if (< (random 100) '/.-self)

selfs

fulls))))

(send piimp 'enqueue! (2nd msg))))

((all-empty?) (and (all-empty? selfs) (all-empty? fulls)))

((serve) (for-each check selfs) (for-each check fulls))

(else (delegate base-object msg))))))))

When customer receives the method name record and the service object,

we see in the code for customer-maker in Program 13.12 that each of the

above statistics is updated with the information for the dequeued customer.

Then if the pump's queue is empty, its timer is reset to -1; otherwise it is

updated to show the total time at the pump for the customer who is now at

the front of the queue.

Returning again to the code for simulation, we have completed (send

station ' serve) , so clock is updated and airrival is updated to show when

the next customer will arrive. When it is not the arrival time for a new

customer, we only pass the message serve to station and then update clock.

When clock shows that it is closing time, we enter the loop prepare-f or-

closing. If at least one of the queues is not empty, those customers in the

queues are served as above, but no new customers are enqueued. Finally,

when all queues are empty, the message report is passed to station. In

436 Simulation: Objects in Action

Program 13.11 pump-maker

(define piunp-maker

(lambda (extra-time pump-rate service)

(let ((q (queue-maker)))

(let ((increment (lambda

(let ((gallons (send (send q 'front) 'gallons)))

(ceiling (+ extra-time (/ gallons pump-rate))))))

(timer (box-maker -1)))

(lambda msg

(case (1st msg)

((type) "pump")

((check) (if (not (send q 'empty?))

(let ((c (send timer 'show)))

(cond

((negative? c) (send timer 'update! (increment)))

((zero? c) (let ((customer (send q 'front)))

(send q 'dequeue!)

(send customer 'record service)

(if (send q 'empty?)

(send timer 'reset!)

(send timer 'update! (increment)))))

(else (send timer 'update!

(subl (send timer 'show))))))))

(else (delegate q msg))))))))

the code for station-maker (Program 13.10), we see that the message re-

port is sent to both objects self-serve and full-serv. In service-maker

(Program 13.13), the procedure report is invoked with the final values of

the statistics stored when each customer was dequeued. The procedure re-

port, defined in Program 13.14, displays this information. We shall run the

simulation for various parameters and see how this information is displayed.

We have taken a quick walk through the gais station simulation to illus-

trate the use of objects in a somewhat longer program than others we have

been studying. The program contains many interesting and subtle features

that are worth studying in detail until they are fully understood. The time

spent in coming to grips with each of the steps will contribute much to your

development as a programmer.

Let us now run the simulation. We call simulation-setup&run with the

following parameters:

13.3 The Gas Station Simulation 437

Program 13.12 customer-maker

(define custoaer-Baker

(lambda (eirrival-time clock)

(let ((gallons-puBped (gallons-generator)))

(lambda msg

(case (1st msg)

((type) "customer")

((gallons) gallons-pumped)

((record) (let ((service (2nd msg))

(wait (- (send clock 'show) arrival-time)))

(send service 'niamber-of !

)

(send service 'total-wait! wait)

(send service 'max-wait! wait)

(send service 'total-prof it ! gallons-pvi^ed)))

(else (delegate base-object msg)))))))

close-time: 12 hours

'/.-self-service: 759c

av-arr-time

profit-self

profit-full

extra-timeCself-pvimp:

extra-timeCfull-pump:

4 min.

So. 10 per gallon

So. 10 per gallon

5 min.

8 min.

pump-rate: 4 gallons per min.

We then have:

[1] (simulation-setup&nin 12 75 4 . 1 . 1 5 8 4)

Self -Service:

The number of customers is 111

The average wait is 11

The maximum wait is 20

The total profit is 127.3

Full-Service:

The number of customers is 37

The average wait is 13

The maximum wait is 21

The total profit is 46.8

The program for our simulation does produce the information we want,

but it does not have a user-friendly interface in the sense that the user must

know what the parameters are and the order in which to put them when the

438 Simulatton: Objects in Action

Program 13.13 service-maker

(define service-meiker

(lambda (full-or-self profit)

(let ((number-of (counter-maker addl))

(total-wait (accumulator-meiker +)

)

(msix-wait (accumulator-maker max))

(total-prof it (accumulator-meiker +)))

(leunbda msg

(case (Ist msg)

((type) "service")

((number-of!) (send number-of 'update!))

((total-wait!) (send total-wait 'update! (2nd msg)))

((max-wait!) (send max-wait 'update! (2nd msg)))

((total-prof it!)

(send total-profit 'update! (* profit (2nd msg))))

((report) (for-effeet-only

(report full-or-self

(send number-of 'show)

(send total-wait 'show)

(send mcix-wait 'show)

(send total-prof it 'show))))

(else (delegate base-object msg)))))))

Program 13.14 report

(define report

(Ijuabda (full-or-self num-cust total-wait meuc-wait profit)

(if (zero? num-cust)

(writeln " There were no " full-or-self "-Service customers.")

(begin

(writeln full-or-self "-Service:")

(writeln " The nvimber of customers is " niim-cust)

(writeln " The average wait is " (round (/ total-wait num-cust)))

(writeln " The meucimum wait is " msuc-wait)

(writeln " The total profit is " profit)))))

procedure simulation-setupftrun is called. There are so many parameters

that it is hard to remember their order. Thus we design an interface to

1S.3 The Gas Station Simulation 439

Program 13.15 prompt-read

(define prompt-read

(lambda (prompt)

(display prompt)

(display " ")

(read)))

the program that will prompt the reader for the information needed to run

the simulation. For that purpose, we use the procedure prompt-read, which

prints its argument (the prompt) to the screen eind waits for a response to be

read from the keyboard. It then returns that response. The code for prompt-

read is in Program 13.15. An example illustrating the use of prompt-read

is

[2] (let ((hours

(prompt-read

"Elnter the number of hours the station is open:")))

(writeln "The station is open " hours " hours."))

Enter the number of hours the station is open: 12

The station is open 12 hours.

We build our user-friendly interface by first constructing a list of all of the

prompts that we wcint to display. We name this list station-prompts:

(define station-prompts

'("Elnter the number of hours the station is open:"

"Enter the percentage of self-service customers:"

"Enter the average time in minutes between arrivals:"

"Enter the profit per gallon from self-service customers:"

"Enter the profit per gallon from full-service ciistomers:"

"Enter the extra time at the pump for self-service customers:"

"Enter the extra time at the pump for full-service customers:"

"Enter the delivery rate of the pumps in gallons per minute:"))

We next write a program, gas-station-simulator, with a loop in it that ap-

plies prompt-read to each prompt in the list and builds a list of the responses

in the order in which they are entered. It then applies simulation-setup*run

to the arguments in that list using the procedure apply. The code for gas-

station-simulator is presented in Program 13.16

440 Simulation: Objects tn Action

Program 13.16 gas-station-simulator

(define gas-station-simulator

(letrec

((loop (lambda (Is)

(if (null? Is)

'()

(let ((v (prompt-read (car Is))))

(cons V (loop (cdr Is))))))))

(lambda

(apply simulation-setupftrun (loop station-prompts)))))

[3] (gas-station-simulator)

Enter the number of hours the station is open: 12

Enter the percentage of self-service customers: 75

Enter the average time in minutes between arrivals: 4

Enter the profit per gallon from self-service customers: .10

Enter the profit per gallon from full-service customers: .10

Enter the extra time at the pump for self-service customers: 2

Enter the extra time at the pump for full-service customers: 4

Enter the delivery rate of the pumps in gallons per minute: 4

Self-Service:

The number of customers is 110

The average wait is 6

The mciximum wait is 12

The total profit is 120.70

Full-Service:

The number of customers is 35

The average wait is 8

The mciximum wait is 10

The total profit is 44.40

Figure 13.17 The simulation input and output

The result of invoking gas-station-simulator is given in Figure 13.17.

The experiment records the data entered in a clearly readable form, as well

as the output of the simulation.

We can now use this simulation to see what happens when certain parame-

ters are changed. For example, if we keep all of the parameters fixed except the

average arrival time, we can see what happens when the time between arrivals

decreases. We kept the station open 12 hours, 75% of the customers selected

13.3 The Gas Station Simulation 44i

Average Arrival Time: 8 4 3 2 1

Self-Service:

The number of customers is 60 110 131 192 274

The average wait is 6 6 7 9 84

The maximum wait is 9 12 14 20 169

The total profit is 70.00 123.10 160.40 232.20 334.90

Full-Service:

The number of customers is 22 35 40 53 86

The average wait is 9 9 8 9 9

The majcimum wait is 11 11 12 17 18

The total profit is 28.10 44.40 45.70 66.10 100.40

Table 13.18 Gas station simulatiion withI varying average arrival time

self-service, the profit per gallon on self-service sales was $0.10 and for full-

service sales was $0.10, the extra wait at the pump for self-service customers

was 2 minutes and for full-service customers was 4 minutes, and the pumps

delivered gasoline at the rate of 4 gallons per minute. The simulation was run

with the average time in minutes between the arrival of successive customers

taken to be 8, 4, 3, 2, and 1. The results are summarized in Table 13.18.

When the time between arrivals is large and long queues do not form at

the pumps, it is faster to use self-service. As the queues get longer with

more frequent arrivals, the smaller volume of full-service customers allows the

attendants to keep the waiting time relatively short, whereas the self-service

customers pile up and ultimately take hours to get out. Although a wait of

more than an hour is generally considered intolerable, there were times during

the oil crisis of 1978 when people did stay for hours in gas station queues which

extended for blocks around the station. In normal times, the station would

have to provide more lanes or lose the business, and a larger percentage of

customers would opt for full service.

In this simulation, after the data were entered, the program printed out a

summary of the day's business. It is possible to write simulations showing on

the screen a picture of the cars entering and advancing through the queues,

as well as the current values of the variables. There are many creative ways

in which simulations can be written using the tools developed in this text.

442 Simulation: Objects in Action

Exercises

Exercise 13.4

Write a simulation of the following experiment. Two dice are thrown n times.

A record is kept of how many times each possible sum comes up. Since each

die is a cube with the numbers from 1 to 6 on its faces, the possible face sums

are the integers from 2 to 12. The output should be a table with the face sum

in the first column and the percentage of times that sum came up in the second

column. Run the experiment with n taking the values 100, 200, 400, and 800.

To record the results of each toss, use 11 counters (as defined in Section 12.2.3),

one for each possible face sum, and increment the counter each time that

sum appears. Compare your results with the theoretical percentages, which

are 2.78%, 5.56%, 8.33%, 11.11%, 13.89%, 16.67%, 13.89%, 11.11%, 8.33%,

5.56%, and 2.78%. These are easily found by counting the number of ways a

given face sum can be obtained, dividing by 36 (the total number of ways two

dice can come up), and multiplying by 100. For example, a 7 can come up in

six ways, so ^ x 100% = 16.67%.

Exercise 13.5: Estimation of tt

We can use simulation to compute the value of tt. For this we use the fact that

a circle of radius 1 has area equal to tt. We shall play the following game. We
throw a dart at a square board with sides of length 2 feet. The area of this

board is 4 square feet (see Figure 13.19). We assume that the dart is equally

likely to land at any point on the square. Thus the percentage of time it falls

within the circle of radius 1 inscribed in the square should be approximately

equal to the ratio of their areas. If we perform the experiment N times (iV a

large number) and if K of these throws fall inside the circle, then we would

expect
jf

to approximate ^, which is /f^p. We would also expect that this

approximation gets better as N increases. Let x and y be the coordinates of

the point (x, y) on the square. Then x and y are both real numbers between

— 1 and 1. Write a program that takes as argument the number N of times

the experiment is repeated; generates the values of x and y as uniformly

distributed random variables, each in the interval between —1 and 1; and

counts how many of them satisfy the condition that x^ + y^ < 1. The program

should then use this information to estimate tt. Run the experiment with

N = 100, 1000, 10000, and 100000.

Exercise 13.6

The definition of shorter in station-maker does not handle stations with

fewer than or more than two pumps of the same variety. Rewrite shorter

13.3 The Gas Station Simulation 44^

Figure 13.19 Monte Carlo method for estimating tt

and any other procedures so that the simulation supports arbitrary numbers

of pumps of these two varieties.

Exercise 13.7

Modify the gas station simulation to apply to a case where there are three

lanes dedicated to self-service and only one lane dedicated to full service. Run
the same input data as in the simulation runs given above and compare the

results you get with the data in the tables.

Exercise 13.8

The gas station simulation does not generalize as simply as we might hope.

For example, what if the station also wanted information on their diesel fuel?

Diesel fuel has a different pump speed, but that would not be any cause to

make significant changes in the program. You would need to make a small

alteration to the argument list of simulation-setupftnm and a few other

minor changes. However, by adding diesel fuel, you would have to add much

to station-maker. Make those changes, and test your program. Next, add

corn fuel in a similar fashion. Go back to the program and build an object or

apply abstraction principles so that if the station needs to support yet another

kind of fuel, the task will be simple.

Exercise 13.9: prompt-read

Consider the definition of prompt-read below.

(define prompt-read

(lambda items

(for-each display items)

(display " ")

(read)))

Can this definition be used in place of Program 13.15? How is it better than

Program 13.15?

444 Simulation: Objects in Action

Exercise 13.10

In Program 13.16, the gas-station-simulator prompts for the initial data,

but it does not echo that data back to be sure that the correct data was

entered. For example, when the response to the prompt "Enter the number

of hours the station is open:" is 12, the echo printed on the screen could

say "The station is open 12 hours." Rewrite the definition of gas-station-

simulator so that it provides an appropriate echo for the response to each

prompt.

Exercise 13.11

Add a report figure for the longest line that appeared at each pump.

Exercise 13.12

Modify report so that dollar figures are printed with two decimal places.

Exercise 13.13

Explain why the following definition of gas-station-simulator can not be

used in place of Program 13.16:

(define gas-station-simulator

(lambda ()

(apply simulation-setupJIriin (map prompt -read station-prompts))))

Hint: See the discussion of evaluation order on Page 38.

13.3 The Gas Station Simulation 44^

Part 4

Extending the Language

Let us think back to the introduction to Part 1. The restaurant where you

dine is a little cafe in Paris. Ordering may not be simple; you might not

be able to read the menu; it is in French. If that were the case, however,

you would probably be carrying with you a dictionary, which is analogous to

our syntax table, for looking up all the unfamiliar words. Here's one from

the menu: Poulet rati. First you look up the meaning of poulet, and it is

"chicken," and then you look up roti and it is "baked." So you know that it

is "baked chicken." The whole menu is full of such unfamiliar French words.

However, with your dictionary, you can look up each word and translate the

entire menu into your native language before placing your order. Derived

special forms are like words in a foreign language. When you do not know

what they mean, you look them up in a derived special forms dictionary.

For example, let expressions can be translated into applications of lambda

expressions. Applications and lambda expressions correspond to words in

your native tongue.

Suppose that you do not have a dictionary but your Parisian waiter and

you know a bit of German. You ask him what poulet roti is, and he says that

he does not know how to translate poulet roti into your native tongue, but he

can say it in German. He says ^^Backhuhn," and you translate it to "baked

chicken." The French is translated into German, and the German is translated

into something you understand. This also happens with derived special forms.

For example, let* expressions are first translated into let expressions, and then

the let expressions are translated into familiar words: lambda expressions

and applications. Chapter 14 presents two different mechanisms for inserting

derived special forms into the syntsix table. This allows us to extend our

vocabulary of expression types. Delay expressions, introduced in this chapter,

are then used in Chapter 15 to develop unbounded (or infinite) lists.

These lists are not really infinite, but there is no way to show they are not.

Most of the finite list-processing procedures can be recast, with infinite lists

replacing finite lists. In fact, by removing the tests for the empty list, the task

is virtually complete. Working with infinite lists requires thinking about lists

that never end. You have already seen circular lists, which also never end, but

those lists always repeat their values. With infinite lists, different values can

appear in every position. Consider an infinite list of the positive integers (1

2 3 . . .). If such a list exists, its car would be 1, its cdr would be (2 3 . . .),

and consing onto it would form the nonnegative integers. All that remains

is to convince you that such a list does exist.

44^ Extending the Language

14 Declaring Special Forms

14.1 Overview

In Scheme, operators are applied to their operands by enclosing the operator

followed by its operands in parentheses. The call structure for applying an

operator to its operands is:

(.operator operand . . .)

When such an application is made, the operator and the operands are evalu-

ated in an unspecified order, ^ and then the procedure (which is the value of the

operator) is applied to the arguments (which are the values of the operands).

We have also encountered several special forms in which the subexpressions

following the keyword are treated differently from the operands of a proce-

dure. Examples of these are and, begin, cond, case, define, if, lambda,

let, let*, letrec, or and set!, each with a syntax of its own. Some of

these, like let, have been introduced to make it easier to read programs, for

any program using let could be rewritten using an application of a lambda

expression in place of each let expression. Such keywords are referred to as

derived keywords. One of the convenient features of Scheme is that it is an

extensible language that allows the user to add new special forms to make the

language more convenient to use and to provide a mechanism to do tasks that

procedures cannot perform. We shall study two mechanisms for making such

additions in this chapter.

^ Programs that rely on an order of evaluation are said to be ill formed. Since the order

of evaluation is implementation dependent, such programs are not portable, and they can

not, in general, be transferred from one implementation to another.

The action of taking an expression and rewriting it in terms of something

we understand happens when we work with natural language. As we read

a passage, we often look in a syntax table, a dictionary, and substitute the

meaning of the word for the word itself. In Scheme, however, we restrict those

items for which substitutions can be made (we also say "which can be trans-

formed") to be lists that begin with a keyword (these are the special forms).

Before an expression can be evaluated, all special forms in the expression

must be transformed into expressions that are "understood." To carry the

metaphor a bit further, we cannot understand the complete thought conveyed

by the author of a passage until we have transformed all terms into words

we understand. In a sense, we cannot evaluate the author's passage without

the appropriate substitutions taking place. Similarly, we cannot evaluate a

Scheme expression until all the transformations have occurred. Each trans-

formation brings the expression closer to one in which all terms are familiar.

Thus, we do not evaluate an expression with a list that begins with a derived

keyword. When all such lists have been transformed, it is time to evaluate

the expression. Prior to evaluation there is a recursive program that removes

all such lists.

2

14.2 Declaring a Simple Special Form

In this book we have used several special forms without defining them as

procedures. In fact, it is the nature of these forms that they cannot (or

should not) be defined as procedures either because some of their operands

are not to be evaluated or because the order of evaluation of their operands is

not the same as in a procedure application. We use the terminology that we

define procedures, but we declare special forms. The mechanism for declaring

special forms will be explained in the course of making a specific extension to

the syntax.

If we write

(define sm (+ 3 4))

^ We shall not write that procedure here, since the way it is written is determined by what

the system assumes it knows. For purposes of discussion, we assume the system knows

define, if, lambda, quote, and set!. Other systems might know about a different set of

special forms. For example, if might be described in terms of cond, thereby causing us

to assume that the system knows cond. This freedom of choice gives implementors the

flexibility they need for efficient implementation.

450 Declaring Special Forms

the expression (+ 3 4) is evaluated and its value is bound to the variable

sm. Suppose that we want to assign this expression to the variable sm but

postpone the evaluation of the expression (+3 4) until we actually need the

value of sm. One way of doing this is to encapsulate the expression (+3 4)

within the body of a lambda expression having no arguments. We could then

write

(define sm (laabda () (+34)))

The body of a lambda expression is not evaluated until that lambda expres-

sion is applied to its arguments, and since the thunk (lambda () (+3 4))

has no arguments, it is invoked by merely enclosing the lambda expression in

parentheses. Since the thunk in this case is bound to the variable sm, we can

invoke it by enclosing sm in parentheses, that is, by writing (sm). We are thus

able to postpone the evaluation of an expression until we need it by making it

into a thunk and binding a variable to that thunk. It would be nice to have a

procedure freeze that, when applied to an operand, has the effect of forming

a thunk that has that operand as its body. Suppose we write:

(define freeze

(lambda (expr)

(lambda () expr)))

Then we would write:

(define sm (freeze (+ 3 4)))

But when the define expression is evaluated, before being bound to sm, the

expression (freeze (+ 3 4)) is evaluated. Since freeze is a procedure,

its operand (+ 3 4) is evaluated. Thus we defeated the purpose for which

we wrote the procedure freeze, which was to postpone the evaluation of its

operand until sm is called. What happened is that (+ 3 4) is evaluated during

the definition of sm instead of when sm is called. Thus freeze cannot be a

procedure; it has to be the keyword of a special form if it is to accomplish

what we want.

To declare this special form with keyword freeze, we make use of a special

form with keyword macro. ^ We would like freeze to have the syntax (freeze

expr) and to transform into the thunk (lambda () expr) without evaluating

^ At the time this book is being written, the Scheme community has not yet agreed upon a

standard way of declaring specied forms. In this book, we use two methods that have been

14-2 Declaring a Simple Special Form 4^1

the expression expr. We call the expression (freeze expr) the macrocode,

and we want to transform the macrocode into the macroexpansion

(lambda () expr)

In general, a macro is a procedure that transforms macrocode into the corre-

sponding macroexpansion.

When an expression is entered into the system, the first subexpression is

checked to see if it is a keyword of some special form. If it is, then the

macrocode (in our case, (freeze expr)) is replaced by the corresponding

macroexpansion. Then at run time, the computer sees only the macroexpan-

sion (lambda () expr) in the program as if we had written the macroexpan-

sion into the program instead of the macrocode. Thus the subexpression expr

of the special form (freeze expr) was not evaluated when the procedure (or

thunk) was created by evaluating (lambda () expr).

How is the macroexpansion accomplished? We have to write a procedure

that literally transforms the macrocode into the macroexpansion of that code.

Let us call that procedure freeze-transf orraer; it takes the macrocode code

as its argument and returns the code for the macroexpansion. In our case, the

macroexpansion is a list containing the three items that make up a lambda

expression: the symbol lambda, the empty list of arguments, and the body.

Thus we can define freeze-transformer to be:

(define freeze-transfomer

(lambda (code)

(make-lambda-ezpression '() (list (2nd code)))))

where make-lambda-expression is applied to the formal parameter(s) (in

this case, it is the empty list) and a list of expressions (in this case, it is a

list containing only one element). The second expression in the macrocode

is expr. In our specific example, that is the list (+ 3 4). We define make-

lambda-expression to be:

(define make-lambda-ezpression

(lambda (parameters body-expressions)

(cons 'lambda (cons peirameters body-expressions))))

included in some implementations. These methods use special forms with keywords macro

and ertend-syntax. If these are not implemented in the version you are using, read the

manual for your implementation to see how it declares special forms, and use that method
instead. In general, until a standard is agreed upon, code including user-made special forms

is not portable.

452 Declaring Special Forms

Now that we have defined the freeze-transf ormer, we can declare the

special form with keyword freeze using the special form with keyword macro

as follows:

(macro freeze freeze-transformer)

We can conceive of this process of declaring a special form as if macro places

the keyword freeze in a global table we call the syntax table, along with its

transformer, which is the procedure freeze-transformer. Thus each entry in

the syntax table consists of a keyword and its associated transformer. When
a program is entered and the symbol freeze is found in the first position

of an expression, it looks it up in the syntax table, and if it finds it there,

it passes the macrocode ((freeze expr) in this case) to the transformer.

The transformer then returns the macroexpansion (in our example, (lambda

() expr)). This macroexpansion is inserted into the program in place of the

macrocode. It is customary to refer to the keyword freeze as a macro, though

the macro actually is the whole macrocode. Following custom, we shall say

"the macro freeze."

We can also unwrap the various helping procedures used in defining the

procedure freeze-transformer to get a self-contained representation for the

macro declaration. For example, we can replace

(make-lambda-expression '() (list (2nd code)))

by the body of its lambda expression with its parameters replaced by the

arguments to which they are bound to get:

(define freeze-transformer

(lambda (code)

(cons 'lambda (cons '() (list (2nd code))))))

Finally, replacing freeze-transformer by its lambda expression gives us

Program 14.1 freeze

(macro fre eze

(lambda (code)

(cons ' lambda (cons '0 (list (2nd code))))))

14-S Declaring a Simple Special Form 4^^

14.3 Macros

as a self-contained form of the declaration of the macro freeze. Either the

version using the helping procedures or this final self-contained version de-

clares the macro freeze. You may use the version you find more convenient.

In general, the special form with keyword macro has the syntax

(macro name transformer)

where name is the keyword of the new special form being declared and

transformer is a procedure of one argument that takes the macrocode and

returns the macroexpansion. In our example above, freeze is the keyword,

and

(lambda (code)

(cons 'lambda (cons ' () (list (2nd code)))))

is the transformer. Thus we summarize by recalling that when a program

containing an expression starting with a keyword for a special form is entered,

the system replaces the macrocode by the code returned when the macrocode

is passed to the keyword's transformer. It is this expansion that is seen when

the program is run.

The macro freeze can also be implemented to take several subexpressions;

this would let us write, for example,

(freeze (writeln "Hello") "How are you?")

and would macro expand into

(lambda () (writeln "Hello") "How are you?")

In general, we would like freeze to have the syntax

(freeze expri expr2 . .

)

where the ellipsis (three dots) means that there is a finite number of expres-

sions following the word freeze and that there is at least one such expression.*

* In general, the notation thing . . . means zero or more occiirrences of thing, whereas

thingi thing2 - • means one or more occurrences of thing.

454 Declaring Special Forms

This is a pattern for our macrocode but it cannot be used as the macrocode

itself since it contains the ellipsis and the special form macro will not know

what to do with it. Using a similar notation, we can say that a pattern for

the macroexpansion is:

(lambda () expri expr^ ...)

A convenient notation to indicate that the first pattern is to be expanded into

the second pattern is:

(freeze expri expr2) = (lambda () expri expr2)
The symbol = can be read "macro expands to." We call a statement that has

the macro pattern on the left and the expansion pattern on the right a syntax

table entry.

In any actual case, the macrocode is a list that starts with the keyword

freeze and always has at least one expression following it. If we represent

this macrocode by the variable code again, then (cdr code) is just a list of

the expressions that make up the body of the lambda expression into which the

macrocode is expanded. The freeze-transformer procedure defined above

can be modified so that it produces the right macroexpansion for this version

of freeze:

(define freeze-transformer

(lambda (code)

(make-lambda-expression ' () (cdr code))))

It would be convenient if Scheme were to have a way of taking the two sides

of the syntax table entry and declare the special form for us. In essence, the

system would be writing the transform procedure for us and using it to declare

the macro. Such a special form, called extend-syntax,^ was developed (see

Kohlbecker, 1986). It has the following syntax:

^ Here is a way to get macro if you have extend-syntax in your implementation of Scheme:

(extend-syntax (macro)

((macro name transformer)

(let {(t transformer))

(extend-syntax (name)

(x ((with ((h 'with)) w) ((v (t 'x))) v))))))

See Dybvig, 1987, for a discussion of extend-syntax's with clauses.

14.3 Macros 455

(extend-syntax (.name ...) imacro-pattern expansion-pattern) ...)

where macro-pattern and expansion-pattern are the left and right sides, re-

spectively, of the syntax table entry for the macro called name. Using ext end-

syntax, the declaration of the macro freeze becomes:

Program 14.2 freeze

(extend-syntax (freeze)

((freeze exprl expr2 ...) (lambda exprl expr2 ...)))

