
Stochastic Matrices

The following 3 × 3 matrix defines a
discrete time Markov process with three
states:

P =

⎡

⎣
P11 P12 P13
P21 P22 P23
P31 P32 P33

⎤

⎦

where Pi j is the probability of going from
j → i in one step. A stochastic matrix
satisfies the following conditions:

∀i, jPi j ≥ 0

and

∀ j

M

∑
i=1

Pi j = 1.



Example

The following 3 × 3 matrix defines a
discrete time Markov process with three
states:

P =

⎡

⎣
0.90 0.01 0.09
0.01 0.90 0.01
0.09 0.09 0.90

⎤

⎦

where P23 = 0.01 is the probability of
going from 3 → 2 in one step. You can
verify that

∀i, jPi j ≥ 0

and

∀ j

3

∑
i=1

Pi j = 1.



Example (contd.)
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Figure 1: Three-state Markov process.



Single Step Transition Probabilities

x(1) = Px(0)

x(2) = Px(1)

...
x(t+1) = Px(t)

⎡

⎣
0.641
0.188
0.171

⎤

⎦

︸ ︷︷ ︸
x(t+1)

=

⎡

⎣
0.90 0.01 0.09
0.01 0.90 0.01
0.09 0.09 0.90

⎤

⎦

︸ ︷︷ ︸
P

⎡

⎣
0.7
0.2
0.1

⎤

⎦

︸ ︷︷ ︸
x(t)

x(t+1)
i =

M

∑
j=1

Pi j x(t)j



n-step Transition Probabilities

Observe that x(3) can be written as fol-
lows:

x(3) = Px(2)

= P
(

Px(1)
)

= P
(

P
(

Px(0)
))

= P3x(0).



n-step Transition Probabilities (contd.)

Similar logic leads us to an expression
for x(n):

x(n) = P
(

P...
(

Px(0)
))

︸ ︷︷ ︸
n

= Pnx(0).

An n-step transition probability matrix
can be defined in terms of a single step
matrix and a (n−1)-step matrix:

(Pn)i j =
M

∑
k=1

Pik
(
Pn−1)

k j .



Analysis of Two State Markov Process

P =

[
1−a b

a 1−b

]

1 21 − a

a

b
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Figure 2: Two-state Markov process.



Analysis of Two State Markov Process (contd.)

It is readily shown by induction that the
n-step transition probabilities for the two
state Markov process are given by the
following formula:

Pn =
1

a+b

[
b b
a a

]
+
(1−a−b)n

a+b

[
a −b

−a b

]
.

For conciseness, we introduce the fol-
lowing abbreviations:

P1 =

[
b b
a a

]

and
P2 =

[
a −b

−a b

]
.



Analysis of Two State Markov Process (contd.)

The following identities will also help:

• Identity 1

P1P=

[
b b
a a

][
1−a b

a 1−b

]
=

[
b b
a a

]
=P1

• Identity 2

P2P =

[
a −b

−a b

][
1−a b

a 1−b

]

=

[
a−a2−ab −b+ab+b2

a2−a+ab −ab+b−b2

]

= (1−a−b)P2



Analysis of Two State Markov Process (contd.)

To do a proof by induction, we need to
prove the basis step and the induction
step. First the basis step:

P1 =
1

a+b

[
b b
a a

]
+
(1−a−b)

a+b

[
a −b

−a b

]

=
1

a+b

[
b+a−a2−ab b−b+ab+b2

a−a+a2+ab a+b−ab−b2

]

=

[
1−a b

a 1−b

]

= P.



Analysis of Two State Markov Process (contd.)

Now we prove the induction step:

PnP =

(
1

(a+b)
P1+

(1−a−b)n

(a+b)
P2

)
P

=
1

(a+b)
P1P+

(1−a−b)n

(a+b)
P2P

=
1

(a+b)
P1+

(1−a−b)n+1

(a+b)
P2

= Pn+1.



Limiting Distribution

P =

[
1−a b

a 1−b

]

Pn =
1

a+b

[
b b
a a

]
+
(1−a−b)n

a+b

[
a −b

−a b

]

Note that |1−a−b|< 1 when 0< a< 1
and 0 < b < 1. Thus, |1− a− b|n → 0
as n → ∞.



Limiting Distribution (contd.)

It follows that:

lim
n→∞

Pn =

[ b
a+b

b
a+b

a
a+b

a
a+b

]
.

It is easy to show that [b/(a+b),a/(a+
b)]T is an eigenvector with eigenvalue
one of P:[

1−a b
a 1−b

][ b
a+b

a
a+b

]
=

[ b
a+b −

ab
a+b +

ab
a+b

ab
a+b +

a
a+b −

ab
a+b

]

=

[ b
a+b

a
a+b

]
.



Spectral Theorem (reprise)

Pn = XΛn YT

= λn
1x1yT

1 +λn
2x2yT

2

=

[ b
a+b

a
a+b

][
1 1

]
+(1−a−b)n

[
−1

1

][ −a
a+b

b
a+b

]

=
1

a+b

[
b b
a a

]
+
(1−a−b)n

a+b

[
a −b

−a b

]
.



