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Quadratic Forms

Let f(x) =x TAxwhereA = AT, In two-dimensions,
we have

ab T
A = [b c] and x= | X y|

so that
_lab||x| |ax+hy
AX = [b c] [y] o [bx+cy]

ax—+ by
DX+ cy

and

XTAX=[X Y] [ ] = ax’ + 2bxy+ cy’.



Quadratic Forms (contd.)

WhenA is positive definite, then
f(x) =x"AX
IS aparaboloidand theisovalue contours
XTAx =D

areellipses A matrix is positive definite iff all
of its eigenvalues are positive.



Example

fA=| 2 72| thenxTAx equals
-2 5
5X% — 4xy+ 5y°.
The eigenvalues oA are 3 and 7 and the cor-
responding eigenvectors ane= 1/v2 and
_[-1/v2 _URLT
V= [ 1/\@]. Now, letA = UBU', whereU
equals
U 1/v/2 —1//2
112 1/V2)
thenB = U'TAU, which is
30
-39

The corresponding quadratic foron' Bu, is
3u + 7V2.



Figure 1: Left: The ellipse, 8 — 4xy+ 5y? = D. Right: The ellipse, 8° + 7v? = D.



Multivariate Gaussian Density

Themultivariate Gaussian density defined as
follows:

1 1, Ty
(2m)%[C|2
whereK Is the number of dimensions ailis

the K x K covariance matrix In the bivariate
caseC looks like this:

Oxx Oxy
Oxy Oyy

G(X) =

Note: If C is symmetric and positive definite,
thenC~1 is also symmetric and positive defi-
nite.



Inner and Outer Products

Letx= |12 B]T. Theinner productof x with
itself, orx 'x is a scalar:

(123]|2|=1.1+2.2+3.3=14

The outer productof x with itself, orxx' is a
matrix:

1 123
2|[123]=|246].
3 1369




Covariance Matrix

First we construct amiN x K matrix, X, where
then-th row is then-th sample of a multivariate
Gaussian r.vx = | X y]T. For example, when
K=2: 3 _
X1 Y1
X — X% ¥2

| XN YN |
Thesample meabof theN samples is

I L

“. — — Xn.

N nzl

We will assume thai= | O O}T. If this is false,
we can always make it true by subtractipg
from each of the samples prior to constructing
X.



Covariance Matrix (contd.)

We observe that
N

XX = § XX
nzl i
_ [X1X1 X1Y1] Lo [XNXN XNyN]
X1Y1 Yiy1 XNYN YNYN |

The covariance matrixs the matrix of the ex-
pected values of the products of tkeandy
components of the samples:

1 XX) () ]
C=—X'X= =
N [ Xy) (YY)
where(.) denotes expected value.

Oxx Oxy

Oxy Oyy



Isodensity Surfaces

Theisodensity surfacesf the multivariate Gaus-
sian are the locus of those points whéex)
has constant density:

1
(2m)2|C|2
which can be re-arranged to yield:

xTCx = —2In {(2n)%\(:\%D} .

G(x) = e2'Cx_p

SinceC~!is positive definite the isodensity sur-
faces areellipsoids The axesof these ellip-
soids are mutually orthogonal and point in the
same directions as the eigenvector€ofl hese
eigenvectors are thprincipal component®f
the multivariate Gaussian density.



Principal Components Theorem

The principal components of a multivariate Gaus-
sian density are given by the eigenvectors of its
covariance matrix.

Proof (in two-dimensions)' We observe that

e—?x Tc-1

is maximized (or minimized) whexn'Cx is max-
Imized (or minimized). We therefore wish to
find the unit vectorg which maximize (or min-
imize):

x"Cx

NI
Q. Q)

—|v I\.)IH

1
?

I\)ll—‘

i
)

C2x|1?

)

whereC is symmetrlc and positive definite.



Principal Components Theorem (contd.)

Let w; andw, be eigenvectors df with eigen-
valuesA; andA,. Note thatw; andw, are also
eigenvectors of32 but its eigenvalues arg'A;
and+/A,. Now consider a unit vectok, in the
plane. Letd be the relative orientation between
X andw;. It follows that

=[5

IS the representation afin the basis defined by
w; andw,. Consequently,

H [C%X}wHZ = (\/)T1)200529+ (m)zsinze

— A1COS O+ \,SirFo.



Principal Components Theorem (contd.)

1 2 e
Calculustells ustheH {C?x} H IS maximized
. W
(or minimized) when
d (}\1C0329—|—}\25in29)

do
Evaluating the above derivative:

2A1C0S0SIiNG — 2A,SIiN6cosB = 2coPSIiNG (A1 —Ay).

2
It follows that HC%X}WH IS maximized (or

minimized) wherB =0 (or@ =11/2),i.e., when
X = W (or X =w,). Now, becausel is or-
thonormal

2
|len, || =l
W
and because
|C2x||2 = X"Cx

we conclude thax"Cx is maximized (or mini-
mized) wherx is an eigenvector of.



Diagonalizing the Covariance Matrix

Because the covariance matfixis symmetric
and positive definite, it has orthogonal eigen-

vectors:
)\ka = CWk

whereA; > Ay, > --- > A. It can therefore be
diagonalized as follows:

C=wDW'
whereW is aK x K matrix of eigenvectors:
W = | wi|wa|...|w |

andD is aK x K diagonal matrix of eigenval-

ues.
D= diag()\l,)\z, ...,}\K).



The KL Transform

We can represent a sampleof a multivariate
Gaussian r.v. with covariance mati@xin the
basis? formed byC’s eigenvectors. This change
of basis Is termed th&arhunen-Loeve trans-
form:

X,y = W'X.
BecauseC is symmetric, thew, are mutually
orthogonal, andV" is unitary. Consequently,
the KL transform (like the DFT) Is a rotation in
RK.



The KL Transform (contd.)

e Question Letu = [x],,, be the representation
of x in the basisW formed by the eigenvec-
tors of C. What is the density afi ?

e Answer It is the multivariate Gaussian den-
sity with covariance matrixXp:

1 e_%u Tp-1y
(2m)%(D|2
whereD = WTCW.

G'(u) =




The Bivariate Case

In the bivariate case

D—wTcw — | Ouw O
O ow|
SinceD is diagonal,
‘D‘ = OyuOvwv

andD~! has an especially simple form:

1/0pu O
0 1/ow]|’

D1=




The Bivariate Case (contd.)

It follows that the multivariate Gaussian density

with covariance matri>{ Ous O ] iS:
0 ow

1 1 u2 V2
G'(u,v) = e 2low o),

211, /OuOwy

We observe thal' is separable

1 2 1 2
G'(u,v) = & %o & Zow,

\/2TO \/ 2Oy

Since the joint density function af andv can

be expressed as the product of the density func-
tion for u and the density function far, we say
thatu andv areuncorrelated.Stated differently,
knowing the value ofi tells you nothing about
the value ofV!




Reducing Dimensionality

Since W is unitary, its inverse is simplyV.
Consequently, the KL transform can be inverted
as follows:

X =Wu

which (in the general case &f dimensions) is
simply:
X = U1W71 + UpW2 +- - - - 4 UK WK .

Letu’ be a vector of lengtld < K consisting of
the components af in the directions of eigen-
vectors with thel eigenvalues of largest mag-
nitude. It is possible to recover,, an approxi-
mation tox, fromu’ as follows:

X" = UyW1 + UpWp + - - - + Ugw3.



Figure 2: Images from the ATT face database.



Figure 3: Someigenface®f images from the ATT face database.