Since no standard way of making special forms has been agreed upon, we shall

demonstrate both ways of doing it—that is, using macro and extend-syntax

in the rest of this chapter.

Along with the macro freeze, there is the procedure thaw, which invokes a

frozen entity (a thunk) and returns its value. The procedure thaw is defined

as follows:

Progr£iin 14.3 thaw

(define thav

(lambda (thunk)

(thunk)))

To show how it is used, we define:

(define th (freeze (display "A random number is: ") (ramdom 10)))

(thaw th) =^* A random number is: 7

(thaw th) =^ A remdom niomber is: 3

Each time the thunk is thawed, the expressions are reevaluated. Thus each

time we thawed the thunk th in the example, another random number is

computed and returned.

There are occasions when we want to postpone the evaluation of an expres-

sion but have it be evaluated only the first time it is called and thereafter

not have to reevaluate the expression each time it is called again but rather

return on each subsequent call the value already evaluated. This would be

advantageous if the same long calculation is involved each time the procedure

456 Declaring Special Forms

Program 14.4 make-promise, force

(define make-promise "procedure •)

(define force "procedure")

(let ((delayed-tag "delay') (value-tag "-->"))

(set ! make-promise (lambda (thunk) (cons delayed--tag thunk)))

(set ! force

(lambda (arg)

(if (and (pair? arg) (eq? (car arg) delayed-1:ag))

(begin

(set-car arg value--tag)

(set-cdr arg (thas (cdr arg)))))

(cdr arg))))

is called and the result obtained is the same, in the absence of side effects. We
propose to evaluate the postponed expression only the first time it is called

and on subsequent calls to return the already computed value. We declare

the special form delay to postpone the evaluation by creating a promise, and

a corresponding procedure force to evaluate (or "force") the promise. When
the promise is forced for the first time, the value of the postponed expres-

sion is computed and returned. Each succeeding time the promise is forced,

the same value that was computed the first time is returned. Consider the

following:

(define pr (delay (display "A random number is: ") (random 10)))

(force pr) => A random number is: 6

(force pr) =^ 6

(force pr) =^ 6

and it continues returning 6 each time it is forced from now on.

The syntax table entry for delay is

(delay expTi expT2 ...) = (make-promise (freeze expri expr2 ...))

where make-promise is a procedure that takes a thunk as its argument and

returns a promise, which is a thunk tagged with "delay". (See Program 14.4.)

If force's argument is a promise, force converts the promise into a fulfillment.

A promise is converted into a fulfillment by tagging with "— >" the value

obtained by thawing the promise's thunk. In any event, the value stored in

14.3 Macros 457

the fulfillment is returned. Program 14.4 is written so as to protect the tags

from accidental reassignment.

We can now proceed to declare the macro delay. It has the macrocode

(delay expri expr2)

which macroexpands into

(make-promise (freeze expri expT2 ..))

As before, we cannot define delay to be a procedure because its arguments

expri expT2 would be evaluated too early. Using extend-sjrntax, we can

declare delay by simply writing:

Program 14.5 delay

(extend-syntax (delay)

((delay expri expr2 ...) (make-promise (freeze expri expr2 ...))))

Or, by using macro, we get

Program 14.6 delay

(define delay-transformer

(lambda (code)

(list 'make-promise (cons 'freeze (cdr code)))))

(macro delay delay-transformer)

As we have seen, in a procedure call, Scheme first evaluates the operands

(producing arguments) and the operator (producing a procedure) and then

applies the procedure to the arguments. We say that the arguments are

passed to the procedure "by value." In some languages, arguments are passed

to procedures as if they were thunks, and they are not thawed until they are

actually used in the procedure. Such arguments are said to be passed to the

procedure "by name."® We can write programs in Scheme so that procedures

In the presence of side effects, this is an oversimplification.

458 Declaring Special Forms

accept arguments that are thunks. These arguments are thawed when they

are used in the body of the procedure, so that passing of arguments by name

can be accomplished in Scheme. Similarly, it is possible to pass arguments

to procedures as promises, which are not forced until they are needed in the

body of the procedures. In such cases, the arguments are said to be passed "by

need." In Chapter 15, we shall study streams, which use arguments passed

by need.

We have been using the special form with keyword let, which has the

syntax^

(let ((var val) ...) expri expr2)
The syntax table entry for let is

(let ((var val) ...) expri €xpr2)
((lambda (var ...) expri expr2) val ...)

The declaration of let is now a simple matter when we use extend-syntax

as in Program 14.7.

Program 14.7 let

(extend-syntax (let)

((let ((vaur val) ...) expri expr2 ...)

(danbda (var ...) expri expr2 ...) val ...)))

To declare let with macro, we have to build an application that consists

of a list containing a lambda expression followed by its operands. For the

lambda expression, we need its parameter list and its body expressions. If

code represents the macrocode, then the list of parameters is built up by first

taking the (2nd code) to get a list of pairs of var's and val's. We extract the

list of var's by taking the 1st of each pair in the list using map as follows:

^ When using user-declaired macros that have the same keywords cis special forms in Scheme,

you might want to avoid collisions with the built-in forms. We suggest that you siuround

the keywords of those you declaire with equed signs; e.g., =let= in place of let.

14.3 Macros 459

(define ii«ike-li8t-of-para»eters

(laabda (code)

(ap Ist (2nd code))))

Similarly, we can build the list of operands from the macrocode by taking the

2nd of each pair. This leads to:

(define Beike-list-of-operands

(lambda (code)

(nap 2nd (2nd code))))

A list of the items in the body of the lambda expression we are building is

obtained by taking the cddr of the macrocode. Thus:

(define Bake-list-of-body-items

(lajBbda (code)

(cddr code)))

With these helping procedures, we can write the transform procedure and

declare it as the macro for let.

Program 14.8 let

(define let-transf oraer

(lambda (code)

(cons (make-laabda-expression

(nake-list-of-paraaeters code)

(make-list-of-body-items code))

(aike-list-of -operands code))))

(aero let let-treinsformer)

This is really only half of the declaration of the macro let since there is also

the so-called named let, which has a different syntax. We shall return to

the named let in the exercises, where we rely on the following discussion of

letrec. The above version of the macro declaration of let using the special

form with keyword macro clearly illustrates the advantage of using extend-

syntajc to declare a macro. Exercise 14.6 at the end of this section suggests

some interesting modifications to let so that it displays appropriate messages

when an expression with keyword let is entered with an incorrect syntax. For

example, if we write (let ((a 3))) , incorrect syntax should be signaled since

460 Declaring Special Forms

a let expression must contain at least one subexpression following the binding

pairs. If we use macro to declare our special forms, we must explicitly include

tests in the definition of the transformer to determine if the syntax is correct.

On the other hand, one of the great advantages of using ext end-syntax is

that it has built-in syntax checking, so we do not have to include our own tests

for correct syntax. You may find it instructive to enter some let expressions

with incorrect syntax in your implementation of Scheme and see the messages

that are displayed.

We observed that in a let expression of the form

(let ((t/ar val) ...) expTi ex'pr^ ...)

the expression val . . . whose value will be bound to var . . . cannot contain

var . . . recursively, for looking at the pattern for the macroexpansion,

((lambda (var ...) expri expT2) val ...)

we see that val ... is not in the scope of var . .
.

, so any instance of var . .

.

in val . . . refers to an outer scope. The special form letrec does allow for a

recursive scope.

The macro letrec has the syntax table entry:

(letrec (.{var val) ...) expri expr2)
(let ((var "any") ...) (begin (set! var val) ...) expri expr2)

In this expansion, if any one of the val^s contains instances of any of the

var's, that val is in the lexical scope of those var's in the let expression of the

macroexpansion. This allows the use of recursion in var. Let us now write the

macro for letrec. Again, it is a simple matter to do so using ext end- syntax.

Program 14.9 letrec

(ext end-syntax (letrec)

((letrec ((var val) ...) expri expr2 ...)

(let ((var "any") ...)

(set ! var val) . .

.

expri expr2 ...)))

Consider the definition of the procedure odd?, which is defined using a letrec

expression:

14.3 Macros 461

(define odd?

(letrec

((even? (lambda (n) (if (zero? n) #t (odd? (subl n)))))

(odd? (lambda (n) (if (zero? n) #f (even? (subl n))))))

odd?))

It macroexpands into the following let expression:

(define odd?

(let ((even? "any")

(odd? "any"))

(begin

(set! even? (lambda (n) (if (zero? n) #t (odd? (subl n)))))

(set! odd? (lambda (n) (if (zero? n) #f (even? (subl n))))))

odd?))

Let us next look at how to declare letrec using macro. We first consider

how we construct the pairs of the form (var "ajiy"), which are in the let

expressions of the macroexpansion. After we get the var's from the 2nd of

the macrocode, we use map to give us the desired pairs of the form (var

"any"). Similarly, we build the set! expressions, and finally, we build a list

of expressions that complete the body of the let expression. This leads to the

declaration of letrec using macro that is given in Program 14.10,

Program 14.10 letrec

(macro letrec

(lambda (code)

(cons 'let

(cons (map (lambda (z) (list (1st z) "any")) (2nd code))

(append

(map (lambda (z) (cons 'set! z)) (2nd code))

(cddr code))))))

Something you usually want to avoid is the creation of infinite loops. How-

ever, as an interesting demonstration of the use of letrec, we shall write

a special form cycle that takes an arbitrary number of subexpressions and

runs each subexpression in succession and then starts over again, repeating

this loop indefinitely. The syntax table entry for cycle is

(cycle expri expT2 ...) = (cycle-proc (freeze exprl expT2 ...))

462 Declaring Special Forms

Program 14.11 cycle-proc

(define cycle-proc

(lambda (th)

(letrec ((loop (lambda

(thaw th)

(loop))))

(loop))))

where cycle-proc is defined in Program 14.11. In Chapter 17, we shall

encounter several uses of cycle-proc.

The last special form that we discuss has keyword or. First why must or

be a macro instead of a procedure? When we write (or ei 62), the first

subexpression ei is evaluated, and if it is true, then its value is returned. If ei

is false, only then is 62 evaluated. If or were a procedure, both subexpressions

would be evaluated before they are passed to or. The fact that the second

subexpression is not evaluated unless the first is false allows us to include the

following expression in a program:

(or (zero? x) (> (/ 10 x) 2))

and be sure that division by zero does not occur because the second subex-

pression is not evaluated if x is zero. Thus we want or to be a macro that

can take any number of subexpressions, including no subexpressions. If or is

called with no subexpressions, it returns false. Having taken care of the case

of no subexpressions, we consider the following syntax table entry for or with

several subexpressions:

(or ei 62 ...) = (if ei ei (or 62 ...))

This works because if first evaluates ei and if it is true, it returns the value of

ei in the consequent. If ei is false, it skips to the alternative and returns the

"recursive" value obtained for the alternative. This looks like recursion, but

we must remember that these or expressions are not being evaluated. Rather

they are macrocode, which is being transformed into if expressions that are

the macroexpansions. We have treated the case of (or e), which should have

the same value as e, because using the syntax table entry, (or e) expands to

(if e e (or)) and (or) expands to #f.

We could use the above macroexpansion for or, but it does not work effi-

ciently since if ei is true, it must be evaluated a second time in the consequent.

14.3 Macros 463

If Ci includes some side effects, these would be done twice insteeid of once, and

that is generally incorrect. We can avoid this double evaluation by including

a let expression in the macroexpansion:

(or ex 62 ...) = (let ((val ei)) (if val val (or 63 ...)))

Once again, if we declare the macro according to this expansion pattern, it

will work the way we want almost all of the time. But an unwanted behavior,

known as capturing, can occur, as the following example illustrates. Suppose

the macro or has been declared according to the above pattern. We then use

it in the following program:

(let ((val #t))

(or »f val))

We expect this to return #t. However, when the program is entered, the or

expression is expanded into

(let ((val #f))

(if val val val))

and the value returned is #f because the leist val has been captured within

the scope of the nearest binding, and unfortunately the variable val was also

used in the let expression in the declaration of the macro or. There are several

ways of avoiding this capturing. We shall make use of the fact that when a

frozen entity is thawed, it is evaluated in the environment that was in effect

when the entity was frozen. We first define a procedure, called or-proc, which

takes a list of thunks as its operand. Then to declare the macro or, we freeze

the operands and pass them to the procedure or-proc. Here is the definition

of or-proc:

Progrgun 14.12 or-proc

(define or-proc

(lambda (th-lis.t)

(cond

((null? th- list) «f)

(else (let ((v (thaw (cai th-lis t))))

(if V V (or- Droc (cdr th -list))))))))

454 Declaring Special Forms

In this version, the thunks are not evaluated until they are thawed, so only

one of the thunks is evaluated at a time until a true value is obtained. The

rest remain unevaluated.

With this definition of or-proc, the syntax table entry for the macro or

becomes:

(or e ...) = (or-proc (list (freeze e) ...))

How are the cases of zero expressions and one expression handled by this

entry? Now or-transformer can be defined and or can be declared:

Program 14.13 or

(define or-transformer

(lambda (code)

(list 'or-proc

(cons 'list

(map (lambda (e) (list 'freeze e))

(cdr code))))))

(macro or or-transformer)

We can also use extend-syntax to declare the macro or based on the above

syntax table entry. We have:

Program 14.14 or

(extend-syntax (or)

((or e ...) (or-proc (list (freeze e) ...))))

Several more special forms are developed in the exercises. The ability to

write your own special forms in Scheme is a powerful tool that can be used to

make programs more readable. Most important, it allows you to build your

own textual abstractions. In the next chapter, we shall make use of the special

form delay to develop the idea of streams or "infinite lists."

14.3 Macros 465

Exercises

Exercise 14-1

What is the output of

(freeze-treinsf ormer '(freeze (cons 'a ' (b c))))

What is the output of

(let-transformer '(let ((a 5) (b 2)) (* a b)))

What general statement can you conclude from these examples concerning the

output when a transform procedure is applied to the quoted macrocode? Some

implementations of Scheme have a procedure called expand, which converts

the quoted macrocode into its macroexpansion.

Exercise 14-2

Declare the letrec macro using ext end- sjrnt ax without using let in its macro-

expansion.

Exercise 14-3

Consider the declaration of the macro or, below. Does this declaration suffer

the variable capturing that we were able to avoid using or-proc and a list of

thunks?

(extend-syntai (or)

((or) «f)

((or e) e)

((or el e2 ...) (let ((val el) (th (freeze (or e2 ...))))

(if val val (thaw th))))

)

Exercise 14 4' smd

Declare a macro with keyword and, which, like or, may take any number

of subexpressions. If called with no subexpressions, it is true. If all of its

subexpressions are true, it evaluates to the last one; otherwise it is false. Test

your macro on:

(and)

(and «t)

(and «f)

(and #t #t »t)

(and #t »t #f)

Note that the capturing problem need not arise in declaring and.

466 Declaring Special Forms

Exercise 14-5

The let expression

(let ((x 3))

(let ((x 10) (y x))

y))

evaluates to 3 because the x in the binding pair (y x) must look up its value

in an environment other than the local environment of the expression

(let ((x 10) (y x))

y)

The value 3 is found since that let expression is nested within the let expression

with binding pair (x 3). If we had wanted the x in (y x) to refer to the x in

(x 10), we would have had to put the (y x) in another nested let expression,

as follows:

(let ((x 3))

(let ((x 10))

(let ((y x))

y))) =* 10

In general, in the let expression

(let ((uari vali) (.var2 vo/2) (vars vala)) expri expr2 ...)

instances of vari in val^ and instances of var^ or var2 in vals cannot refer

to vari or var2 in this let expression but must find their values in a nonlocal

environment. However, if we were to write nested let expressions, such as

(let ((vari vali))

(let i(vaT2 va/2))

(let ((var^ va/3))

expri expr2 ...)))

then instances of vari in va/2 can refer to the vari in the first binding pair, and

instances of vari or var2 in vals can refer to the fari or i'ar2 of the preceding

two binding pairs. We used the Scheme special form let* in Section 10.2.5.

It has a syntax similar to that of let but behaves as though the successive

binding pairs are in nested let expressions. In fact, if there is only one such

binding pair, then let* is the same as let, so that

14.3 Macros 467

(let* (.ivar val)) expri expr2) = (let ((var val)) ezpri expT2)
and if there is more than one such binding pair,

(let* ((vari vali) ivaT2 val2) ...) expT\ expr2 ...)

(let ((rari vali)) (let* ((i;ar2 val2) .-) expri expr2 ...))

Write let*-traiisformer or use extend-syntax to declare let*. Test it on

the following:

(let* ((a 1) (b (+ a 2)) (c (* a b))) (+ a (- c b)))

Exercise I4.6

The procedure let-transformer is correct only if the user obeys let's syntax.

The special form let expects a list of n -f- 2 elements. The first must be the

symbol let; the second must be a list of pairs where each pair is a list of two

elements, in which the first element must be a symbol. The remaining n >
elements can be arbitrary expressions. Here are some incorrect examples:

(let (d 3) (y 4)))

(let ((3 3) (y 4)) (* x y))

(let (d 3) (y 4 5)) (* i y))

(let X 3 (* I y))

(let (("i" 3) (y 4)) (* "i" y))

Rewrite let-transformer so that reasonable error indications, such as those

shown below, are given to the user of let. Test these examples by invoking

let-tremsformer on the individual lists in question:

(let-transformer '(let (d 3) (y 4)))) ^
Error: illegal let expression: (let ((x 3) (y 4)))

(let -transformer '(let ((3 3) (y 4)) (* x y))) =>
Error: illegal let expression: (let ((3 3) (y 4)) (* x y))

(let-transformer '(let ((x 3) (y 4 5)) (* i y))) ^
Error: illegal let expression: (let ((x 3) (y 4 5)) (* i y))

(let-transformer '(let i 3 (* i y))) ^^
Error: illegal let expression: (let x 3 (* x y))

(let-transformer '(let (("x" 3) (y 4)) (* "x" y))) =>
Error: illegal let expression: (let (("x" 3) (y 4)) (* "x" y))

468 Declaring Special Forma

Exercise 14.7

The error information from the previous exercise does not pinpoint exactly

where the error occurred. Redesign the information displayed so that you can

better determine where the error occurred.

Exercise 14-8: named let

The macro let declared above did not include the case of the named let.

The named-let has the syntax table entry:

(let name (.(.var val) ...)

expri expT2 . . •)

((letrec
(,inam,e (lambda (.var ...)

expri expr2 . .))

)

name)
val . . .)

Define let-transformer or declare let using extend-syntax to include both

cases, the ordinary let and the named-let. Do Exercise 5.7 using named-

let.

Exercise 14-9: cycle

Define cycle-transformer or declare cycle using extend-s3^itax.

Exercise 14-10: while

The special form while is a control structure common to many program-

ming languages. In while, an expression is evaluated repeatedly as long as a

given condition is true. We can efi"ect the behavior of a while expression as

illustrated by the following program, which sums the numbers from 1 to 100:

(let ((n 100) (sum 0))

(letrec ((loop (lambda ()

(if (positive? n)

(begin

(set! sum (+ sum n))

(set ! n (subl n)

)

(loop))))))

(loop)

sum))

We would like to introduce the special form while, which allows us to write

the above program eis:

14.3 Macros 469

(let ((n 100) (sum 0))

(while (positive? n)

(set! sum (+ sum n))

(set! n (subl n)))

sum)

Thus while has the syntax table entry:

(while test expri expr2)

(letrec

((loop (lambda ()

(if test (begin expri expr2 ... (loop))))))
(loop))

Define while-transformer or declare while using extend-synteuc. You must

take into account the variable capturing that is caused when the variable loop

occurs free in test or expr ... in the macroexpansion. The syntax table entry

for while must then be modified to be of the form

(while test expri expr2)

(while-proc (freeze test) (freeze expri expT2 ...))

where while-proc is defined in Program 11.8. Test while on the above

program.

Exercise 14-11: repeat

The special form repeat takes two expressions. It executes the first expres-

sion. Then it executes the second expression. If that returns true, the expres-

sion terminates with an unspecified value. If not, it repeats in much the same

way as while from the previous exercise. Define repeat-transformer or

declare repeat using ext end-syntax by including while in its macroexpan-

sion. Then redo the exercise without using while. Finally, write an expression

using repeat that models the test program of the previous exercise.

Exercise 14.12: for

Write a special form that models the behavior of for expressions. Such ex-

pressions have the following syntax:

(for var initial step test expri expr2 •)

470 Declaring Special Forma

The for expression is used for modeling iteration. The variable var is initial-

ized to initial. Then the test is evaluated to determine whether it should

terminate. If test is true, it does terminate. If test is false, then expr . .

.

is evaluated. Finally, var is reset to the evaluation of step, and the process

repeats.

Define for-traLnsformer or declare for using extend-syntax given the

syntax table entry below.

(for var initial step test expri expT2)

(let iivar initial))

(let ((step-thunk (freeze step))

(test-thunk (freeze test))

(body-thiink (freeze expri exprQ ...)))

(while (not (thaw test-thunk))
(thaw body-thunk)
(set! var (thaw step-thiink)))))

This solution is subtle because each of step, test, and expri expr2 . . . will be

using var. For example, a typical use of for expressions is to add the elements

of a vector:

(define vector-siim

(lambda (v)

(let ((n (vector-length v))

(sum 0))

(for i (addl i) (= i n) (set! sum (+ sum (vector-ref v i))))

sum)))

Exercise 14.13: do

The special form do has the syntax table entry:

(do {{var initial step) ...)

{test exit\ exit2 .)
expri expr2 •)

((letrec
((loop (lambda (.var ...)

(cond

{test exiti exit2)
(else (begin expri expr2 . •)

(loop step ...))))))

loop)
initial . . .)

The variable loop must not be among var . . . and it must not be free in test,

14.3 Macros 471

exiti exit^ . .
.

, expri expr2 , and step . . . Redesign f or's syntax table

entry using do. (See the previous exercise.)

Exercise 14.14' beginO

Consider the following syntax table entry for beginO:

(beginO e) = e

(beginO ei 62 63 . . .) = (beginO-proc ei (freeze 62 63 ...))

beginO evaluates its subexpressions in order and returns the result of evalu-

ating the first one. Define the procedure beginO-proc, which always takes

exactly two arguments. Why is the syntax table entry

(beginO expri expr2 ...) ^ ((l£unbda args (car args)) expri expr2)
incorrect? [Hint: Read the specification carefully. What can we say about

the order of evaluation of operands?) Test beginO-proc by defining beginO-

transformer or declaring beginO using extend-syntax.

Exercise 14-15: begin

Define begin-transformer or declare begin using extend-syntax without

using freeze or the implied begin associated with lambda expressions.

Exercise I4.I6: cond

Consider cond expressions that are restricted to including at least one expres-

sion following each test in every clause and where the last clause must be

an else clause. They can be transformed into nested if expressions using the

following two-patterned syntax table entry:

(cond (else ei 62 ...)) = (begin ei 62 ..)

(cond {test ei 62 . . .) clauses . . .)

(if test (begin e\ 62 ...) (cond clauses ...))

Redefine member-trace and factorial below, using just the syntax table

entry for cond expressions.

4 72 Declaring Special Forms

(define member-trace

(lambda (item Is)

(cond

((null? Is) (writeln "no") #f)

((equal? (car Is) item) (writeln "yes") #t)

(else (writeln "maybe") (member-trace item (cdr Is))))))

(define factorial

(lambda (n)

(cond

((zero? n) 1)

(else (n (factorial (subl n)))))))

Exercise 14-17: cond

In order to declare the simplified cond with extend-syntax, the symbol else

must be included in the first operand to extend-syntax. That is because

extend-syntax has to be told what symbols it is supposed to be treating

literally. In most cases, it is just the special form name, but for cond and

case, it includes the symbol else. Fill in the rest of the declaration of cond

below. (See the previous exercise.)

(extend-syntax (cond else)

((cond (else el e2 ...)) ?)

((cond (test el e2 ...) clauses ...) ?))

Exercise 14-18: variable-case

Consider a variant of the case expression called variable-case. This expres-

sion is similar to case, except that instead of allowing its first operand to

be any expression, it is limited to being a variable. Thus, using case we can

write:

(case (remainder 35 10)

((2468) (writeln "even") (remainder 35 10))

((13 5 7 9) (writeln "odd") (remainder 35 10))

(else (writeln "zero") (remainder 35 10)))

but with variable-case we must write:

(let ((x (remainder 35 10)))

(variable-case x

((2 4 6 8) (writeln "even") x)

((13 5 7 9) (writeln "odd") x)

(else (writeln "zero") x)))

14.3 Macros 473

Complete the declaration of variable-case presented below, and then de-

fine vaxiable-case-transformer. Explain why keys has been transformed

into (quote keys). Hint: Remember that keys will be a list.

(extend-syntaz (variable-case else)

((vairiable-case vax (else el e2 ...)) ?)

((variable-case var (keys el e2 ...) clauses ...)

(if (memv var (quote keys))

(begin el e2 . . .)

(variable-case var clauses ...))))

Exercise 14.19

If we did not have variable-case from the previous exercise, then the case

example above would require an additional evaluation of (remainder 35 10).

Instead, we can choose a variable, say target, that will always hold the value

of the first operand of the most deeply nested case expression. Given this

constraint, declare this variant of case using extend-syntax. Hint: If you

use variable-case, you need only one rule for its synteix table entry, but

remember to include else in the list of symbols to be taken literally. Test

your program with the following case expression:

(case (remainder 35 10)

((2 4 6 8) (writeln "even") target)

((13 5 7 9) (writeln "odd") target)

(else (writeln "zero") target))

Exercise 14-20: object-maker

In Chapter 12 we presented a set of object-oriented programs that had a

particular pattern of use. For example, each object maker includes

(lambda msg (case (1st msg) ...))

Design a special form object-maker that abstracts this pattern of use. Are

there other patterns of use with object makers that can be abstracted?

4 74 Declaring Special Forma

15 Using Streams

15.1 Overview

In this chapter, we discuss streams, a data structure that enables us to process

infinite lists of items. We apply streams to handle input and output from files;

in particular, we construct a rudimentary formatter. To do this, we include a

brief introduction to the Scheme character data type.

15.2 Delayed Lists

In Chapter 14, we discussed the special form with keyword delay, which is

used to postpone the evaluation of an expression until it is needed. Thus

when we write (delay expri expr2 ...), a promise is returned, and the

body expri expr2 ... is not evaluated. When this promise is forced using

the procedure force, the body is evaluated, and the value is remembered.

Thereafter, each time the promise is forced, it returns the remembered value

instead of reevaluating its body. Thus, creating a promise has the effect of

"memoizing" the body, as well as delaying its evaluation. We shall now see

how we use this "lazy evaluation" to handle infinite lists.