Existence of Limiting Distribution

In order to understand when a Markov
process will have a limiting distribution
and when it will not we will

• Prove that a stochastic matrix has no
eigenvalue with magnitude greater than
one.

• Prove that a stochastic matrix always
has at least one eigenvalue equal to
one.

• Identify those conditions in which this
eigenvalue will be the unique eigen-
value of unit magnitude.
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Figure 3: (a)
[

1−a b
a 1−b

]
maps pts. in lines of constant 1−norm to pts. in

same line. These lines have slope equal to -1. (b)
[

b b
a a

]
maps points to line of

slope a
b through origin. (c)

[ b
a+b

b
a+b

a
a+b

a
a+b

]
maps distributions (thick segment) to

point
[ b

a+b
a

a+b

]
.



Spectral Radius

• The spectral radius, ρ(A), of a ma-
trix A is defined as the magnitude of
its largest eigenvalue.

• The 1−norm of a vector x is defined
as follows:

||x||1 = ∑
i
|xi|.

• The 1−norm of a matrix A is defined
as follows:

||A||1 = max
||x||1=1

||Ax||1.

• The Gelfand spectral radius theorem
states that

ρ(A) = lim
n→∞

||An||
1
n
1.



Spectral Radius (contd.)

Lemma 3.1 Let P be stochastic. Then

||P||1 = 1.

Proof:
yi = ∑

j
Pi jx j

∑
i

yi = ∑
i

∑
j

Pi jx j

∑
i

yi = ∑
j
∑

i
Pi jx j

∑
i

yi = ∑
j

x j ∑
i

Pi j

∑
i

yi = ∑
j

x j.

It follows that

||Px||1 = ||x||1.



Spectral Radius (contd.)

Consequently,

||P||1 = max
||x||1=1

||Px||1

||P||1 = max
||x||1=1

||x||1

||P||1 = 1.



Spectral Radius (contd.)

Lemma 3.2 The product of two stochas-
tic matrices is stochastic.
Proof: Let P and Q be stochastic, then

(PQ)i j = ∑
k

PikQk j

∑
i
(PQ)i j = ∑

i
∑

k
PikQk j

= ∑
k

∑
i

PikQk j

= ∑
k

Qk j ∑
i

Pik

= ∑
k

Qk j

= 1.



Spectral Radius (contd.)

Theorem 3 The spectral radius, ρ(P),
of a stochastic matrix, P, is one.
Proof: It is straightforward to show by
induction on n and Lemma 3.2 that Pn

is stochastic for all integers, n > 0. It
follows, by Lemma 3.1, that

||Pn||1 = 1

for all integers, n > 0. Consequently,

ρ(P) = lim
n→∞

||Pn||
1
n
1 = 1

by the Gelfand spectral radius theorem.



Existence of Limiting Distribution (contd.)

We just showed that a stochastic matrix
cannot have an eigenvalue with mag-
nitude greater than one. We will now
show that every stochastic matrix has at
least one eigenvalue equal to one.



Existence of λ = 1

Let P be a stochastic matrix. Since ∑M
i=1 Pi j =

1 and ∑M
i=1 Ii j = 1, it follows that:

0 =
M

∑
i=1

Pi j −
M

∑
i=1

Ii j

=
M

∑
i=1

(Pi j − Ii j) .

Consequently, the rows of P− I are not
linearly independent. Consequently, P−
I is singular:

det(P− I) = 0.



Existence of λ = 1 (contd.)

Recall that x is an eigenvector of P with
eigenvalue, λ, iff:

λx = Px.
The eigenvalues of P are the roots of
the characteristic polynomial:

det(P−λI) = 0.

Since det(P−I) = 0, it follows that λ=
1 is an eigenvalue of P.



Existence of Limiting Distribution (contd.)

We just showed that

• A stochastic matrix cannot have an
eigenvalue λ with magnitude greater
than one.

• Every stochastic matrix has at least
one eigenvalue λ1 equal to one.

We will now identify those conditions
in which this eigenvalue will be the unique
eigenvalue of unit magnitude.



Uniqueness of |λ|= 1

A matrix, P, is positive if and only if
for all i and j it is true that Pi j > 0.
In 1907, Perron proved that every pos-
itive matrix has a positive eigenvalue,
λ1, with larger magnitude than the re-
maining eigenvalues. If P is positive
and of size M×M then:

λ1 > |λi| for 1 < i ≤ M.



Irreducibility

Two states, i and j in a Markov process
communicate iff 1) i can be reached from
j with non-zero probability:

N1

∑
n=1

(Pn)i j > 0

and 2) j can be reached from i with
non-zero probability:

N2

∑
n=1

(Pn) ji > 0

for some sufficiently large N1 and N2.
If every state communicates with every
other state, then the Markov process is
irreducible.



