
DCT Basis Functions

Figure 1: Basis functions of Discrete Cosine Transform (DCT)
.



Simple Cell Receptive Fields

Figure 2: Cosine (left) and sine gratings (right) in Gaussian envelopes, known
as Gabor functions, closely resemble the receptive fields of simple cells in pri-
mary visual cortex (V1). Gabor functions at a range of scales and orientations are
centered at all positions (x,y) in the visual field.

Figure 3: Cosine Gabor functions of different scales, logr, and orientations, θ.



Frames vs. Bases

• A set of vectors form a basis for RM

if they span RM and are linearly in-
dependent.

• A set of N ≥M vectors form a frame
for RM if they span RM.



Advantages of Frame Representations

• Using bases B it possible to build
sparse, invertible representations.

• Using frames F it is possible to build
sparse, invertible representations that
are also Euclidean equivariant.



Euclidean Equivariance

Primary visual cortex uses a frame op-
erator F to transform an input repre-
sentation, I : R2→R, into an output rep-
resentation of higher dimensionality, O :
R2×R+×S1→ R:

I
([

x
y

])
F→ O




x
y

logr
θ


 .

A Euclidean transformation, T , takes
an input representation and returns the
same representation rotated, translated
and scaled:

I
([

x
y

])
T→ I

([
s ( x cosφ+ y sinφ)+u
s ( y sinφ− x cosφ)+ v

])
.



Euclidean Equivariance (contd.)

An operator, F , is Euclidean equivari-
ant, iff it commutes with T . This prop-
erty can be depicted using a commuta-
tive diagram:

I T−→ T I
↓ F ↓ F
F I T ′−→ O

where T ′ is the corresponding transfor-
mation of the output representation of
higher dimensionality:

O




x
y

logr
θ


 T ′→ O




s ( x cosφ+ y sinφ)+u
s ( y sinφ− x cosφ)+ v

logr+ logs
θ+φ


 .



Synthesis Matrix

Let B consist of the M basis vectors,
b1 . . .bM ∈ RM. Let {y}B ∈ RM be a
representation of y ∈ RM in B . It fol-
lows that

y = B{y}B

where the synthesis matrix, B, is the M×
M matrix,

B =
[

b1 | b2 | . . . | bM
]
.

where bi is column i of B.



Analysis Matrix

To find the representation of the vector
y in the basis B we multiply y by the
analysis matrix B−1:

{y}B = B−1y.

The components of the representation
of y in B are inner products of y with
the rows of B−1:

B−1 =


b̃ T

1

b̃ T
2
...

b̃ T
M

 .
where b̃ T

i is row i of B−1.



Dual Basis

The transposes of these row vectors form
a dual basis, B̃ , with synthesis matrix:

(B−1)T =
[

b̃1 | b̃2 | . . . | b̃M
]

and analysis matrix:

BT =


bT

1

bT
2
...

bT
M

 .
The relationship between the vectors of
the primal (B) and dual (B̃) bases is:〈

bi , b̃ j

〉
= δi j.

The biorthogonality of the columns of
B and the rows of B−1 follows imme-
diately from the definition of matrix in-
verse.



Example

Recall that any N×N matrix, P, with N
distinct eigenvalues, λi , can be factored
into a product of three matrices:

P = XΛYT

where the columns of

X =
[

x1 | x2 | . . . | xM
]

are right eigenvectors satisfying λixi =
P xi and the rows of

YT =


yT

1

yT
2
...

yT
M


are left eigenvectors satisfying λiyT

i =
yT

i P and Λ is a diagonal matrix of eigen-
values where Λii = λi.



Example (contd.)

Because X and YT are inverses:

〈xi , y j〉= δi j.

Consequently, the right and left eigen-
vectors form primal basis X and dual
basis Y . We take inner products with
the left eigenvectors Y to find the rep-
resentation in the basis of right eigen-
vectors X and vice versa.
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Figure 4: Primal B (right) and dual B̃ (left) bases and standard basis (center). The
vectors which comprise B̃ are the transposes of the rows of B−1.



Frame Synthesis Matrix

Let F consist of the N frame vectors,
f1 . . . fN ∈RM, where N≥M. Let {y}F ∈
RN be a representation of y ∈RM in F .
It follows that

y = F{y}F

where the synthesis matrix, F, is the M×
N matrix,

F =
[

f1 | f2 | . . . | fN
]
.



Frame Analysis Matrix

We might guess that

{y}F = F−1y

where F−1 is N×M and FF−1 = I. Un-
fortunately, because F is not square, there
is no unique inverse. However, F has an
infinite number of right-inverses. Each
of the {y}F produced when y is mul-
tiplied by a distinct right-inverse is a
distinct representation of the vector y in
the frame, F .