Suppose that our work requires that we process a list of random numbers,

but we are not sure how long the list has to be. We can choose a very large

number and make a list that long, each member of the list being a random

number, say, between 2 and 12, inclusively. Thus, the list can be generated

by

(define random-2-to-12-list

(lambda (n)

(if (zero? n)

'()

(cons (+ 2 (random 11)) (random-2-to-12-list (subl n))))))

Then when (random-2-to-12-list 100) is called, a list of 100 random num-

bers is created. Suppose we now add the numbers from the beginning of the

list until the first time the number 7 is reached, at which time the sum is

printed along with the number of integers summed. The following program

does this:

(define sum-until-f irst-7

(letrec

((local-sum

(lambda (rl sum count)

(if (null? rl)

(writeln

"A seven nas not found; sum = "

sum " and count = " count)

(let ((next (car rl)))

(if (= next 7)

(writeln "sum = " sum " nhen count = " coiint)

(local-sum

(cdr rl)

(+ next Slim)

(addl count))))))))

(lambda (rand-list)

(local-sum rand-list 0))))

Here are some sample runs of this program:

[1] (sum-until-f irst-7 (random-2-to-12-list 100))

sum =31 when count = 4

[2] (sum-until-f irst-7 (random-2-to-12-list 4))

A seven was not foujid; siun = 28 and count = 4

When we called (sum-until-f irst-7 (random-2-to-12-list 100)), a list

of 100 random numbers was generated, and they were processed from the

beginning of the list, adding the successive numbers until the first 7 was

encountered, at which time the sum and count were printed. But a list of 100

random numbers was generated, and only 4 were used. Is there any way to

j^16 Using Streams

create a list that has the property that the next random number will not be

generated until we are ready to process it?

We have seen how to postpone the evaluation of an expression by delaying

it. This will let us redefine the procedure that builds the random list so that

each time cons is called, its second operand is delayed. We shall call a list

built using such conses a delayed list. We illustrate this method of producing

a delayed list by constructing del-list containing the two elements (fib 8)

and (fib 9):

(define del-list

(cons (fib 8)

(delay (cons (fib 9)

(delay '())))))

In order to look at the first element of del-list, we take the car. Our goal

now is to define operators on the data type delayed lists. The first of these is

delayed-list-car, which is the same as car, since we do not delay the first

argument to cons. Thus

(define delayed-list-car

(lambda (x)

(car x)))

Observe that this definition can be written more compactly:

Program 15.1 delayed-list-car

(define delayed-list-car car)

If we call (delayed-list-car del-list), 21 is returned. To get to the

second element in del-list, we must first take the cdr of del-list, yielding

a promise, and then force that promise. The result is another delayed list:

(cons (fib 9) (delay '()))

If we next apply delayed-list-car to this delayed list, 34 is returned. We
often use the sequence of operations consisting of taking the cdr and then

forcing the resulting promise. Thus, we define delayed-list-cdr to be that

sequence of two operations:

15.2 Delayed Lists 477

(define delayed-list-cdr

(lambda (x)

(force (cdr x))))

or, more compactly,

Program 15.2 delayed-list-cdr

Then we can get the second element of del-list by calling:

(delayed-list-cax (delayed-list-cdr del-list)) ==» 34

Because of the memoizing effect of delay, (fib 9) is evaluated the first time

the above call is made, and the value 34 is stored. The next time the call

is made, 34 is returned without reevaluating the (fib 9) in (cons (fib 9)

(delay '())).

If we apply delayed-list-cdr to del-list and then apply delayed-list-

cdr to that result, we get the list ' (), which we call the-null-delayed-list.

We test for the-null-delayed-list with the predicate delayed-list-null?

defined as

(define delayed-list-null?

(lambda (delayed-list)

(null? delayed-list)))

We collect the definitions of the delayed list operators in Program 15.3.

Program 15.3 Basic definitions for delayed lists

(define the-null-delayed-list '())

(define delayed-list-null? null?)

(define delayed-list-car ceir)

(define delayed-list-cdr (compose force cdr))

478 Using Streams

In order to add a new object a to a delayed list b, we cons a onto (delay

b) to get (cons a (delay b)). In the spirit of what we did in Program 15.3,

we shall introduce delayed-list-cons to produce the above code, remem-

bering that we want to delay the evaluation of the second operand b. If we

were to define delayed-list-cons to be a procedure, then if we were to

call (delayed-list-cons a b), the fact that procedure applications evalu-

ate their operands before passing their values to the procedure defeats the

purpose of the delay. Thus, we must declare delayed-list-cons as a special

form using the following syntax table entry:

(delayed-list-cons expr del-Hat) = (cons expr (delay del-list))

We can declare it with the techniques of Chapter 14.

With delayed-list-cons, we can rewrite the definition of del-list as

(define del-list

(delayed-list-cons

(fib 8)

(delayed-list-cons

(fib 9)

the-null-delayed-list))

)

so that building delayed lists looks analogous to building lists. We can also

rewrite the definition of r£aidom-2-to-12-list using our new constructor

delayed-list-cons to give us random-delayed-list:

Program 15.4 random-delayed-list

(define random-delayed-list

(lambda (n)

(if (zero? n)

the-null-delayed-list

(delayed-list-cons

(+ 2 (random 11))

(random-delayed-list (subl n))))))

We now rewrite the procedure sum-Tintil-first-7 using delayed lists as

follows:

15.2 Delayed Lists 4'79

(define sum-until-f irst-7

(letrec

((local-sum

(lanbda (delayed-list sun count)

(if (delayed-list-null? delayed-list)

(writeln

"A seven was not found; sum = "

sum " and count = " count)

(let ((next (delayed-list-car delayed-list)))

(if (= next 7)

(writeln "sum = " s\im " when count = " count)

(local-sum

(delayed-list-cdr delayed-list)

(+ next sum)

(addl count))))))))

(lambda (rand-delayed-list)

(local-sum rand-delayed-list 0))))

The output from this procedure has the same form as that of our previous

version, but now a random number is computed only when it is used.

In order to see the elements of a delayed list, it is convenient to have a

procedure delayed-list->list, which converts a delayed list delayed-list

into a list of its elements:

(define delayed-list->list

(lEunbda (delayed-list)

(if (delayed-list-null? delayed-list)

'()

(cons (delayed-list-car delayed-list)

(delayed-list->list (delayed-list-cdr delayed-list))))))

We can now use this to look at the elements in the delayed list (random-

delayed-list 20):

[1] (delayed-list->list (random-delayed-list 20))

(7 5 11 3 7 5 8 10 5 8 8 2 2 12 9 7 12 4 5 6)

[2] (delayed-list->list (random-delayed-list 20))

(2 43473995 10 44 12 777 11 55 3)

[3] (define rdelayed-list20 (random-delayed-list 20))

[4] (delayed-list->list rdelayed-list20)

(7 5 11 3 7 5 8 10 5 8 8 2 2 12 9 7 12 4 5 6)

[5] (delayed-list->list rdelayed-list20)

(7 5 11 3 7 5 8 10 5 8 8 2 2 12 9 7 12 4 5 6)

480 Using Streams

Exercises

Exercise 15.1

Define the delayed list consisting of the first n even integers starting with 0.

Define the delayed list consisting of the first n odd integers starting with 1.

Exercise 15.2: list->delayed-list

Define a procedure list->delayed-list that takes a list as its argument and

returns the corresponding delayed list. This procedure is useful for testing the

delayed list data type at the prompt.

Exercise 15.3: delayed-list-sum, delayed-list-product

Define a procedure delayed-list-sum that adds the first k elements in a

delayed list whose elements are numbers. If the delayed list has fewer elements

than k, add them all. Do the same for delayed-list-product, and then use

procedural abstraction to define a procedure delayed-list-accumulatefrom

which these can be obtained by suitably choosing its arguments. If one of the

elements of the delayed list evaluates to 0, the value should be returned for

the product without evaluating any additional elements of the delayed list.

Exercise 15.4

Delayed lists can be treated as an abstract data type with a few basic opera-

tors. Convince yourself that if the definitions of the five entities are given, all

of the remaining definitions in this section would still be defined:

• the-null-delayed-list,

• delayed-list-null?,

• delayed-list-car,

• delayed-list-cdr,

• delayed-list-cons.

One alternative way of defining these entities is based on the decision to delay

the car part as well as the cdr part of a cons cell. Thus, the syntax table entry

for delayed-list-cons becomes:

(delayed-list-cons val del-list) = (cons (delay val) (delay del-Hat))

How must the other four basic definitions of Program 15.3 be changed? Does

the behavior of any of the procedures defined in this section change using

these definitions of the five basic entities? Discuss the behavior of del-list

15.2 Delayed Lists 481

15.3 Streams

if these five definitions are used. In particular, discuss when (fib 8) and

(fib 9) are evaluated. What other syntax table entries can you suggest

for delayed-list-cons? How does each of them affect the other four basic

entities?

In the delayed list rdelayed-list defined by

(define rdelayed-list (random-delayed-list 100))

(delayed-list-car rdelayed-list) is a random number. It really does not

matter how long the delayed list is at this point, for no further calculation is

done. When delayed-list-cdr is invoked, another delayed list is returned.

Thus it is not necessary to indicate at any time how much of the delayed list

still remains, and hence the variable n and the terminating condition may be

omitted from the definition of random-delayed-list.

When the terminating condition is omitted in the definition of a delayed

list, we get what appears to be a nonterminating list, or what we can call

a stream. We have delayed-list-car, delayed-list-cdr, and delayed-

list-cons that use delayed lists. We have now introduced streams as a

new data type and, in order to be consistent about the data types, we limit

their use to delayed lists and give them new names when they are used with

streams. The new names are stream-car, stream-cdr, and stream-cons.

The definitions of stream-car and stream-cdr are in Program 15.5. The

syntax table entry for stream-cons is:^

(streas-cons expr stream) = (cons expr (delay stream,))

^ Using techniques from Chapter 14, we can declare stream-cons with

(ext end-syntax (stream-cons)

((stream-cons expr stream) (cons expr (delay stream))))

or with

(macro stream-cons

(lambda (code)

(if (not (= (length code) 3))

(error "stream-cons: Wrong number of expressions" code)

(list 'cons (2nd code) (list 'delay (3rd code))))))

482 Using Streams

Program 15.5 stream-car, streeun-cdr

(define streaun-car ceur)

(define strean-cdr (compose force cdr))

Now we return to considering the elimination of the terminating condition

from the definition of random-delayed-list. We get:

Program 15.6 random-stream-generator

(define random-stream-generator

(lambda ()

(stream-cons (+ 2 (random 11)) (random-streeun-generator))))

and

Program 15.7 random-stream

(define random-stream (random-stream-generator))

This looks as though the code for random-stream-generator contains a non-

terminating recursion and its invocation in random-stream (see Program 15.7)

causes an infinite loop, but when stream-cons is expanded within random-

stream-generator, it produces a stream whose cdr is not evaluated but in-

stead is waiting to be forced. When (stream-car random-stream) is in-

voked, a random integer is returned. When (stresun-cdr random-stream) is

invoked, a stream is returned, waiting for the next stream-car call, carrying

out the next recursive step. In general, a stream is defined recursively to be

a cons cell whose car pointer refers to a value and whose cdr pointer refers

to a delayed stream. Thus we may think of a stream as a nonterminating

(or infinite) delayed list. The discussion in Exercise 15.4 also applies to the

corresponding stream operations.

Another example of a stream is the-null-stream, all of whose elements are

the same; that common value is the-end-of-stream-tag, which we define to

be the string "end of stream":

15.3 Streams 483

Program 15.8 the-null-stream

(define the-null-stream

(stream-cons the-end-of -stream-tag the-null-stream))

Program 15.9 list->stream

(define list->stream

(lambda (Is)

(if (null? Is)

the-null-stream

(stream-cons (car Is) (list->stream (cdr Is))))))

Program 15.10 end-of-stream?

(define end-of-stream?

(lambda (z)

(eq? X the-end-of-stream-tag)))

(define the-end-of-stream-tag "end of stream")

We use the-null-stream (see Program 15.8) to define list->streajn, which

converts any list into a stream that contains the same elements and terminates

with the-null-stream. See Program 15.9.

If list->stream is given a circular list, then the result is an infinite stream.

For example,

(list->stream (let ((i (list 1 2 3))) (append! x x)))

A stream is called a finite stream if it has the property that from some element

on it becomes the-null-stream. Any noncircular list that is converted into

a stream is an example of a finite stream. We use the term infinite stream to

refer to those streams that are not finite when such a distinction is called for.

The predicate end-of-stream? defined in Program 15.10 tests whether a

given stream element is the-end-of-stream-tag. In Program 15.11, the

predicate stream-null? uses end-of-stream? to determine whether its ar-

gument is the-null-stream.

484 Using Streams

Program 15.11 streajn-null?

(define streeun-null? (compose end-of-stream? stream-ceu:))

To look at the first n elements of a stream strm, we use a procedure that

builds a list out of those n elements. If strm is a finite stream, we show

the list of its elements only up to where the-null-stream starts by passing

stream->list any negative number as its second argument. We define the

procedures stream->list and finite-streain->list as

Program 15.12 streain->list, f inite-streani->list

(define streani->list

(lambda (strm n)

(if (or (zero? n) (stream-null? strm))

'()

(cons (stream-car strm)

(stream->list (stream-cdr strm) (subl n))))))

(define f inite-stream->list

(lambda (f inite-strm)

(stream->list f inite-strm -1)))

We can use streain->list to look at numbers generated by random-stream-

generator:

[1] (stream->list (random-stream-generator) 25)

(7 5 5 4 6 4 5 11 2 11 11 7 5 11 11 8 9 3 5 10 4 12 7 7 10)

[2] (streajn->list (random-stream-generator) 25)

(8 5 10 12 10 8 2 8 3 5 4 9 2 5 4 12 6 3 7 5 12 3 12 2 9)

[3] (stream->list remdom-stream 20)

(7 7956823567 10 12 33 11 544 5)

[4] (stre2un->list random-stream 25)

(7 7 9 5 6 8 2 3 5 6 7 10 12 3 3 11 5 4 4 5 10 11 12 8 4)

We see that random-stream (Program 15.7) contains a fixed stream of ran-

dom numbers, while calling (random-stream-generator) generates a differ-

ent stream of numbers each time it is called.

Other streams can be defined using stream-cons. For example, the stream

of positive integers can be defined as:

15.3 Streams 4^5

Program 15.13 positive-integers

(define positive-integers

(letrec

((stream-builder

(lambda (x)

(stream-cons x (streaim-builder (addl x))))))

(stream-builder 1))

)

The stream of even positive integers can be defined as follows:

Program 15.14 even-positive-integers

(define even-positive-integers

(letrec

((stre«un-builder

(lambda (x)

(stream-cons x (stream-builder (+ x 2))))))

(stream-builder 2)))

Similarly, the stream of powers of 2 can be defined as:

Program 15.15 poHers-of-2

(define powers-of-2

(letrec

((stream-builder

(lambda (x)

(streeim-cons x (stream-builder (* x 2))))))

(stream-builder 1)))

The definitions of these three streams share common features that lead us to

think about abstraction. We define a procedure build-stream that abstracts

the structure of the definitions of these streams. The first place in which the

three differ is in the initial value of the argument x. We call this initial value

seed. The other place where they differ is in the procedure in the last line,

which appears as the operand to the local procedure. This procedure is the

486 Using Streams

Program 15.16 build-stream

(define build-strean

(leonbda (seed proc)

(letrec

((strejuB-builder

(lanbda (x)

(stream-cons x (strezun-builder (proc x))))))

(stream-builder seed)))

)

rule for going from the current value of x to the next value of x. We call this

transition procedure proc. Then the procedure build-stream is defined in

Program 15.16. The three streams defined above can now be defined in terms

of build-stream, as follows:

(define positive- integers

(build-stream 1 addl))

(define even-positive-integers

(build-stream 2 (lambda (x) (+ x 2))))

(define powers-of-2

(build-stream 1 (lambda (x) (* x 2))))

and the stream of random numbers defined above can be defined using build-

stream if the seed is (+ 2 (random 11)) and the transition procedure is

(lambda (x) (+ 2 (random 11))). We have:

(define random-streeun-generator

(lambda

(build-stream (+ 2 (random 11)) (lambda (x) (+ 2 (random 11))))))

With a slight modification of the above technique, we can define the stream

of factorials. To do so, we define a local procedure stream-builder with two

parameters. We have:

15.3 Streams 487

Program 15.17 factorials

(define factorials

(letrec

((stream-builder

(lambda (x n)

(stream-cons x (stream-builder (* x n) (addl n))))))

(stream-builder 1 1)))

Certain of the procedures that were defined in the previous section for de-

layed lists can be redefined for streams. For example, we can redefine the

procedure delayed-list-sum of Exercise 15.3 to get the procedure stream-

sum, which sums the first k terms of a stream of numbers. If a stream of

numbers is a finite stream, then by putting in the appropriate test for the-

null-stream, we can write sura-finite-stream, which sums all of the num-

bers in the stream preceding the-null-stream. If the stream is infinite, we

cannot ask for the sum of all of the elements of the stream. Similarly, we

cannot append one infinite stream onto another, since the first stream has no

end. Always be sure operations will terminate before applying them to infinite

streams.

From a given stream strm, we can build a new stream in which a given

procedure proc is applied to each element of strm. The procedure stream-

map, which builds this new stream, is defined by

Program 15.18 stream-map

(define stream- map

(Isunbda (proc strm)

(if (stream -null? strm)

the-null-stream

(stream -cons

(proc (stream-car strm)

)

(stre am-map proc ^stream--cdr strm))))))

This enables us to define the infinite stream of odd positive integers as shown

in Program 15.19.

Now let strml and strm2 be two infinite streams, and let an be the nth

element of strml and let bn be the nth element of strra2. If proc is a procedure

that takes two arguments such that (proc a^ bn) is defined, a stream can be

488 Using Streams

Program 15.19 odd-positive-integers

(define odd-positive- integers

(stream-map subl even-positive-integers))

built that has the element (proc a^ b^) as its nth element. The procedure

that applies proc to the corresponding elements of the two infinite streams

to form the new stream is called stream-apply-to-both and is defined in

Program 15.20. This enables us to define stream-plus and stream-times

as the streams obtained by taking the element-wise sum and element-wise

product of two streams of numbers. (See Program 15.21.)

Program 15.20 stream-apply-to-both

(define stream-apply-to-both

(lambda (proc)

(letrec

((str-app

(lambda (si s2)

(stream-cons

(proc (streeun-car si) (stream-car s2))

(str-app (stream-cdr si) (stream-cdr s2))))))

str-app))

)

Program 15.21 stream-plus, stream-times

(define stream-plus (stream-apply-to-both +)

)

(define stream-times (stream-apply-to-both *))

In Program 15.22, we define a procedure stream-filter-out that removes

from a stream all of those elements for which a given predicate test? is true.

This gives us another way of defining the stream of odd integers from the

stream of integers by writing:

(define odd-positive-integers

((stream-filter-out even?)

positive-integers)

)

15.3 Streams 489

Program 15.22 stream-filter-out

(define streeua-f ilter-out

(lambda (test?)

(letrec

((helper

(lambda (strm)

(let ((a (streaa-car strm)))

(if (test? a)

(helper (strean-cdr strm))

(stream-cons a (helper (stream--cdr strm))))))))

helper)))

We can give another interesting recursive definition of the stream of positive

integers using stream-map:

Program 15.23 positive-integers

(define positive-integers

(stream-cons 1 (stresun-map addl positive-integers)))

For if we add 1 to each of the elements in the stream of positive integers, we

get a stream of integers from 2. Then stream-consing 1 onto this stream of

integers starting from 2 gives us the stream of positive integers. We can also

look at the definition from another point of view that says we first stream-

cons 1 onto the stream, so the stream-car of positive-integers is 1. The

stream-cdr of positive-integers is the stream obtained by adding 1 to

each element of positive-integers, so its stream-csir is 2. Continuing in

this way, we see that this procedure recursively defines the stream of positive

integers.

Another definition of the stream of factorials can be motivated by the ob-

servation that if the items in the list of factorials shown below are multiplied

element-wise by the items in the list of positive integers, then we reproduce

the list of factorials with the first element missing.

multiply

1 1 2 6 24 120 720 ...

1 2 3 4 5 6 7 ...

1 2 6 24 120 720 5040

490 Using Streams

The stream of factorials can then be defined recursively by:

Program 15.24 factorials

(define factorials

(stream-cons 1 (stream-times factorials positive-integers)))

In a similar way, we can motivate the definition of the stream of Fibonacci

numbers by observing that if the list of Fibonacci numbers shown below is

added element-wise to the same list (without its leading 0) shifted one element

to the left, the resulting list is again the list of Fibonacci numbers, this time

without the first two numbers and 1.

112 3 5 8 13 ...

112 3 5 8 13 21 ...

add

1 2 3 5 8 13 21 34 ...

The definition of the stream of Fibonacci numbers is then:

Program 15.25 f ibonacci-numbers

(define f ibonacci-numbers

(stre<un-cons

(streaun-cons 1

(stream-plus

f ibonacci-numbers

(strecun-cdr f ibonacci-numbers))))

)

A prime number is a number, other than 1, that has only 1 and itself as

factors. Thus 2, 3, 5, 7, 11, and 13 are the first six primes. Eratosthenes, who

lived in the third century B.C., devised a clever way of finding all of the primes

up to some given number N. First, write a list of all of the integers from 2

up to N. Then, with 2 eis the base, remove all multiples of the bcise that are

greater than the base. Now take the first remaining number after the base (in

this case, 3) and call it the base. Once again, remove all multiples of the base

greater than the base. We continue this process, choosing as the new base the

first remaining number that follows the preceding base, and then removing all

multiples of the new base that are greater than the new base, until there are

15.3 Streams 491

Program 15.26 divides-by, sieve, prime-numbers

(define divides-by

(leunbda (n)

(lambda (k)

(zero? (remainder k ci)))))

(define sieve (compose stre>am-filter-out divides -by))

(define prime-numbers

(letrec

((primes

(lambda (s)

(stream-cons

(stream-car s)

(primes ((sieve (stream-car s)) (stream--cdr s)))))))

(primes (stream-cdr pos itive-- integers))))

no more numbers to take as the base. The remaining numbers are the primes

less than or equal to N. This method is called the Sieve of Eratosthenes. It is

used below to find all of the primes up to 20. Each successive list is the result

of removing multiples of the next base.

(2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20)(23579 11 13 15 17 19)

(2357 11 13 17 19)

The last list contains all of the primes up to 20.

Each step of the sieve process is an application of a filter to the stream of

remaining integers that removes those numbers that are multiples of the beise

and are greater than the base. Such a filter, which we call sieve, and the

stream prime-numbers are defined in Program 15.26.

In Program 15.27 we show another way of defining the stream of all prime

numbers that combines the ideas of Exercise 7.20 and the data recursion used

in Program 15.23. Instead of testing with all odd integers < t/n, we now can

restrict our testing to the odd prime numbers < -y/n. Assuming we have the

stream odd-primes, we first define a divisibility test has-prime-divisor?

which returns #t if its operand, an odd number, has a prime divisor. Then

the stream prime-numbers is defined by stream-consing 2 onto the stream

of odd primes. The stream odd-primes is defined by stream-consing 3 onto

the stream of all primes from 5 on, which is generated by the procedure odd-

492 Using Streams

Program 15.27 has-prime-divisor?, prime-numbers

(define has-prime-divisor?

(lajnbda (n)

(let ((max-value (sqrt n))

)

(letrec

((try (lambda (primes)

(and (<= (stream-car primes) max-value)

(or (zero? (remainder n (streeun-car primes)))

(try

(stream-cdr primes)))))))

(try odd-primes)))))

(define prime-numbers (stream-cons 2 odd-primes))

(define odd-primes (stream-cons 3 (odd-primes-builder 5)))

(define odd-primes-builder

(lambda (n)

(if (has-prime-divisor? n)

(odd-primes-builder (+ n 2))

(stream-cons n (odd-primes-builder (+ n 2))))))

primes-builder. The invocation (odd-primes-builder n) with n odd and

>= 5 generates the stream of those prime numbers > n.

Exercises

Exercise 15.5: integers-from, multiples-of , squares-of-integers

Define the procedure integers-from such that (integers-from m) is the

stream of all integers beginning with the integer m and increasing. For exam-

ple, if 771 = 6, the stream will contain the integers 6, 7, 8, 9, . . .Then define the

procedure multiples-of such that (multiples-of A;) is a stream of integers

that starts with 0, whose elements are increasing and are multiples of the

positive integer k. Finally, define the stream of squares-of-integers whose

first few elements are 1, 4, 9, 16, 25, 36, . . .Test your streams by printing a

list of the first 20 elements of each stream using stream->list.

15.3 Streams 493

Exercise 15.6: all- integers

Write the definition of all-integers (including both the positive and neg-

ative integers and 0). Your stream does not have to contain the integers in

increasing order. For example, you can start with 0, then take 1, then -1,

then 2, and then -2, etc.

Exercise 15.7: stream-f ilter-in

Define a procedure stream-f ilter-in that takes as arguments a predicate

and a stream and returns a stream consisting of those elements of the original

stream for which the predicate is true. Test your program by filtering the

stream of positive integers using the predicate, which tests whether a number

is an odd multiple of 3. Use strezan->list to print the first 20 elements of

the resulting stream: (3 9 15 21 ...).

Exercise 15.8: stream-ref

Write a procedure stream-ref that is the analogue of list-ref . Then use

Programs 15.26 and 15.27 for the prime-numbers along with your procedure

stream-ref to find the hundredth, three-hundredth, and seven-hundredth

prime. Which of the two programs ran faster?

Exercise 15.9: stream-member?

Define a procedure stream-member? that takes three arguments: an item a,

a stream strm, and a nonnegative integer n, which is true if a is one of the

first n elements of the stream strm. If strm is a finite stream with length less

than n, it tests whether a is an element of strm.

Exercise 15.10: prime?

Write the definition of a procedure prime? that tests whether a given positive

integer is prime using has-prime-divisor? of Program 15.27. Test prime?

on numbers such as 37, 35, 51, 57, and 100000007.

Exercise 15.11: positive-rationals

The positive rational numbers, which are ratios of two positive integers a/6,

can be enumerated by listing them in order of increasing sums a + 6, with

those numbers having the same sum listed in order of increasing numerator

a. Those fractions that are not in lowest terms are omitted from the enu-

meration. Thus the enumeration begins with 1/1, 1/2, 2/1, 1/3, 3/1,...

Define a stream positive-rationals that contains all of the positive ratio-

nal numbers with numerator and denominator having no common divisors

494 Using Streams

(1 1) (1 2) (1 3) (1 4) (15) ...

(2 1) (2 2) (2 3) (2 4) (2 5) ...

(3 1) (3 2) (3 3) (3 4) (3 5) ...

(4 1) (4 2) (4 3) (4 4) (4 5) ...

(1 5) (5 2) (5 3) (5 4) (5 5) ...

Table 15.28 Table with constant sum diagonals

greater than 1. Represent the rational number a/h as a pair (list a b) and

use the Scheme procedure gcd to test whether a/h is in lowest terms. Test

your program by listing the first 20 elements of the stream.

Exercise 15.12: stream-cdr

The procedure stream-cdr should have been implemented without the "—>"

tag. Modify the definitions of stream-cdr and force so that when a promise

is fulfilled, just its value is stored. (See Programs 14.4 and 15.5.) Compare this

version of the stream operators with those used earlier to evaluate the expres-

sion (begin (stream-ref positive-integers 20) positive-integers).

