Hartley’s Information Measure

e Messages are strings of characters from
a fixed alphabet.

e The amount of information contained
In a message should be a function
of the total number of possible mes-
sages.

e |If you have an alphabet withsym-
bols, then there arg messages of
length,/.

e The amount of information contained
In two messages should be the sum
of the information contained In the
iIndividual messages.



Hartley’s Information Measure (contd.)

e The amount of iInformation 1A mes-
sages of length one should equal the
amount of information in one mes-
sage of lengtld.

It is clear that the only function which
satisfies these requirements is the log
function:

log(s) = log(s).

If the base of the logarithm is two, then
the unit of iInformation Is théit.



Shannon’s Information Measure

Let X be a discrete r.v. with outcomes,
{X1, ..., X, }. The probability that the out-
come will bex; is px(X). Theinforma-
tion contained in a message about the
outcome ofX Is:

—log px ().

The avg. information or entropy of a

message about the outcomeXois:
n

Hx = —> Px(x)logpx(x).

=1



Example

Let X be a discrete r.v. with two out-
comes,{X1,Xo}. The probability that
the outcome will be; is 0 and the prob-
ability that the outcome will be Is
1—0. The avg. information contained
INn a message about the outcomexas:

Hyx = —06log(8) — (1—-96)log(1—9).

We observe that the avg. information

is maximized wher =1—6 = 3, in

which caséHx = 1 bit.



Joint Information

Let X be a discrete r.v. with outcomes,
{X1,...., X} and letY be a discrete r.v.
with outcomes{ys, ...,Ym}. The proba-
bility that the outcome oX is x; and the
outcome ofY is y; is pxy(X,Yy;). The
amount of information contained In a
message about the outcomeXdandY

IS:

—log pxy (X, Y;)-
The avg. information or entropy of a

message about the outcomeXdandY

IS.
n m

Hxy = — Zl Z Pxy (X, Yj) 10g pxy (X, Y;)-
I=1]=1
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Figure 1:Hx = —6log(0) — (1—6)log(1—0).



Properties of Shannon’s Measure

e Hy is continuous in the px ().

e Hy IS symmetric. That is,Hx = Hy
whenpy(x1) = px(X2) andpy(Xz) =
Px(X1). More generally,Hy is in-
variant under permutation of the dis-
tribution function, px.

e Hy Is additive. That is, whenX and
Y are independent r.v.’s, thétixy =

Hy + Hy.

e Hy is maximum when all of th@y (x)’s
are equal.

e Hy is minimum when one of thpx(x)’s
equals one.



Additivity Example

Let X andY be fair dice. The avg. amount
of information contained in a message
about the outcome of andY is:

6 6 1 1
Hyy = — —log— ~ 5.16 bits
=72 2 36936
The avg. amount of information con-
tained in a message about the outcome

of X Is:
Zl—log— ~ 2.58 bits

Since Hx = Hy, It follows that Hx +
Hy ~ 5.16 bits.



Symmetry Example

e Let X be a discrete r.v. with out-

comes{A,G,C, T}, which occur with

probabilities {2, 2, 5.3}

e LetY be a discrete r.v. with out-

comes{é, &, <, O}, which occur with

1111

probabilities {3, 3,5.5}-

e The avg. amount of information con-

tained in a message about the out-
come ofX is:

Hy = ——Iog}— }Iog}— }Iog— — —Iog—

8 8 "8 2
= 175b|tS



Symmetry Example (contd.)

e The avg. amount of information con-
tained in a message about the out-
come on IS:

1 1,1 1 1 1 1
Hy = ——Iog———log———log———log—

8 2 "2 8
= 175bItS



Theorem 1.1

Let X be a discrete r.v. with outcomes,

{X1, ..., X, }. The probability that the out-
come will bex; is px(X;). Then

e Hy < logn with Hx =

ogn If and

only if for all i it is true thatpx (x;) =

1/n.
e Hx > 0 with Hx = O if

and only if

there exists & such thatpx (xx) = 1.



Theorem 1.1 (contd.)

Proof:
Hy —logn =

n
- lex Xi)log px (X)) —logn =
n

—lex Xi) log px (Xi) — _;px(xi)logn:

- Zl px (%) (logpx(X) +logn) =

i; px () log (npxl(xi)) .




Theorem 1.1 (contd.)

From the inequality la <a—1 and the
fact that logpa=Ina/In2:




Figure 2: lnLl < a—1.
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Theorem 1.1 (contd.)

Using this result in the expression for
Hy —lognyields:

Hy — logn = ii px(Xi) log (npxl(xi)>
1

< (zﬁz px<xi>> oge
< (n%—l) loge
<0



Theorem 1.1 (contd.)

This proves thaHyx < logn. To prove
thatHyx > O, we observe that:

o Vi px(x) >0
o Vi —logpx(x) >0

It follows that:

-5 px(%)10gpx(x) > 0



Maximum Entropy

LetX be ar.v. with outcomesgxy, ..., Xn}.
These outcomes occur with probability,
px(X) = 1/n for all i. The avg. in-
formation contained in a message about
the outcome oK is:

Hy = — 3 Px(x)10gpx(x)

1



Maximum Entropy Example

Let X be a discrete r.v. with outcomes,

{A,G,C, T}. These outcomes occur with

1111

probabilities{3,7,3,7}. The avg. amount

of information contained in a message
about the outcome of Is:

11 1 1 1 1 1
Hx = ——Iog———log———log———log—

4 4
= 2b|ts

The genome of the bacteriuia, coli, is

a DNA molecule consisting of £ 10°
base pairs. The maximum amount of
iInformation stored in th&. coli genome
is therefore 8« 1(P bits.



Minimum Entropy Example

Let X be a discrete r.v. with outcomes,
{A,G,C,T}. These outcomes occur with
probabilities,{0,1,0,0}. The avg. amount
of information contained in a message
about the outcome o is:

Hx = —0log0—1logl—0log0—0log0
O bits