Aperiodicity

A state i in a Markov process is aperi-
odic if for all sufficiently large N, there
is a non-zero probability of returning to
i in N steps:

(
PN)

ii > 0.

If a state is aperiodic, then every state
it communicates with is also aperiodic.
If a Markov process is irreducible, then
all states are either periodic or aperi-
odic.



Positive Stochastic Matrices

Theorem 4 If P is irreducible and ape-
riodic then PN is positive for some suf-
ficiently large N:

∀i, j
(
PN)

i j > 0.

Proof: Let P be irreducible and aperi-
odic and let

Ni j = min
(PN)i j>0

(N).

We observe that Ni j is guaranteed to ex-
ist for all i and j by irreducibility.



Positive Stochastic Matrices (contd.)

Now let

N = M+max
i, j

(Ni j)

N −Ni j = M+max
i, j

(Ni j)−Ni j

≥ M.

where M satisfying

∀i
(
PM)

ii > 0

is guaranteed to exist by aperiodicity.



Positive Stochastic Matrices (contd.)

Now let
(
PN)

i j =
(
PNi j+N−Ni j

)
i j

which is just
(
PN)

i j = ∑
k

(
PNi j

)
ik

(
PN−Ni j

)
k j

≥
(
PNi j

)
i j

(
PN−Ni j

)
j j

We observe that
(
PNi j

)
i j > 0 by defini-

tion of Ni j. Since N −Ni j ≥ M, it fol-
lows that

(
PN−Ni j

)
j j > 0. We therefore

see that
(
PN)

i j ≥
(
PNi j

)
i j

(
PN−Ni j

)
j j

> 0.



Uniqueness of |λ|= 1 (contd.)

When a Markov process is irreducible
and aperiodic, then PN for some suffi-
ciently large N will be a positive ma-
trix and its unique positive eigenvalue
of largest magnitude, λ1, equals one:

x1 = PNx1.

Since one is the unique positive eigen-
value of largest magnitude of PN, it fol-
lows that one is also the unique positive
eigenvalue of largest magnitude of P.



Periodic and Irreducible Markov Process
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Figure 4: A Markov process with four states and period four (left). The transition
matrix has four distinct eigenvalues on the unit circle in the complex plane (right).
There is no limiting distribution.



Aperiodic and Irreducible Markov Process
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Figure 5: An aperiodic Markov process with six states (left). The transition ma-
trix has two eigenvalues of magnitude zero, one eigenvalue of unit magnitude,
and three eigenvalues with magnitude less than one (right). Because the rank of
limn→∞ Pn = 1, there is a unique limiting distribution. In the limit, the process
visits state 3 twice as often as the other states (which are visited with equiproba-
bility).



Limiting Distributions

Let x(0) be an initial distribution. We
can write x(0) as a linear combination
of the eigenvectors of P:

x(0) = c1x1+ c2x2+ ...+ cMxM.

Can x(1) =Px(0) also be written as a lin-
ear combination of eigenvectors?

x(1) = Pc1x1+Pc2x2+ ...+PcMxM



Limiting Distributions (contd.)

Since Pxi = λixi it follows that:

x(1) = λ1c1x1+λ2c2x2+ ...+λMcMxM.

Furthermore, Pnxi = λn
i xi. It follows that:

x(n) = λn
1c1x1+λn

2c2x2+ ...+λn
McMxM.

Since λ1 = 1 and |λi|< 1 for all i, in the
limit as n → ∞:

lim
n→∞

x(n) = c1x1.

Observe that x1 is independent of x(0)

and that c1 must equal one.



Genetic Drift

• There are 2N individuals of which j
possess gene variant, A, and the re-
maining 2N − j possess gene vari-
ant, B.

• Let {0, ...,2N} be the states of a Markov
process modeling the number of in-
dividuals in successive generations
who possess gene variant, A.

• An individual inherits his gene vari-
ant either from his father (50% prob-
ability) or his mother (50% proba-
bility).



Genetic Drift (contd.)

• The probability of any individual in-
heriting A is pA = j/2N and inherit-
ing B is pB = 1− pA.

• The probability that exactly k indi-
viduals will possess A in the next gen-
eration, given that j individuals pos-
sess it in the current generation can
be modeled by the binomial distri-
bution:

Pk j =

(
2N
k

)
pk

A(1− pA)
2N−k



Genetic Drift (contd.)

• Gene variant A becomes extinct if j =
0.

• Given an initial population with ex-
actly j individuals possessing gene
variant A, what is the probability that
gene variant A will become extinct?



Adding Mutation

• Gene variant, A, mutates to gene vari-
ant, B, with probability, pA→B.

• Gene variant, B, mutates to gene vari-
ant, A, with probability, pB→A.

• The probability that an individual in-
herits A (and it doesn’t mutate to B)
or that he inherits B (and it mutates
to A) is:

pA =
j

2N
(1− pA→B)+

(
1− j

2N

)
pB→A


