CS 530: Geometric and Probabilistic Methods in Computer Science Homework 5 (Fall '15)

1. Let $f(t) = e^{-\pi t^2}$, $f''(t) = 2\pi e^{-\pi t^2} (2\pi t^2 - 1)$, and g(t) = at + b. Prove or disprove the following:

 $\langle f'', g \rangle = 0$

for all a and b.

- 2. Let $\Psi(t) = e^{-\pi t^2} \cos(2\pi s_0 t)$ and $f(t) = e^{j2\pi s_1 t}$. Give an expression for F(a,b), the continuous wavelet transform of f(t).
- 3. The *n*-th moment of Ψ is defined to be $M_n\{\Psi\} = \int_{-\infty}^{\infty} t^n \Psi(t) dt$. Let $f(t) = e^{-\pi t^2}$, $f'(t) = -2\pi t e^{-\pi t^2}$, and $f''(t) = 2\pi e^{-\pi t^2} (2\pi t^2 1)$. Prove the following:
 - (a) $M_0\{f'\}=0$.
 - (b) $M_0\{f''\} = M_1\{f''\} = 0.$
- 4. The six vectors, $\mathbf{f}_1 = \begin{bmatrix} \cos(\pi/3) & \sin(\pi/3) \end{bmatrix}^T$, $\mathbf{f}_2 = \begin{bmatrix} \cos(\pi/3) & -\sin(\pi/3) \end{bmatrix}^T$, $\mathbf{f}_3 = \begin{bmatrix} -1 & 0 \end{bmatrix}^T$, $\mathbf{f}_4 = \begin{bmatrix} -\cos(\pi/3) & -\sin(\pi/3) \end{bmatrix}^T$, $\mathbf{f}_5 = \begin{bmatrix} -\cos(\pi/3) & \sin(\pi/3) \end{bmatrix}^T$, and $\mathbf{f}_6 = \begin{bmatrix} 1 & 0 \end{bmatrix}^T$ form a frame $\mathcal F$ for $\mathbb R^2$. Draw the frame.
 - (a) Give two representations for the vector, $\mathbf{x} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$, in \mathcal{F}
 - (b) Prove that \mathbf{x} has an infinite number of representations in \mathcal{F} .
 - (c) Give a matrix which transforms any representation of a vector in \mathcal{F} into its representation in the standard basis for \mathbb{R}^2 .
 - (d) Give a matrix which transforms a representation of any vector in the standard basis for \mathbb{R}^2 into its representation in \mathcal{F} .
- 5. The continuous representation of the Haar highpass filter is

$$h_1(t) = \frac{1}{2} [\delta(t + \Delta t) - \delta(t - \Delta t)].$$

The continuous representation of the Haar lowpass filter is

$$h_0(t) = \frac{1}{2} [\delta(t + \Delta t) + \delta(t - \Delta t)].$$

Prove that

$$|H_0(s)|^2 + |H_1(s)|^2 = 1$$

where $H_0(s)$ and $H_1(s)$ are the Fourier transforms of $h_0(t)$ and $h_1(t)$.

6. The N+1 channel Haar transform matrix can be recursively defined as follows:

$$\mathbf{H}_{N} = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{I}_{N-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{H}_{N-1} \end{bmatrix} \begin{bmatrix} \mathbf{U}_{N} \\ \mathbf{L}_{N} \end{bmatrix}$$

where \mathbf{U}_N convolves a length 2^N signal with the Haar highpass filter followed by downsampling, \mathbf{L}_N convolves a length 2^N signal with the Haar lowpass filter followed by downsampling, \mathbf{I}_N is the identity matrix of size $2^N \times 2^N$ and

$$\mathbf{H}_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} \mathbf{U}_1 \\ \mathbf{L}_1 \end{bmatrix} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}.$$

- (a) Using the above definitions, derive expressions for \mathbf{H}_3 and \mathbf{H}_3^{-1} .
- (b) Compute the Haar transform of the vector $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{bmatrix}^T$.