Exercise 15.13: diagonal

In Table 15.28, the ith diagonal (going up to the right) consists of all integer

pairs in which the two integers have sum i + 1; that is:

(i 1) (i - 1 2) (i - 2 3) . . . (2 2 - 1) (1 i)

Define a procedure diagonal that takes an integer, i, and returns a finite

stream containing as its first i elements the zth diagonal, followed by the-

null-stream. Test it with 4 and 5.

(finite-streain->list (diagonal 4)) =^ ((4 1) (3 2) (2 3) (1 4))

(finite-streain->list (diagonal 5)) => ((5 1) (4 2) (3 3) (2 4) (1 5))

Exercise 15.14: stream-append

Consider the incorrect code for stream-append given below:

(define stream-append

(lambda (finite-stream stream)

(cond

((stream-null? finite-stream) stream)

(else (stream-cons

15.3 Streams 495

(stream-car finite-stream)

(stream-append (stream-cdr finite-stream) stream))))))

Next consider int-pairs-generator, which uses stream-append:

(define int-pairs-generator

(lambda (i)

(stream-append (diagonal i) (int-pairs-generator (addl i)))))

Find out what happens when (int-pairs-generator 1) is evaluated. Ex-

plain.

Exercise 15.15

The problem with stream-append mentioned in the previous exercise can

be corrected by treating stream-append as a syntactic extension with the

following syntax table entry:

(stream-append finite-stream stream)

(stream-append/delay finite-stream (delay stream))

Declare stream-append and define stream-append/delay. Then complete

the following experiment:

[1] (define int-pairs (int-pairs-generator 1))

[2] (define f irst-300-int-pairs (stream->list int-pairs 300))

[3] first-300-int-pairs
7

15.4 Using Character Data

In Section 15.5, we look at an application of streams to input and output.

That will make use of a data type known cis characters . These are the letters,

numbers, and other symbols on the computer keyboard, as well as certain

control characters such as newline and space. In this section, we see how this

data type is handled in Scheme.

Since information is stored in the computer in the form of binary numbers,

each letter in the alphabet is assigned an integer number. An example of

such a system that is used in many computers is the ASCII character set,

which assigns numbers to 128 symbols that can be entered on the computer

496 Using Streams

keyboard. The ASCII codes are given in Table A 1.1 in Appendix A. The char-

acters on the computer keyboard are represented in Scheme by the character

data type, and each character is entered with #\ preceding it. For example,

the character representation of the letter "A" is #\A. There is a Scheme pro-

cedure cheir->integer that takes a character as its argument and returns an

integer representation of that character. In this book, we assume that the

integer representation of a character is the ASCII code for that character.

For example:

(chcur->integer #\A) ^^ 65

(char-> integer «\B) =» 66

(cheur->integer #\a) =» 97

(char->integer «\b) ^ 98

(cheir->integer #\0) ^^ 48

(char-> integer «\1) ^ 49

Scheme also has the procedure integer->ch2Lr, which is the inverse of char-

>integer; that is, if n is any number between and 127, inclusive, then

(integer->chsu: n) returns the character corresponding to n, and we again

use the ASCII code to determine that character. For example,

(integer->char 65) =* «\A

Special Scheme characters are used to denote some of the control characters

on the computer keyboard. For example, a blank space, which corresponds to

pressing the space bar on the computer keyboard, is denoted by the character

#\space, and a newline (or line feed) is denoted by the character tXnewline.

Some implementations of Scheme also contain the character #\retum, which

produces the control character corresponding to pressing the return or enter

key on the computer keyboard.

There are also a number of predicates that are used to test the order of two

characters by comparing the order of their ASCII codes: ch2a'=?, cliar<?,

ch.ar>?, ch.eoc<-?, and char>=?. We have:

(char<? «\C «\F) => «t

(char<? «\B #\A) =*• «f

(char<? «\A «\a) => «t

(ch2u:=? «\A (integer->char 65)) ^ #t

Sometimes it is desirable to ignore the case of a letter and consider upper-

and lowercases of a given letter as the same. Then we would treat #\A and

15.4 Using Character Data 497

#\a as if they were the same. In order to do this, there are case-insensitive

predicates corresponding to the ones listed above: ch2a—ci=?, chcur-cK?,

chau:-ci<=?, char-ci>?. and chear-ci>=?. For example, (cheo—ci=? #\A

#\a) has the value true. Two other procedures relevant to the case of charac-

ters are char-upcase and char-downcase. Both take a character as argument

and return another character. The first leaves all characters unchanged ex-

cept that it returns an uppercase character when its argument is a lowercase

alphabetic character; the second returns a lowercase character when its ar-

gument is an uppercase alphabetic character. Along with these are the two

predicates char-upper-case? and char-lower-case? which test the case of

a letter:

(char-upcase #\a) ==*> #\A

(char-downcase #\Z) ^^ #\z

(char-upper-case? #\A) =^ #t

There are some string procedures that also make use of characters. For

example, string->list is a procedure that takes a string and returns a list

of characters that make up the string. Thus,

(string->list "Have fun.")

=> (#\H «\a #\v t\e «\space #\f f\u #\n «\.)

To go in the opposite direction, we have the procedure list->string, which

collects together the items in a list of characters and produces a string.

Exercises

Exercise 15.16: string->list

We can think about a string as a vector composed of characters, but each

vector operation has become a string operation. For example, for vector ihere

is string, for maJce-vector there is make-string, for vector-ref there is

string-ref , for vector-set ! there is string-set
!

, and for vector-length

there is string-length. Using only string-rel and string-length from

this set of string-processing operations, write string->list, which takes a

string (of characters) and returns a list (of characters).

Exercise 15.17: list->string

Using the discussion of the previous exercise, write list->string. Here is a

start:

498 Using Streams

(define list->string

(lambda (list-of-characters)

(let (den (length list-of-characters)))

(let ((result-string (make-string len)))

...))))

Test your solution with the following examples:

[1] (define string-tester

(lambda (strng)

(let ((chars (string->list strng)))

(let ((s (list->string chars)))

(write (list s chars))

(nesline)))))

[2] (for-each string-tester ' ("abc" " " "uv xyz" ""))

Exercise 15.18: string

Define string, which, like list and vector, takes an arbitrary number of

arguments. In the case of string, all must be characters.

Exercise 15.19: string-append

Define string-append, which takes two strings and returns a string (see Ex-

ercise 9.6). string-append is the analog of append using strings instead of

lists. Define string-append using only list->string, string->list, and

append.

Exercise 15.20: Icjer

Define a procedure lower that takes a string and returns a new string where

all upperccise characters become lowercase. Hint: Use map and string->list.

Exercise 15.21: lower!

Define a procedure lower! that takes a string and side effects it so that all

uppercase characters in the string are replaced by lowercase characters.

Exercise 15.22: flipflop

Define a procedure flipflop that takes a string and returns a new string

where all uppercase characters become lowercase and all lowercase characters

become uppercase.

15.4 Using Character Data 499

15.5 Files

Exercise 15.23: hash-function

In Section 12.6, a naive-hash-function was used as a local procedure to

assign an integer to a string. It assigned the ASCII code of the first charac-

ter in the string, modulo some fixed number (26 was used in naive-hash-

fiuiction). This method has the disadvantage that some letters are used

more frequently than others to start words, so the buckets would not be filled

uniformly. A better hash function is one that uses the sum of the ASCII

codes of all the characters in the string modulo some fixed number m. This

will tend to distribute the words more evenly through the m buckets. Define

the procedure hash-function, which has as its parameter an integer m and

returns another procedure, which, when passed a string, returns the sum of

the ASCII codes of the first n characters in the string modulo m (that is, the

remainder when the sum is divided by m). First, define hash-function so that

it is case sensitive, and then redefine it with the name hash-function-ci so

that it is case insensitive and treats all letters as if they were lowercase. Test

your procedures on:

((hash-function 26) "Hello") =^ 6

((hash-function 26) "hello") =^ 12

((hash-function-ci 26) "Hello") =J> 12

((hash-function-ci 26) "hello") =^ 12

In this section, we discuss reading from and writing to files. We shall also

develop an application of streams when we develop a formatter that reads text

from one file, reformats it, and writes it to another file. This will necessitate

the reading and writing of characters.

You have probably been using files in your work to store the text of programs

that you write in the editor and to store the output of your Scheme programs

by using a transcript facility or by saving the contents of a window. It is also

possible to have Scheme programs read directly from a file or write directly

to a file. In all cases, the material entered using a read expression comes from

an input port, and the material printed using a display or write expression

is sent to an output port. In general, a port is associated with an input or

output device. In our programs so far, the input port for the read expressions

has been associated with the computer's keyboard, known as the standard

input. Similarly, the output port for our display and write expressions has

been associated with the computer's video display, known as the standard

output. These are the default values if no other port is specified for the input

500 Using Streams

or output.

It is also possible to make the input port be associated with a file from

which we want to read items, or to make the output port be associated with

a file to which we want to write items. To associate an input port with a file,

we use the Scheme procedure open-input-file, which takes as an argument

a string that contains the name of an existing file or the path to the file, and

returns a port associated with that file. For example, the expression

(open- input-file "inputl.dat")

returns an input port associated with the file named "inputl.dat". The

port returned is capable of delivering characters from the file "inputl.dat".

The procedure read takes a port as an optional argument, and if that argu-

ment is present, it reads from that port. For example, suppose that the file

"inputl.dat" contains the following:

This is "a test string."

((1 2) (3 4))

Then we assign the port that we defined above to the variable port-in and

see how read successively reads each item:

[1] (define port-in (open-input-file "inputl.dat"))

[2] (read port-in)

This

[3] (read port-in)

is

[4] (read port -in)

"a test string."

[5] (read port-in)

((1 2) (3 4))

[6] (read port-in)

some implementation-dependent end-of-file message

[7] (close-input-port port-in)

When the reading of the file is finished, we invoke close-input -port, which

has the effect of closing the input port so that no further operations can be

performed on it. Since many computer operating systems limit the number of

ports that can be opened at the same time, it is good practice to close ports

when they are no longer needed.

When the end of the file is reached, a special end-of-file object is encoun-

tered and is generally not treated as data. Thus Scheme provides a predicate

15.5 Files 501

eof-object? that tests whether the item read is the end-of-file object. For

example, if the file "input2.dat" contains

100

150

200

250

then the following program

(let ((p (open-input-file "input2,dat")))

(letrec

((add- items

(lambda (sum)

(let ((item (read p)))

(cond

((eof -object? item)

(close-input-port p)

sum)

(else (add-items (+ item sum))))))))

(add-items 0)))

returns the sum of the numbers in the file "input2.dat", namely 700.

In addition to the procedure read, which reads the next item. Scheme

provides the procedure read-cheur, which reads the next character. Scheme

writes that character using the #\-notation for characters. For example, the

character A is written as #\A. If read-cheo: is called with no argument, it

reads the next character from standard-input. If it has one argument, that

argument must be a port, and it reads the next character from that port.

Thus if a file "input3.dat" contains

Testing 12 3

then the following program

(let ((p (open-input-file "input3.dat")))

(letrec

((reader (lambda (ch)

(if (eof-object? ch)

'()

(cons ch (reader (read-chair p)))))))

(let ((eins (reader (read-char p))))

(close-input-port p)

ans)))

502 Using Streams

returns the list

(#\T #\e #\s #\t #\i #\n #\g #\space #\1 #\space #\2 #\space #\3)

To write directly to a file, we must first associate an output port with that

file. This is done with the procedure open-output-file, which takes as its

argument a string that identifies the file to which the output should be sent.

Thus, the expression

(open-output -f ile "output . dat '

'

)

returns a port associated with the file "output.dat". The port returned

is capable of writing characters to the file "output.dat". If the file does

not already exist, it creates the file "output.dat". If the file does exist,

the behavior depends upon the particular implementation of Scheme you are

using.

^

We have used write and display as procedures of one argument. They

printed their argument on standard- output, which has been the computer's

video display. Both of these procedures accept a port as an optional second

argument. When a port is present as its second argument, the procedure

sends a printed representation of its first argument to that port. Similarly,

newline can take a port as an optional argument. Here is an example:

(let ((port-out (open-output-file "output.dat")))

(display "This is an output test." port-out)

(newline port-out)

(close-output-port port-out))

sends the sentence

This is an output test.

to the file "output .dat". As was the case with input ports, it is good practice

to close the output port when one is finished. This is done with the proce-

dure close-output-port, which takes a port as its argument. Had we used

write instead of display, the sentence would have been printed in the file

surrounded by double quotes.

' For example, PC-Scheme and MacScheme delete the file and create a new one with the

same name, so that the previous contents of the file are destroyed. Some implementations

of Scheme may signal an error if one tries to open an output file that already exists.

15.5 Files 503

Program 15.29 file-copier

(define file-copier

(lambda (infile outfile)

(let ((p-in (open- input -file infile))

(p-out (open-output-file outfile)))

(letrec ((copier (leunbda (ch)

(if (not (eof-object? ch))

(begin

(write-char ch p-out)

(copier (read-chau: p-in)))))))

(copier (read-char p-in))

(close-input-port p-in)

(close-output-port p-out)))))

It is also possible to write individual characters to a file using the Scheme

procedure write- char, which takes a character as its first argument and takes

an output port as its optional second argument. If the second argument is not

present, it sends the character to standard- output; otherwise it sends it to the

port identified by the second argument. Program 15.29 copies the contents

of the file identified by the string infile character by character into the file

identified by the string outfile.

We close this section with an example of a program that reads the text

stored in one file, reformats it to have some given line length, and prints it

to another file. We are demonstrating this formatter to indicate how to treat

input and output as streams, so we are making no eflfort to have it handle all

possible grammatical constructions. It is a simplified formatter that illustrates

the ideas we want to convey. We think of the input from the input file as a

stream of characters that we process. We can define this stream by writing

the procedure file->streajn given in Program 15.30.

When f ile->stream is invoked, the first character is read from the input

file and made the first element of the stream. No other characters are read

until they are needed. We shall describe when reading happens in this process

after we define stream->f ile. As long as the input port is open, characters

are read from that port and the stream is built. When the object denoting

the end of the file is encountered, the input port is closed and the the-null-

stream is installed.

Our strategy is first to remove all of the newlines and returns in the stream

of characters, for these are where the original line breaks were. We insert a

space wherever we remove a newline or return, for otherwise there would be

504 Using Streams

Program 15.30 f ile->streain

(define f ile->streain

(lambda (filensune)

(let ((port-in (open- input -file f ileneune)))

(letrec

((build- input-stream

(lambda ()

(let ((ch (read-char port -in)))

(if (eof-object? ch)

(begin

(close- input -port port-in)

the-null-stream)

(stream-cons ch (build-input-stresun)))))))

(build-input-stream))))

)

no space separating the last word on one line from the first word on the next

line. In some cases, we may have put more than one space between words, so

we next eliminate all excess spaces; that is, whenever there are more spaces

than one between words, the extra ones are removed. Next we insert double

spaces at the end of each sentence. Finally, we count the characters and

insert a newline character so as to give us a line length not exceeding the

desired amount given by line-length and then write the resulting stream to

the desired output file. These operations are performed so that the output

of one is the input of the next one. The procedure formatter applies these

operations one after the other. The three arguments to formatter are a string

giving the name of the input file, a string giving the name of the output file,

and the desired line-length of the output. We first look at the definition of

formatter in Program 15.31 and then proceed to the definitions of each of

the operations that formatter composes.

The procedure that removes the newlines from the input stream is given in

Program 15.32.

If there is more than one space between words, the excess is removed by

the procedure remove-extra-spaces given in Program 15.33. This procedure

uses the helping procedure trim-spaces, which removes all spaces from the

beginning of the stream passed to it until the first character diff"erent from a

space is encountered. (See Program 15.34.)

The procedure insert-double-spaces in Program 15.35 is used to guar-

antee that each sentence-ending punctuation is followed by double spaces.

After we have inserted the two spaces we use trim-spaces, defined in Pro-

15.5 Files 505

Program 15.31 formatter

(define formatter

(lambda (input-file output-file line-length)

(stream->f ile output-file

(insert -newlines line-length

(insert -double-spaces

(remove-extra-spaces

(remove-newlines

(f ile->stream input-file))))))))

Program 15.32 remove-newlines

(define remove-newlines

(leunbda (str)

(stream-map

(lambda (ch)

(case ch

((#\return #\newline) #\space)

(else ch)))

str)))

Program 15.33 remove-extra-spaces

(define remove-eztra-spaces

(lambda (str)

(cond

((stream-null? str) str)

((char=? (stresun-car str) #\space)

(stream-cons #\space

(remove-extra-spaces

(trim-spaces (stream-cdr str)))))

(else (stream-cons

(stream-car str)

(remove-extra-spaces (stream-cdr str)))))))

506 Using Streams

Program 15.34 trim-spaces

(define trim-spaces

(lambda (str)

(cond

((stream-null? str) str)

((char=? (stream-car str) #\space)

(trim-spaces (stream-cdr str)))

(else str))))

Program 15.35 insert-double-spaces

(define insert-double-spaces

(lambda (str)

(cond

((streeun-null? str) str)

((end-of -sentence? (stream-car str))

(stream-cons (stream-car str)

(stream-cons #\space

(stream-cons #\space

(insert

-

double-spaces

(trim- spaces (strejun-cdr str)))))))

(else (stream-cons (stream-car str)

(insert -double-spaces (stream--cdr str)))))))

Program 15.36 end-of-sentence?

(define end-of-sentence?

(leunbda (ch)

(or (char=? ch «\.) (char=? ch «\ !) (char=? ch #\?))))

gram 15.34, to remove any that might be left. Although at most one space

needs to be inserted because we know that for this problem, there is exactly

one space following a sentence terminator, it is better to make the procedure

do what its specification dictates and be more independent of its input. The

helping procedure end-of-sentence? in Program 15.36 merely tests whether

its argument is a period, an exclamation mark, or a question mark.

15.5 Files 507

Program 15.37 insert-newlines

(define insert -newlines

(lambda (line-length str)

(letrec

((insert (lambda (str count)

(if (stre€un-n\ill? str)

str

(let ((n (coiint-chars-to-nert-space str)))

(if (and (< count line-length)

(<= (+ n count) line-1ength)

)

(stream-cons (stream-car str)

(insert (stream-cdr str) (addl count)))

(stream-cons SXnewline

(insert (trim-spaces str) 0))))))))

(insert i'trim-spaces str) 0))))

Program 15.38 count-chars-to-next-space

(define count-chars-to-next-space

(lambda (strm)

(letrec

((count-ahead

(lambda (str count)

(cond

((stream-null? str) count)

((char=? (stream-car str) #\space) coiint)

(else (count-ahead (stream-cdr str) (addl count)))))))

(count-ahead stm 0))))

The last step before writing the reformatted stream to the output file is

to reintroduce line breaks. The procedure insert-newlines given in Pro-

gram 15.37 does this. Whenever a newline is inserted, we must remove any

remaining spaces. This is accomplished by using trim-spaces.

Whenever a new word is encountered, the above procedure has to know

how many characters it contains in order to know whether it fits on the same

line or whether it should be the first word on the next line. This counting

of the number of characters in the next word is done by the help procedure

count-chars-to-next-space, defined in Program 15.38.

508 Using Streams

Program 15.39 streain->f ile

(define streani->f ile

(l2uiibda (filename stream)

(let ((port-out (open-output-file filename)))

(letrec ((write-stream

(lambda (str)

(if (not (stream-null? str))

(begin

(write-char (stream-car str) port-out)

(write-stream (stream-cdr str)))))))

(write-stream stream)

(close-output-port port-out)))))

The reformatted stream is printed to the output file by the procedure

streain->f ile, defined in Program 15.39.

When processing small files, it does not matter whether we use streams or

lists to handle the data. However, if the file is enormous, the advantages of

streams are as follows. Although it appears as though each processing proce-

dure such as remove-extra-spaces or insert-newlines is completed over

the entire data before the next procedure is invoked, in reality, the demand for

the stream-car in stream->f ile starts the process. That demand is prop-

agated through insert-newlines, insert-double-spaces, remove-extra-

spaces, remove-newlines all the way to f ile->stream. Then the procedure

f ile->stream responds to the demand by actually reading the next charac-

ter. That character is sent back to remove-newlines, which decides if it has

enough information to send the next character to remove-extra-spaces, etc.

Thus the demand is propagated down the procedures, and values are propa-

gated up through the procedures. We see that only the minimal information

is used at any one time.

This extended example illustrates the use of input and output to files and

the use of streams in reading from and writing to a file and processing the

information stored in the stream. There are many ways in which this formatter

can be modified to take into account textual features that it now ignores. For

example, the quotation mark that ends a sentence is usually after the period,

and this program will insert spaces after the period. It also does not preserve

blank lines that separate paragraphs or paragraph indentation. It makes an

interesting exercise to add some of these features to the formatter.

15.5 Files 509

Exercises

Exercise 15.24

A file contains a column of integers, one per line. Write a procedure that reads

the integers in this file and produces another file that contains two columns:

the first column containing the integers in the original file and the second

containing the running sum of the integers in the first column. The number

of integers in the original file is not specified. Place an appropriate header at

the top of each column.

Exercise 15.25

A file contains a column of integers, one per line. Write a procedure that reads

the integers in this file and produces two additional files that contain two

columns: the first column of both files contains the integers in the original file

and the second contains the running sum and running product, respectively,

of the integers in the first column. The number of integers in the original file

is not specified. Place an appropriate header at the top of each column.

Exercise 15.26

Write a program that will count the number of words in a file containing text.

You may make reasonable eissumptions about the nature of the text.

The next six problems are related. Work them in order and you will discover

a more elegant way of writing formatter.

Exercise 15.27

Test formatter developed in this section.

Exercise 15.28

Test the procedure formatter defined below. In order to do this, you will

need to curry insert-newlines and stream->f ile.

(define fomatter

(lanbda (input-file output-file line-length)

((8treaim->file output-file)

((insert-newlines line-length)

(insert-double-spaces

(remove-extra-spaces

(renove-newlines

(file->8tream input-file))))))))

510 Using Streams

Exercise 15.29

Test the procedure formatter defined below. In order to do this, you will

need to pass output-file and line-length first and then pass input-file

to that result.

(define formatter

(leunbda (output-file line-length)

(lambda (input -file)

((stream->file output-file)

((insert -newlines line-length)

(insert -double-spaces

(remove-extra-spaces

(remove-newlines

(file->stream input-file)))))))))

Exercise 15.30: apply-procedures, compose

Consider the definition of apply-procedures below.

(define apply-procedures

(lambda (procedures)

(if (null? procedvires)

(lambda (x) x)

(compose

(car procedures)

(apply-procedures (cdr procedures))))))

Test it on ((apply-procedures (list addl addl addl addl)) 3). Next,

define compose to take an unrestricted number of single-argument procedures

so that (compose pi ...pk) applied to argximent is the same as ((apply-

procedures (list pi ...pk)) argument). Test compose with ((compose

addl addl addl addl) 3).

Exercise 15.31

Test the procedure formatter defined below, which uses compose from the

previous exercise.

(define formatter

(lambda (output-file line-length)

(compose

(stream->f ile output-file)

(insert-newlines line-length)

insert-double-spaces

remove-extra-spaces

remove-newlines

f ile->stream))

)

15.5 Files 511

Exercise 15.32

In the definition of formatter from the previous exercise, we see that we

merely peiss any desired procedures as arguments to compose, and the invoca-

tions are taken care of automatically. Now we will consider different variations

on the arguments to compose. Test the following:

a. (compose

(streaiii->f ile output-file)

f ile->streain)

b. (compose

(stream->f ile output-file)

remove-newlines

f ile->stre2uii)

C. (compose

(stream->f ile output-file)

remove-extra-spaces

remove-newlines

f ile->stream)

d. (compose

(stream->f ile output-file)

(insert-newlines line-length)

remove-ertra-spaces

remove-newlines

f ile->stream)

e. (compose

(stream->f ile output-file)

(insert-newlines line-length)

remove-newlines

f ile->stream)

512 Using Streams

Part 5

Control

When we think about the dining-out procedure discussed in the introduction

to Part 1, we can begin to understand the power of abstracting control. Imag-

ine that there is a genie photographing us while we dine. Here is a photo of

us just about to order. Do you see the waiter standing by our table? Now,

here is one of us polishing off dessert. The genie saves these photographs.

When a meal has been particularly good and we long to go back to that little

cafe in Paris whose name we have long since forgotten, there is one way we

can relive the experience. We may ask the genie to rub a magic liquid on a

photograph. When that happens, we escape to the same cafe where we were

long ago. We will have the same waiter and perhaps order the same food.

Whether the waiter aged or not, or whether we are heavier, will depend on

whether changes have occurred. If not, then we are the same. If so, then some

aspects may be the same, like the cafe, but other aspects may have changed.

Perhaps the genie rubbed the wrong photograph, and instead of rubbing the

photograph to get us to the cafe, he rubbed the photograph of us paying the

waiter. What a shame, thrust back to that delicious cafe and not reliving the

meal. What happens after the meal is over? You have two choices. You can

stay in Paris and enjoy the night life, as you did long ago, or you can ask the

genie to rub another photograph. Each time one is rubbed, you are escaping

to another point in your past but with possible changes.

A computer is like a genie. While computing, it takes a snapshot of where

you are in the computation. However, rather than keep every photograph

around, it keeps only the ones that you tell it are worth saving. The pho-

tographs correspond to what are called escape procedures, and invoking an

escape procedure corresponds to rubbing the photograph. The point of Part

5 is to show you how to reason with the power of escape procedures.

514 Control

16 Introduction to Continuations

16.1 Overview

Did you ever lie in bed early in the morning and think about what you were

going to do that day? Your thinking probably led to something like this: "I've

got to shower, then brush my teeth, eat breakfast, find my way to campus, and

get to my first class. After I get to my first class, I'll think about what I have

left to do for the rest of the day." You packaged the rest of the day into a single

concept, relative to some point in the morning. You did not consciously figure

out what you would do with the rest of the day; you formed an abstraction

of the rest of the day. This notion can carry over to computations as well.

In Scheme the rest of the computation relative to some point in an evaluation

can also be packaged in the same way that we packaged the rest of the day in

our real-world experiences. The rest of a computation is a continuation. This

chapter is an introduction to the use of continuations in Scheme. It shows

what they are, how they work, and when to use them.

When we learn to deal with continuations, we shall be able to do all sorts

of interesting things. For example, we shall be able to exit with a result from

within a deep recursion. In addition, we shall be able to design break packages

and coroutines, new concepts introduced in this and the next chapter.

In order to understand continuations, two new concepts

—

contexts and es-

cape procedures—must be acquired. The first concept formalizes the creation

of a procedure with respect to a subexpression of an expression. The second

characterizes a procedure that upon invocation does not return to the point

of its invocation. A continuation is a context that has been made into an

escape procedure. Such continuations are created by invocations of call-

with-current-continuation.

We have already encountered an escape procedure, error. When error gets

invoked, its context, a procedure that represents the rest of the computation,

is abandoned. Consider the very simple expression:

(cons (if (zero? divisor)

(error "/:" dividend "divided by zero")

(/ dividend divisor))

'(a b c))

The result of invoking this expression is either an invocation of error or a list

of length four, whose first element is a number. If error were a conventional

procedure, then when it returned, we would do the cons and get a list of

length four, whose first element would not likely be a number. But we know

that that is not what happens, so error is not a conventional procedure. We
describe how to construct such escape procedures in Section 16.3, but for now

we observe that if error gets invoked, no consing occurs. In the next section

we develop contexts, procedures that describe what does not happen when

such escape procedures get invoked.

