Conditional Distributions

A conditional distribution 1s the ratio of
a joint distribution and a marginal dis-
tribution. When the value of random
variable X 1s conditioned on the value
of random variable Y:

pxy(x,y)

py(y)
This can be generalized so that the val-
ues of N random variables X;...Xy are
conditioned on the values of M random
variables Y;...Yy:

PX]Y(X |y) =

le...XN’Yl...YM(XL-.XN | YI)’M) —

le...XN,Yl...YM(xl---xNa)’I---yM)
le...YM(yl“'yM)




Higher Order Markov Processes

Let S be a set of states:
S={1,2,3..N}

and let i, j, k... € S. A random process
1s an order one Markov process iff:

Pt\t—l,t—z...—oo(i | j)k'") — Pt\t—l(i | ])

The probability that the Markov process
1S 1n state 7 at time 7 1S given by the fol-
lowing update formula:

Zpt]t 1@ J)pi-1(J)-



Higher Order Markov Processes (contd.)

Let S be a set of states:
S={1,2,3..N}

and let i, j, k... € S. A random process
1s an order two Markov process iff:

Prli—11-2.—oo(i] Jikoor) = Dry—14-2(i] J, k).

The probability that the Markov process
1S 1n state 7 at time 7 1S given by the fol-
lowing update formula:

Pt(i):
N N
Y ) 2l k) P12, k).

j=1k=1



Higher-Order Markov Processes (contd.)

A Markov process of order two can be
thought of as a mapping between two
joint distributions. Both of these joint
distributions give the probability that the
process visits two states in two succes-
sive times:

Pri—1(i, ) Zpt\t Li—2(iJ, k) pr—14-2(j, k).
k=

The state i at time ¢ 1s a marginal distri-
bution (produced by summing over all
possible states j at time t — 1):

N
D) =Y pr(i,)).
j=1



Higher Order Markov Processes (contd.)

It follows that a Markov process of or-
der two, with states, S:

S=1{1,2,3..N}.

can be reduced to a Markov process of
order one, with states, S’ =S x S:

' = {{1,1),(1,2) ... (N,N)}

and transition probability matrix:

pz{|t—1(<i7j> ‘ <J7k>) :pt|t—1,t—2(i‘j7k)
so that:

ZPW 1 (J k)1 ((J, k)
and

= ;p§(<i,j>)



Information Source with Memory

An information source with memory gen-
erates messages using a source alphabet
of length, M. If the source 1s modeled
as a Markov process of order one, then
the entropy of a message of length N 1s:

H; = Hy+ (N_ I)Ht\t—l

where
M
Ho=—)  p:(i)log p:(i)
i=1

1s the entropy of the first symbol and

M M
Hy 1 =— Z Z Pri—1(i, J) 10gpt|t—1(i J)

i=1 j=1
1s the entropy of each of the remaining
symbols.



SECOND ORDER MARKOV PROCESS
p(if}1)

p(2]11)

p(1]11) : p(2]2.1)
-

p(1121)

p(i]}.2)
p(2(12)
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-
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EQUIVALENT FIRST ORDER MARKOV PROCESS

p(1]1.2)
p(1]1,1) <—@

p(1]21)
p(112.2)

p(2]1,1)
p(211,2)

@é p(2]2.2)
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Figure 1: Second-order two-state Markov process and reduction to equivalent
first-order Markov process.



Example One

On avg., how much information 1s pro-
vided by each character in a random string
of zeros and ones? The distribution for
the 7-th character 1s:

H;=—0.510g(0.5) —0.510g(0.5) = 1 bit.

Each symbol delivers 1 bit of informa-
tion on avg. in the memoryless case.



Example Two

Now let’s consider a string where the
first character 1s chosen at random, but
the remaining characters follow a sim-
ple pattern:

0101...01 or 1010...10
The distribution for the 7-th character

1S:
H, = —0.510g(0.5) —0.510g(0.5) = 1 bit.
The joint distribution 1s:

pt,t—l(0,0) pt,tl(o,l)] _ [ 0 05]
pri—1(1,0) pr—1(1,1) 0.5 0



Example Two (contd.)

The conditional distribution is:
pt,t—l(i7 J)
pi—1(J)
pt]t—1(0|0) pt\t—1(0| 1) ] _ [O 1 ]
pt|t—1(1|0) pt\t—l(l‘l) 10
and the conditional entropy per charac-
ter is:

pt!t—l(ilj) —

Hy1 = _ZZPU 1(i, J logp,\, 1(i]J)
i=0 ;=0
= —0.51og(1.0) +0.510og(1.0)
= 0 bits.

This 1s less than in the memoryless case.



Information Source with Memory (contd.)

If the source 1s modeled as a Markov
process of order two, then the entropy
of a message of length N 1is:

H> = Hyp+ Ht\t—l T (N - 2)Ht\t—1,t—2

where Hy and H,;_; are the entropies of
the first and second symbols and

Ht\t—l t—2 —

_ZZZPH 1,t— 2 L, ], )logpt|t 16— 2( ‘]7 )

i=1j=1k=
1s the entropy of each the remaining sym-
bols.



Information Limit

Let Hy be the entropy computed under
the assumption that an information source
1s memoryless, and let H; be the en-
tropy computed under the assumption
that the source 1s a Markov process of
order one, and H, be the entropy com-
puted under the assumption that the source

1s a Markov process of order two, etc.
Then

H() Z H1 Z H2 Z e > l1mHk

~ k—oo



Loss of Memory

Theorem The 1nitial distribution and the
limiting distribution of every irreducible,
aperiodic Markov process have zero mu-
tual information.

Proof Let I and L be discrete r.v.’s cor-
responding to the initial state and limit-
ing state, then

pri(i|j) = rlll_rgo (Pn)ij
where P is the transition matrix. Be-
cause p(P) = 1 for all stochastic ma-
trices and the process 1s aperiodic and
irreducible,

limP" = x;y,;

n—oo

where x; = Px; and y{ = y{P by Per-
ron’s Theorem.



Loss of Memory (contd.)

Now, because y; = [1 1 1 ... 1] for
all stochastic matrices:

pL\I(i ‘ ]) — (ler{)i]‘
— ([XIXI"'XI})U
= (x1),
It follows that L and I are statistically

independent. Consequently I;; equals
ZEro.



