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Sampling Periodic Functions

Given a function of period,T , i.e.,

f (t) = f (t +T )

chooseN andsample f (t) within the interval,
0≤ t ≤T , atN equally spaced points,n∆t, where
n = 0,1, ...,N −1 and∆t = T/N. The result is
a discrete function of period,N, which can be
represented as a vector,f, in R

N (or C
N) where

fn = f (n∆t):

f =









f0
f1
...

fN−1









.



Inner Product of Discrete Periodic Functions

We can define theinner product of two discrete
functions of period,N, as follows:

〈f,g〉 =
N−1

∑
n=0

f ∗n gn.



Kronecker Delta Basis

(km)n = δmn =

{

1 if m = n
0 otherwise

Example:

k2 =

















0
0
1
0
...
0

















Because〈km1,km2〉 equals zero whenm1 6= m2

and one whenm1 = m2, the set ofkm for 0 ≤
m < N form an orthonormal basis forRN (or
C

N) and therefore for discrete functions of pe-
riod, N.



Sampled Harmonic Signal Basis

A sampled harmonic signal is a discrete func-
tion of period,N:

Wn,m =
1√
N

e j2πm n
N

wherem is frequency andn is position. A sam-
pled harmonic signal of frequency,m, can be
represented by a vector of lengthN:

wm =









W0,m

W1,m
...

WN−1,m









=
1√
N











e j2πm 0
N

e j2πm 1
N

...

e j2πm(N−1)
N











.



Sampled Harmonic Signal Basis (contd.)

How “long” is a sampled harmonic signal?

‖wm‖ = 〈wm,wm〉
1
2

=

(

N−1

∑
n=0

1√
N

e− j2πm n
N

1√
N

e j2πm n
N

)
1
2

=

(

N−1

∑
n=0

1
N

)
1
2

= 1



Sampled Harmonic Signal Basis (contd.)

What is the “angle” between two sampled har-
monic signals,wm1 andwm2, whenm1 6= m2?

〈wm1,wm2〉 =
1
N

N−1

∑
n=0

e− j2πm1
n
N e j2πm2

n
N

=
1
N

N−1

∑
n=0

e j2π(m2−m1)
n
N

=
1
N

N−1

∑
n=0

(

e j2π(m2−m1)
N

)n



Sampled Harmonic Signal Basis (contd.)

Substitutingα for e j2π(m2−m1)
N yields

〈wm1,wm2〉 =
1
N

N−1

∑
n=0

αn

afterwhich the following identity:
N−1

∑
n=0

αn =
1−αN

1−α

can be applied to yield

〈wm1,wm2〉 =
1
N

(

1−αN

1−α

)

.



Sampled Harmonic Signal Basis (contd.)

Sinceα = e j2π(m2−m1)
N , it follows that

αN = e j2π(m2−m1)
N
N

= e j2π(m2−m1).

Becausee j2πk = 1 for all integers,k 6= 0, and
because(m2−m1) 6= 0 is an integer, it follows
thatαN = 1 yetα 6= 1. Consequently,

〈wm1,wm2〉 =
1
N

(

1−αN

1−α

)

= 0.

In summary, because〈wm1,wm2〉= 0 whenm1 6=
m2 and〈wm1,wm2〉= 1 whenm1 = m2, the set of
wm for 0 ≤ m < N form an orthonormal basis
for R

N (or C
N) and therefore for discrete func-

tions of period,N.



The Discrete Fourier Transform (DFT)

• Question What are the coefficients off in
the sampled harmonic signal basis?

• Answer Take inner products off with the fi-
nite set of sampled harmonic signals,wm, for
0≤ m < N.

The result is theanalysis formula for the DFT:

Fm = 〈wm, f 〉
= 〈 1√

N
e j2πm n

N , f 〉

=
1√
N

N−1

∑
n=0

fne− j2πm n
N

whereF is used to denote the discrete Fourier
transform off. The function can be reconstructed
using thesynthesis formula for the DFT:

fn =
1√
N

N−1

∑
m=0

Fme j2πm n
N .



The DFT in Matrix Form

The analysis formula for the DFT:

Fm =
1√
N

N−1

∑
n=0

fne− j2πm n
N

can be written as a matrix equation:




F0
...

FN−1



=





W ∗
0,0 . . . W ∗

0,N−1
... . . . ...

W ∗
N−1,0 . . . W ∗

N−1,N−1









f0
...

fN−1





whereW ∗
m,n = 1√

N
e− j2πm n

N .

More concisely:

F = W∗f.



The DFT in Matrix Form (contd.)

The synthesis formula for the DFT:

fn =
1√
N

N−1

∑
m=0

Fme j2πm n
N

can also be written as a matrix equation:




f0
...

fN−1



=





W0,0 . . . W0,N−1
... . . . ...

WN−1,0 . . . WN−1,N−1









F0
...

FN−1





whereWm,n = 1√
N

e j2πm n
N . More concisely:

f = WF.

Note: Because only theproduct of frequency,
m, and position,n, appears in the expression
for a sampled harmonic signal, it follows that
Wm,n = Wn,m. ThereforeW = WT. The only dif-
ference between the matrices used for the for-
ward and inverse DFT’s,i.e., W∗ andW, is con-
jugation.



The DFT in Matrix Form (contd.)

A matrix product,y = Ax, can be interpreted in
two different ways.

1. Thei-th component ofy is the inner product
of x with the i-th row of A:





y0
...

yN−1



=





















[

A0,0 . . . A0,N−1
]





x0
...

xN−1





...

[

AN−1,0 . . . AN−1,N−1
]





x0
...

xN−1

























2. The vector,y, is a linear combination of the
columns ofA. The i-th column is weighted
by xi:




y0
...

yN−1



= x0





A0,0
...