16.2 Contexts

A context is a procedure of one variable, Q. We use the symbol D, pronounced

"hole," to distinguish contexts from other procedures. If e is a subexpression

of E, then we use the terminology that "the procedure c is a context of e in

£." In the absence of side effects, the procedure c applied to the value of e is

the value of E.

Consider the following expression that evaluates to 47:

(+ 3 (* 4 (+ 5 6)))

The expression is evaluated using the following scheme. First, add 5 and 6

and get 11. Next multiply 11 by 4, yielding 44, and then increase that result

by 3. Now, what is the context of (+ 5 6) in that expression? We must find

a procedure that, if passed the value 11, will produce 47. There are lots of

such procedures, but we will find one by using a simple two-step technique.

In the first step we replace e, that is, (+ 5 6), by D. In the second step, we

form a procedure from the value of the result of the first step wrapped within

(lambda (D) . .
.). The context of (+ 5 6) in

(+ 3 (* 4 (+ 5 6)))

516 Introduction to Continuations

is the procedure, which is the value of:

(lambda (D)

(+ 3 (* 4 D)))

Then applying this context to 11 results in 47.

Let's look at another example. What is the context of (* 3 4) in

((+ (* 3 4) 5) 2)

To form this context, we simply replace (3 4) by D and then wrap what

remains by (lambda (D) . . .) leading to the procedure, which is the value

of:

(lambda (D)

(* (+ D 5) 2))

Applying this context to 12 results in (* (+ 12 5) 2), which evaluates to

34. But we can apply it to other values. Applying it to 3 yields 16. What

does applying it to 24 yield?

Let us next extend the mechanism for creating contexts. The second step

remains the same, but the first step does more. Before, all we did in the

first step was replace a subexpression by D. Now we extend the first step

by evaluating the expression with the hole. When evaluation can no longer

proceed because of the hole, we have finished the first step. Thus contexts are

procedures created at the point in the computation where we can no longer

compute because of the existence of D . The previous examples were correct

because no evaluation was possible. To demonstrate this way to form contexts,

consider the slightly more complicated expression:

(if (zero? 5)

(+ 3 (* 4 (+ 5 6)))

((+ (* 3 4) 5) 2))

In finding the context of (* 3 4), the result of the first step is what is left

after evaluating

(if (zero? 5)

(+ 3 (4 (+ 5 6)))

(* (+ D 5) 2))

16.2 Contexts 517

(zero? 5) is false, so we choose the alternative of the if expression, which

leads to ((+ D 5) 2). No more computation can take place. Thus, the

procedure formed as a result of the second step is the value of

(lambda (D)
(* (+ D 5) 2))

Consider the context of (* 3 4) in:

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6))))

(writeln (* (+ (* 3 4) 5) 2)))

n)

The result of the first step is:

(begin

(writeln ((+ D 5) 2))

n)

The begin is needed because it is a sequence of expressions. We cannot do

the addition because of the hole. We cannot do the multiplication because

we cannot do the addition, we cannot do the displaying because we cannot

do the multiplication, and we cannot return the value of n because we cannot

determine the value of the expression that precedes it. In figuring out the

value of expressions, we work from the inside and try to work outward. The

procedure formed as the result of the second step is responsible for remem-

bering the value of the free variable n. Thus we observe that contexts are

procedures and must respect free variables. We do not need to worry about

the let expression, and we do not need to worry about the if expression. Eval-

uation proceeds until the presence of D makes it impossible to continue and

then we do the second step that forms the context, which is the value of:

(lambda (D)
(begin

(writeln (* (+ D 5) 2))

n))

Applying it to 6 leads to (begin (writeln (* (+ 6 5) 2)) n), and with n

bound to 1 the value displayed is 22 with the result 1. Applying it to 8, 26 is

displayed.

518 Introduction to Continuations

The let expression is just a procedure invocation. We can reformulate the

last example with a global procedure:

(define tester

(lambda (n)

(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6)))

)

(writeln (* (+ (3 4) 5) 2)))

n))

Then we can determine the context of (* 3 4) in the expression (tester 1).

Although (* 3 4) does not appear physically within (tester 1), we know

that the computation will eventually get to that point, so the same context

will be formed. If we were looking for the context within the expression (*

10 (tester D), then the context would be formed from the value of:

(lambda (D)

(10 (begin

(writeln (* (+ D 5) 2))

n)))

Let us apply these rules to a begin expression:

(begin

(writeln 0)

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6))))

(writeln ((+ (* 3 4) 5) 2)))

n))

We are still forming the context of (* 3 4). At the first step, (* 3 4) is

replaced by D just prior to evaluation:

(begin

(writeln 0)

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6))))

(writeln (* (+ D 5) 2)))

n))

16.2 Contexts 519

First, a is displayed. Then the context is determined as the procedure,

which is the value of:

(lambda (D)
(begin

(writeln (* (+ D 5) 2))

n))

Invoking it with 9 causes the displaying of 28 and then returns 1.

A context might involve the use of set ! . The example below is similar to

the last one, except that within the scope of the let expression is an assignment

to the local variable n. The context of (* 3 4) in

(begin

(writeln 0)

(let ((n D)
(if (zero? n)

(writeln (+ 3 (* 4 (+ 5 6)))

)

(writeln (* (+ (* 3 4) 5) 2)))

(set ! n (+ n 2))

n))

is the value of

(lambda (D)
(begin

(writeln (* (+ D 5) 2))

(set ! n (+ n 2))

n))

The free variable n, initially 1, is taken from the let expression. Each time

the context is invoked, the variable n is incremented to the next positive odd

integer, and what gets subsequently returned is also increased. If <c> is this

context, then the first invocation of <c> assigns 3 to n, and the second invo-

cation assigns 5 to n. From the way in which n changes upon each invocation

of <c>, it follows that contexts are procedures that may even maintain state.

In the next example, we look at the terminating condition of a recursive

procedure invocation. Consider the definition of the procedure map-addl,

which adds one to each element of a list, but instead of returning the empty

list, it returns (23) as the result of the terminating condition:

520 Introduction to Continuations

(define map-addl

(lambda (Is)

(if (null? Is)

(cons (+3 (* 4 5)) '())

(let ((val (addl (car Is))))

(cons val (map-addl (cdr Is)))))))

For example, (map-addl ' (1 3 5)) is (2 4 6 23). What is the context

of (* 4 5) in (cons (map-addl '(1 3 5)))? This is the same as "run

this until the existence of D stops the computation, and what is left is the

context." We compute the expression looking for D:

(cons (map-addl '(1 3 5))) =»
(cons (cons 2 (map-addl (cdr '(1 3 5))))) ^^
(cons (cons 2 (map-addl '(3 5)))) =>
(cons (cons 2 (cons 4 (map-addl '(5))))) ^^
(cons (cons 2 (cons 4 (cons 6 (map-addl '()))))) ^^
(cons (cons 2 (cons 4 (cons 6 (cons (+ 3 Q) '())))))

Because of the hole, no additional computation can be performed, so the

context is the procedure formed from

(lambda (D)

(cons (cons 2 (cons 4 (cons 6 (cons (+ 3 D) '()))))))

If we invoke this context on 5, we create the list (02468), and if we

invoke it on 13, we get (0246 16). What makes this a bit unusual is the

fact that the hole does not show up in the expression right away, and in this

case, it shows up just as the termination condition is considered.

In the next example, we cannot initially find a place to insert D. However,

we know that D will occur, so we can compute until it occurs and eventually

stops the computation. Consider the simple procedure sum+n, which adds n

to the sum of the numbers from 1 to n:

(define siim+n

(lambda (n)

(if (zero? n)

(+ (addl n) (sum+n (subl n))))))

What is the context of (addl n), just when n is 3, in (* 10 (sum+n 5))?

As in the previous example, we are looking for a context associated with

16.S Contexts 521

a recursive procedure invocation. However, this differs from the previous

example by the additional detail used in its description. Stepping through

the computation leads eventually to an occurrence of D:^

(* 10 (sum+n 5)) =»
(* 10 (if (zero? 5) (+ (addl 5) (siiin+n (subl 5))))) =^
(* 10 (+ 6 (sum+n 4))) ^*
(* 10 (+ 6 (if (zero? 4) (+ (addl 4) (sum+n (subl 4)))))) =>
(* 10 (+ 6 (+ 5 (sum+n 3)))) =>
(* 10 (+ 6 (+ 5 (if (zero 3) (+ D (sum+n (subl 3))))))) =*
(* 10 (+ 6 (+ 5 (+ D (sum+n 2)))))

Thus, the context is the procedure formed from:

(lambda (D)

(* 10 (+ 6 (+ 5 (+ D (sum+n 2))))))

The final example uses the predicate of an if expression. Consider the

context of (* 3 4) in (if (zero? (* 3 4)) 8 9). First, determining the

expression prior to evaluation results in (if (zero? D) 8 9). There is no

evaluation possible, so the context is the value of

(lambda (D)

(if (zero? D) 8 9)).

When this context is applied, its value will be 8 or 9, depending on what value

gets bound to D.

In order to understand continuations, you will need to have lots of experi-

ence forming contexts. The exercises below should give you enough practice.

Exercises

Exercise 16.1

What is the context of (cons 3 '())in(cons 1 (cons 2 (cons 3 '())))?

What results when we apply this context to '(a b c), '(x y), and ' (3)?

^ The trace that follows assumes a left to right order of evaluation of the operands to +.

The procedure map-addl imposed a left to right order of evaluation of the operands to cons

by using a let expression.

522 Introduction to Continuations

Exercise 16.2

For the following exercises assume these bindings: a is 1, b is 2, c is 3, d is 4,

n is 5, X is 6, y is 7, and z is 8. Each answer will be in two parts. In the first

part, describe the context of each expression; in the second part, determine

the resultant values found by sequentially applying the context to each of 5,

6, and 7.

a. (+ a b) in (c (+ a b)).

b. x in (+ X y).

c. y in (- X y).

d. X in (let ((a 4)) (+ a x)).

e. (* c (+ a b)) in (+ d (* c (+ a b))).

f. (zero? n) in (if (zero? n) a b).

g. X in (if X y z).

h. a in (let ((x 3)) (set! x (+ a x)) x).

Exercise 16.3

For each expression below, determine the context of (cons 3 ' (4)) and the

result of applying that context to (1 2 3).

a. (letrec ((f (lambda (n)

(if (zero? n)

(car (cons 3 ' (4)))

(* n (f (subl n)))))))

(f 3))

b. (letrec ((f (lambda (n)

(if (zero? n)

(car (cons 3 '(4)))

(* n (f (subl n)))))))

(+ 1000 (f 3)))

16.3 Escape Procedures

We now introduce a new procedure type, called escape procedures. An escape

procedure upon invocation yields a value but never passes that value to others.

When an escape procedure is invoked, its result is the result of the entire

computation. Anything awaiting the result is ignored. Let us assume the

existence of a procedure, escape-*, which is an escape multiply:

16.3 Escape Procedures 523

(+ (escape-* 5 2) 3)

This expression evaluates to 10. The waiting + is abandoned. It is as if (* 5

2) were the entire expression.

At this point we do not have a mechanism for creating escape procedures

such as escape-*. Let us further assume there is a procedure escaper that

takes any procedure as an argument and returns a similarly defined escape

procedure. Then with escaper we can define escape-*

(define escape-* (escaper *))

and

(+ ((escaper *) 5 2) 3)

evaluates to 10.

Consider the invocation:

(+ ((escaper

(lambda (x)

(- (* I 3) 7)))

5)

4)

Here the addition cannot happen, so this is the same as

((lambda (x)

(- (* X 3) 7))

5)

so the answer is 8. Consider the following expression with an escape subtrac-

tion procedure:

(+ ((escaper

(lambda (x)

((escaper -) (* x 3) 7)))

5)

4)

This is also 8, because once (escaper -) is invoked, the result is determined,

and + is abandoned. But consider what happens with the following escape

multiplication procedure:

524 Introduction to Continuations

(+ ((escaper

(lambda (x)

((escaper -) ((escaper *) x 3)

7)))

5)

4)

The invocation of (escaper *) results in 15. The (escaper -) is never

invoked, so the subtraction never occurs. The following four expressions have

the same value. Why?

1. ((lambda (x)

(* X 3))

5)

2. (+ ((escaper

(lambda (x)

(- ((escaper *) x 3)

7)))

5)

4)

3. (+ ((lambda (x)

((escaper -) ((escaper *) x 3)

7))

5)

17)

4. (+ ((lambda (x)

(- ((esraper) x 3)

7))

5)

2000)

Does this fully characterize the behavior of escape procedures? Not quite.

Consider the following:

(/ (+ ((escaper

(lambda (x)

(- (X 3) 7)))

5)

4)

2)

The awaiting addition is abandoned. Is the division, which awaits the addi-

tion, also abandoned? Yes. Since the division awaits the addition and since

the addition hcis been abandoned by the escape invocation, the division has

16.3 Escape Procedures 525

also been abandoned. This behavior can be characterized by an equation:

if e is an escape procedure and / is any procedure, then (compose / e) =
e. That is, (/ (e expr)) is the same as (e expr) for all expressions expr.

The context of (e expr) in (/ (e expr)) is (lambda (D) (/ D)), which

is the same as f. Since the result of (/ (e expr)) is the result of (e expr),

we say that an escape invocation abandons its context. In our last example,

the context of the escape invocation included the awaiting addition and the

awaiting division. We discuss special escape procedures in the next section

where we characterize call-with-current-continuation.

Exercises

Exercise 16.

4

Evaluate each of the following:

a. ((escaper addl) ((escaper subl) 0))

b. (let ((es-cons (escaper cons)))

(es-cons 1 (es-cons 2 (es-cons 3 '()))))

Exercise 16.5

Using the definition of es-cons from the previous exercise, determine the con-

text of (es-cons 3 '()) in (es-cons 1 (es-cons 2 (es-cons 3 '()))).

Exercise 16.6: reset

Consider the definition of reset:

(define reset

(leuDbda ()

((escaper

(lambda ()

(writeln "reset invoked"))))))

Determine the value of (cons 1 (reset)).

Exercise 16.7

Let e be an escape procedure, and let / and g be any procedures. To what

is (compose g (compose / e)) equivalent? Can this be generalized to an

arbitrary number of procedure compositions?

Exercise 16.8

Let / be any procedure. When can / be replaced by (escaper /) and still

produce the same value as /?

526 Introduction to Continuations

16.4 Continuations from Contexts and Escape Procedures

We are about to discuss call-with-current-continuation (or call/cc). If

call/cc is not available on your Scheme, define it as follows:

Program 16.1 call/cc

(define call/cc call-Hith-current-continuation)

call/cc is a procedure of one argument; we call the argument a receiver.

The receiver is a procedure of one argument. Its argument is called a con-

tinuation. The continuation is also a procedure of one argument. Regardless

of how we form the continuation, (call/cc receiver) is the same as (re-

ceiver continuation). What is left is to understand how continuation is

formed. To form continuation, we first form the context, c, of (call/cc re-

ceiver) in some expression E. We then invoke (escaper c), which forms

continuation. We have now completely characterized call/cc. All we have

left to do is see how our understanding of how to form continuations leads us

to determine correctly the evaluation of expressions using call/cc.

Consider the following expression:

(+ 3 (4 (call/cc r)))

The context of (call/cc r) is the procedure, which is the value of

(lambda (D) (+ 3 (4 D)))

so our original expression means the same cis:

(+ 3 (* 4 (r (escaper (lambda (D) (+ 3 (4 D)))))))

That is, after the system forms the context of (call/cc r) , the system passes

it as an escape procedure to r. Since this is now just a simple invocation, all

the rules for procedure invocation apply. A little practice is helpful. Let us

consider r to be the value of (lambda (continuation) 6). What is the value

of the expression derived from the call/cc expression above?

(+ 3 (* 4 ((lambda (continuation) 6)

(escaper (lambda (D) (+ 3 (4 D)))))))

16.4 Continuations from Contexts and Escape Procedures 527

The value of

((lambda (continuation) 6)

(escaper (lambda (D) (+ 3 (4 D)))))

is 6; it does not use continuation, so the result is 27 (i.e., 3 + 4*6). What
about this one?

(+ 3 (* 4 ((lEunbda (continuation) (continuation 6))

(escaper (lambda (D) (+ 3 (* 4 D)))))))

The explicit invocation of continuation on 6 leads to

((escaper (lambda (D) (+3 (* 4 D)))) 6)

and then the result is 27. Is this one any different?

(+ 3 (* 4 ((lambda (continuation) (+ 2 (continuation 6)))

(escaper (lambda (D) (+ 3 (* 4 D)))))))

The explicit invocation of continuation on 6 leads to

((escaper (lambda (D) (+3 (* 4 D)))) 6)

and then the result is 27. Remember, an escape invocation abandons its

context, so (lambda (D) (+3 (*4 (+2 n))))is abandoned, contin-

uation has the value (escaper (lambda (D) ... D ...)). Because the

context of a call/cc invocation is turned into an escape procedure, we use

the notation <ep> for procedures that get passed to r.

Scheme supports procedures as values, and since <ep> is a procedure, it is

possible to invoke the same continuation more than once. In the next section

there are three experiments with call/cc, and in the last experiment the

same continuation is invoked twice. The countdown example of Chapter 17

shows what happens when the same continuation is invoked many times.

528 Introduction to Continuations

Exercises

Exercise 16.9

For each expression below, there are four parts. In Part a, determine the

expression's value. In Part b, define r locally using let, and form the original

application of (call/cc r), which leads to this expression. In Part c, define

r globally, and in Part d, using the global r, form the original application of

(call/cc r), which leads to this expression. The solution to problem [1] is

given below:

[1] (- 3 (* 5 ((lambda (continuation) (continuation 5))

(escaper (lambda (D) (- 3 (* 5 D)))))))

a. -22

b. (let ((r (lambda (continuation)

(continuation 5))))

(- 3 (* 5 (call/cc r))))

c. (define r

(lambda (continuation)

(continuation 5)))

d. (- 3 (* 6 (call/cc r)))

[2] (-3 (* 5 ((lambda (continuation) 5)

(escaper (lambda (D) (- 3 (* 5 D)))))))

[3] (-3 (* 5 ((lambda (continuation) (+ 1000 (continuation 5)))

(escaper (lambda (D) (- 3 (* 5 D)))))))

Exercise 16.10

If r is

(lambda (continuation) (continuation botij/))

in (. . . (call/cc r) . . .), why can r be rewritten as

(leunbda (continuation) body)

16.4 Continuations from Contexts and Escape Procedures 5S9

Exercise 16.11

Ifr is

(escaper (lambda (continuation) (continuation body)))

in (. . . (call/cc r) . . .), when can r be rewritten as

(lambda (continuation) body)

16.5 Experimenting with call/cc

We next consider three simple experiments. Each experiment includes one use

of a receiver (remember that a receiver is just a single-parameter procedure)

without using call/cc and one that uses call/cc. The point of these experi-

ments is to show the simple behavioral characteristics of call/cc expressions.

Although the differences may seem minor in the first two experiments, their

differences are important. In the last experiment, however, the differences

demonstrate the unusual behavior of continuations. The receivers we use to

demonstrate these properties are presented in Program 16.2.

Program 16.2 receiver-1, receiver-2, receiver-3

(define receiver-1

(lambda (proc)

(proc (list 1))))

(define receiver-2

(lambda (proc)

(proc (list (proc (list 2))))))

(define receiver-3

(lambda (proc)

(proc (list (proc (list 3 proc))))))

Each receiver consumes a procedure (possibly a continuation) that is in-

voked at least once. In receiver-3, not only is the procedure invoked at

least once, but it is also used as an argument. We consider the behavior of

each of these receivers using two global variables, result and resultcc, given

530 Introduction to Continuations

Program 16.3 result, resultcc

(define result "any value")

(define resultcc "any value")

Program 16.4 writeln/return, answer-meJcer, call

(define writeln/retum

(lambda (x)

(writeln x)

x))

(define einswer-maker

(Icuubda (x)

(cons 'answer-is (writeln/return x))))

(define call

(Izunbda (receiver)

(receiver writeln/return)))

in Program 16.3, and three simple procedures, writeln/return, answer-

meJicer, and call, given in Program 16.4. The procedure writeln/return

displays and returns its argument. The procedure answer-maker is like

writeln/return, but instead of returning its argument, it returns the consing

of aoiswer-is to its argument. Thus, (receiver-1 answer-meiker) displays

(1) and returns (eoiswer-is 1). The procedure call invokes its argument

on writeln/return.

For reasons that are not yet clear but will be by the end of this section, we

use set! to hold the results of each experiment. Recall that receiver-1 is

the value of

(leunbda (proc)

(proc (list 1)))

16.5 Experimenting with call/cc 531

Experiment 1:

A.

[1] (set! result (ansser-meiker (call receiver-1)))

(1)

(1)

[2] result

(ansHer-is 1)

B.

[3] (set! resultcc (answer-maker (call/cc receiver-l)))

(1)

[4] resultcc

(answer-is 1)

These results are identical except that in Part A writeln/return is invoked

in call so there is an additional (1). The continuation formed in Part B is

the value of:

(escaper

(lambda (D)
(set! resultcc (answer-meiker D))))

Then this continuation is invoked on (list 1), and since it is an escape pro-

cedure, that is all that happens. The procedure einswer-meiker is invoked on

(list 1), causing (1) to appear, and its result, (eoiswer-is 1), is assigned

to resultcc. At [4] we verify that resultcc is indeed (einsHer-is 1).

For Experiment 2, recall that receiver-2 is the value of:

(lambda (proc)

(proc (list (proc (list 2)))))

Experiment 2:

A.

[1] (set! result (answer-mziker (call receiver-2)))

(2)

((2))

((2))

[2] result

(answer-is (2))

532 Introduction to Continuations

B.

[3] (set! resultcc (answer-maker (call/cc receiver-2)))

(2)

[4] resultcc

(answer-is 2)

In Part A the main difference is the extra set of parentheses around the value,

which is the result passed to answer-maker. Both invocations of proc do

a writeln/return. The first time is with (2) as its argument. When this

returns, its argument is passed to list, resulting in ((2)). Now we are ready

for the second invocation of writeln/return. It displays its argument ((2))

and returns it to answer-maker, which displays its argument by invoking

writeln/return and returns the result (answer-is (2)). This is the value

assigned to result. In Part B, why is there just one displaying of (2), and

where did the extra set of parentheses go? Recall that the continuation built

from the context of (call/cc receiver-2) is an escape procedure. Thus,

once invoked, it abandons its context, the value of

(lambda (D)
(set! resultcc (answer-maker (proc (list D)))))

The list invocation and the proc invocation waiting for the result of list are

abandoned. The list invocation not occurring accounts for the missing set

of parentheses, and the proc invocation not occurring accounts for why only

one (2) is displayed. In Part B when proc, the continuation, is invoked, its

argument is passed to the waiting answer-msJcer. The value (2) is displayed,

and the result (answer-is 2) is sent to the waiting set!. The set! causes

the value (answer-is 2) to be associated with resultcc. The result of the

experiment is verified at [4]

.

We have come to our last experiment. This one is slightly trickier than the

earlier ones. Because of this, we discuss all of Part A before we look at Part

B. We recall that receiver-3 is the value of

(lambda (proc)

(proc (list (proc (list 3 proc)))))

Experiment 3:^

' To denote the procedure that is the value of the veu'iable procedure-name, we use the

notation <procedure-naTiie>

.

16.5 Experimenting with call/cc 533

[1] (set! result (answer-maker (call receiver-3)))

(3 <wriieln/return>)

((3 <writeln/retuTn>))

((3 <writeln/return>))

[2] result

(answer-is (3 <writeln/return>))

[3] ((2nd (2nd result)) (list 1000))

(1000)

(1000)

[4] result

(answer-is (3 <wriieln/return>))

The result of (call receiver-3) to be passed to answer-maker is

(.<writeln/return>

(list i<writ€ln/return>

(list 3 <writeln/return>))))

First, the list (3 <writeln/return>) is passed to <writeln/return>. It duti-

fully displays its argument. Then a set of parentheses is wrapped around it,

and that result, ((3 <writeln/return>)) , is displayed and passed to einswer-

maker. The procedure answer-maker displays that list and passes (aoiswer-

is (3 <writeln/return>)) to the waiting set!. The set! does the appro-

priate assignment. At [2] the experiment is verified. At [3] the procedure

<wrvteln/return> is extracted using (2nd (2nd result)). That procedure

is then invoked on (1000). As expected <writeln/return> displays its ar-

gument (1000) and returns (1000). At [4] nothing has changed result.

Although this is a contrived experiment, only simple procedures are used to

do simple things. We are now ready to consider Part B.

B.

[5] (set! resultcc (answer-maker (call/cc receiver-3)))

(3 <ep»

[6] resultcc

(answer-is 3 <ep>)

[7] ((3rd resultcc) (list 1000))

(1000)

[8] resultcc

(answer-is 1000)

The result of (call/cc receiver-3) to be passed to answer-meJcer is

534 Introduction to Continuations

(<ep>

(list (<ep>

(list 3 <ep>))))

where <ep> is the continuation, which is the value of

(escaper

(lambda (D)

(set! resultcc (answer-maker D))))

but since <ep> is invoked, the outer list, <ep>, and answer-maker invo-

cations are abandoned, as well as the set! expression. Therefore, the result

of (call/cc receiver-3) is the result of invoking (<ep> (list 3 <ep>)).

The escape procedure <ep> is invoked giving the value (3 <ep>) as the value

that is passed to eoiswer-maker, which displays the list (3 <ep>). Next

answer-is is consed to the front of (3 <ep>), which yields (answer-is 3

<ep>). Then the set! is done, which changes the value of resultcc. At

[6] , we verify that what was expected has indeed occurred. We are about to

execute the code at [7]. The expression (3rd resultcc) yields the escape

procedure <ep> that was saved earlier. It is passed the list (1000). What is

(.<ep> (list 1000))? Recall that <ep> is an escape procedure that passes

its argument to answer-maker and then assigns to resultcc the result of

the am.swer-maker invocation. The procedure aLnswer-maker displays its ar-

gument and then returns (answer-is 1000). The list (answer-is 1000) is

for the waiting set! and so the set! happens again. This time resultcc

gets the value (answer-is 1000), and the role of the escape procedure has

ended. Was resultcc really changed? How do we find out? At [8] , we check

the value of resultcc. This time it has been changed to (answer-is 1000)!

Although the set ! was done back at [5] , the escape procedure <ep> included

doing everything again once it was invoked.

Exercises

Exercise 16.12

Rewrite aoiswer-maier using call.

Exercise 16.13

Run the experiment with exer-receiver.

