DCT Basis Functions
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Figure 1: Basis functions of Discrete Cosine Transform (DCT)



Simple Cell Receptive Fields

Figure 2: Cosine (left) and sine gratings (right) in Gaussian envelopes, known
as Gabor functions, closely resemble the receptive fields of simple cells in pri-
mary visual cortex (V1). Gabor functions at a range of scales and orientations are
centered at all positions (x,y) in the visual field.

Figure 3: Cosine Gabor functions of different scales, logr, and orientations, 6.



Frames vs. Bases

e A set of vectors form a basis for RM
if they span R¥ and are linearly in-
dependent.

e A set of N > M vectors form a frame
for R if they span R¥.



Advantages of Frame Representations

e Using bases ‘B it possible to build
sparse, invertible representations.

e Using frames ¥ itis possible to build
sparse, invertible representations that
are also Euclidean equivariant.



Euclidean Equivariance

Primary visual cortex uses a frame op-
erator # to transform an input repre-

sentation, / : R> — R, into an output rep-
resentation of higher dimensionality, O :
R>x R* x S! = R:

X

"(13]) % o | e

0

A Euclidean transformation, T, takes
an input representation and returns the
same representation rotated, translated
and scaled:

([3]) 5 o([embersmdye]),



Euclidean Equivariance (contd.)

An operator, ¥, is Euclidean equivari-
ant, iff it commutes with 7. This prop-
erty can be depicted using a commuta-
tive diagram:

I LTI
L F LI
71 5 o
where 7' is the corresponding transfor-

mation of the output representation of
higher dimensionality:

X s(xcosO+ ysind)+u
0 y T o s(ysind— xcos®)+v
logr logr+logs
0 0+¢




Synthesis Matrix

Let ‘B consist of the M basis vectors,
bi...by € R”. Let {y}3 € RY be a
representation of y € RY in B. It fol-
lows that

y=B{y}s
where the synthesis matrix, B, 1s the M X
M matrix,

B=[b;|by| ... byl

where b; 1s column i of B.



Analysis Matrix

To find the representation of the vector
y in the basis B we multiply y by the
analysis matrix B~!:

{y}s=B"y.

The components of the representation
of y in ‘B are inner products of y with
the rows of B~ !:

B—l _ b2

=T : _
where b; is row i of B!



Dual Basis

The transposes of these row vectors form
a dual basis, ‘B, with synthesis matrix:

B HT=[b;|by| ... |by]

and analysis matrix:

Lo
b,

B! = bg .
by _

The relationship between the vectors of
the primal (B) and dual (‘B) bases 1is:

<bi | i}j> .

The biorthogonality of the columns of
B and the rows of B~! follows imme-
diately from the definition of matrix in-
Verse.



Example

Recall that any N X N matrix, P, with N
distinct eigenvalues, A;, can be factored
into a product of three matrices:

P=XAY'
where the columns of
X=|x1| x| ... |xy]

are right eigenvectors satisfying A;x; =
P x; and the rows of

Yr= | %

T
L Ym
are left eigenvectors satisfying Ay =
y; P and A is a diagonal matrix of eigen-
values where Aj; = A..



Example (contd.)

Because X and Y! are inverses:

(Xi ; ¥j) = Oij.
Consequently, the right and left eigen-
vectors form primal basis X and dual
basis . We take inner products with
the left eigenvectors 9 to find the rep-

resentation in the basis of right eigen-
vectors X and vice versa.
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Figure 4: Primal B (righQ and dual B (left) bases and standard basis (center). The
vectors which comprise B are the transposes of the rows of B~!.



Frame Synthesis Matrix

Let F consist of the N frame vectors,
f;...fy € RM, where N> M. Let {y} s €
RY be a representation of y € RM in F.

It follows that
y=F{y}s

where the synthesis matrix, F, 1s the M X
N matrix,

F=f|6|.. |f].



Frame Analysis Matrix

We might guess that

{y}yg=Fy

where F~'is N x M and FF~! =1. Un-
fortunately, because F 1s not square, there
1s no unique inverse. However, F has an
infinite number of right-inverses. Each
of the {y}+ produced when y is mul-
tiplied by a distinct right-inverse 1s a
distinct representation of the vector y in
the frame, F.