Pseudoinverse

The pseudoinverse of F is

F+ = FT(FFT)−1
.

F+ is a right inverse of F because

FF+ = FFT(FFT)−1
= I.

The N×M matrix, F+, is as an analy-
sis matrix because it transforms a repre-
sentation y ∈ RM, in the standard basis,
into a representation {y}F ∈ RN, in the
frame, F :

{y}F = F+y.



Dual Frame and Its Synthesis Matrix

If F consists of the N frame vectors,
f1 . . . fN ∈ RM, with analysis matrix F+,
then there exists a dual frame, F̃ , con-
sisting of the N frame vectors, f̃1 . . . f̃N ∈
RM: (

F+
)T

=
[

f̃1 | f̃2 | . . . | f̃N

]
.

Let {y}F̃ ∈ RN be a representation of
y ∈ RM in F̃ . It follows that

y =
(
F+
)T{y}F̃ .

and (F+)T is the synthesis matrix for the
dual frame, F̃ .



Dual Frame Analysis Matrix

Because FF+ = I, it follows that FT is
a right inverse of (F+)T:

(F+)T FT = I.

Consequently, FT is an analysis matrix
for the dual frame, F̃ :

{y}F̃ = FTy.



Span of Dual Frame

The N vectors F̃ form a frame for RM

iff for every y ∈ RMof finite non-zero
length there is a finite non-zero length
representation of y in F̃ :

A||y||2 ≤ ||{y}F̃ ||
2 ≤ B||y||2

where 0 < A≤ B < ∞.



Span of Primal Frame

Because the spans of the primal (F ) and
dual (F̃ ) frames are the same, and be-
cause

{y}F̃ = FTy
F is a frame iff for all y ∈ RM there
exist A and B where 0 < A≤ B < ∞ and
where

A||y||2 ≤ ||FTy||2 ≤ B||y||2.
A and B are called the frame bounds.
This is significant because this is a nec-
essary and sufficient condition for a set
of vectors (the columns of F) to form a
frame.
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Figure 5: Primal F (right) and dual F̃ (left) frames and standard basis (center).
The vectors which comprise F̃ are the transposes of the rows of F+.



Example

What is the representation of y=
[

1 1
]T

in the frame formed by the vectors f1 =[ √
2

2

√
2

2

]T
, f2 =

[
−
√

2
2

√
2

2

]T
and f3 =[

0 −1
]T?

F =

[
0.70711 −0.70711 0
0.70711 0.70711 −1

]

F+ =

 0.70711 0.35355
−0.70711 0.35355

0 −0.5


F+y =

 1.06066
−0.35355

−0.5





Tight-Frames

If A = B then

||FTy||2 = A||y||2

and F is said to be a tight-frame. When
F is a tight-frame,

F+ =
1
A

FT.

If ||fi||= 1 for all frame vectors, fi, then
A equals the overcompleteness of the
representation. When A = B = 1, then
F is an orthonormal basis and F = F̃ .
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Figure 6: Primal F (right) and dual F̃ (left) tight-frames with overcompleteness
two and standard basis (center).



Example

What is the representation of y=
[

1 1
]T

in the frame formed by the vectors f1 =[
0 1

]T, f2 =
[

1 0
]T, f3 =

[
0 −1

]T

and f4 =
[
−1 0

]T?

F =

[
0 1 0 −1
1 0 −1 0

]

F+ =
1
2

FT =


0 0.5

0.5 0
0 −0.5

−0.5 0


1
2

FTy =


0.5
0.5
−0.5
−0.5





Figure 7: Primal F (right) and dual F̃ (left) tight-frames with overcompleteness
one (orthonormal bases) and standard basis (center).



Summary of Notation

• y ∈ RM – a vector.

• {y}F ∈RN – a representation of y in
primal frame F .

• f1 . . . fN ∈ RM where N ≥M – frame
vectors for primal frame F .

• F=
[

f1 | f2 | . . . | fN
]

– synthesis ma-
trix for primal frame F .

• F : RN→ RM.

• F+ = FT
(
FTF

)−1 – analysis matrix
for primal frame F .

• F+ : RM→ RN.

• 0 < A ≤ B < ∞ – bounds for primal
frame F .



Summary of Notation (contd.)

• {y}F̃ ∈R
M – a representation of y in

dual frame F̃ .

• f̃1 . . . f̃N ∈RM – frame vectors for dual
frame F̃ .

• (F+)T =
[

f̃1 | f̃2 | . . . | f̃N

]
– synthe-

sis matrix for dual frame F̃ .

• (F+)T : RN→ RM.

• FT – analysis matrix for dual frame
F̃ .

• FT : RM→ RN.

• 0 < 1
B ≤

1
A < ∞ – bounds for dual

frame F̃ .