(define exer-receiver

(lambda (proc)

(list (proc (list 'exer proc)))))

16.5 Experimenting with call/cc 535

Exercise 16.1

4

For each expression below, describe the binding that continuation gets, and

give the value(s) of the expression. Each expression must be tested more than

once. We include the solution for Part a.

a. (let ((r (lambda (continuation)

(continuation 6))))

((+ (call/cc r) 3) 8))

The value of (escaper (lambda (D) (* (+ D 3) 8))), 72.

b. (let ((r (leUBbda (continuation)

(+ 1000 (continuation 6)))))

((+ (call/cc r) 3) 8))

c. (let ((r (launbda (continuation)

(+ 1000 6))))

((+ (call/cc r) 3) 8))

d. (let ((r (leunbda (continuation)

(if (zero? (random 2))

(+ 1000 6)

(continuation 6)))))

((+ (call/cc r) 3) 8))

e. (let ((r (lambda (continuation)

(if (zero? (random 2))

(+ 1000 6)

(continuation 6)))))

(+ (* (+ (call/cc r) 3) 8)

(* (+ (call/cc r) 3) 8)))

f. (let ((r (leunbda (continuation)

(continuation

(if (zero? (continuation (random 2)))

(+ 1000 6)

6)))))

(+ (* (+ (call/cc r) 3) 8)

(* (+ (call/cc r) 3) 8)))

Exercise 16.15

Determine the outcome of Experiment 3 with [1] and [5] replaced by the

expressions below.

[1] (begin

(set! result (cuiswer-meJcer (call receiver-3)))

'done)

536 Introduction to Continuations

[5] (begin

(set! resultcc (answer-maker (call/cc receiver-3)))

'done)

Exercise 16.16

We define a procedure map-subl that takes a list of numbers and returns a

list with each element of the list decremented by one. In addition to doing

the work of map-subl, it also sets the global variable deep to a continuation.

(define deep "any continuation")

(define map-subl

(leunbda (Is)

(if (null? Is)

(let ((receiver (lambda (k)

(set! deep k)

'())))

(call/cc receiver))

(cons (subl (ccir Is)) (map-subl (cdr Is))))))

Consider the following experiment:

[1] (cons 1000 (map-subl '()))

(1000)

[2] (cons 2000 (deep '(a b c)))

[3] (cons 1000 (map-subl '(0)))

(1000 -1)

[4] (cons 2000 (deep '(a b c)))

7

[5] (cons 1000 (map-subl '(1 0)))

(1000 -1)

[6] (cons 2000 (deep '(a b c)))

7

[7] (cons 1000 (map-subl '(543210)))
(1000 4 3 2 10-1)
[8] (cons 2000 (deep '(a b c)))

7

After each invocation of map-subl, deep is reset. The first continuation

formed at [1] is:

16.5 Experimenting with call/cc 537

(escaper

(lambda (D)

(cons 1000 D)))

At [3] , the next continuation formed is:

(escaper

(lambda (Q)

(cons 1000 (cons -1 D))))

The third continuation formed at [6] is:

(escaper

(lambda (Q)

(cons 1000 (cons (cons -1 D)))))

At [7] , a fourth continuation is formed and bound to deep. Write an expres-

sion that characterizes that continuation, and then fill in the four blanks of

the experiment.

16.6 Defining escaper

We now have all the tools we need to define escaper:

Program 16.5 escaper

(define *escape/thunk* "any continuation")

(define escaper

(leUibda (proc)

(lambda (x)

(escape/thunk* (lambda () (proc x))))))

Although escape/thunk* is defined as a global variable, it does not yet have

the right value. To remedy this, one more experiment must be performed. For

this experiment, a receiver is used to assign a value to escape/thunk*.

538 Introduction to Continuations

Program 16.6 receiver-4

(define receiver-4

(Icunbda (continuation)

(set! *escape/thunk* continuation)

(*escape/thimk* (launbda () (writeln "escaper is defined")))))

We then have:

[1] ((call/cc receiver-4))

escaper is defined

[2] (*escape/thunk* (lambda (addl 6)))

7

[3] (+ 5 (escape/thunk* (lambda () (addl 6))))

7

At [1], the continuation (escaper (launbda (D) (n)))is formed by the

system. It becomes the value of continuation and, in turn, the value of es-
cape/thunk*, indirectly changing the definition of escaper in Program 16.5.

This escape procedure takes as its argument a procedure of zero arguments

and immediately invokes it. Next escape/thunk* is passed the procedure

(lambda () (writeln "escaper is defined"))

This escapes while binding D to

(launbda (writeln "escaper is defined"))

Finally,

(dcimbda () (writeln "escaper is defined")))

displays escaper is defined. At [2] , invoking escape/thunk* on

(lambda (addl 6))

yields 7; at [3] , invoking it on

(lambda () (addl 6))

once again yields 7. Because *escape/thunk* is an escape procedure, the

context

(lambda (D) (+ 5 D))

16.6 Defining escaper 539

is abandoned. Earlier we hypothesized escaper's existence in order to ex-

plain the continuations formed from invocations of call/cc. Now we have

defined escaper using call/cc, which is in Scheme. The procedure call/cc

is not built with escaper, as we suggested earlier, but it behaves as though

it were. On some systems, it may be necessary to determine the value of

escape/thuiLk* at the prompt by invoking ((call/cc receiver-4)).

Using *escape/thuiik* we can redefine escaper so that it accepts proce-

dures of any number of arguments:

Program 16.7 escaper

(define escaper

(lambda (proc)

(lambda args

(escape/thunk*

(lambda ()

(apply proc args))))))

This definition of escaper can be used to test all the results and exercises of

this chapter.

Exercises

Exercise 16.17

Assume the existence of escaper and then define *escape/thunk* with es-

caper. You may not use call/cc.

Exercise 16.18

Determine the value of (/ 5 (*escape/thunk* (lambda () 0))).

Exercise 16.19: reset

Use call/cc to define a zero-argument procedure reset that upon invocation

abandons its context and causes the string "reset invoked" to be displayed.

In Chapter 7, when we defined error, we assumed the existence of reset.

For example,

[1] (cons 1 (reset))

reset invoked

540 Introduction to Continuations

Exercise 16.20

Explain why (*escape/thuiik* *escape/thunk*) causes an error.

Exercise 16.21

Determine the value of the following expressions:

[1] (let ((r (escaper

(lambda (proc)

(cons 'c (proc (cons 'd '())))))))

(cons 'a (cons 'b (call/cc r))))

[2] (let ((r (escaper

(lambda (proc)

(cons 'c (cons 'd '()))))))

(cons 'a (cons 'b (call/cc r))))

Exercise 16.22

Consider the procedure new-escaper below.

(define new-escaper "smy procediire")

(let ((receiver (lambda (continuation)

(set ! new-escaper

(lambda (proc)

(lambda args

(continuation

(lambda ()

(apply proc args))))))

(lambda () (writeln "new-escaper is defined")))))

((call/cc receiver))) displays new-escaper is defined

Are new-escaper and escaper the same? Why is new-escaper better than

escaper?

16.7 Escaping from Infinite Loops

Suppose we would like to separate some code into control and action. To be

a bit more specific, consider a piece of program that we want to run forever:

(let ((r (random n)))

(if (= r tsLTget)

(begin (writeln count) (set! count 0))

(set! count (+ count 1))))

16.7 Escaping from Infinite Loops 5^1

Program 16.8 how-many-till

(define hos-many-till

(lambda (n teirget)

(let ((count 0))

(cycle-proc

(lambda ()

(let ((r (remdom n)))

(if (= r target)

(begin (writeln count) (set! count 0))

(set! count (+ count 1)))))))))

Then using cycle-proc (see Program 14.11), which runs a zero-argument

procedure forever, we can write Program 16.8. The procedure how-many-till

continuously reports how many values are unequal to the target. If the number

displayed is always the same, then we ought to question the randomness of the

random number generator. Each time it displays a count, the counter is reset.

The only way to stop this program is by some kind of keyboard interrupt

mechanism. However, we can build into how-many-till an exit facility using

call/cc. Instead of looping indefinitely, we exit whenever the sum of the

counts is greater than some threshold. We need an additional local variable

that maintains the sum. We invoke the procedure how-many-till with the

threshold as an additional argument. This version of how-many-till is given

in Program 16.9. If exit-above-threshold is ever invoked, then we come

out of the invocation of (how-many-till n target thresh); otherwise we

stay within cycle-proc. What is interesting about this example is that it is

possible to exit an infinite loop without changing the definition of cycle-proc.

An example of the use of how-many-till is given in Program 16.10, where

we can invoke (random-data 10 20).

The first continuation formed (by the call/cc in how-many-till) is the

value of

542 Introduction to Continuations

Program 16.9 how-meuiy-till

(define hos-many-till

(lambda (n target thresh)

(let ((receiver

(lambda (exit-above-threshold)

(let ((count 0) (svim 0))

(cycle-proc

(lambda ()

(if (= (rajidom n) teurget)

(begin

(writeln "target " tsirget

" required " count " trials")

(set! sum (+ siim count))

(set ! count 0)

(if (> sum thresh)

(exit-above-threshold sum)))

(set! count (+ count 1)))))))))

(call/cc receiver))))

Program 16.10 random-data

(define random-data

(lambda (n thresh)

(letrec ((loop (leunbda (target;

(cond

((negative? target) '())

(else (cons (how-m£uiy-till n teurget thresh)

(loop (subl 1target))))))))

(loop (subl n)))))

(escaper

(lambda (Q)
(cons D (loop (subl target)))))

where loop is as it is defined in random-data and target is 9.

16.7 Escaping from Infinite Loops 543

Exercise

Exercise 16.23

Explain why the test for termination within rsuidoni-datais (negative? tar-

get).

16.8 Escaping from Flat Recursions

The call/cc operator gives the ability to escape from recursive computations

while basically throwing out all the work that has stacked up. A simple exam-

ple clarifies in what sense the mechanism avoids doing pending computations.

We look at the problem of taking the product of a list of numbers and adding

the number n to the product if the result is nonzero:

(product+ 5 '(3 6 2 7)) => (+ 5 252) => 257

(product* 7 '(2 3 8)) =^

Here is the solution in a functional style:

Prograini 16.11 product

+

(define product+

(lanbda (n nums)

(letrec

((product (laabda (nu»s)

(cond

((null? nuMs) 1)

(else ([* icdir nuns) (product (cdr nu»8))))))))

(let ((prod (product nuns)))

(if (zero? prod) (+ n prod))))))

This solution can be improved by adding a test to determine if one of the

values in the list is zero. This stops the recursion upon encountering the first

zero. This version is in Program 16.12. Consider the following subtle fact:

Finding a zero in the list does not stop the computation of product. In fact,

what happens is that if the first zero is in the kth position, then there are

k — 1 multiplications using zero. This is because the context of the product

544 Introduction to Continuations

Program 16.12 product

+

(define product*

(lambda (n nvuns)

(letrec

((product (lambda (nums)

(cond

((null? nums) 1)

((zero? (car nvuns)) 0)

(else (* (car nums) (product (cdr nums))))))))

(let ((prod (product nums)))

(if (zero? prod) (+ n prod))))))

invocations includes k — 1 multiplications. When the zero is found, each of

the k — I waiting multiplications must still be done.

Is it possible to exit the invocation of product so that the result causes no

waiting multiplications to occur? A solution is in Program 16.13. Consider

the invocation (+ 100 (product* 10 ' (2 3 4 6 7))). Since the list of

numbers contains a 0, the continuation, which is the value of

(escaper

(lambda (D)
(+ 100 D)))

is invoked, and the result is 100. This follows because the continuation is

being invoked on 0. If, however, no zero is found, then (product nums)

terminates normally, and (+ n prod) is returned as the value of (receiver

<ep>). Since prod cannot be zero, the result returned is (+ n prod). The

let expression can be shortened to (+ n (product nums)). This version is in

Program 16.14.

We see that finding a zero in the list produces a value to pass to the contin-

uation formed from the invocation of (call/cc receiver) and finishes the

computation of product*. Moreover, we observe the rather surprising fact

that if there is a zero in the list, then no multiplications occur regardless of

where in the list that zero occurs.

16.8 Escaping from Flat Recursions 545

Progrson 16.13 product*

(define product*

(lanbda (n nuns)

(let ((receiver

(lambda (exit-on-zero)

(letrec

((product (lambda (nums)

(cond

((null? nums) 1)

((zero? (ceir nums)) (exit-on-zero 0))

(else (* (car nums)

(product (cdr nums))))))))

(let ((prod (product nums)))

(if (zero? prod) (+ n prod)))))))

(call/cc receiver))))

Program 16.14 product*

(define product*

(lambda (n nums)

(let ((receiver

(lambda (exit-on-zero)

(letrec

((product (lambda (nums)

(cond

((null? niims) 1)

((zero? (car]lums)) (exit-on-zero 0))

(else (4 (car nums)

(product (cdr nums))))))))

(* n (product nums))))))

(call/cc receiver))))

16.9 Escaping from Deep Recursions

Let us take a look at a slightly more complicated example. The problem is to

redefine product* for a larger class of lists. Specifically, we allow deep lists

of numbers. Thus we can invoke

(product* 5 '((1 2) (1 1 (3 1 D) (((((1 1 0) 1) 4) 1) 1)))

546 Introduction to Continuations

Program 16.15 product+

(define product*

(lanbda (n nims)

(let ((receiver

(la«bda (exit-on-zero)

(letrec

((product

(leunbda (nuns)

(cond

((null? nuBs) 1)

((number? (car nums))

(cond

((zero? (car nuns)) (exit-on-zero 0))

(else (* (cen: nuns)

(product (cdr nu»s))))))

(else (* (product (car nums))

(product (cdr nums))))))))

(+ n (product nums))))))

(call/cc receiver))))

Program 16.16 -emd-count-maJcer

(define *-and-count-m2Jcer

(lambda

(let ((local-counter 0))

(lambda (nl n2)

(set! local-counter (+ local-counter 1))

(writeln "Number of multiplications « " local-counter)

(* nl n2)))))

which results in 0. However, if the had been a 3, then the result would have

been 77. The new definition of product + is given in Program 16.15.

Some, but not all, multiplications are avoidable. By counting the number of

multiplications, we can discover how many can be avoided. This can be done

by invoking a special multiplication procedure *-and-count-maJter, given in

Program 16.16, and then passing the result of its invocation as an argument

to product+. The procedure product+ in a functional style would have once

again introduced all those multiplications by zero. (See Program 16.17.) Thus

we can invoke:

16.9 Escaping from Deep Recursions 547

Program 16.17 prod.uct+

(define product+

(leunbda (n nums *-proc)

(letrec

((product

(lambda (nums)

(cond

((null? nums) 1)

((number? (car nums))

(cond

((zero? (car nums)) 0)

(else (*-proc (ceu: nums) (product (cdr nums))))))

(else

(let ((val (product (car nums))))

(cond

((zero? val) 0)

(else (*-proc val (product (cdr nums)))))))))))

(let ((prod (product nums)))

(if (zero? prod) (+ n prod))))))

(let ((counter (*-and-coiint-maker))

(num-list '((1 2) (1 1 (3 1 1)) (((((1 1 0) 1) 4) 1) 1))))

(product+ 5 niim-list coiinter))

When product+ of Program 16.17 is used on the given tree, there are 12

multiplications, and when product+ of Program 16.15 is used there are fewer

than 12 multiplications. There is, of course, a way to avoid all multiplications,

but it involves walking through the entire list looking for O's before starting the

multiplication process. This makes the algorithm two-pass (it would require

two pcisses through the list).

Exercises

Exercise 16.24

Run product + of Program 16.14 with the *-proc argument over a list of

numbers to verify the claim that no multiplications occur if the list contains a

0. Run product + of Program 16.12 with the *-proc argument over the same

list to compare with the first part of this exercise.

548 Introduction to Continuations

Exercise 16.25

Run product+ of Program 16.15 with the *-proc argument over the nested

list of numbers given above. Run product + of Program 16.17 with the *-proc

argument over the same list to compare with the first part of this exercise.

Exercise 16.26

Rewrite product + of Program 16.15 where n is always 0.

Exercise 16.27

Rewrite product+ of Programs 16.14 and 16.15 using a local variable to main-

tain the accumulating product. Can this be done without using call/cc?

16.9 Escaping from Deep Recursions 549

17 Using Continuations

17.1 Overview

In this chapter we discover some unusual properties of continuations. We
demonstrate how to build a break facility. This allows computations to halt

and then restart an indefinite number of times. Each time the computation

halts, the user will be able to interact with the system. In addition, we show

how to build a coroutine system. In such systems, multiple procedures can

interact with each other without actually returning control from within each

process. Before we begin this development, we review the fundannental rules

concerning call/cc.

17.2 Review of call/cc

1. call/cc's argument is called a receiver.

2. A receiver's argument is called a continuation. It is an escape procedure

<ep> of one argument formed from the context of the call/cc invocation.

S.jA continuation's argument is passed to the context from which <ep> was

formed by invoking <ep> on that value.

4. If the escape procedure <ep> is formed from the call/cc invocation and is

then ignored, the following hold, where the use of ellipses surrounding an

expression indicates that the expression may be embedded:

(let ((receiver (lambda (continuation) body)))

. . . (call/cc receiver) . . .

)

(let ((receiver (lambda (continuation) body)))

... (receiver 'anything) ...)

. . . body . .

.

and

(let ((receiver (escaper (lambda (continuation) body))))

. . . (call/cc receiver) . . .)

(let ((receiver (escaper (lambda (continuation) body))))

... (receiver 'anything) ...)

= (receiver 'anything)

= body

where the next to the last equality holds since receiver is an escape proce-

dure, and the last equality holds since continuation is ignored.

5. In all circumstances the following hold:

(let ((receiver (lambda (continuation) (continuation botfj/))))

... (call/cc receiver) ...)

(let ((receiver (lambda (continuation) body)))

. . . (call/cc receiver) . . .

)

and

(let ((receiver (escaper (lambda (continuation) (continuation 6o(ij^)))))

. . . (call/cc receiver) . . .)

(let ((receiver (leimbda (continuation) body)))

. . . (call/cc receiver) . . .)

552 Using Continuations

Program 17.1 countdown

(define countdown

(launbda (n)

(writeln "This only appears once")

(let ((pair (message "Exit" (attempt (message "Enter" n)))))

(let ((v (1st pair))

(returner (2nd pair)))

(writeln " The non-negative-number: " v)

(if (positive? v)

(returner (list (subl v) returner))

(writeln "Blastoff"))))))

17.3 Making Loops with One Continuation

In the previous chapter we introduced continuations. We noted that continua-

tions were escape procedures and could be the value returned by any procedure

or could be stored in data structures; however, our examples (except for the

third experiment and escaper) ignored that feature. Each example shared the

property that once a receiver was exited, the continuation was useless. Each

receiver's continuation was always invoked; it was never passed as an argument

or considered as the value of any procedure invocation. This property led us

to refer to the continuations with such names as exit-above-threshold and

exit-on-zero, because each was invoked only once for each invocation of its

associated receiver. Now we abandon this property so that a continuation

survives beyond giving a value to its associated receiver's invocation.

Earlier we used a continuation to exit deep recursions with the various defi-

nitions of product +. However, we have not yet developed an interesting use of

a continuation, other than escape/thunk*, that can be returned as a value

and stored in a data structure. To illustrate such a continuation, we define a

procedure countdown that counts a positive integer down until it reaches zero.

This is a very simple loop. We use two different definitions of the auxiliary

procedure attempt. The first does not create any continuations and does not

perform a loop. The second does create a single continuation and with this

continuation is able to perform a loop. The definition of countdown uses a

trivial displaying procedure message for tracking the flow of the computation.

The definitions are given in Programs 17.1, 17.2, and 17.3.

The value of proc is just the identity procedure we denote as <proc>. Here

is what appears when (countdown 3) is invoked:

17.3 Making Loops with One Continuation 553

Progr£un 17.2 message

(define message

(lambda (direction value)

(writeln " " direction "ing attempt with value: " value)

value))

Program 17.3 attempt

(define attempt

(lambda (n)

(let ((receiver (lambda (proc) (list n proc))))

(receiver (lambda (x) x)))))

This only appears once

Entering attempt vith value: 3

Exiting attempt vith value: (3 <proc>)

The non-negative-number: 3

(2 <proc»

"This only appeairs once" appeeirs once. The next event is an attempt

to find the value of the expression (message "Enter" 3). This produces

the message, "Entering attempt vith value: 3" and message returns its

second argument, 3. So now we attempt to find the value of the invocation

(attempt 3). This invocation yields the list (3 <proc>) because once the

list (list n proc) is constructed, attempt is exited. Next we attempt to

find the value of the expression (message "Exit" (3 <proc>)). Once again

the message is displayed, but this time it is an exiting message, "Exiting

attempt with value: (3 <proc>).^^ The invocation's value is (3 <proc>).

Now we bind pair to this list, take the pair apart, bind v to 3, and bind

returner to <proc>. We display a message that acknowledges where we are

and that we do indeed have the correct value. The message is, "The non-

negative number: 3." We then check to see if the number is positive. In

this case it is. We invoke (returner (list (subl v) returner)). We form

the list (2 <proc>) and hand this list to <proc>, which returns (2 <proc>).

With the definition of attempt in Program 17.3, we did not create a loop nor

did the result end with Blastoil.

We now redefine attempt (see Program 17.4) to create a continuation <ep>

that we return in place of <proc>. In the discussion that follows, we explain

554 Using Continuations

Program 17.4 attempt

(define attempt

(lambda (n)

(let ((receiver (lambda (proc) (list n proc))))

(call/cc receiver))))

how that continuation is powerful enough to build a looping construct.

The result of (countdown 3) using attempt of Program 17.4 follows:

This only appears once

Entering attempt with value: 3

Exiting attempt with value: (3 <ep>)

The non-negative-nvimber : 3

Exiting attempt with value: (2 <ep>)

The non-negative-number: 2

Exiting attempt with value: (1 <ep>)

The non-negative-number: 1

Exiting attempt with value: (0 <ep>)

The non-negative-number:

Blastoff

"This only appears once" appears once. The next event is an attempt

to find the value of the expression (message "Enter" 3). This produces

the message, "Entering attempt with value: 3" and message returns its

second argument, 3. So now we attempt to find the value of the invocation

(attempt 3). This invocation yields the list .(3 <ep>) because once the list

(list n proc) is constructed, attempt is exited. Next we attempt to find

the value of the expression (message "Exit" (3 <ep>)). Once again the

message is displayed, but this time it is an exiting message, "Exiting attempt

with value: (3 <ep>)." The invocation's value is (3 <ep>). Now we bind

pair to this list, take the pair apart, bind v to 3, and bind returner to

<ep>. We display a message that acknowledges where we are and that we do

indeed have the correct value. The message is, "The non-negative number:

3." We then check to see if the number is positive. In this case it is. We
invoke (returner (list (subl v) returner)). We form the list (2 <ep>)

and hand this list to <ep>.

To this point, everything has been the same as in the analysis of attempt

of Program 17.3. In fact, all we did to write the above paragraph was change

instances of <proc> to <ep>. Now we are doing something new. Instead of

invoking <proc>, we are invoking <ep>. The continuation <ep> is the value of

17.3 Making Loops with One Continuation 555

(escaper

.aabds

(let ((pair (aessage "Exit" Z)))

(let ((t (1st pair))

(returner (2iid pair)))

(sriteln " The non-negative-number :
" v)

(if (positive? v)

(returner (list (subl t) returner))

(writeln "Blastoff"))))))

This continuation is formed as the result of the first and only invocation of

attempt. That is, the value passed as an argument to <ep> becomes the

second argument to message in the let expression that binds pair. The

next event is the displaying of the message. "Exiting attempt with value:

(2 <ej>>)." To go a bit further, the value of this message invocation is (2

<ep>). We bind pair to this list, take the pair apart binding v to 2 and

binding ret^imer to the same <ep>. Once again we display a message that

acknowledges where we are and that we do indeed have the correct value.

The message is, "The non-negative number: 2." We then check to see if

the number is still positive. In this case it is. We invoke

(returner (list (subl v) returner))

Clearly we are in a loop, with v replaced by (subl v). The loop terminates

when V is no longer positive. An important point is that call/cc is invoked

only once. Therefore, we know for certain that <ep> is always the same

continuation. The procedure attempt of Program 17.4 is invoked only once

and its body is never reentered. This follows because the sentence "Entering

attempt with value: n" appears only when n is 3.

Exercise

Exercise 17.1: cycle-proc

Rewrite cycle-proc using continuations instead of recursion as presented in

Program 14.11.

556 Using Conttnuattoru

17.4 Experimenting with Multiple Continuations

In this section we consider an experiment where we use more than one con-

tinuation. Everything until now has worked with just one continuation. Now
we shall use several continuations. To keep track of the full meaning of each

continuation, we shall plug in values for variables that will not change. This

frees us from having to remember their values for use later.

In this experiment we need a receiver and a testing procedure. The receiver

returns <ep>, which it receives as an argument. There are several continua-

tions formed in this one example, so it is easy to get confused.

Program 17.5 receiver

(define receiver

(lambda (continuation)

(continuation continuation)))

Program 17.6 tester

(define test(ar

(lambda (continuation)

(writeln "beginning")

(call/cc continuation)

(writeln "middle")

(call/cc continuation)

(writeln "end")))

Experiment:

[1] (tester (call/cc receiver))

beginning

beginning

middle

beginning

end

[2]

The first event is to form <ep>, which, if it ever gets an argument, passes

17.4 Experimenting with Multiple Continuations 557

that argument to tester. <ep> is the value of:

(escaper

(lambda (D)
(tester D)))

We can think of <ep> as (escaper tester). We invoke (tester <ep>).

Now continuation is bound to <ep>. We write beginning. We next invoke

(call/cc <ep>). This causes us to create <epa>. Before we figure out any-

thing about what <ep> does with <epa>, we must understand what <epa>

does if it ever gets invoked. <epa> is the value of:

(escaper

(laabda (D)

D
(writeln "iddle")

(call/cc <cp>)

(writeln "end")))

The continuation <epa> ignores its argument, D, displays middle, then in-

vokes (call/cc <ep>), and when that returns, it displays end. Now recall

that <ep> takes its argument and invokes (escaper tester) on its argument,

so continuation is bound to <epa>. We write beginning. We next invoke

(call/cc <epa>). This causes us to create <epb>. Before we figure out any-

thing about what <epa> does with <epb>, we must understand what <epb>

does if it ever gets invoked. <epb> is the value of:

(escaper

(laabda (D)

D
(writeln "Middle")

(call/cc <epa>)

(writeln "end")))

The continuation <epb> ignores its argument, displays middle, then invokes

(call/cc <epa>), and when that returns, it displays end. Now recall that

<epa> takes its argument (ignores it) and displays middle, which we do now,

and then invokes (call/cc <ep>). Once agaun we form the new continuation

<epc>, which is the value of:

(escaper

(lambda (D)

D
(writeln "end")))

558 Using Continuations

This continuation ignores its argument and displays end, so now we invoke

((escaper tester) <epc>). First, we display beginning. Next we invoke

(call/cc <epc>). This causes the creation of the new continuation <epd>,

which is the value of:

(escaper

(lambda (D)

D
(writeln "middle")

(call/cc <epc>)

(writeln "end")))

This continuation displays middle, invokes (call/cc <epc>), and when that

returns, it displays end. What is {<epc> <epd>)? The continuation <epc> is

an escape procedure that ignores its argument and displays end. So we ignore

<epd>, after having gone to all the trouble of constructing it, and display end.

