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Quadratic Forms

Let f (x)= x TAx whereA=AT. In two-dimensions,
we have

A =

[

a b
b c

]

and x =
[

x y
]T

so that

Ax =

[

a b
b c

][

x
y

]

=

[

ax+by
bx+cy

]

and

x TAx =
[

x y
]

[

ax+by
bx+cy

]

= ax2+2bxy+cy2.



Quadratic Forms (contd.)

WhenA is positive definite, then

f (x) = x TAx

is aparaboloidand theisovalue contours,

x TAx = D

areellipses. A matrix is positive definite iff all
of its eigenvalues are positive.



Example

If A =

[

5 −2
−2 5

]

thenx TAx equals

5x2−4xy+5y2.

The eigenvalues ofA are 3 and 7 and the cor-

responding eigenvectors areu =

[

1/
√

2
1/
√

2

]

and

v =

[

−1/
√

2
1/
√

2

]

. Now, letA = UBUT, whereU

equals

U =

[

1/
√

2 −1/
√

2
1/
√

2 1/
√

2

]

,

thenB = UTAU, which is

B =

[

3 0
0 7

]

.

The corresponding quadratic form,uTBu, is

3u2+7v2.
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Figure 1: Left: The ellipse, 5x2−4xy+5y2 = D. Right: The ellipse, 3u2+7v2 = D.



Multivariate Gaussian Density

Themultivariate Gaussian densityis defined as
follows:

G(x) =
1

(2π)K
2 |C|12

e−
1
2x TC−1x

whereK is the number of dimensions andC is
the K ×K covariance matrix. In thebivariate
case,C looks like this:

C =

[

σxx σxy

σxy σyy

]

.

Note: If C is symmetric and positive definite,
then C−1 is also symmetric and positive defi-
nite.



Inner and Outer Products

Let x =
[

1 2 3
]T

. Theinner productof x with
itself, orx Tx is a scalar:

[

1 2 3
]





1
2
3



= 1·1+2·2+3·3= 14.

The outer productof x with itself, or xx T is a
matrix:





1
2
3





[

1 2 3
]

=





1 2 3
2 4 6
3 6 9



 .



Covariance Matrix

First we construct anN×K matrix, X, where
then-th row is then-th sample of a multivariate
Gaussian r.v.,x =

[

x y
]T

. For example, when
K = 2:

X =









x1 y1

x2 y2
... ...

xN yN









.

Thesample meanof theN samples is

~µ=
1
N

N

∑
n=1

xn.

We will assume that~µ=
[

0 0
]T

. If this is false,
we can always make it true by subtractingµ
from each of the samples prior to constructing
X.



Covariance Matrix (contd.)

We observe that

XTX =
N

∑
n=1

xnx T
n

=

[

x1x1 x1y1

x1y1 y1y1

]

+ · · ·+
[

xNxN xNyN

xNyN yNyN

]

.

The covariance matrixis the matrix of the ex-
pected values of the products of thex and y
components of the samples:

C =
1
N

XTX =

[

〈xx〉 〈xy〉
〈xy〉 〈yy〉

]

=

[

σxx σxy

σxy σyy

]

where〈.〉 denotes expected value.



Isodensity Surfaces

Theisodensity surfacesof the multivariate Gaus-
sian are the locus of those points whereG(x)
has constant density:

G(x) =
1

(2π)K
2 |C|12

e−
1
2x TC−1x = D

which can be re-arranged to yield:

x TC−1x =−2ln
[

(2π)
K
2 |C|12D

]

.

SinceC−1 is positive definite the isodensity sur-
faces areellipsoids. The axesof these ellip-
soids are mutually orthogonal and point in the
same directions as the eigenvectors ofC. These
eigenvectors are theprincipal componentsof
the multivariate Gaussian density.



Principal Components Theorem

The principal components of a multivariate Gaus-
sian density are given by the eigenvectors of its
covariance matrix.

Proof (in two-dimensions): We observe that

e−
1
2x TC−1x

is maximized (or minimized) whenx TCx is max-
imized (or minimized). We therefore wish to
find the unit vectorsx which maximize (or min-
imize):

xTCx = xTC
1
2C

1
2x

= xT
(

C
1
2

)T
C

1
2x

=
(

C
1
2x
)T

C
1
2x

= ||C1
2x||2

whereC is symmetric and positive definite.



Principal Components Theorem (contd.)

