

Introduction to Computer Graphics

Ed Angel

Professor of Computer Science, Electrical and Computer Engineering, and Media Arts Director, Arts Technology Center University of New Mexico

Contact Information

angel@cs.unm.edu www.cs.unm.edu/~angel/CS433 CS Office FEC 301F 277-6560 Office Hours: TTh PM Arts Technology Center 1923 Las Lomas 277-2286

Objectives

- Broad introduction to Computer Graphics
 - Software
 - Hardware
 - Applications
- Top-down approach
- OpenGL

Text Book

 Ed Angel, Interactive Computer Graphics, A Top-down Approach with OpenGL (Third Edition)

The lectures cover the material in Chapters 1-10

Prerequisites

- Good programming skills in C (or C++)
- Basic Data Structures
 - Linked lists
 - Arrays
- Geometry
- Simple Linear Algebra

Requirements

- 3 Assigned Projects
 - Simple
 - Interactive
 - 3D
- Term Project
 - You pick

Resources

- Can run OpenGL on any system
 - Windows
 - Linux
 - Mac
- CS lab
 - Linux/mesa
 - Scalable systems lab
 - Intellestations Gforce 3 and FX

References

Other helpful references

- OpenGL: A Primer, Ed Angel, Addison-Wesley, 2002
 - Designed for students who need more programming information
- The OpenGL Programmer's Guide (the Redbook) and the OpenGL Reference Manual (The Blue book), Addison-Wesley,
 - The definitive references

Web Resources

- www.opengl.org
- www.cs.unm.edu/~angel

- Part 1: Introduction
- Text: Chapter 1
- Lectures 1-3
 - What is Computer Graphics?
 - Applications Areas
 - History
 - Image formation
 - Basic Architecture

- Part 2: Basic OpenGL
- Text: Chapters 2-3
- Lectures 4-9
 - Architecture
 - GLUT
 - Simple programs in two and three dimensions
 - Interaction

- Part 3: Three-Dimensional Graphics
- Text: Chapters 4-6
- Lectures 10-20
 - Geometry
 - Transformations
 - Homogeneous Coordinates
 - Viewing
 - Shading

- Part 4: Discrete Methods
- Text: Chapter 7
- Lectures 21-24
 - Buffers
 - Bitmaps and Pixel Maps
 - Texture Mapping
 - Compositing and Transparency

- Part 5: Implementation
- Text: Chapter 8
- Lectures: 25-28
 - Approaches (object vs image space)
 - Implementing the pipeline
 - Clipping
 - Line drawing
 - Polygon Fill
 - Display issues (color)

- Part 6: Hierarchy
- Text: Chapter 9
- •Lectures: 29-31
 - Tree Structured Models
 - Traversal Methods
 - Scene Graphs

Part 7: Curves and Surfaces

Text: Chapter 10

• Lectures: 32-36

What is Computer Graphics

- Now we start to explore what computer graphics is about and survey some application areas
- But we start with a historical introduction

Computer Graphics

- Computer graphics deals with all aspects of creating images with a computer
 - Hardware
 - Software
 - Applications

Example

Where did this image come from?

 What hardware/software did we need to produce it?

Preliminary Answer

- Application: The object is an artist's rendition of the sun for an animation to be shown in a domed environment (planetarium)
- Software: Maya for modeling and rendering but Maya is built on top of OpenGL
- Hardware: PC with graphics card for modeling and rendering

Basic Graphics System

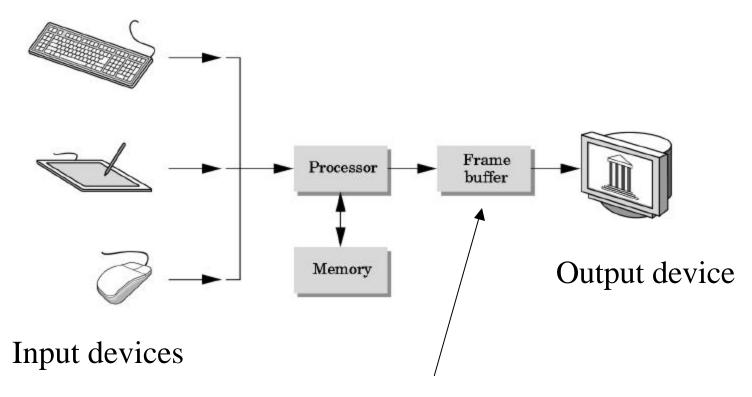
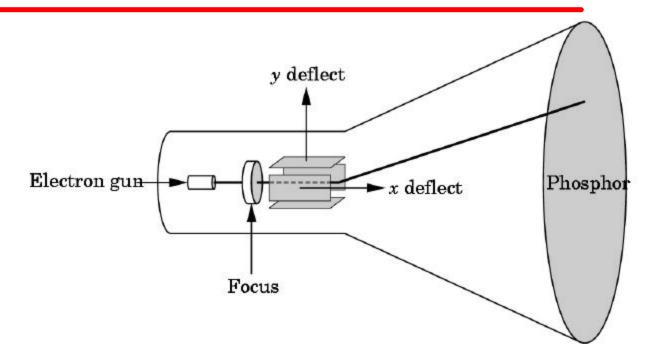
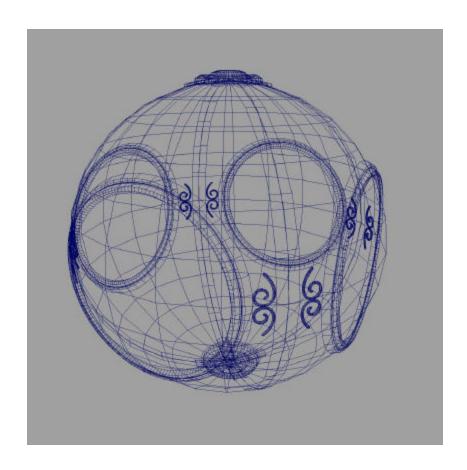