AN−1,0



+ · · ·+xN−1





A0,N−1
...

AN−1,N−1







The DFT in Matrix Form (contd.)

Both ways of looking at matrix product are equally
correct. However, it is useful to think of the
analysis formula,F = W∗f, the first way:





F0
...

FN−1



=





















[

W ∗
0,0 . . . W ∗

0,N−1

]





f0
...

fN−1





...

[

W ∗
N−1,0 . . . W ∗

N−1,N−1

]





f0
...

fN−1

























i.e., Fm is the inner product off with the m-th
row of W. Conversely, it is useful to think of
the synthesis formula,f = WF, the second way:




f0
...

fN−1



= F0





W0,0
...

WN−1,0



+ · · ·+FN−1





W0,N−1
...

WN−1,N−1





i.e., f is a linear combination of the columns of
W. Them-th column is weighted byFm.



Matrix Diagonalization

A vector, x, is a right eigenvector whenAx
points in the same direction asx but is (pos-
sibly) of different length:

λx = Ax

A vector,y, is aleft eigenvector whenyTA points
in the same direction asyT but is (possibly) of
different length:

λyT = yTA

A diagonalizable matrix of rank,N, hasN lin-
early independent right eigenvectors

x0, ...,xN−1

andN linearly independent left eigenvectors

y0, ...,yN−1

which share theN eigenvalues

λ0, ...,λN−1.



Matrix Diagonalization (contd.)

Such a matrix can be factored as follows:

A = XDYT

where thei-th column ofX is xi and thei-th row
of YT is yi andD is diagonal withDi,i = λi:

D =









λ0 0 . . . 0
0 λ1 . . . 0
... ... .. . ...
0 0 . . . λN−1









We also observe that

XYT = I

i.e., X andYT are inverses. We say thatA has
beendiagonalized. Stated differently, in the ba-
sis formed by its right eigenvectors, the linear
operator,A, is represented by the diagonal ma-
trix, D.



Matrix Diagonalization (contd.)

WhenA is real and symmetric,i.e., A = AT, the
left and right eigenvectors are thesame. Conse-
quently,X = Y. In this case,A can be factored
as follows:

A = XDXT

SinceXXT = I, we conclude that the eigenvec-
tors ofA form an orthonormal basis.



Matrix Diagonalization (contd.)

The hermitian transpose,AH, of a complex ma-
trix, A, is defined to be(A∗)T. WhenA is com-
plex and symmetric, the left and right eigenvec-
tors arecomplex conjugates. In this case,A
can be factored as follows:

A = XDXH

When the matrix of eigenvectors,X, is also sym-
metric,i.e., X = XT, the above simplifies to:

A = XDX∗



Convolution of Discrete Periodic Functions

Let f and g be vectors inRN. Becausef and
g represent discrete functions of period,N, we
adopt the convention thatf (k±N) = f (k). The
k-th component of theconvolution of f andg is
then

{f∗g}k =
N−1

∑
j=0

f j gk− j.



Example of Discrete Periodic Convolution

Calculate{f∗g}k when

g =
[

2 1 0 . . . 0 1
]T

Sincef∗g = g∗ f and since

{g∗ f}k =
N−1

∑
j=0

g j fk− j

it follows that

{f∗g}k = g0 fk +g1 fk−1+ · · ·+gN−1 fk−(N−1)

= 2 fk +1 fk−1+1 fk−(N−1)

= fk−1+2 fk +1 fk+1

This operation performs a local weighted aver-
aging off.



Circulant Matrices

The convolution formula for discrete periodic
functions

{f∗g}k =
N−1

∑
j=0

f jgk− j

can be written as a matrix equation:

f∗g = Cf

whereCk, j = gk− j:

C =













g0 gN−1 gN−2 . . . g1

g1 g0 gN−1 . . . g2

g2 g1 g0 . . . g3
... ... ... . .. ...

gN−1 gN−2 gN−3 . . . g0













Matrices likeC are termedcirculant. It is a fact
that the right eigenvectors ofall circulant ma-
trices are sampled harmonic signals. Further-
more, the left eigenvectors ofall circulant ma-
trices are sampled conjugated harmonic signals.



Diagonalization of Circulant Matrices

Consequently,any circulant matrix,C, can be
factored as follows:

C = WDW∗

whereWm,n = e j2πm n
N and

D =









G0 0 . . . 0
0 G1 . . . 0
... ... . . . ...
0 0 . . . GN−1









HereDm,m = Gm, them-th coefficient of the dis-
crete Fourier transform ofg. We can use this
result to computef∗g

f∗g = WDW∗f

This is just theConvolution Theorem. Multipli-
cation with a circulant matrix,C, in the space
domain is multiplication with a diagonal ma-
trix, D, in the frequency domain.



Polynomial Multiplication

p(x) = p0x0+ p1x1+ p2x2+ · · ·+ pmxm

q(x) = q0x0+q1x1+q2x2+ · · ·+qnxn

p(x)q(x) = p0q0x0+

(p0q1+ p1q0)x
1+

(p0q2+ p1q1+ p2q0)x
2+

(p0q3+ p1q2+ p2q1+ p3q0)x
3+

(p0q4+ p1q3+ p2q2+ p3q1+ p4q0)x
4+

...

(p0qn+m+ p1qn+m−1+ · · ·+ pn+m−1q1+ pn+mq0)x
n+m



Polynomial Multiplication (contd.)

r(x) = p(x)q(x)
= r0x0+ r1x1+ r2x2+ · · ·+ rn+mxn+m

where

ri = p0qi + p1qi−1+ · · ·+ pi−1q1+ piq0

=
i

∑
j=0

p jqi− j

=
∞

∑
j=−∞

p jqi− j

= {p∗q}i