Exercises

Exercise 17.2

During the experiment, how many more continuations were formed than were

invoked?

Exercise 17.3

Determine what this expression represents:

(let ((receiver (lambda (continuation)

(call/cc continuation))))

(call/cc receiver))

What is (call/cc call/cc)?

17.5 Escaping from and Returning to Deep Recursions

In product+ of Section 16.9, we demonstrated how to escape from deep re-

cursions. Sometimes we want to escape from deep recursions but jump right

back in when we so desire. In this section, we present a use of continuations

that allows such behavior. We leave the deep recursion, but we give ourselves

the ability to get right back where we were at the time we left. We assume

17.5 Escaping from and Returning to Deep Recursions 559

Program 17.7 flatten-number-list

(define flatten-number-list

(lambda (s)

(cond

((null? s) '())

((number? s) (list (break s)))

(else

(let ((flatcar

(f latten-number--list (car s))))

(append flatcar

(f latten-niiaber-list

1

(c dr s))))))))

Program 17.8 breai

(define break

(lambda (x)

i))

Program 17.9 break

(define break

(lambda (x)

(let ((breeik-receiver

(lambda (continuation)

(continuation i))))

(call/cc break-receiver))))

that the data for the example are the same as those of prodTict+: a deep list

of numbers. (See Section 16.9.)

Consider the definition of flatten-number-list in Program 17.7, where

the first version of break is the identity procedure given in Program 17.8.

Hence:

(flatten-number-list '((1 2 3) ((4 5)) (6))) (12 3 4 5 6)

Another way to write break, which uses continuations but has the same

meaning, is given in Program 17.9. This follows because we return as a value

the argument to break. Since that value is x, we get the equivalent of (lambda

560 Using Continuattoru

Program 17.10 break

(define get-back "any procedure")

(define breeJc

(lanbda (x)

(let ((bresJt-receiver

(leuDbda (continuation)

(set! get-back (lambda () (continuation x)))

(amy-action x))))

(call/cc brezJt-receiver))))

Program 17.11 any-action

(define any-action

(lambda (x)

(writeln x)

(get-back)))

Program 17.12 any-action

(define any-action

(lambda (x)

((escaper (lambda () x)))

(get-back)))

(x) x). But now we have access to continuation, and, moreover, we can

characterize its behavior. Whenever break is invoked, we can think about the

call as temporarily halting the computation; by invoking continuation on

the same argument, we can continue the computation where it left off. We do

not notice anything about the pause taking place because the continuation

invocation happens immediately. But that is not required. For example, in

Program 17.10, we display the value of the argument to breeJc, using any-

action, which is defined in Program 17.11. But since any-action is any

action whatsoever, we may rewrite it as shown in Program 17.12 instead of

explicitly writing the value of x.

Does the invocation of (get-back) in any-action of Program 17.12 ever

happen? Because we are invoking an escape procedure prior to invoking

17.5 Escaping from and Returning to Deep Recursions 561

Program 17.13 break

(define get-back "any escape procedure")

(define break

(lambda (z)

(let ((break-receiver

(lambda (continuation)

(set! get-back continuation)

(any-action x))))

(call/cc break-receiver))))

(get-back), the answer is no. Is there a way to get back into the original

computation? The answer is yes. Since get-back is bound globally, we can

invoke it at the prompt. Below is an experiment using these tools.

[1] (flatten-number-list '((1 2) 3))

1

[2] (get-back)

2

[3] (get-back)

3

[4] (get-back)

(1 2 3)

The procedure break has a limitation. There is no control over what value is

sent back. Unfortunately, that is determined by the definition of get-back.

We can soften the definition by allowing get-back to accept an argument.

Then get-back becomes

(lambda (v) (continuation v))

which is the same as continuation and gives us Program 17.13. We can

still use any-action defined in Program 17.12 since the escaper invocation

guarantees that (get-back) will never be invoked. Whenever get-back is

invoked, it must be passed an argument.

Then the experiment could produce different results:

[1] (flatten-number-list '((1 2) 3))

1

[2] (get-back 4)

2

562 Using Continuations

Program 17.14 any-action

(define breeJc-argunent " any value")

(define smy-action

(lambda (x)

(set ! bresJt-argxment x)

((escaper (lambda () x)))))

[3] (get-back 5)

3

[4] (get-back 6)

(4 5 6)

Why is the result (4 5 6) in this experiment, whereas it was (1 2 3) in the

previous experiment? By returning the values 4, 5, and 6 to the get-back

continuation, we are returning a different value each time. The computation

was repeatedly suspended waiting for a value, which we supplied interactively

at the prompt.

We might want to make public the value of the argument to breeik. We
can do this in any-action, as shown in Program 17.14.

Finally, we note in Program 17.15 that smy-action is not strictly neces-

sary and can be included in the definition of break-receiver. The procedure

break is an interesting program. It is very useful for interactive debugging.

For example, by changing the argument to break, we can construct a mech-

anism for accessing and modifying part of the local state at the point of the

invocation of break. This can be accomplished by passing to breeik proce-

dures such £IS

(lambda x) or (lambda (v) (set! x v))

In this case, if x is locally bound at the time of invocation of break, the list

composed of these two procedures gives a lot of power to affect the internal

state of a computation. Program 17.16 shows how flatten-number-list

changes to support break. Whenever breaJc occurs, breaOt-ao-giunent gets

bound to a two-element list and we define the extract and store procedures

as shown in Programs 17.17 and 17.18.

This is just the tip of an iceberg. We are concerned only about one vari-

able. This idea for debugging can be generalized to lists of arbitrarily many

variables, but its utility diminishes as the number of variables increases. If

17.5 Escaping from and Returning to Deep Recursions 563

Program 17.15 break

(define get-back "any escape procedure")

(define break-argument "any value")

(define break

(lambda (z)

(let ((break-receiver

(lambda (continuation)

(set! get-back continuation)

(set ! break-argument x)

((escaper (lambda () x))))))

(call/cc break-receiver))))

Program 17.16 flatten-number-list

(define flatten-number-list

(lambda (s)

(cond

((null? s] '())

((number? s) (list

(break

(list (lambda () s)

(lambda (v) (set! s v))))))

(else

(let ((flatcar

(flatten-number-list (car s))))

(append f latceir

(flatten-number-list (cdr s))))))))

Program 17.17 extract

(define extract

(lambda ()

((1st break- argument))))

there are too many variables, it may be time to redesign the procedures. With

breatk we have seen how there are many continuations coming from one pro-

564 Using Continuations

Program 17.18 store

(define store

(laabda (value)

((2nd break-eurguaent) value)))

cedure invocation of flatten-number-list. Each of these continuations is

eventually invoked after escaping to the prompt. The escape to the prompt is

not very exciting. In the next section we allow far more interesting behavior to

balance each continuation. Because the behavior of such uses of continuations

is balanced, these continuations are called coroutines.

Exercises

Exercise 17.4: llatten-nuober-list

Consider the new definition of flatten-number-list below. What changes

are needed to make the sequence of invocations to get-back in the first ex-

periment produce the same result? How about for the second experiment?

(define f latten-nuaber-list

(laBbda (s)

(letrec

((flatten

(laabda (s)

(cond

((null? s) '())

((nuBber? a) (break (list s)))

(else (let ((flatcar (flatten (car s))))

(append flatcar (flatten (cdr s)))))))))

(flatten s))))

Exercise 17.5

Consider how we can repeat the results of the first experiment using flatten-

number-list of Program 17.16. A condition imposed on this exercise is that

no number may be input from [2] to the end of the experiment. Hint: Do

not use store.

Exercise 17.6: product*

Consider product + below and define break-on-zero, which displays a and

escapes to the prompt. Each time it displays a 0, resume the computation

17.5 Escaping from and Returning to Deep Recursions 565

as if the had been a 1. This can be done by typing (get-back 1) at the

prompt. If more than three zeros are found, then the result is "error: too

many zeros." This is actually a form of exception handling where finding

the corresponds to an exception and finding the fourth corresponds to an

error. Experiment with different models of user interaction.

(define product+

(lambda (n Is)

(letrec ((product

(lambda (Is)

(cond

((null? Is) 1)

((number? (car Is))

(* (if (zero? (csir Is)) (break-on-zero) (car Is))

(product (cdr Is))))

(else (* (product (car Is))

(product (cdr Is))))))))

(+ n (product Is)))))

Experiment with

(product+ 5 '((1 2) (3 4) (0 6) (7 0)))

(product+ 5 '((1 2) (0 3) (2 ((0 5) 0) 0)))

Exercise 17.7: break-var

A syntax table entry for break-var can be written so that:

(break-var var)

(break (list (leunbda var) (lambda (v) (set! var v))))

Test flatten-number-list of Program 17.16 using break-var.

Bonus: This works for all variable names except one. Why is the variable

name, for which it does not work, a bad choice?

Exercise 17.8

Consider the following experiment:

[1] (flatten-number-list '((1 2) 3))

1

[2] (get-back 4)

2

[3] (f latten-number-list '((5 6 7) 8))

5

566 Using Continuations

In this experiment, (flatten-number-list '((1 2) 3)) never gets a value.

Why? Generalize breaJc to maintain a list (as a stack) of get-back contin-

uations so that no information is lost. Then continue the experiment to get

these results.

[4] (get-back 7)

6

[5] (get-back 8)

7

[6] (get-back 9)

8

[7] (get-back 10)

(7 8 9 10)

[8] (get-back 5)

3

[9] (get-back 6)

(4 5 6)

Exercise 17.9

Consider the results of the experiment from the previous exercise. How would

the results differ if the list of continuations were treated like a queue instead

of a stack?

17.6 Coroutines: Continuations in Action

There are lots of ways to package control information. We next look at a

famous problem along with a well-known control mechanism. The problem

is Grune's problem, and the control mechanism is called coroutines. Before

we look at Grune's problem, we consider a simplified version of the use of

coroutines. It is sometimes legitimate to imagine that several procedures are

running at the same time, sending information among themselves. In this

model, only one procedure is running at any given time. When information

is sent from an active procedure to a dormant procedure, the active proce-

dure becomes dormant, and the dormant procedure, the one receiving the

information, becomes the active one.

One of the best examples for thinking about coroutines comes from game

playing. Imagine a typical board game with three players. Each player is

modeled by a coroutine, so there are three coroutines. Let us name these

coroutines A, B, and C. Let us further assume that A plays first, hands the dice

to B, B then plays and hands the dice to C, and then C plays and hands the

dice back to A, and so on. In translating this game into a computer program,

17.6 Coroutines: Continuations in Action 567

the code for A indicates a transfer of control by resuming B, and it indicates a

transfer of the dice by passing them as an operand with the resume operation.

This is accomplished by including in the code for A an instance of (resmne B

dice). Similarly, the code for B includes (resume C dice), and the code for

C includes (resume A dice). The act of resuming means that the coroutine

stops processing, and the entity that is the first argument to resume continues

processing where it left off.

The board game's control flow is very regular. A plays, then B plays, then

C plays, then A plays, and so on. As a result, not enough of the generality of

coroutines can be seen through a board game simulation. If each player deter-

mined randomly which opposing player was to play next, this would require

much of the generality of coroutines. Rather than using random numbers

we simply picked an unnatural ordering that is illustrated in Program 17.19.

Remember that nothing is displayed in a writeln expression until all of its

operands have a value. Now if we invoke (A '*) we get the following output:

[1] (A '*)

This is A

This is B

This is C

Came from C

Back in A

Came from A

Back in C

Came from C

Back in B

Came from B

Let us see what it takes to make these programs work. We need the pro-

cedure coroutine-maker, which takes a procedure as an argument. This

argument is a procedure that obtains a meaning for resume and v when it is

invoked. The variable v is of little concern. We focus on the variable resume.

From these examples, we see that resume necessarily must look like a pro-

cedure of two arguments. When resume is invoked, it does not immediately

return a value. In fact, it gives up control to whomever it is resuming and

eventually gets an answer when someone else resumes it. (Since coroutines

are first class, not only can they be passed as the required first argument to

resume, but they can also be included in the second argument to resume.)

Program 17.20 contains coroutine-meiker.

The first thing that coroutine-maker does is create a local variable that

will only hold continuations. Next, a procedure update-continuation! is

568 Using Continuations

Program 17.19 Coroutines for a simple board game

(define A

(let ((A-proc (lambda (resume v)

(writeln "This is A")

(writeln "Came from " (resume B "A"))

(writeln "Back in A")

(writeln "Came from " (resume C "A")))))

(coroutine-mciker A-proc)))

(define B

(let ((B-proc (lambda (resume v)

(writeln (blanks 14) "This is B")

(writeln (blanks 14)

"Came from " (resume C "B"))

(writeln (blanks 14) "Back in B")

(writeln (bleinks 14)

"Came from " (resume A "B")))))

(coroutine-meiker B-proc)))

(define C

(let ((C-proc (leimbda (resume v)

(writeln (blanks 28) "This is C")

(writeln (blanks 28)

"Came from " (resume A "C"))

(writeln (blanks 28) "Back in C")

(writeln (blanks 28)

"Came from " (resume B "C")))))

(coroutine-maJcer C-proc)))

formed so that local side effects to saved-continuation can be done within

other procedures. This is reminiscent of some of the techniques we presented in

Chapter 12 when we showed how objects were built. The procedure resumer,

having the properties of resmne we discussed above, is next defined using

resume-meiker, whose code is given in Program 17.21. A boolean flag, first-

time, is initially true. Then a procedure is returned. The first time this

procedure is invoked, (proc resumer value) is evaluated. This is where

the binding of resume and v in the programs above takes place. Subsequent

invocations of this procedure invoke a continuation that was stored as a result

of an earlier invocation of a resiime to some other coroutine. Basically, the

structure of resumer is

n.6 Coroutines: Continuations in Action 569

Progreun 17.20 coroutine-meJcer

(define coroutine-maker

(leuabda (proc)

(let ((saved-continuation "any continuation"))

(let ((update-continuation!

(lambda (v)

(set! saved-continuation v))))

(let ((resumer (resume -msJcer update-continuation!))

(first-time ft))

(leimbda (value)

(if first-time

(begin

(set! first-time if)

(proc resumer value))

(saved-continuation value))))))))

Program 17.21 resune-malcer

(define resume-mciker

(lambda (update-proc !

)

(lambda (next-coroutine value)

(let ((receiver (lambda (continuation)

(update-proc! continuation)

(next-coroutine value))))

(call/cc receiver)))))

(lambda (next-coroutine value)

(let ((receiver (lambda (continuation)

(.<update—continuation\> continuation)

(next-coroutine value))))

(cadl/cc receiver)))

Thus far the code has not shown us where the continuations are being cre-

ated. In coroutine-maker, this is done in the procedure formed by invoking

(resume-maker update-continuation !)

.

When resumer is invoked with a coroutine, say B, and a value, say "V",

a continuation is bound to continuation. That continuation is stored in

the saved-continuation associated with the code of the invoker of resumer.

For example, if the code (resume B "V") is invoked from within A, then the

570 Using Continuations

updating takes place in the saved-continuation associated with coroutine

A. When the updating is finished, the value "V" is sent to coroutine B. B

then causes the invocation of the saved-continuation, which was stored as

a result of an earlier invocation of its resumer.

Exercises

Exercise 17.10

To clarify the behavior of coroutine-msQcer and resume-meJcer, we used many
variables. Very few are required. Furthermore, resume-maicer itself is not nec-

essary. Using this knowledge, rewrite coroutine-meiker with as few variables

as possible.

Exercise 17.11

Look at the results of the previous exercise. If there is a first-time flag,

rewrite coroutine-meOter so that it no longer requires such a variable.

Exercise 17.12

Study the definitions of ping and pong below:

(define ping

(let ((ping-proc (lambda (resume v)

(display "ping-")

(resume pong 'ignored-ping))))

(coroutine-maker ping-proc)))

(define pong

(let ((pong-proc (leunbda (resume v)

(display "pong")

(newline)

(resume ping 'ignored-pong))))

(coroutine-mciker pong-proc)))

What happens when we evaluate (begin (ping '*) (pong '*))?

17.7 Grune's Problem

Now we are ready to look at Grune's problem (Grune 1977). The problem is

described as follows:

1 7. 7 Grune 's Problem 571

We have a process A that copies symbols from input to output in such

a way that where the input has aa, the output will have b instead.

And we have a similar process B that converts bb into c. Now we

want to connect these processes in series by feeding the output of A
into B. Input with aab yields c, as does baa.

If we line the processes up as:

Input ^ k ^ B ^ Output

we can think of the flow of requests emanating at Output. Requests for values

flow from right to left and values, themselves, flow from left to right. This is

reminiscent of streams. The coroutine Output requests of B to find a symbol

for Output to display. The coroutine B requests of A to find a symbol for B to

consider in its analysis of a "possible c." The coroutine A requests of Input to

find a symbol for A to consider in its analysis of a "possible 6." Having made

these requests, control now lies within Input. It does a read by first prompting

the user. It responds by resuming A with that symbol. It does this with the

following code, (resume right (prompt-read "in> ")), where A is bound

to right. A is now in control. If the symbol is an a, A cannot pass it along to

B because the next symbol reeid might be an a. The only possible alternative

for A is to give control back to Input. Once again Input prompts for the next

symbol. This symbol is also sent to A. Now A has enough information to send

something to B. Here are the conditions under which information flows to the

right. In these rules, x and y are the symbols in question, q is not the same

cis X, where x is a (respectively, b) and y is 6 (respectively, c):

1. XX =^ send y to the right.

2. X q ==> send x to the right, saving q for the next request.

3. q =^ send q to the right.

The code segment for this characterization follows:

(let ((symbol-1 (resume left 'ok)))

(if (eq? symbol-1 x)

(let ((syTiibol-2 (resume left 'more)))

(if (eq? symbol-2 i)

(resume right y)

(begin

(resume right symbol-1)

(resume right symbol-2))))

(resume right symbol-1)))

572 Using Continuations

Program 17.22 reader

(define reader

(lajBbda (right)

(let ((co-proc (lambda (resume v)

(cycle-proc

(lambda

(resume right (prompt-read "in> ")))))))

(coroutine-meiker co-proc))))

In order to replace aa by 6, x is a, y is 6, left is Input, and right is B; in

order to replace 66 by c, x is 6, y is c, left is A, and right is Output. Here

is a description of the code segment. Get a symbol from left. If that symbol

differs from x, send it along to right. If not, get another symbol from left.

If that symbol is the same as the first, send y to right. If it differs, send both

symbols, one at a time, to right.

The action of Output is simple. It makes a request from its left neighbor

(i.e., B). If it finds a symbol matching end, it invokes an escape procedure,

and the computation halts. If not, it writes the symbol. The code segment

for this Output action is:

(let ((symbol (resume left 'ok)))

(if (eq? symbol 'end)

(escape-on-end symbol)

(writeln "out> " symbol)))

The action of Input sends to its right neighbor whatever it read after first

displaying a prompt:

(resume right (prompt-read "in> "))

Given that these are the basic actions, it is a relatively simple task to make

sure all free variables have the correct values and that each code segment is

run as a nonterminating loop with cycle-proc. The three procedures for

forming the coroutines are given in Programs 17.22, 17.23, and 17.24.

We still have the task of building the wires into the communication channels.

We are now going to use letrec to create the mutually recursive coroutines

Input, A, B, and Output. One might expect the following letrec expression to

work:

J 7. 7 Grune 's Problem 573

Program 17.23 writer

(define writer

(lEunbda (left escape-on-end)

(let ((co-proc (lambda (resume v)

(cycle-proc

(lambda ()

(let ((symbol (resume left 'ok)))

(if (eq? symbol 'end)

(escape-on-end 'end)

(writeln "out> " symbol))))))))

(coroutine-maker co-proc))))

Program 17.24 x->y

(define x->y

(lambda (x y left right)

(let ((co-proc (lambda (resume v

(cycle-proc

(lambda ()

)

(let ((symbol-l (resume left •ok)))

(if (eq? symbol-

1

x)

(let ((symbol--2 (resume left 'more)))

(if (eq? symbol-2 x)

(resume right y)

(begin

(resume right symbol- 1)

(resume right symbol-2))))

(resume right symbol-!))))))))

(coroutine-maker co-proc))))

(letrec

((Input (reader A))

(A (x->y 'a 'b Input B))

(B (x->y 'b 'c A Output))

(Output (writer B escape-grune)))

(Output 'ok))

Each of Input, A, B, and Output is built by invoking the procedures reader,

x->y, x->y, and writer, respectively. The procedures reader, x->y, and

574 Using Continuations

Program 17.25 grune

(define grune

(laabda

(let ((grune-receiver

(laabda (escape-grune)

(letrec

((Input (reader (lambda (v) (A v))))

(A (x->y 'a 'b (lambda (v) (Input v)) (launbda (v) (B v))))

(B (x->y 'b 'c (lambda (v) (A v)) (lambda (v) (Output v))))

(Output (writer (lambdaL (v) (B v)) escape--grune)))

(Output 'ok)))))

(call/cc gnme-receiver)))

)

writer have been carefully designed to avoid invoking any of their corou-

tine arguments: Input, A, B, and Output. Here is the problem. All of the

procedures are being created at the same time as they are being passed as

arguments. For example, to create Input, we need A, and to create A, we need

Input. To solve this problem, we must freeze the coroutines that are argu-

ments in the right-hand sides of definitions. This has the effect of postponing

the evaluation of the variables that refer to the coroutines. Unfortunately, if

we freeze these variables, we get the wrong arity; that is, coroutines take one

argument, but frozen objects (i.e., thunks) take no arguments. The code that

follows, however, works:

(letrec

((Input (reader (lambda (v) (A v))))

(A (x->y 'a 'b (lambda (v) (Input v)) (lambda (v) (B v))))

(B (x->y 'b 'c (lambda (v) (A v)) (lambda (v) (Output v))))

(Output (writer (lauibda (v) (B v)) escape-grune)))

(Output 'ok))

Program 17.25 shows the final definition of grune with all the necessary

uses of (lambda (v) (v)). In the exercises, we develop a more natural

way to think about this unusual behavior.

i 7. 7 Grune 'a Problem 575

Exercises

Exercise 17.13: wrap

Consider the special form wrap, which has the following syntax table entry:

(wrap proc) = (lambda args (apply proc args))

This works in all cases but one: when args is a free variable in the proc

expression. Rewrite wrap using thunks to avoid this potential free variable

capture.

Exercise 17.14

Using the results of the previous exercise, write the syntax table entry for

wrap when proc is known to refer to a procedure of just one argument. This

is the case for the coroutines used in grime. Is free variable capture still a

problem?

Exercise 17.15

Using the results of the previous exercise, redefine gnine using wrap.

Exercise 17.16: safe-letrec

Another way to implement gnine is with a special form safe-letrec. This

special form is like letrec except that each right-hand side variable is wrapped

if it also appears as a left-hand side variable. Using the results of the previous

exercise, create the syntax table entry for safe-letrec so that the following

definition of grune works. [Hint: Use let to bind proc to (wrap proc) to

avoid processing each right-hand side.)

(define gnine

(lambda ()

(let ((grune-receiver (lambda (escape-grune)

(safe-letrec

((Input (reader A))

(A (x->y 'a 'b Input B))

(B (x->y 'b 'c A Output))

(Output (writer B escape-grune)))

(Output 'ok)))))

(call/cc grune-receiver))))

576 Using Continuations

Exercise 17.17: process-msLker

Sometimes processes are perceived as automatically being in an infinite loop.

Use the following variation of coroutine-meOcer, called process-meiker, and

rewrite the solution to the Grune problem using processes.

(define process-meJcer

(lambda (f)

(let ((saved-continuation "any continuation"))

(let ((update-continuation!

(lambda (v)

(set! saved-continuation v))))

(let ((resumer (resume-maJcer update-continuation!))

(first-time #t))

(leuabda (value)

(if first-time

(begin

(set! first-time #f)

(cycle-proc

(lambda ()

(f resumer value))))

(saved-continuation value))))))))

Exercise 17.18

Using the results of the previous exercise, explain how process-maker differs

from coroutine-maker by constructing an appropriate example.

Exercise 17.19

Redesign Towers of Hanoi using coroutine-maker so that each disk is a corou-

tine. Can process-maker be used?

Exercise 17.20

Redesign the solution of the Eight Queens problem using coroutine-maker

so that each queen is a coroutine. Can process-madcer be used?

Exercise 17.21

Implement Grune's problem using streams instead of coroutines.

Exercise 17.22

Extend grune to any number of x->y pairs. Hint: This can be accomplished

by rewriting the procedure grime leaving everything else unchanged.

Exercise 17.23

Rework the previous exercise using streams.

17.8 Final Thoughts 577

17.8 Final Thoughts

We have not shown you all the interesting things you can think about with

continuations, but we have tried to show you some of the ways that continua-

tions can be used. Most of the time, you should be content to solve problems

with conventional procedural techniques. Occasionally you will be tempted

to use state changing operations like those we used when we worked with

object-oriented programming. And even less frequently you will run across a

need for continuations. This is your basic bag of tricks.

The existence of the computer ha^ been incidental to the understanding

of the concepts conveyed in this book. The computer's role has been much

like that of a chemist's laboratory, used primarily for experimentation. What
would happen if you added two parts hydrogen to one part oxygen? If you are

curious about what happens when you compose two procedures, use the com-

puter as your laboratory. What happens when you compose the procedure

(lambda (x) (+ x 1)) with the procedure (lambda (x) (- x 1))? This

book has been about ideas and how we can combine separate categories of

ideas to create procedures that do our computing. Although some emphasis

has been placed on how fast the computer determines the value of a com-

putation, we have tried to approach the ideas in this book more in terms of

capturing the essence of a computation. Subtle issues of efficiency can come

much later. We have challenged you at every turn. Each piece of the compu-

tational puzzle fits together and is described in terms of simple ideas. Under

our guidance, you have entered the universe of computer science. It was our

goal to cause you to look forward to future explorations into this fascinating

field.

PROBLEMS

Problems worthy

of attack

prove their worth

by hitting back.

Piet Hein, Grooks

578 Using Continuations

Al The ASCII Character Set

Al.l The ASCII Table

Hex 1 2 3 4 5 6 7

NUL DLE SP @ P (

P

1 SOH DCl j 1 A Q a q

2 STX DC2 II 2 B R b r

3 ETX DCS # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f V

7 BEL ETB 1 7 G w g w

8 BS CAN
(8 H X h X

9 HT EM
) 9 I Y i y

A(10) LF SUB : J Z J z

B(ll) VT ESC +)
K [k {

C(12) FF FS
)

< L \ 1
1

D(13) CR OS - = M] m }

E(14) SO RS • > N
"

n
~

F(15) SI US / 7 - DEL

A1.2 Abbreviations for Control Characters

NUL null DCl device control 1

SOH start of heading DC2 device control 2

STX start of text DCS device control 3

ETX end of text DC4 device control 4

EOT end of transmission NAK negative acknowledge

ENQ enquiry- SYN synchronous idle

ACK acknowledge ETB end of transmission block

BEL bell CAN cancel

BS backspace EM end of medium

HT horizontal tabulation SUB substitute

LF linefeed ESC escape

VT vertical tabulation FS file separator

FF form feed GS group separator

CR carriage return RS record separator

SO shift out US unit separator

SI shift in SP space

DLE data link escape DEL delete

A1.3 How to Use the ASCII Table

ASCII stands for the American Standard Code for Information Interchange.

