
Hartley’s Information Measure

• Messages are strings of characters from
a fixed alphabet.

• The amount of information contained
in a message should be a function
of the total number of possible mes-
sages.

• If you have an alphabet withs sym-
bols, then there ares` messages of
length,`.

• The amount of information contained
in two messages should be the sum
of the information contained in the
individual messages.



Hartley’s Information Measure (contd.)

• The amount of information iǹmes-
sages of length one should equal the
amount of information in one mes-
sage of length̀.

It is clear that the only function which
satisfies these requirements is the log
function:

` log(s) = log(s`).

If the base of the logarithm is two, then
the unit of information is thebit.



Shannon’s Information Measure

LetX be a discrete r.v. withn outcomes,
{x1, ...,xn}. The probability that the out-
come will bexi is pX(xi). Theinforma-
tion contained in a message about the
outcome ofX is:

− logpX(xi).

The avg. information or entropy of a
message about the outcome ofX is:

HX = −
n

∑
i=1

pX(xi) logpX(xi).



Example

Let X be a discrete r.v. with two out-
comes,{x1,x2}. The probability that
the outcome will bex1 is θ and the prob-
ability that the outcome will bex2 is
1− θ. The avg. information contained
in a message about the outcome ofX is:

HX = −θ log(θ)− (1−θ) log(1−θ).

We observe that the avg. information
is maximized whenθ = 1− θ = 1

2, in
which caseHX = 1 bit.



Joint Information

Let X be a discrete r.v. with outcomes,
{x1, ...,xn} and letY be a discrete r.v.
with outcomes,{y1, ...,ym}. The proba-
bility that the outcome ofX is xi and the
outcome ofY is y j is pXY(xi,y j). The
amount of information contained in a
message about the outcome ofX andY
is:

− logpXY(xi,y j).

The avg. information or entropy of a
message about the outcome ofX andY
is:

HXY =−
n

∑
i=1

m

∑
j=1

pXY(xi,y j) logpXY(xi,y j).
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Figure 1:HX = −θ log(θ)− (1−θ) log(1−θ).



Properties of Shannon’s Measure

• HX is continuous in the pX(xi).

• HX is symmetric. That is,HX = HY

whenpY(x1) = pX(x2) andpY(x2) =
pX(x1). More generally,HX is in-
variant under permutation of the dis-
tribution function,pX .

• HX is additive. That is, whenX and
Y are independent r.v.’s, thenHXY =
HX +HY .

• HX is maximum when all of thepX(xi)’s
are equal.

• HX is minimum when one of thepX(xi)’s
equals one.



Additivity Example

LetX andY be fair dice. The avg. amount
of information contained in a message
about the outcome ofX andY is:

HXY = −
6

∑
i=1

6

∑
j=1

1
36

log
1
36

≈ 5.16 bits.

The avg. amount of information con-
tained in a message about the outcome
of X is:

HX = −
6

∑
i=1

1
6

log
1
6
≈ 2.58 bits.

Since HX = HY , it follows that HX +
HY ≈ 5.16 bits.



Symmetry Example

• Let X be a discrete r.v. with out-
comes,{A,G,C,T}, which occur with
probabilities,{1

4,
1
8,

1
8,

1
2}.

• Let Y be a discrete r.v. with out-
comes,{♣,♠,♦,♥}, which occur with
probabilities,{1

4,
1
8,

1
2,

1
8}.

• The avg. amount of information con-
tained in a message about the out-
come ofX is:

HX = −
1
4

log
1
4
−

1
8

log
1
8
−

1
8

log
1
8
−

1
2

log
1
2

= 1.75 bits



Symmetry Example (contd.)

• The avg. amount of information con-
tained in a message about the out-
come ofY is:

HY = −
1
4

log
1
4
−

1
8

log
1
8
−

1
2

log
1
2
−

1
8

log
1
8

= 1.75 bits



Theorem 1.1

LetX be a discrete r.v. withn outcomes,
{x1, ...,xn}. The probability that the out-
come will bexi is pX(xi). Then

• HX ≤ logn with HX = logn if and
only if for all i it is true thatpX(xi) =
1/n.

• HX ≥ 0 with HX = 0 if and only if
there exists ak such thatpX(xk) = 1.



Theorem 1.1 (contd.)

Proof:
HX − logn =

−
n

∑
i=1

pX(xi) logpX(xi)− logn =

−
n

∑
i=1

pX(xi) logpX(xi)−
n

∑
i=1

pX(xi) logn =

−
n

∑
i=1

pX(xi)(logpX(xi)+ logn) =

n

∑
i=1

pX(xi) log

(

1
npX(xi)

)

.



Theorem 1.1 (contd.)

From the inequality lna≤ a−1 and the
fact that loga = lna/ ln2:

lna ≤ (a−1)

lna/ ln2 ≤ (a−1)/ ln2
loga ≤ (a−1)/ ln2
loga ≤ (a−1) lne/ ln2
loga ≤ (a−1) loge
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Figure 2: lna ≤ a−1.



Theorem 1.1 (contd.)

Using this result in the expression for
HX − logn yields:

HX − logn =
n

∑
i=1

pX(xi) log

(

1
npX(xi)

)

≤
n

∑
i=1

pX(xi)

(

1
npX(xi)

−1

)

loge

≤

(

n

∑
i=1

1
n
−

n

∑
i=1

pX(xi)

)

loge

≤

(

n
1
n
−1

)

loge

≤ 0



Theorem 1.1 (contd.)

This proves thatHX ≤ logn. To prove
thatHX ≥ 0, we observe that:

• ∀i pX(xi) ≥ 0

• ∀i − logpX(xi) ≥ 0

It follows that:

−
n

∑
i=1

pX(xi) logpX(xi) ≥ 0.



Maximum Entropy

LetX be a r.v. with outcomes,{x1, ...,xn}.
These outcomes occur with probability,
pX(xi) = 1/n for all i. The avg. in-
formation contained in a message about
the outcome ofX is:

HX = −
n

∑
i=1

pX(xi) logpX(xi)

= −
n

∑
i=1

1
n

log
1
n

= −

(

1
n

log
1
n

) n

∑
i=1

1

= −

(

1
n

log
1
n

)

n = − log
1
n

= logn



Maximum Entropy Example

Let X be a discrete r.v. with outcomes,
{A,G,C,T}. These outcomes occur with
probabilities,{1

4,
1
4,

1
4,

1
4}. The avg. amount

of information contained in a message
about the outcome ofX is:

HX = −
1
4

log
1
4
−

1
4

log
1
4
−

1
4

log
1
4
−

1
4

log
1
4

= 2 bits

The genome of the bacterium,E. coli, is
a DNA molecule consisting of 4×106

base pairs. The maximum amount of
information stored in theE. coli genome
is therefore 8×106 bits.



Minimum Entropy Example

Let X be a discrete r.v. with outcomes,
{A,G,C,T}. These outcomes occur with
probabilities,{0,1,0,0}. The avg. amount
of information contained in a message
about the outcome ofX is:

HX = −0log0−1log1−0log0−0log0
= 0 bits.


