
Discrete Random Variables

Let X be a discrete random variable with
outcomes, x1,x2, ...,xn. The probability
that the outcome of experiment X is xi

is P(X = xi) or pX(xi):

• ∀i pX(xi)≥ 0

• ∑
n
i=1 pX(xi) = 1

pX is termed the probability mass func-
tion.



Joint Discrete Random Variables

Let Y be a discrete random variable with
outcomes, y1,y2, ...,ym. The probability
that the outcome of experiment X is xi

and the outcome of experiment Y is y j

is the joint probability, P(X = xi,Y =
y j) or pXY(xi,y j):

• ∀i, j pXY(xi,y j)≥ 0

• ∑
n
i=1 ∑

m
j=1 pXY(xi,y j) = 1

pXY is termed the joint probability mass
function.



Marginal Probabilities

It is possible to recover the marginal
p.m.f., pX (or pY ), from the joint p.m.f.,
pXY , by summing across its rows (or
columns):

pX(xi) =
m

∑
j=1

pXY(xi,y j)

pY(y j) =
n

∑
i=1

pXY(xi,y j).
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Figure 1: Joint and conditional distributions (dependent random variables).



Conditional Probabilities

pX |Y(xi |y j) =
pXY(xi,y j)

pY(y j)

=
pXY(xi,y j)

∑
n
k=1 pXY(xk,y j)

pXY(xi,y j) = pX |Y(xi |y j)pY(y j)

pY |X(y j |xi) =
pXY(xi,y j)

pX(xi)

=
pXY(xi,y j)

∑
m
k=1 pXY(xi,yk)

pXY(xi,y j) = pY |X(y j |xi)pX(xi)



Bayes’ Rule

Sometimes we know pY |X(y j,xi) and want
to compute pX |Y(xi,y j). Bayes’ rule al-
lows us to do this:

pX |Y(xi |y j) =
pXY(xi,y j)

pY(y j)

=
pY |X(y j |xi)pX(xi)

pY(y j)
.
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Figure 2: Joint and conditional distributions (independent random variables).



Statistical Independence

When knowledge of the outcome of Y
gives no information about the outcome
of X then

pX |Y(xi |y j) = pX(xi).

Since

pXY(xi,y j) = pX |Y(xi |y j)pY(y j)

it follows that

pXY(xi,y j) = pX(xi)pY(y j).



Statistical Independence (contd.)

Furthermore, given that

pXY(xi,y j) = pX(xi)pY(y j)

it follows that knowledge of the out-
come of X gives no information about
the outcome of Y :

pY(y j) =
pXY(xi,y j)

pX(xi)

=
pY |X(y j |xi)pX(xi)

pX(xi)
= pY |X(y j |xi).

X and Y are said to be statistically in-
dependent.



Binomial Coefficient

The binomial coefficient is the number
of subsets of size k drawn from a set of
size n: (

n
k

)
.

The number of sequences of length k
drawn from a set of size n is:

n(n−1)...(n− k+1).

There are k! different orderings for each
of these sequences. It follows that:

n(n−1)...(n− k+1) =
(

n
k

)
k!.



Binomial Coefficient (contd.)

Consequently,(
n
k

)
=

n(n−1)...(n− k+1)
k!

.

Multiplying numerator and denomina-
tor by (n− k)!/(n− k)! = 1 yields the
familiar formula:(

n
k

)
=

n(n−1)...(n− k+1)(n− k)!
k!(n− k)!

=
n!

(n− k)!k!
.



Binomial Distribution

A probabilistic experiment, X , has two
outcomes, x1 and x2, which occur with
probabilities, pX(x1) = θ and pX(x2) =
1−θ. Let k be the number of times the
outcome of X is x1 in n repeated trials.
The distribution of the random variable,
K, is given by

pK(k) =
(

n
k

)
θ

k(1−θ)n−k.

This is called the binomial distribution.



Example

An anthropologist knows from records
kept at a dig site that the probability
that a recovered fossil human skull is
female is 0.6. The probability that out
of six skulls, exactly four will be fe-
male is:

pK(4) =
(

6
4

)
(0.6)4(0.4)2 = 0.311.