(Scheme now supports the broader International Character Code.) The num-

ber at the top of a column represents the first digit, and the number at the

left of a row represents the second digit of the hexadecimal number that is

used to represent the character in that row and column. Thus the hexadeci-

mal code for the letter G, which is in the 4*^^ column and 7*'^ row, is 47. The

hexadecimal code for the letter g is 67, and for M is 4D. To get the decimal

representation for the ASCII code, multiply the number at the top of the

column by 16 and add the number at the left of the row of the given char-

acter. Then G has decimal code (4 x 16) + 7 = 71, and M has decimal code

(4 X 16) -(- 13 = 77. The first two columns contain the control characters that

do not print. To enter those characters from the keyboard, we hold down the

CONTROL key while pressing the key for the character located four columns

to the right of the desired control character. For example, to enter BEL, we

press <CTRL>G, and to enter ESC, we press <CTRL>[.

580 The ASCII Character Set

References

Abelson, Harold, and Gerald J.Sussman, with Julie Sussman. 1985. Structure and

Interpretation of Computer Programs , Cambridge, MA: MIT Press and New York,

NY: McGraw-Hill Book Company.

Bronowski, Jacob. 1978. The Visionary Eye. Cambridge, MA: MIT Press.

Church, Alonzo. 1941. The Ca/cuh o/ Lambda-conversion, Annals of Math. Studies,

No. 6. Princeton, NJ: Princeton Univ. Press.

Dybvig, R. Kent. 1987. The Scheme Programming Language. Englewood Cliffs,

NJ: Prentice-Hall.

Eisenberg, Michael. 1988. Programming in Scheme. Redwood City, CA: Scientific

Press.

Feller, WiUiam. 1950. An Introduction to Probability Theory an its Applications,

Vol. 1. New York, NY: John WUey and Sons.

Friedman, Daniel P., and Matthias FeUeisen. 1988. The Little LISPer, Third Edi-

tion, Chicago, IL: SRA, and Trade Edition, Cambridge, MA: MIT Press.

Grune, Dick. 1977. A view of coroutines. In ACM SIGPLAN Notices. 12(7):75-81.

Hein, Piet. 1966. Crooks. Cambridge, MA: MIT Press.

Hofstadter, Douglas R. 1985. Metamagical Themas: Questing for the Essence of

Mind and Pattern. New York, NY: Basic Books, Inc.

Kohlbecker, Eugene E. 1986. Syntactic Extensions in the Programming Language

Lisp. Ph.D. Thesis, Indiana University, Bloomington, IN.

Marling, WiUiam. 1990. Maestro of Many Keyboards. In Case Alumnus. 67(8):2-7.

McCarthy, John. 1960. Recursive functions of symboHc expressions and their com-

putation by machine. In Communications of the ACM, 3(4):184-195.

Minsky, Marvin L. 1967. Computation: Finite and Infinite Machines. Englewood

CUfFs, NJ: Prentice-HaU.

Park, Stephen K., and Keith W. MUler. 1988. Random number generators: Good
ones are hard to find. Communications of the ACM. 31(10):1192-1201.

Rees, Jonathan, and William Clinger, editors. 1986. The revised report on the

algorithmic language Scheme. In ACM SIGPLAN Noticies 2l(l2):37-79.

Semantic Microsystems. 1987. MacScheme+ Toolsmith , a LISP for the future.

Beaverton, OR: Semantic Microsystems.

Schonfinkel, Moses. 1924. On the building blocks of mathematical logic. In From
Frege to Godel, A source book in mathematical logic, 1879-1931 . Edited by Jean

van Heijenoort, Cambridge, MA: Harvard Univ. Press, 1977.

Smith, Jerry D. 1988. An Introduction to Scheme. New York, NY: Prentice-Hall.

Steele, Guy Lewis, Jr., and Gerald Jay Sussman. 1978. The revised report on

Scheme, a dialect of Lisp. Memo 452, MIT Artificial Intelligence Laboratory.

Sussman, Gerald Jay, and Guy Lewis Steele Jr. 1975. Scheme: an Interpreter for

Extended Lambda Calculus. Memo 349, MIT Artificial Intelligence Laboratory.

Texas Instruments. 1988. PC Scheme, User's Guide & Language Reference Manual.

Redwood City, CA: The Scientific Press.

582 References

Index

#f , 23

#t, 23

#\newline, 497

#\return, 497

#\space, 497

*, 74

*-and-count-maker, 547

', 10

+,74

-.74

/. 74

<, 76

<=, 76

=, 26, 75

>, 76

>=, 76

=>, 20

Abelson, Harold, 5, 581

abs, 76

Abstract data, 90

acc-max, 394

Accumulator, 118, 392

accumulator-maker, 393, 394

aclcermaiin, 205

acos, 76

add, 198, 200

addl, 74, 75

adds-f ib, 128

adjoin, 250

Algorithm, 31

analysis of, 125

all-integers, 494

all-SEune?, 57

alpha-search, 330

Alternative, 40, 42

Analysis of algorithms, 125

and, 43, 466

andmap, 208

andmap-c, 216

Annihilator, 247

answer-maker, 531

any-action, 561, 563

append! , 368

append, 96

append-to-list-of-zeros, 155

Application, 38

Apply, 38

apply, 200

apply-procedures, 511

apply-to-all, 213

Argument, 15, 31, 33

arrival-time-generator, 427

ASCII, 580

asin, 76

assoc, 346

at-least-one, 233

atan, 76

Atomic, 101

attempt, 553, 554

backtrack, 186

Backward substitution, 116

Base, 156

Base case, 48

base->decimal, 161

base-object, 389

begin, 59, 472

beginO, 472

between?, 216

between?-c, 216

Binary numbers, 156

binary-product, 161

Binary relation, 258

Binary search, 329

binary->decimal, 156, 161

binary-search, 330

binary-sum, 161

Bind, 9

Bit, 155

blanks, 191

Boolean, 23

boolean?, 24

both, 231

Bottom-up, 37

Bound variable, 9

Box, 386

Box-and-pointer representation, 360

box-maker, 387, 390

Branch, 108

Branch point, 122

Break, 551,

break, 560-563

break-var, 566

Bronowski, Jacob, 3, 581

Bucket, 410

associated value, 410

key, 410

bucket-maker, 410

build-solution, 185

build-streeun, 487

Byte, 155

ca. . .r, 21

CaU, 38

call, 531

call/cc, 527

call-with-cxirrent-continuation,

515

calls-fib, 128

Capturing, 464

car, 20

Car pointer, 360

car-if-pair, 41

Cardinal number, 242

cardinal, 242

Cartesian product, 257

cartesian-product, 258

case, 384

Case insensitive, 164

Case preserving, 11

cd...r, 21

cdr, 20

Cdr pointer, 360

ceiling, 76

char->integer, 496

char-ci<=?, 498

char-ci<?, 498

char-ci=?, 498

char-ci>=?, 498

char-ci>?, 498

cheir-downcase, 498

char-lower-case?, 498

char-upcase, 498

char-upper-case?, 498

char<=?, 497

char<?, 497

char=?, 497

char>=?, 497

char>?, 497

Character, 496

Chez Scheme, xxiv

Church, Alonzo, xv, 32, 581

Circular list, 403

marker, 403

head, 405

circular-list-maker, 405

Clause, 40, 41

Clinger, William, 5, 581

close-enough?, 168

close-input-port, 501

close-output -port, 503

closest-common-supervisor, 337

Closure, 135

Coefficient, 142

Column major, 292

column-of , 296

combinations, 358

combine, 419

Compatible, 298

compose, 201, 511

584 Index

compose-many, 206

composes, 206

Computer, 6

Concatenating, 163

cond, 40, 472

Condition, 40

compound, 42

simple, 42

Conditional expression, 40

cons, 14

Consequent, 40, 42

Constant, 10

Constant time, 288

Constructor, 14

contains, 241

Context, 515, 516

Continuation, xx, 527

Coroutine, 551, 567

coroutine-maker, 568

cos, 76

count-all, 102

count -backgroiind, 83

count-background-all, 114

coiint-chars-to-next-space, 508

coiint-pairs, 373

count-parens-all, 114

countdown, 553

Counter, 390

counter-maker, 390, 392

curried*, 215

Curry, Haskell B., 211

customer-maker, 436

cycle, 462, 469

cycle-proc, 463, 556

Debugging, 57

decimal->base, 161

decimal->binary, 159, 161

decimal->hexadecimal, 160

decimal->octal, 160

Declare, 450

decr-ints, 327

Deep

procedure, 103

recursion, 103

deep-recur, 227

deepen-1, 101

define, 9

Define expression, 9

Degree, 142, 143

degree, 144, 151, 152

delay, 457

Delayed list, 477

delayed-list-accumulate, 481

delayed-list-car, 477

delayed-list-cdr, 478

delayed-list-cons, 479

delayed-list-null?, 478

delayed-list-product, 481

delayed-list-sum, 481

delegate, 388

Delegation, 391

double, 419

multiple, 419

denr, 84, 91

depth, 110

Dequeuing, 399

Derived keywords, 449

describe, 70

diagonal, 495

difference, 243

digits->poly, 156

display, 170, 503

display-tower-of-hanoi, 182

divides-by, 492

do, 471

Documentation, 35

Domain, 258

domain, 258

Dot-product, 276

dot -product, 82, 278

Dotted pair, 22

double-box-maker, 394

Dybvig, R. Kent, 5, 455, 581

Echo, 174

efface, 371

Eight Queens problem, 183

Eisenberg, Michael, 5, 581

element, 240

Ellipsis, 33, 37

else, 40

Empty list, 14

Empty set, 236

empty-set?, 249

empty?, 343

Index 585

end-of-sentence?, 507

end-of-stream?, 484

Enqueuing, 399

Enter, 10

entering, 61

Environment

global, 130

initial global, 129

local, 130

model, 48

nonlocal, 131

user global, 130

eof-object?, 502

eq?, 26

equal?, 27, 75, 235

Equivalence relation, 263

equivalence-relation?, 263

eqv?, 27, 75

error, 199

Escape procedure, xx, 523

escaper, 538, 540

Evaluate, 8

even-positive-integers, 486

even?, 98

exp, 76

exponent, 202

Exponential distribution, 426

Exponential order, 126

eiponential-randon-variable, 427

Expression, 7

conditional, 40

eipt, 76

eit end-syntax, 452, 455

extract, 564

extreme-value, 88

extreme-value-c, 216

fact, 115, 139

fact-it, 118

factorials, 488, 491

False, 23

family-intersection, 246

f junily-union, 246

Felleisen, Matthias, 5, 581

FeUer, William, 426, 581

fib, 121, 142

fib-it, 124

Fibonacci, 120

Fibonacci number, 120

f ibonacci-numbers, 491

Field, 323

FIFO, 399

f ile->stream, 504

file-copier, 504

filter-in-all, 224

f ilter-in-all-c, 224

f ilter-in-c, 222

filter-out, 223

filter-out-all, 228

find-supervisor, 337

f inite-stream->list, 485

First-class object, 201

first-group, 36

f irsts-of-both, 39

Flat

procedure, 95

recursion, 95

flat-recur, 220, 229

flatten, 111

f latten-number-list, 560-563

f lipf lop, 499

floor, 76

Flowchart, 431

for, 470

for-all, 239

f or-each, 197

for-effeet-only, 385

for-one, 248

force, 457

formatter, 505

f orwiird, 185

Free, 130

freeze, 453, 456

Friedman, Daniel P., 5, 581

Fulfillment, 457

Function, 259

function-compose, 262

function?, 260

Functional programming style, xx, 357

gallons-generator, 428

Garbage collection, 364

gas-station-simulator, 440

Gauge, 393

gauge-maker, 394

Greatest common divisor, 93

586 Index

gcd, 93

Global environment, 130

Good Sequences problem, 190

grune, 575

Grune, Dick., 571, 581

Halting problem, 382

harmonic-sum, 77

harmonic-sum-it, 120

Hash function, 414

hash-function, 500

hash-table-malcer, 414

has-prime-divisor?, 493

Head, 405

Hein, Piet, 578, 581

Helping procedure, 36

Hexadecimal, 159

hexadecimal->decimal, 160

Higher-order procedures, xx

Hofstadter, Douglas R., 178, 581

Horner's rule, 149

hoH-many-till, 542

Identity, 247

if, 41

one-armed, 42

Imperative programming style, xx, 284,

351

Implicit begin, 166

index, 82

Inheritance, 388

Initial condition, 125

Initial global environment, 129

Input device, 6

Input port, 500

insert, 304

insert-double-spaces, 507

insert-left, 100, 223

insert-left-all, 108, 141

insert-newlines, 508

insert-right, 100

insert-right -1st, 55

Insertion sort, 303

insertsort, 304

Instances, 387

Integer, 73

integer->char, 497

integer?, 74

integers-from, 493

interactive-square-root, 175

intersection, 243

inverse-relation, 262

Invoke, 38

is-divisible-by?, 217

Iterative, 71

process, 117

juggle, 39

Key, 323

Keyword, 9

derived, 449

Keyword list

and, 466

begin, 472

beginO, 472

break-vaur, 566

case, 384

cond, 40, 472

cycle, 462

define, 9, 32

delay, 457

delayed-list-cons, 479

do, 471

else, 40

extend-syntax, 452, 455

for, 470

freeze, 451

if, 41

lambda, 32

let, 132, 459

let*, 467

letrec, 138, 461

macro, 451

named let, 469

object -maker, 474

or, 463

quote, 10

repeat, 470

safe-letrec, 576

set!, 341

stream-cons, 482

variable-case, 473

while, 469

wrap, 576

Knuth, Donald E., 3

Index 587

Kohlbecker, Eugene E., 455, 581

lambda, 32

Lambda bound, 130

Lambda calculus, xv, xvi, 32

last-item, 46

last-pair, 368

Leading

coefficient, 143

term, 143

leading-coef , 144, 151, 152

leading-term, 144

Leaf, 108

leaving, 61

leftmost, 115

Legal, 183

legal?, 184

length, 78

length- it, 128

let, 132, 459

named, 469

let*, 325, 467

letrec, 138, 461

Lexiczd scope, 131

LIFO, 343, 396, 399

Linear order, 126

Linear search, 329

Linear time, 288

List, 7, 14

quoted, 18

list, 37, 199

list->delayed-list, 481

list->set, 247

list->stream, 484

list->string, 498

list->vector, 270, 273, 284

list-front, 83

list -linear-search, 331

list-of-f irst-items, 55

list-of-symbols?, 57

list-of-zeros, 78

list-ref , 80, 142

Literal value, 10

Local environment, 130

Locally bound, 130

log, 76

Logical, 23

lookup, 346

lookup2, 358

lower, 499

lower!, 499

macro, 451

Macrocode, 452

Macroexpansion, 452

MacScheme, xxiv, 5

make-groups, 310

make-list, 82

make-list-of-one, 34

make-list-of-two, 35

make-promise, 457

make-ratl, 84, 91, 92

make-relation, 262

make-set, 237

make-string, 498

make-term, 144

make-vector, 270

map, 196, 209

map-first-two, 207

map2, 208

marker, 404

Marling, William, 3, 581

mat+, 301

Matrix, 290

matrix, 300

matrix-generator, 295

matrix-multiply-by-scalar, 301

matrix-product, 299

matrix-ref , 294

matrix-set!, 300

matrix-transpose, 296

matrix-view, 301

max, 76, 88

McCarthy, John, 5, 581

member, 50

member-all?, 113

member?, 50, 352

member?-c, 211

memo-fib, 348

memoize, 346, 410, 414

memoize2, 358

Memoizing, 344

memq, 50

memv, 50

merge, 98

Mergesort, 309

588 Index

natural, 309

mergesort, 328

Message, 386

message, 553

Message-passing style, 387

Methods, 386

Miller, Keith W., 324, 581

min, 76

Minsky, Marvin L., 581

mk-asc-list-of-ints, 128

mk-desc-list-of-ints, 128

modulo, 76

Monomial, 144

Monte Carlo methods, 426

mult-by-n, 82

mult-by-scalar, 222

Multiple delegation, 419

multiple?, 83

multiples-of , 493

multiply-by-scalar, 274

Mutation, 282

Mutators, 282

Mutual recursion, 99

n-tuple->integer, 84

Named let, 469

nat -mergesort, 311, 328

Natural mergesort, 309

negative-poly, 147

negative?, 74

neither, 232

Nested, 17, 101

Nesting level, 101

new-escaper, 541

newline, 170, 503

Node, 108

none, 237

Nonlocal, 131

normal-random-variable, 428

not, 43

null?, 25

num-cols, 293

num-rows, 294

Number, 7

prime, 217, 491-493

number?, 23

Numerical vector, 274

numr, 84, 91

object-maker, 474

occurs, 128

occurs-it, 128

Octal, 159

octal->decimal, 160

odd-positive-integers, 489

odd?, 98

One-armed if, 42

One-to-one, 262

one-to-one?, 262

open- input -file, 501

open-output-file, 503

Operands, 11, 14

Operator, 33

arithmetic, 11

Optional argument, 270

or, 43, 465

or-proc, 464

Order, 126

exponential, 126

linear, 126

of evaluation, 38, 522

Ordered pair, 255

ormap, 209

ormap-c, 216

Output device, 6

Output port, 500

p*, 147

p+, 145

P-, 147

Pair, 22, 24

dotted, 22

pair-merge, 311

pair?, 24

pairwise-sum, 81

palindrome?, 165

Parameter, 32

Park, Stephen K., 324, 581

partial, 223

partition, 320

pascal-triangle, 357

Pass by value, 38

PC Scheme, xxiv, 5

pick, 249

plus, 202

poly->digits, 158

poly-cons, 144, 151, 152

Index 589

poly-quotient, 154

poly-remainder, 154

poly-value, 149

Polynomial, 143

pop !

,

343

Port

input, 500

output, 500

positive-integers, 486, 490

positive-rationals, 494

positive?, 74

poser-set, 254

powers-of-2, 486

Predicate, 23

Prefix, 32

notation, 11

Prime number, 218, 491-493

prime -numbers, 492, 493

prime?, 217, 494

print-stack, 343

Procedure, 31

deep, 103

escape, 523

flat, 95

mutation, 282

procedure?, 25

process-maker, 577

product+, 544-547, 565

product, 213

product-all, 228

Program, 8

Programming style

functional, xx, 357

imperative, xx, 351

Projection, 335

Prom.ise, 457

Prompt, 8, 174

prompt-read, 440, 444

Pseudo-random number, 324

pump-maker, 434

push! , 343

Quantifiers, 231

queens, 189

Queue, 399

front, 399

rear, 399

queue->list, 401

queue-maker, 400, 407

Quicksort, 316

quicksort, 316

quote, 10

Quoted list, 18

quotient, 76

Quoting, 10

r*, 86

r+, 85

r-, 86

r/, 86

r<, 87

r=, 86

r>, 87

rabs, 92

RamsdeU, John, xxii

random, 250, 323, 429

Random variable, 426

random-data, 542

random-delayed-list, 479

random-list, 324

random-stream, 483

random-stream-generator, 483

Range, 258

range, 258

read, 174, 501

read-char, 502

read-demo, 174

Read-eval-print loop, 8

reader, 573

Real numbers, 73

real?, 74

Receiver, 527

receiver, 557

receiver-1, 530

receiver-2, 530

receiver-3, 530

receiver-4, 539

Record, 322

Recurrence relation, 125

Recursion, 46

deep, 103

fiat, 95

mutual, 99

Recursive process, 117

reduce, 207

Rees, Jonathan, 5, 582

590 Index

Reflexive, 262

reflexive?, 262

regroup, 36

Relation, 258

relation-compose, 263

relation?, 262

Relational calculus, 332

remainder, 76

remove, 100

remove-lst, 52

remove-lst-trace, 61

remove-2nd, 56

remove-all, 104

remove-all-c, 228

remove-extra-spaces, 505

remove-last, 56

remove-leftmost, 113, 137

remove-newlines, 506

remq-lst, 53

remq-all, 105

remv-lst, 53

remv-all, 105

repeat, 470

replace, 56

report, 437

reset, 199, 526, 540

reset!, 386

residue, 250

rest-of-poly, 144, 151-152

restricted-counter-maker, 395

result, 531

resultcc, 531

resume, 568

resiime-maker, 569

reverse, 97, 126

reverse-all, 107, 229

reverse-it, 127

rightmost, 115

rinvert, 86

rmax, 88

rmin, 88

rminus, 92

Root, 108

round, 76

ro\ind-n-places, 171, 215

Row major, 292

roH-of , 295

rpositive?, 87

rprint, 89

rzero?, 85

s-and-n-list, 43

safe-letrec, 576

same-sign?, 92

sandsich-lst, 56

Scalars, 274

Schonfinkel, Moses, 211, 582

Scientific notation, 74

Scope, 131

lexicsd, 131

Search

binary, 329

linear, 329

searcher, 188

Searching, 303

second, 39

second-group, 36

select-by-cardinal, 254

Selector, 20

send, 389, 421

service-maker, 437

set!, 341

set->list, 247

set-builder, 244

set-builder-map, 339

set-equal, 239

set-equal?, 239

set-map, 247

set?, 249

Sets, 236

shov, 386

Side efl"ect, 60

sieve, 492

Sieve of Eratosthenes, 491

Simplification rule, 233

Simulation, 425

simulation, 433

simulation-setupftrun, 433

sin, 76

Singleton, 44

singleton-list?, 44

Smith, Jerry D., 5, 582

smudge, 372

Sort

insertion, 303

Index 591

key, 323

mergesort, 309

natural mergesort, 309

quicksort, 316

Sorting, 303

Special form, 9, 38

sqrt, 76

square-root, 169

square-root-display, 171

squares-of-integers, 493

Stack, 342, 396

stack-maker, 396, 407

Standard-input, 500

Standard-output, 500

State, 285, 356

variables, 356

station-maker, 433

Steele, Guy Lewis Jr., 5, 582

store, 565

store!, 417

Stream, xx, 482

stream->f ile, 509

stream->list, 485

stream-append, 495

stream-apply-to-both, 489

stream-car, 482

stream-cdr, 482, 495

stream-cons, 482

strejun-f ilter-in, 494

stream-filter-out, 489

stream-map, 488

stream-member?, 494

stream-null?, 484

streeun-plus, 489

stream-ref , 494

stream-times, 489

String, 58, 163

string, 498

string->list, 498

string-append, 163, 499

string-ci=?, 164

string-insert, 164

string-length, 163, 498

string-ref , 498

string-reverse, 165

string-set
!

, 498

string<=?, 322

string<?, 322

string=?, 164

string>=?, 322

string>?, 322

string?, 163

subl, 75

subrelation/lst, 259

subset, 241

subst, 100

subst-lst, 54

subst-all, 107

subst-all-m, 216, 228

Substitution model, 48

substq-all, 107

substring, 163

substring-ref , 165

substring?, 164

subtract, 206

Subtree, 108

successive-posers, 289

sua, 81, 213

sum-all, 108, 224

sum-of-odds, 84

super, 202

super-order, 204

superduper, 204

superset, 241

Sussman, Gerald Jay, xv, 5, 582

Sussman, JuUe, 5, 582

s«ap!, 386

swap-maker, 286, 287

swapper, 66, 139, 335

swapper-c, 215

swapper-m, 214

switch, 40

Symbol, 6

symbol->string, 164

symbol?, 24

Symbolic algebra, 142

Symmetric, 262

symmetric-difference, 254

symmetric?, 262

Syntax table, 453

table entry, 455

Synthetic division, 149

Tag, 249

Tagged

592 Index

list, 249

pair, 278

procedure, 285

tan, 76

Term, 142

Terminating condition, 48

test-tracing, 72

tester, 557

TgX typesetting, xxiv

thas, 456

the-empty-set, 249

the-null-delayed-list, 478

the-null-stre£UB, 484

the-zero-poly, 144, 151, 152

theater-maker, 418

there-exists, 238

third, 39

Thunk, 174

timer, 325

timer*, 359

timer2, 358

times, 202

Top, 343, 396

top, 343

Top-down, 37

Top-level, 17, 101

Tower of Hanoi, 178

tower-of-hanoi, 181

Trace, 57

tracing, 71

Transformer, 453

Transitive, 263

transitive?, 263

Transpose, 296

Traverse, 108

Tree, 108

recursion, 103, 311

trim-spaces, 505

True, 23

truncate, 76

Turing, Alan M., 381

Turing machine, 381

tapes, 375

type, 386

type-of , 40

unif-rand-var-0-1, 426

Uniform distribution, 426

union, 243

Universe, 236

unlist, 332

Unrestricted lambda, 197

update!, 386

User global environment, 130

Value, 8, 260

value, 260

Variable, 7

veuriable-case, 473

vec*, 275

vec+, 275

Vector, 267

vector, 271

vector->list, 276

vector-accvimulate, 276

vector-append, 290

vector-apply-elementwise-

to-both, 274

vector-change!, 315

vector-copy, 272

vector-generator, 279, 280, 283

vector-insert !, 307

vector- insert sort
!

, 305

vector-length, 279

vector-linear-search, 290

vector-map, 273

vector-memoize, 350

vector-merge
!

, 313

vector-mergesort
!

, 314

vector-product, 275

vector-quicksort!, 319

vector-ref , 279, 280

vector-reverse, 285, 290

vector-reverse!, 287

vector-stretch, 271

vector-sum, 275

vector-swap!, 320

vector-update, 272

vector-update!, 283

vector-vies, 289

vector?, 279

vien, 268

while, 469

while-proc, 353

word-frequency, 413

Index 593

Rrap, 576 writer, 574

wrapa, 83 ^_^

write, 173, 503
'''^^' "'

write-char, 504 Zero based, 79

writeln, 57, 199 zero-poly?, 144

writeln/retum, 531 zero?, 74

594 Index

'/

//

Scheme and the Art of Programming
In/ George Springer ami Daniel P. Friedman

Scheme is the fast track to getting started in programming. Its clear seman-
tics, simple syntax, and interactive environment enable the beginning stu-

dent to write sophisticated programs after just two brief chapters. As a

first introduction to programming, it is an ideal vehicle for learning to rea-

son correctly about computation.

Starting from a few fundamental concepts and principles—procedural and
syntactic abstractions, recursion, iteration, state, and control—Springer and
Friedman develop the ideas and techniques of programming. They include

traditional topics, such as numeric and symbolic computation, and also

cover current issues, such as streams, object-oriented programming, and
continuations for abstracting control. The presentation is designed for the

introductory college student. The book is more sophisticated and complete

than The Little LlSPer but not as advanced as Structure and Interpretation of

Computer Programs.

Springer and Friedman provide a solid introduction to data abstraction by
presenting such topics as lists, strings, vectors, matrices, sets, relations,

and functions. Among the examples used to illustrate object-oriented pro-

gramming are stacks, queues, circular lists, hash tables, and a gas station

simulation.

George Springer is Professor of Mathematics and Computer Science and
Daniel P. Friedman is Professor of Computer Science. Both are at Indiana

University, one of the centers for research and development of Scheme.

McGraw-Hill Edition