Image formed in FB

CRT

Can be used either as a line-drawing device (calligraphic) or to display contents of frame buffer (raster mode)

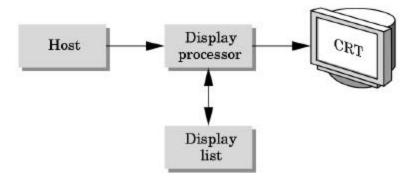
Computer Graphics: 1950-1960


- Computer graphics goes back to the earliest days of computing
 - Strip charts
 - Pen plotters
 - Simple displays using A/D converters to go from computer to calligraphic CRT
- Cost of refresh for CRT too high
 - Computers slow, expensive, unreliable

Computer Graphics: 1960-1970

- Wireframe graphics
 - Draw only lines
- Project Sketchpad
- Display Processors
- Storage tube

wireframe representation of sun object


Project Sketchpad

- Ivan Sutherland's PhD thesis at MIT
 - Recognized the potential of man-machine interaction
 - Loop
 - Display something
 - User moves light pen
 - Computer generates new display
 - Sutherland also created many of the now common algorithms for computer graphics

Display Processor

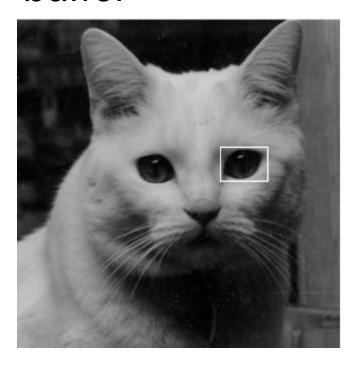
 Rather than have host computer try to refresh display use a special purpose computer called a display processor (DPU)

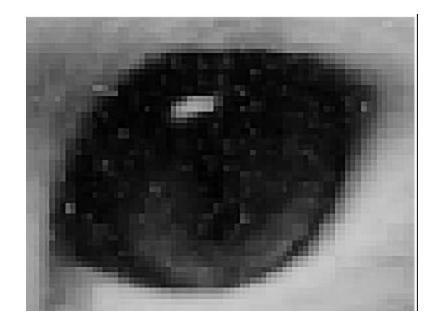
- Graphics stored in display list (display file) on display processor
- Host compiles display list and sends to DPU

Direct View Storage Tube

Created by Tektronix

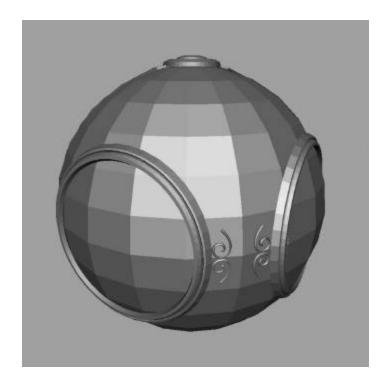
- Did not require constant refresh
- Standard interface to computers
 - Allowed for standard software
 - Plot3D in Fortran
- Relatively inexpensive
 - Opened door to use of computer graphics for CAD community


Computer Graphics: 1970-1980


- Raster Graphics
- Beginning of graphics standards
 - IFIPS
 - GKS: European effort
 - Becomes ISO 2D standard
 - Core: North American effort
 - 3D but fails to become ISO standard
- Workstations and PCs

Raster Graphics

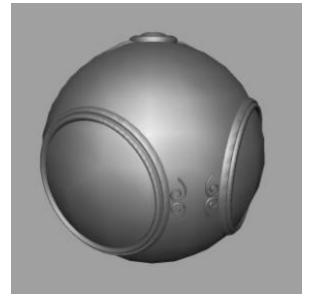
 Image produced as an array (the raster) of picture elements (pixels) in the frame buffer



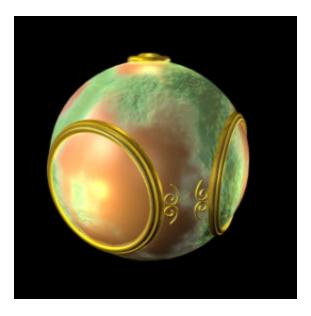
29

Raster Graphics

 Allows us to go from lines and wire frame images to filled polygons


PCs and Workstations

- Although we no longer make the distinction between workstations and PCs, historically they evolved from different roots
 - Early workstations characterized by
 - Networked connection: client-server model
 - High-level of interactivity
 - Early PCs included frame buffer as part of user memory
 - Easy to change contents and create images



Computer Graphics: 1980-1990

Realism comes to computer graphics

smooth shading

environmental mapping

bump mapping

Computer Graphics: 1980-1990

The University of New Mexico

- Special purpose hardware
 - Silicon Graphics geometry engine
 - VLSI implementation of graphics pipline
- Industry-based standards
 - PHIGS
 - RenderMan
- Networked graphics: X Window System
- Human-Computer Interface (HCI)

Computer Graphics: 1990-2000

- OpenGL API
- Completely computer-generated featurelength movies (Toy Story) are successful
- New hardware capabilities
 - Texture mapping
 - Blending
 - Accumulation, stencil buffers

Computer Graphics: 2000-

- Photorealism
- Graphics cards for PCs dominate market
 - Nvidia, ATI, 3DLabs
- Game boxes and game players determine direction of market
- Computer graphics routine in movie industry: Maya, Lightwave