Let w1 andw2 be eigenvectors ofC with eigen-
valuesλ1 andλ2. Note thatw1 andw2 are also
eigenvectors ofC

1
2 but its eigenvalues are

√
λ1

and
√

λ2. Now consider a unit vector,x, in the
plane. Letθ be the relative orientation between
x andw1. It follows that

[x]
W

=

[

cosθ
sinθ

]

is the representation ofx in the basis defined by
w1 andw2. Consequently,
∣

∣

∣

∣

∣

∣

[

C
1
2x
]

W

∣

∣

∣

∣

∣

∣

2
=

(

√

λ1

)2
cos2θ+

(

√

λ2

)2
sin2θ

= λ1cos2θ+λ2sin2θ.



Principal Components Theorem (contd.)

Calculus tells us that
∣

∣

∣

∣

∣

∣

[

C
1
2x
]

W

∣

∣

∣

∣

∣

∣

2
is maximized

(or minimized) when

d
(

λ1cos2θ+λ2sin2θ
)

dθ
= 0.

Evaluating the above derivative:

2λ1cosθsinθ−2λ2sinθcosθ = 2cosθsinθ(λ1−λ2) .

It follows that
∣

∣

∣

∣

∣

∣

[

C
1
2x
]

W

∣

∣

∣

∣

∣

∣

2
is maximized (or

minimized) whenθ = 0 (orθ = π/2), i.e., when
x = w1 (or x = w2). Now, becauseW is or-
thonormal

∣

∣

∣

∣

∣

∣

[

C
1
2x
]

W

∣

∣

∣

∣

∣

∣

2
= ||C1

2x||2

and because

||C1
2x||2 = xTCx

we conclude thatxTCx is maximized (or mini-
mized) whenx is an eigenvector ofC.



Diagonalizing the Covariance Matrix

Because the covariance matrixC is symmetric
and positive definite, it hasK orthogonal eigen-
vectors:

λkwk = Cwk

whereλ1 ≥ λ2 ≥ ·· · ≥ λK. It can therefore be
diagonalized as follows:

C = WDWT

whereW is aK ×K matrix of eigenvectors:

W =
[

w1 w2 . . . wK
]

andD is a K ×K diagonal matrix of eigenval-
ues:

D = diag(λ1,λ2, ...,λK).



The KL Transform

We can represent a samplex of a multivariate
Gaussian r.v. with covariance matrixC in the
basisW formed byC’s eigenvectors. This change
of basis is termed theKarhunen-Loeve trans-
form:

[x]
W

= WTx.

BecauseC is symmetric, thewk are mutually
orthogonal, andWT is unitary. Consequently,
the KL transform (like the DFT) is a rotation in
R

K.



The KL Transform (contd.)

• Question Let u = [x]
W

be the representation
of x in the basisW formed by the eigenvec-
tors ofC. What is the density ofu ?

• Answer It is the multivariate Gaussian den-
sity with covariance matrix,D:

G′(u) =
1

(2π)K
2 |D|12

e−
1
2u TD−1u

whereD = WTCW.



The Bivariate Case

In the bivariate case

D = WTCW =

[

σuu 0
0 σvv

]

.

SinceD is diagonal,

|D|= σuuσvv

andD−1 has an especially simple form:

D−1 =

[

1/σuu 0
0 1/σvv

]

.



The Bivariate Case (contd.)

It follows that the multivariate Gaussian density

with covariance matrix

[

σuu 0
0 σvv

]

is:

G′(u,v) =
1

2π
√

σuuσvv
e−

1
2(

u2
σuu

+ v2
σvv

).

We observe thatG′ is separable:

G′(u,v) =
1√

2πσuu
e−

u2
2σuu

1√
2πσvv

e−
v2

2σvv.

Since the joint density function ofu andv can
be expressed as the product of the density func-
tion for u and the density function forv, we say
thatu andv areuncorrelated.Stated differently,
knowing the value ofu tells you nothing about
the value ofv!



Reducing Dimensionality

SinceWT is unitary, its inverse is simplyW.
Consequently, the KL transform can be inverted
as follows:

x = Wu

which (in the general case ofK dimensions) is
simply:

x = u1w1+u2w2+ · · ·+uKwK.

Let u ′ be a vector of lengthJ ≤ K consisting of
the components ofu in the directions of eigen-
vectors with theJ eigenvalues of largest mag-
nitude. It is possible to recover,x ′, an approxi-
mation tox, from u ′ as follows:

x ′ = u1w1+u2w2+ · · ·+uJwJ.



Figure 2: Images from the ATT face database.



Figure 3: Someeigenfacesof images from the ATT face database.