Pseudoinverse

The pseudoinverse of F 1s
F*=F"(FF") .
F* is a right inverse of F because
FF* = FF" (FF") ' =1

The N x M matrix, F*, is as an analy-
sis matrix because it transforms a repre-
sentation y € R¥, in the standard basis,
into a representation {y}s € R", in the
frame, ‘F:

{y}s=Fy.



Dual Frame and Its Synthesis Matrix

If & consists of the N frame vectors,
f,...fy € R, with analysis matrix F*,
then there exists a dual frame, T, con-

sisting of the N frame vectors, I ...Iy €
RM:

(F) =T B .. |5 ].

Let {y}z € R" be a representation of

~

y € R™ in . It follows that
T
y=(F") {y}z

and (F*)" is the synthesis matrix for the
dual frame, ‘F.



Dual Frame Analysis Matrix

Because FF+ =1, it follows that F! is
a right inverse of (F*)":

(FH'F' =1

Consequently, F! 1s an analysis matrix
for the dual frame, F:

{y}z =Fy.



Span of Dual Frame

The N vectors F form a frame for R
iff for every y € RMof finite non-zero
length there 1s a finite non-zero length

representation of y in F:

AllyllP < I{y}z11> < Blly|[?
where 0 < A < B < oo,



Span of Primal Frame

Because the spans of the primal (¥ ) and
dual (%) frames are the same, and be-
cause

{y}7=Fly
F is a frame iff for all y € R there

exist A and B where 0 < A < B < o and
where

Ally|* < ||F'y|]* < BlJy[|*

A and B are called the frame bounds.
This 1s significant because this 1s a nec-
essary and sufficient condition for a set
of vectors (the columns of F) to form a
frame.
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Figure 5: Primal ¥ (right) arld dual F (left) frames and standard basis (center).
The vectors which comprise  are the transposes of the rows of F+.



Example

What is the representation of y = [ 11 ] !
in the frame formed by the vectors f; =

B T T
22| = | 22| andf, =
0 —1]"72

e [0.70711 —0.70711 0
~ 1070711 0.70711 —1
0.70711 0.35355 ]
F+= | —0.70711 0.35355
0 —05

1.06066
Fty = | —0.35355
0.5




Tight-Frames

If A = B then
|[F"y||> =Ally|[

and ¥ 1s said to be a tight-frame. When
F 1s a tight-frame,

Fr— 1pT.
A
If ||f;|| = 1 for all frame vectors, f;, then

A equals the overcompleteness of the
representation. When A = B = 1, then

‘F 1s an orthonormal basis and F = F.
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Figure 6: Primal F (right) and dual F (left) tight-frames with overcompleteness
two and standard basis (center).



Example

What is the representation of y = [ 11 ] !
in the frame formed by the vectors f; =

01], 6, =[10],f=[0-1]
and f, = [ —1 012

0 1 0-1
F"[ 1 0-1 0]

0 05
1 05 0
+_ T _
K =3F 0 —0.5
05 0
0.5
0.5
_T:
Fy=1_05
05




Figure 7: Primal ¥ (right) and dual # (left) tight-frames with overcompleteness
one (orthonormal bases) and standard basis (center).



Summary of Notation

oy € RM _ a vector.

e {y}s € RY —arepresentation of y in
primal frame ¥ .

of, ...fy € RM where N > M — frame
vectors for primal frame ¥ .

eF=|f | £ ... |fy]—synthesis ma-
trix for primal frame ¥ .
o F: RN 5 RM,

e F' =F' (F'F) ~! _ analysis matrix

for primal frame ¥ .
o Ft:RM RN,

e ) <A < B < o — bounds for primal
frame F.



Summary of Notation (contd.)

o {y}z € RY —arepresentation of y in
dual frame ‘F.

of, .. .fNNE RM _ frame vectors for dual
frame 7.

.(F+)T: /fl’/fz‘ ‘?N}—Synthe'

~

sis matrix for dual frame F.

° (F+)T : RN — RM,

o ET — analysis matrix for dual frame
¥F.

o Fl:RM - RV,

o () < %é % < o — bounds for dual
frame ‘F.