Expected Value1

Let X be a discrete random variable with
numerical outcomes, {x1, ...,xn}. The
expected value of X , is defined as fol-
lows:

〈X〉=
n

∑
i=1

pX(xi)xi.

Variance

The variance of X is defined as the ex-
pected value of the squared difference
of X and 〈X〉:〈
[X−〈X〉]2

〉
=

n

∑
i=1

pX(xi) [xi−〈X〉]2 .

1“God is or He is not...Let us weight the gain and the loss in choosing...‘God is.’ If you gain,
you gain all, if you lose, you lose nothing. Wager, then, unhesitatingly, that He is.” – Blaise Pascal
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Figure 3: Binomial distribution for n = 6 and θ = 0.6.



Expected Value of Binomial r.v.

The expected value of a binomial ran-
dom variable with parameters n and θ:

〈K〉 =
n

∑
k=1

kpK(k)

=
n

∑
k=1

k
(

n
k

)
θ

k(1−θ)n−k

=
n

∑
k=1

kn!
(n− k)!k!

θ
k(1−θ)n−k

=
n

∑
k=1

n!
(n− k)!(k−1)!

θ
k(1−θ)n−k

= nθ

n

∑
k=1

(n−1)!
(n− k)!(k−1)!

θ
k−1(1−θ)n−k



Expected Value of Binomial r.v. (contd.)

Letting `= k−1:

〈K〉 = nθ

n−1

∑
`=0

(n−1)!
(n−1− `)!`!

θ
`(1−θ)n−1−`

= nθ

n−1

∑
`=0

(
n−1
`

)
θ
`(1−θ)n−1−`︸ ︷︷ ︸

1
= nθ



A Useful Equality

lim
n→∞

n!
(n−k)!

nk

= lim
n→∞

n · (n−1) · (n−2) · · ·(n− (k−1))
nk

= lim
n→∞

k︷ ︸︸ ︷n ·n · · · ·n+ · · ·
nk

= 1



Another Useful Equality

Applying the binomial formula

(a+b)n =
n

∑
k=0

(
n
k

)
an−kbk

to limn→∞

(
1− µ

n

)n yields:

lim
n→∞

(
1− µ

n

)n
= lim

n→∞

n

∑
k=0

(
n
k

)
1n−k(−µ)k

nk

= lim
n→∞

n

∑
k=0

n!
(n− k)! k!

(−µ)k

nk

= lim
n→∞

n

∑
k=0

n!
(n−k)!

nk︸ ︷︷ ︸
1

(−µ)k

k!

=
∞

∑
k=0

(−µ)k

k!
= e−µ.



Poisson Distribution

Consider a cube of uranium. On aver-
age, µ atoms in the cube transmute into
lead per unit time. The actual number
of atoms which transmute per unit time,
k, is a Poisson random variable. The
Poisson distribution is given by:

pK(k) =
µke−µ

k!
.

The Poisson distribution can be derived
from the Binomial distribution:

pK(k) =

(
n
k

)
θ

k(1−θ)n−k.



Poisson Distribution (contd.)

Let n be the number of atoms and let θ

be the probability that any single atom
transmutes into lead in a unit of time.
The average number atoms which de-
cay per unit time, µ, is then:

µ = nθ.

1) Substituting µ/n for θ; 2) Expanding
the binomial coefficient; and 3) Taking
the limit, n→ ∞, yields:

pK(k) = lim
n→∞

n!
(n− k)!k!

(µ
n

)k(
1− µ

n

)n−k

=
µk

k!
lim
n→∞

[ n!
(n−k)!

nk ·
(
1− µ

n

)n(
1− µ

n

)k

]
.



Poisson Distribution (contd.)

pK(k) =
µk

k!
lim
n→∞

[ n!
(n−k)!

nk ·
(
1− µ

n

)n(
1− µ

n

)k

]

=
µk

k!
·
[

1 · e−µ

(1−0)k

]
=

µke−µ

k!



Random Processes and Random Variables

• Bernoulli trial

– defined by parameter θ

• Repeated Bernoulli trials

– defined by parameters θ and n
– binomial random variable

pK(k) =
(

n
k

)
θk(1−θ)n−k

〈K〉= nθ

• Poisson process

– defined by parameter µ
– Poisson random variable

pK(k) =
µke−µ

k!
〈K〉= µ


